ntp_control.c revision 316722
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36/*
37 * Structure to hold request procedure information
38 */
39
40struct ctl_proc {
41	short control_code;		/* defined request code */
42#define NO_REQUEST	(-1)
43	u_short flags;			/* flags word */
44	/* Only one flag.  Authentication required or not. */
45#define NOAUTH	0
46#define AUTH	1
47	void (*handler) (struct recvbuf *, int); /* handle request */
48};
49
50
51/*
52 * Request processing routines
53 */
54static	void	ctl_error	(u_char);
55#ifdef REFCLOCK
56static	u_short ctlclkstatus	(struct refclockstat *);
57#endif
58static	void	ctl_flushpkt	(u_char);
59static	void	ctl_putdata	(const char *, unsigned int, int);
60static	void	ctl_putstr	(const char *, const char *, size_t);
61static	void	ctl_putdblf	(const char *, int, int, double);
62#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65					    FPTOD(sfp))
66static	void	ctl_putuint	(const char *, u_long);
67static	void	ctl_puthex	(const char *, u_long);
68static	void	ctl_putint	(const char *, long);
69static	void	ctl_putts	(const char *, l_fp *);
70static	void	ctl_putadr	(const char *, u_int32,
71				 sockaddr_u *);
72static	void	ctl_putrefid	(const char *, u_int32);
73static	void	ctl_putarray	(const char *, double *, int);
74static	void	ctl_putsys	(int);
75static	void	ctl_putpeer	(int, struct peer *);
76static	void	ctl_putfs	(const char *, tstamp_t);
77static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78#ifdef REFCLOCK
79static	void	ctl_putclock	(int, struct refclockstat *, int);
80#endif	/* REFCLOCK */
81static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82					  char **);
83static	u_short	count_var	(const struct ctl_var *);
84static	void	control_unspec	(struct recvbuf *, int);
85static	void	read_status	(struct recvbuf *, int);
86static	void	read_sysvars	(void);
87static	void	read_peervars	(void);
88static	void	read_variables	(struct recvbuf *, int);
89static	void	write_variables (struct recvbuf *, int);
90static	void	read_clockstatus(struct recvbuf *, int);
91static	void	write_clockstatus(struct recvbuf *, int);
92static	void	set_trap	(struct recvbuf *, int);
93static	void	save_config	(struct recvbuf *, int);
94static	void	configure	(struct recvbuf *, int);
95static	void	send_mru_entry	(mon_entry *, int);
96static	void	send_random_tag_value(int);
97static	void	read_mru_list	(struct recvbuf *, int);
98static	void	send_ifstats_entry(endpt *, u_int);
99static	void	read_ifstats	(struct recvbuf *);
100static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101					  restrict_u *, int);
102static	void	send_restrict_entry(restrict_u *, int, u_int);
103static	void	send_restrict_list(restrict_u *, int, u_int *);
104static	void	read_addr_restrictions(struct recvbuf *);
105static	void	read_ordlist	(struct recvbuf *, int);
106static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108static	int	validate_nonce	(const char *, struct recvbuf *);
109static	void	req_nonce	(struct recvbuf *, int);
110static	void	unset_trap	(struct recvbuf *, int);
111static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112				     struct interface *);
113
114int/*BOOL*/ is_safe_filename(const char * name);
115
116static const struct ctl_proc control_codes[] = {
117	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130	{ NO_REQUEST,			0,	NULL }
131};
132
133/*
134 * System variables we understand
135 */
136#define	CS_LEAP			1
137#define	CS_STRATUM		2
138#define	CS_PRECISION		3
139#define	CS_ROOTDELAY		4
140#define	CS_ROOTDISPERSION	5
141#define	CS_REFID		6
142#define	CS_REFTIME		7
143#define	CS_POLL			8
144#define	CS_PEERID		9
145#define	CS_OFFSET		10
146#define	CS_DRIFT		11
147#define	CS_JITTER		12
148#define	CS_ERROR		13
149#define	CS_CLOCK		14
150#define	CS_PROCESSOR		15
151#define	CS_SYSTEM		16
152#define	CS_VERSION		17
153#define	CS_STABIL		18
154#define	CS_VARLIST		19
155#define	CS_TAI			20
156#define	CS_LEAPTAB		21
157#define	CS_LEAPEND		22
158#define	CS_RATE			23
159#define	CS_MRU_ENABLED		24
160#define	CS_MRU_DEPTH		25
161#define	CS_MRU_DEEPEST		26
162#define	CS_MRU_MINDEPTH		27
163#define	CS_MRU_MAXAGE		28
164#define	CS_MRU_MAXDEPTH		29
165#define	CS_MRU_MEM		30
166#define	CS_MRU_MAXMEM		31
167#define	CS_SS_UPTIME		32
168#define	CS_SS_RESET		33
169#define	CS_SS_RECEIVED		34
170#define	CS_SS_THISVER		35
171#define	CS_SS_OLDVER		36
172#define	CS_SS_BADFORMAT		37
173#define	CS_SS_BADAUTH		38
174#define	CS_SS_DECLINED		39
175#define	CS_SS_RESTRICTED	40
176#define	CS_SS_LIMITED		41
177#define	CS_SS_KODSENT		42
178#define	CS_SS_PROCESSED		43
179#define	CS_PEERADR		44
180#define	CS_PEERMODE		45
181#define	CS_BCASTDELAY		46
182#define	CS_AUTHDELAY		47
183#define	CS_AUTHKEYS		48
184#define	CS_AUTHFREEK		49
185#define	CS_AUTHKLOOKUPS		50
186#define	CS_AUTHKNOTFOUND	51
187#define	CS_AUTHKUNCACHED	52
188#define	CS_AUTHKEXPIRED		53
189#define	CS_AUTHENCRYPTS		54
190#define	CS_AUTHDECRYPTS		55
191#define	CS_AUTHRESET		56
192#define	CS_K_OFFSET		57
193#define	CS_K_FREQ		58
194#define	CS_K_MAXERR		59
195#define	CS_K_ESTERR		60
196#define	CS_K_STFLAGS		61
197#define	CS_K_TIMECONST		62
198#define	CS_K_PRECISION		63
199#define	CS_K_FREQTOL		64
200#define	CS_K_PPS_FREQ		65
201#define	CS_K_PPS_STABIL		66
202#define	CS_K_PPS_JITTER		67
203#define	CS_K_PPS_CALIBDUR	68
204#define	CS_K_PPS_CALIBS		69
205#define	CS_K_PPS_CALIBERRS	70
206#define	CS_K_PPS_JITEXC		71
207#define	CS_K_PPS_STBEXC		72
208#define	CS_KERN_FIRST		CS_K_OFFSET
209#define	CS_KERN_LAST		CS_K_PPS_STBEXC
210#define	CS_IOSTATS_RESET	73
211#define	CS_TOTAL_RBUF		74
212#define	CS_FREE_RBUF		75
213#define	CS_USED_RBUF		76
214#define	CS_RBUF_LOWATER		77
215#define	CS_IO_DROPPED		78
216#define	CS_IO_IGNORED		79
217#define	CS_IO_RECEIVED		80
218#define	CS_IO_SENT		81
219#define	CS_IO_SENDFAILED	82
220#define	CS_IO_WAKEUPS		83
221#define	CS_IO_GOODWAKEUPS	84
222#define	CS_TIMERSTATS_RESET	85
223#define	CS_TIMER_OVERRUNS	86
224#define	CS_TIMER_XMTS		87
225#define	CS_FUZZ			88
226#define	CS_WANDER_THRESH	89
227#define	CS_LEAPSMEARINTV	90
228#define	CS_LEAPSMEAROFFS	91
229#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
230#ifdef AUTOKEY
231#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
232#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
233#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
234#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
235#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
236#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
237#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
238#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
239#define	CS_MAXCODE		CS_DIGEST
240#else	/* !AUTOKEY follows */
241#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
242#endif	/* !AUTOKEY */
243
244/*
245 * Peer variables we understand
246 */
247#define	CP_CONFIG		1
248#define	CP_AUTHENABLE		2
249#define	CP_AUTHENTIC		3
250#define	CP_SRCADR		4
251#define	CP_SRCPORT		5
252#define	CP_DSTADR		6
253#define	CP_DSTPORT		7
254#define	CP_LEAP			8
255#define	CP_HMODE		9
256#define	CP_STRATUM		10
257#define	CP_PPOLL		11
258#define	CP_HPOLL		12
259#define	CP_PRECISION		13
260#define	CP_ROOTDELAY		14
261#define	CP_ROOTDISPERSION	15
262#define	CP_REFID		16
263#define	CP_REFTIME		17
264#define	CP_ORG			18
265#define	CP_REC			19
266#define	CP_XMT			20
267#define	CP_REACH		21
268#define	CP_UNREACH		22
269#define	CP_TIMER		23
270#define	CP_DELAY		24
271#define	CP_OFFSET		25
272#define	CP_JITTER		26
273#define	CP_DISPERSION		27
274#define	CP_KEYID		28
275#define	CP_FILTDELAY		29
276#define	CP_FILTOFFSET		30
277#define	CP_PMODE		31
278#define	CP_RECEIVED		32
279#define	CP_SENT			33
280#define	CP_FILTERROR		34
281#define	CP_FLASH		35
282#define	CP_TTL			36
283#define	CP_VARLIST		37
284#define	CP_IN			38
285#define	CP_OUT			39
286#define	CP_RATE			40
287#define	CP_BIAS			41
288#define	CP_SRCHOST		42
289#define	CP_TIMEREC		43
290#define	CP_TIMEREACH		44
291#define	CP_BADAUTH		45
292#define	CP_BOGUSORG		46
293#define	CP_OLDPKT		47
294#define	CP_SELDISP		48
295#define	CP_SELBROKEN		49
296#define	CP_CANDIDATE		50
297#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
298#ifdef AUTOKEY
299#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
300#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
301#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
302#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
303#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
304#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
305#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
306#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
307#define	CP_MAXCODE		CP_IDENT
308#else	/* !AUTOKEY follows */
309#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
310#endif	/* !AUTOKEY */
311
312/*
313 * Clock variables we understand
314 */
315#define	CC_TYPE		1
316#define	CC_TIMECODE	2
317#define	CC_POLL		3
318#define	CC_NOREPLY	4
319#define	CC_BADFORMAT	5
320#define	CC_BADDATA	6
321#define	CC_FUDGETIME1	7
322#define	CC_FUDGETIME2	8
323#define	CC_FUDGEVAL1	9
324#define	CC_FUDGEVAL2	10
325#define	CC_FLAGS	11
326#define	CC_DEVICE	12
327#define	CC_VARLIST	13
328#define	CC_MAXCODE	CC_VARLIST
329
330/*
331 * System variable values. The array can be indexed by the variable
332 * index to find the textual name.
333 */
334static const struct ctl_var sys_var[] = {
335	{ 0,		PADDING, "" },		/* 0 */
336	{ CS_LEAP,	RW, "leap" },		/* 1 */
337	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
338	{ CS_PRECISION, RO, "precision" },	/* 3 */
339	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
340	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
341	{ CS_REFID,	RO, "refid" },		/* 6 */
342	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
343	{ CS_POLL,	RO, "tc" },		/* 8 */
344	{ CS_PEERID,	RO, "peer" },		/* 9 */
345	{ CS_OFFSET,	RO, "offset" },		/* 10 */
346	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
347	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
348	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
349	{ CS_CLOCK,	RO, "clock" },		/* 14 */
350	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
351	{ CS_SYSTEM,	RO, "system" },		/* 16 */
352	{ CS_VERSION,	RO, "version" },	/* 17 */
353	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
354	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
355	{ CS_TAI,	RO, "tai" },		/* 20 */
356	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
357	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
358	{ CS_RATE,	RO, "mintc" },		/* 23 */
359	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
360	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
361	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
362	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
363	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
364	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
365	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
366	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
367	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
368	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
369	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
370	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
371	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
372	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
373	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
374	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
375	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
376	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
377	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
378	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
379	{ CS_PEERADR,		RO, "peeradr" },	/* 44 */
380	{ CS_PEERMODE,		RO, "peermode" },	/* 45 */
381	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 46 */
382	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 47 */
383	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 48 */
384	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 49 */
385	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 50 */
386	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 51 */
387	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 52 */
388	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 53 */
389	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 54 */
390	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 55 */
391	{ CS_AUTHRESET,		RO, "authreset" },	/* 56 */
392	{ CS_K_OFFSET,		RO, "koffset" },	/* 57 */
393	{ CS_K_FREQ,		RO, "kfreq" },		/* 58 */
394	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 59 */
395	{ CS_K_ESTERR,		RO, "kesterr" },	/* 60 */
396	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 61 */
397	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 62 */
398	{ CS_K_PRECISION,	RO, "kprecis" },	/* 63 */
399	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 64 */
400	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 65 */
401	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 66 */
402	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 67 */
403	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 68 */
404	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 69 */
405	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 70 */
406	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 71 */
407	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 72 */
408	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 73 */
409	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 74 */
410	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 75 */
411	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 76 */
412	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 77 */
413	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 78 */
414	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 79 */
415	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 80 */
416	{ CS_IO_SENT,		RO, "io_sent" },	/* 81 */
417	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 82 */
418	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 83 */
419	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 84 */
420	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 85 */
421	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 86 */
422	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 87 */
423	{ CS_FUZZ,		RO, "fuzz" },		/* 88 */
424	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 89 */
425
426	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 90 */
427	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 91 */
428
429#ifdef AUTOKEY
430	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
431	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
432	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
433	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
434	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
435	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
436	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
437	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
438#endif	/* AUTOKEY */
439	{ 0,		EOV, "" }		/* 87/95 */
440};
441
442static struct ctl_var *ext_sys_var = NULL;
443
444/*
445 * System variables we print by default (in fuzzball order,
446 * more-or-less)
447 */
448static const u_char def_sys_var[] = {
449	CS_VERSION,
450	CS_PROCESSOR,
451	CS_SYSTEM,
452	CS_LEAP,
453	CS_STRATUM,
454	CS_PRECISION,
455	CS_ROOTDELAY,
456	CS_ROOTDISPERSION,
457	CS_REFID,
458	CS_REFTIME,
459	CS_CLOCK,
460	CS_PEERID,
461	CS_POLL,
462	CS_RATE,
463	CS_OFFSET,
464	CS_DRIFT,
465	CS_JITTER,
466	CS_ERROR,
467	CS_STABIL,
468	CS_TAI,
469	CS_LEAPTAB,
470	CS_LEAPEND,
471	CS_LEAPSMEARINTV,
472	CS_LEAPSMEAROFFS,
473#ifdef AUTOKEY
474	CS_HOST,
475	CS_IDENT,
476	CS_FLAGS,
477	CS_DIGEST,
478	CS_SIGNATURE,
479	CS_PUBLIC,
480	CS_CERTIF,
481#endif	/* AUTOKEY */
482	0
483};
484
485
486/*
487 * Peer variable list
488 */
489static const struct ctl_var peer_var[] = {
490	{ 0,		PADDING, "" },		/* 0 */
491	{ CP_CONFIG,	RO, "config" },		/* 1 */
492	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
493	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
494	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
495	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
496	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
497	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
498	{ CP_LEAP,	RO, "leap" },		/* 8 */
499	{ CP_HMODE,	RO, "hmode" },		/* 9 */
500	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
501	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
502	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
503	{ CP_PRECISION,	RO, "precision" },	/* 13 */
504	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
505	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
506	{ CP_REFID,	RO, "refid" },		/* 16 */
507	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
508	{ CP_ORG,	RO, "org" },		/* 18 */
509	{ CP_REC,	RO, "rec" },		/* 19 */
510	{ CP_XMT,	RO, "xleave" },		/* 20 */
511	{ CP_REACH,	RO, "reach" },		/* 21 */
512	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
513	{ CP_TIMER,	RO, "timer" },		/* 23 */
514	{ CP_DELAY,	RO, "delay" },		/* 24 */
515	{ CP_OFFSET,	RO, "offset" },		/* 25 */
516	{ CP_JITTER,	RO, "jitter" },		/* 26 */
517	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
518	{ CP_KEYID,	RO, "keyid" },		/* 28 */
519	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
520	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
521	{ CP_PMODE,	RO, "pmode" },		/* 31 */
522	{ CP_RECEIVED,	RO, "received"},	/* 32 */
523	{ CP_SENT,	RO, "sent" },		/* 33 */
524	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
525	{ CP_FLASH,	RO, "flash" },		/* 35 */
526	{ CP_TTL,	RO, "ttl" },		/* 36 */
527	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
528	{ CP_IN,	RO, "in" },		/* 38 */
529	{ CP_OUT,	RO, "out" },		/* 39 */
530	{ CP_RATE,	RO, "headway" },	/* 40 */
531	{ CP_BIAS,	RO, "bias" },		/* 41 */
532	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
533	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
534	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
535	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
536	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
537	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
538	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
539	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
540	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
541#ifdef AUTOKEY
542	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
543	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
544	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
545	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
546	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
547	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
548	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
549	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
550#endif	/* AUTOKEY */
551	{ 0,		EOV, "" }		/* 50/58 */
552};
553
554
555/*
556 * Peer variables we print by default
557 */
558static const u_char def_peer_var[] = {
559	CP_SRCADR,
560	CP_SRCPORT,
561	CP_SRCHOST,
562	CP_DSTADR,
563	CP_DSTPORT,
564	CP_OUT,
565	CP_IN,
566	CP_LEAP,
567	CP_STRATUM,
568	CP_PRECISION,
569	CP_ROOTDELAY,
570	CP_ROOTDISPERSION,
571	CP_REFID,
572	CP_REFTIME,
573	CP_REC,
574	CP_REACH,
575	CP_UNREACH,
576	CP_HMODE,
577	CP_PMODE,
578	CP_HPOLL,
579	CP_PPOLL,
580	CP_RATE,
581	CP_FLASH,
582	CP_KEYID,
583	CP_TTL,
584	CP_OFFSET,
585	CP_DELAY,
586	CP_DISPERSION,
587	CP_JITTER,
588	CP_XMT,
589	CP_BIAS,
590	CP_FILTDELAY,
591	CP_FILTOFFSET,
592	CP_FILTERROR,
593#ifdef AUTOKEY
594	CP_HOST,
595	CP_FLAGS,
596	CP_SIGNATURE,
597	CP_VALID,
598	CP_INITSEQ,
599	CP_IDENT,
600#endif	/* AUTOKEY */
601	0
602};
603
604
605#ifdef REFCLOCK
606/*
607 * Clock variable list
608 */
609static const struct ctl_var clock_var[] = {
610	{ 0,		PADDING, "" },		/* 0 */
611	{ CC_TYPE,	RO, "type" },		/* 1 */
612	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
613	{ CC_POLL,	RO, "poll" },		/* 3 */
614	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
615	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
616	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
617	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
618	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
619	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
620	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
621	{ CC_FLAGS,	RO, "flags" },		/* 11 */
622	{ CC_DEVICE,	RO, "device" },		/* 12 */
623	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
624	{ 0,		EOV, ""  }		/* 14 */
625};
626
627
628/*
629 * Clock variables printed by default
630 */
631static const u_char def_clock_var[] = {
632	CC_DEVICE,
633	CC_TYPE,	/* won't be output if device = known */
634	CC_TIMECODE,
635	CC_POLL,
636	CC_NOREPLY,
637	CC_BADFORMAT,
638	CC_BADDATA,
639	CC_FUDGETIME1,
640	CC_FUDGETIME2,
641	CC_FUDGEVAL1,
642	CC_FUDGEVAL2,
643	CC_FLAGS,
644	0
645};
646#endif
647
648/*
649 * MRU string constants shared by send_mru_entry() and read_mru_list().
650 */
651static const char addr_fmt[] =		"addr.%d";
652static const char last_fmt[] =		"last.%d";
653
654/*
655 * System and processor definitions.
656 */
657#ifndef HAVE_UNAME
658# ifndef STR_SYSTEM
659#  define		STR_SYSTEM	"UNIX"
660# endif
661# ifndef STR_PROCESSOR
662#  define		STR_PROCESSOR	"unknown"
663# endif
664
665static const char str_system[] = STR_SYSTEM;
666static const char str_processor[] = STR_PROCESSOR;
667#else
668# include <sys/utsname.h>
669static struct utsname utsnamebuf;
670#endif /* HAVE_UNAME */
671
672/*
673 * Trap structures. We only allow a few of these, and send a copy of
674 * each async message to each live one. Traps time out after an hour, it
675 * is up to the trap receipient to keep resetting it to avoid being
676 * timed out.
677 */
678/* ntp_request.c */
679struct ctl_trap ctl_traps[CTL_MAXTRAPS];
680int num_ctl_traps;
681
682/*
683 * Type bits, for ctlsettrap() call.
684 */
685#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
686#define TRAP_TYPE_PRIO		1	/* priority trap */
687#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
688
689
690/*
691 * List relating reference clock types to control message time sources.
692 * Index by the reference clock type. This list will only be used iff
693 * the reference clock driver doesn't set peer->sstclktype to something
694 * different than CTL_SST_TS_UNSPEC.
695 */
696#ifdef REFCLOCK
697static const u_char clocktypes[] = {
698	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
699	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
700	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
701	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
702	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
703	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
704	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
705	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
706	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
707	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
708	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
709	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
710	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
711	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
712	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
713	CTL_SST_TS_NTP,		/* not used (15) */
714	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
715	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
716	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
717	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
718	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
719	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
720	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
721	CTL_SST_TS_NTP,		/* not used (23) */
722	CTL_SST_TS_NTP,		/* not used (24) */
723	CTL_SST_TS_NTP,		/* not used (25) */
724	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
725	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
726	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
727	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
728	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
729	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
730	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
731	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
732	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
733	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
734	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
735	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
736	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
737	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
738	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
739	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
740	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
741	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
742	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
743	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
744	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
745};
746#endif  /* REFCLOCK */
747
748
749/*
750 * Keyid used for authenticating write requests.
751 */
752keyid_t ctl_auth_keyid;
753
754/*
755 * We keep track of the last error reported by the system internally
756 */
757static	u_char ctl_sys_last_event;
758static	u_char ctl_sys_num_events;
759
760
761/*
762 * Statistic counters to keep track of requests and responses.
763 */
764u_long ctltimereset;		/* time stats reset */
765u_long numctlreq;		/* number of requests we've received */
766u_long numctlbadpkts;		/* number of bad control packets */
767u_long numctlresponses;		/* number of resp packets sent with data */
768u_long numctlfrags;		/* number of fragments sent */
769u_long numctlerrors;		/* number of error responses sent */
770u_long numctltooshort;		/* number of too short input packets */
771u_long numctlinputresp;		/* number of responses on input */
772u_long numctlinputfrag;		/* number of fragments on input */
773u_long numctlinputerr;		/* number of input pkts with err bit set */
774u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
775u_long numctlbadversion;	/* number of input pkts with unknown version */
776u_long numctldatatooshort;	/* data too short for count */
777u_long numctlbadop;		/* bad op code found in packet */
778u_long numasyncmsgs;		/* number of async messages we've sent */
779
780/*
781 * Response packet used by these routines. Also some state information
782 * so that we can handle packet formatting within a common set of
783 * subroutines.  Note we try to enter data in place whenever possible,
784 * but the need to set the more bit correctly means we occasionally
785 * use the extra buffer and copy.
786 */
787static struct ntp_control rpkt;
788static u_char	res_version;
789static u_char	res_opcode;
790static associd_t res_associd;
791static u_short	res_frags;	/* datagrams in this response */
792static int	res_offset;	/* offset of payload in response */
793static u_char * datapt;
794static u_char * dataend;
795static int	datalinelen;
796static int	datasent;	/* flag to avoid initial ", " */
797static int	datanotbinflag;
798static sockaddr_u *rmt_addr;
799static struct interface *lcl_inter;
800
801static u_char	res_authenticate;
802static u_char	res_authokay;
803static keyid_t	res_keyid;
804
805#define MAXDATALINELEN	(72)
806
807static u_char	res_async;	/* sending async trap response? */
808
809/*
810 * Pointers for saving state when decoding request packets
811 */
812static	char *reqpt;
813static	char *reqend;
814
815#ifndef MIN
816#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
817#endif
818
819/*
820 * init_control - initialize request data
821 */
822void
823init_control(void)
824{
825	size_t i;
826
827#ifdef HAVE_UNAME
828	uname(&utsnamebuf);
829#endif /* HAVE_UNAME */
830
831	ctl_clr_stats();
832
833	ctl_auth_keyid = 0;
834	ctl_sys_last_event = EVNT_UNSPEC;
835	ctl_sys_num_events = 0;
836
837	num_ctl_traps = 0;
838	for (i = 0; i < COUNTOF(ctl_traps); i++)
839		ctl_traps[i].tr_flags = 0;
840}
841
842
843/*
844 * ctl_error - send an error response for the current request
845 */
846static void
847ctl_error(
848	u_char errcode
849	)
850{
851	size_t		maclen;
852
853	numctlerrors++;
854	DPRINTF(3, ("sending control error %u\n", errcode));
855
856	/*
857	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
858	 * have already been filled in.
859	 */
860	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
861			(res_opcode & CTL_OP_MASK);
862	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
863	rpkt.count = 0;
864
865	/*
866	 * send packet and bump counters
867	 */
868	if (res_authenticate && sys_authenticate) {
869		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
870				     CTL_HEADER_LEN);
871		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
872			CTL_HEADER_LEN + maclen);
873	} else
874		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
875			CTL_HEADER_LEN);
876}
877
878int/*BOOL*/
879is_safe_filename(const char * name)
880{
881	/* We need a strict validation of filenames we should write: The
882	 * daemon might run with special permissions and is remote
883	 * controllable, so we better take care what we allow as file
884	 * name!
885	 *
886	 * The first character must be digit or a letter from the ASCII
887	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
888	 * must be from [-._+A-Za-z0-9].
889	 *
890	 * We do not trust the character classification much here: Since
891	 * the NTP protocol makes no provisions for UTF-8 or local code
892	 * pages, we strictly require the 7bit ASCII code page.
893	 *
894	 * The following table is a packed bit field of 128 two-bit
895	 * groups. The LSB in each group tells us if a character is
896	 * acceptable at the first position, the MSB if the character is
897	 * accepted at any other position.
898	 *
899	 * This does not ensure that the file name is syntactically
900	 * correct (multiple dots will not work with VMS...) but it will
901	 * exclude potential globbing bombs and directory traversal. It
902	 * also rules out drive selection. (For systems that have this
903	 * notion, like Windows or VMS.)
904	 */
905	static const uint32_t chclass[8] = {
906		0x00000000, 0x00000000,
907		0x28800000, 0x000FFFFF,
908		0xFFFFFFFC, 0xC03FFFFF,
909		0xFFFFFFFC, 0x003FFFFF
910	};
911
912	u_int widx, bidx, mask;
913	if ( ! (name && *name))
914		return FALSE;
915
916	mask = 1u;
917	while (0 != (widx = (u_char)*name++)) {
918		bidx = (widx & 15) << 1;
919		widx = widx >> 4;
920		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
921			return FALSE;
922		if (0 == ((chclass[widx] >> bidx) & mask))
923			return FALSE;
924		mask = 2u;
925	}
926	return TRUE;
927}
928
929
930/*
931 * save_config - Implements ntpq -c "saveconfig <filename>"
932 *		 Writes current configuration including any runtime
933 *		 changes by ntpq's :config or config-from-file
934 *
935 * Note: There should be no buffer overflow or truncation in the
936 * processing of file names -- both cause security problems. This is bit
937 * painful to code but essential here.
938 */
939void
940save_config(
941	struct recvbuf *rbufp,
942	int restrict_mask
943	)
944{
945	/* block directory traversal by searching for characters that
946	 * indicate directory components in a file path.
947	 *
948	 * Conceptually we should be searching for DIRSEP in filename,
949	 * however Windows actually recognizes both forward and
950	 * backslashes as equivalent directory separators at the API
951	 * level.  On POSIX systems we could allow '\\' but such
952	 * filenames are tricky to manipulate from a shell, so just
953	 * reject both types of slashes on all platforms.
954	 */
955	/* TALOS-CAN-0062: block directory traversal for VMS, too */
956	static const char * illegal_in_filename =
957#if defined(VMS)
958	    ":[]"	/* do not allow drive and path components here */
959#elif defined(SYS_WINNT)
960	    ":\\/"	/* path and drive separators */
961#else
962	    "\\/"	/* separator and critical char for POSIX */
963#endif
964	    ;
965	char reply[128];
966#ifdef SAVECONFIG
967	static const char savedconfig_eq[] = "savedconfig=";
968
969	/* Build a safe open mode from the available mode flags. We want
970	 * to create a new file and write it in text mode (when
971	 * applicable -- only Windows does this...)
972	 */
973	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
974#  if defined(O_EXCL)		/* posix, vms */
975	    | O_EXCL
976#  elif defined(_O_EXCL)	/* windows is alway very special... */
977	    | _O_EXCL
978#  endif
979#  if defined(_O_TEXT)		/* windows, again */
980	    | _O_TEXT
981#endif
982	    ;
983
984	char filespec[128];
985	char filename[128];
986	char fullpath[512];
987	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
988	time_t now;
989	int fd;
990	FILE *fptr;
991	int prc;
992	size_t reqlen;
993#endif
994
995	if (RES_NOMODIFY & restrict_mask) {
996		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
997		ctl_flushpkt(0);
998		NLOG(NLOG_SYSINFO)
999			msyslog(LOG_NOTICE,
1000				"saveconfig from %s rejected due to nomodify restriction",
1001				stoa(&rbufp->recv_srcadr));
1002		sys_restricted++;
1003		return;
1004	}
1005
1006#ifdef SAVECONFIG
1007	if (NULL == saveconfigdir) {
1008		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1009		ctl_flushpkt(0);
1010		NLOG(NLOG_SYSINFO)
1011			msyslog(LOG_NOTICE,
1012				"saveconfig from %s rejected, no saveconfigdir",
1013				stoa(&rbufp->recv_srcadr));
1014		return;
1015	}
1016
1017	/* The length checking stuff gets serious. Do not assume a NUL
1018	 * byte can be found, but if so, use it to calculate the needed
1019	 * buffer size. If the available buffer is too short, bail out;
1020	 * likewise if there is no file spec. (The latter will not
1021	 * happen when using NTPQ, but there are other ways to craft a
1022	 * network packet!)
1023	 */
1024	reqlen = (size_t)(reqend - reqpt);
1025	if (0 != reqlen) {
1026		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1027		if (NULL != nulpos)
1028			reqlen = (size_t)(nulpos - reqpt);
1029	}
1030	if (0 == reqlen)
1031		return;
1032	if (reqlen >= sizeof(filespec)) {
1033		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1034			   (u_int)sizeof(filespec));
1035		ctl_flushpkt(0);
1036		msyslog(LOG_NOTICE,
1037			"saveconfig exceeded maximum raw name length from %s",
1038			stoa(&rbufp->recv_srcadr));
1039		return;
1040	}
1041
1042	/* copy data directly as we exactly know the size */
1043	memcpy(filespec, reqpt, reqlen);
1044	filespec[reqlen] = '\0';
1045
1046	/*
1047	 * allow timestamping of the saved config filename with
1048	 * strftime() format such as:
1049	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1050	 * XXX: Nice feature, but not too safe.
1051	 * YYY: The check for permitted characters in file names should
1052	 *      weed out the worst. Let's hope 'strftime()' does not
1053	 *      develop pathological problems.
1054	 */
1055	time(&now);
1056	if (0 == strftime(filename, sizeof(filename), filespec,
1057			  localtime(&now)))
1058	{
1059		/*
1060		 * If we arrive here, 'strftime()' balked; most likely
1061		 * the buffer was too short. (Or it encounterd an empty
1062		 * format, or just a format that expands to an empty
1063		 * string.) We try to use the original name, though this
1064		 * is very likely to fail later if there are format
1065		 * specs in the string. Note that truncation cannot
1066		 * happen here as long as both buffers have the same
1067		 * size!
1068		 */
1069		strlcpy(filename, filespec, sizeof(filename));
1070	}
1071
1072	/*
1073	 * Check the file name for sanity. This might/will rule out file
1074	 * names that would be legal but problematic, and it blocks
1075	 * directory traversal.
1076	 */
1077	if (!is_safe_filename(filename)) {
1078		ctl_printf("saveconfig rejects unsafe file name '%s'",
1079			   filename);
1080		ctl_flushpkt(0);
1081		msyslog(LOG_NOTICE,
1082			"saveconfig rejects unsafe file name from %s",
1083			stoa(&rbufp->recv_srcadr));
1084		return;
1085	}
1086
1087	/*
1088	 * XXX: This next test may not be needed with is_safe_filename()
1089	 */
1090
1091	/* block directory/drive traversal */
1092	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1093	if (NULL != strpbrk(filename, illegal_in_filename)) {
1094		snprintf(reply, sizeof(reply),
1095			 "saveconfig does not allow directory in filename");
1096		ctl_putdata(reply, strlen(reply), 0);
1097		ctl_flushpkt(0);
1098		msyslog(LOG_NOTICE,
1099			"saveconfig rejects unsafe file name from %s",
1100			stoa(&rbufp->recv_srcadr));
1101		return;
1102	}
1103
1104	/* concatenation of directory and path can cause another
1105	 * truncation...
1106	 */
1107	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1108		       saveconfigdir, filename);
1109	if (prc < 0 || prc >= sizeof(fullpath)) {
1110		ctl_printf("saveconfig exceeded maximum path length (%u)",
1111			   (u_int)sizeof(fullpath));
1112		ctl_flushpkt(0);
1113		msyslog(LOG_NOTICE,
1114			"saveconfig exceeded maximum path length from %s",
1115			stoa(&rbufp->recv_srcadr));
1116		return;
1117	}
1118
1119	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1120	if (-1 == fd)
1121		fptr = NULL;
1122	else
1123		fptr = fdopen(fd, "w");
1124
1125	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1126		ctl_printf("Unable to save configuration to file '%s': %m",
1127			   filename);
1128		msyslog(LOG_ERR,
1129			"saveconfig %s from %s failed", filename,
1130			stoa(&rbufp->recv_srcadr));
1131	} else {
1132		ctl_printf("Configuration saved to '%s'", filename);
1133		msyslog(LOG_NOTICE,
1134			"Configuration saved to '%s' (requested by %s)",
1135			fullpath, stoa(&rbufp->recv_srcadr));
1136		/*
1137		 * save the output filename in system variable
1138		 * savedconfig, retrieved with:
1139		 *   ntpq -c "rv 0 savedconfig"
1140		 * Note: the way 'savedconfig' is defined makes overflow
1141		 * checks unnecessary here.
1142		 */
1143		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1144			 savedconfig_eq, filename);
1145		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1146	}
1147
1148	if (NULL != fptr)
1149		fclose(fptr);
1150#else	/* !SAVECONFIG follows */
1151	ctl_printf("%s",
1152		   "saveconfig unavailable, configured with --disable-saveconfig");
1153#endif
1154	ctl_flushpkt(0);
1155}
1156
1157
1158/*
1159 * process_control - process an incoming control message
1160 */
1161void
1162process_control(
1163	struct recvbuf *rbufp,
1164	int restrict_mask
1165	)
1166{
1167	struct ntp_control *pkt;
1168	int req_count;
1169	int req_data;
1170	const struct ctl_proc *cc;
1171	keyid_t *pkid;
1172	int properlen;
1173	size_t maclen;
1174
1175	DPRINTF(3, ("in process_control()\n"));
1176
1177	/*
1178	 * Save the addresses for error responses
1179	 */
1180	numctlreq++;
1181	rmt_addr = &rbufp->recv_srcadr;
1182	lcl_inter = rbufp->dstadr;
1183	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1184
1185	/*
1186	 * If the length is less than required for the header, or
1187	 * it is a response or a fragment, ignore this.
1188	 */
1189	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1190	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1191	    || pkt->offset != 0) {
1192		DPRINTF(1, ("invalid format in control packet\n"));
1193		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1194			numctltooshort++;
1195		if (CTL_RESPONSE & pkt->r_m_e_op)
1196			numctlinputresp++;
1197		if (CTL_MORE & pkt->r_m_e_op)
1198			numctlinputfrag++;
1199		if (CTL_ERROR & pkt->r_m_e_op)
1200			numctlinputerr++;
1201		if (pkt->offset != 0)
1202			numctlbadoffset++;
1203		return;
1204	}
1205	res_version = PKT_VERSION(pkt->li_vn_mode);
1206	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1207		DPRINTF(1, ("unknown version %d in control packet\n",
1208			    res_version));
1209		numctlbadversion++;
1210		return;
1211	}
1212
1213	/*
1214	 * Pull enough data from the packet to make intelligent
1215	 * responses
1216	 */
1217	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1218					 MODE_CONTROL);
1219	res_opcode = pkt->r_m_e_op;
1220	rpkt.sequence = pkt->sequence;
1221	rpkt.associd = pkt->associd;
1222	rpkt.status = 0;
1223	res_frags = 1;
1224	res_offset = 0;
1225	res_associd = htons(pkt->associd);
1226	res_async = FALSE;
1227	res_authenticate = FALSE;
1228	res_keyid = 0;
1229	res_authokay = FALSE;
1230	req_count = (int)ntohs(pkt->count);
1231	datanotbinflag = FALSE;
1232	datalinelen = 0;
1233	datasent = 0;
1234	datapt = rpkt.u.data;
1235	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1236
1237	if ((rbufp->recv_length & 0x3) != 0)
1238		DPRINTF(3, ("Control packet length %d unrounded\n",
1239			    rbufp->recv_length));
1240
1241	/*
1242	 * We're set up now. Make sure we've got at least enough
1243	 * incoming data space to match the count.
1244	 */
1245	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1246	if (req_data < req_count || rbufp->recv_length & 0x3) {
1247		ctl_error(CERR_BADFMT);
1248		numctldatatooshort++;
1249		return;
1250	}
1251
1252	properlen = req_count + CTL_HEADER_LEN;
1253	/* round up proper len to a 8 octet boundary */
1254
1255	properlen = (properlen + 7) & ~7;
1256	maclen = rbufp->recv_length - properlen;
1257	if ((rbufp->recv_length & 3) == 0 &&
1258	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1259	    sys_authenticate) {
1260		res_authenticate = TRUE;
1261		pkid = (void *)((char *)pkt + properlen);
1262		res_keyid = ntohl(*pkid);
1263		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1264			    rbufp->recv_length, properlen, res_keyid,
1265			    maclen));
1266
1267		if (!authistrusted(res_keyid))
1268			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1269		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1270				     rbufp->recv_length - maclen,
1271				     maclen)) {
1272			res_authokay = TRUE;
1273			DPRINTF(3, ("authenticated okay\n"));
1274		} else {
1275			res_keyid = 0;
1276			DPRINTF(3, ("authentication failed\n"));
1277		}
1278	}
1279
1280	/*
1281	 * Set up translate pointers
1282	 */
1283	reqpt = (char *)pkt->u.data;
1284	reqend = reqpt + req_count;
1285
1286	/*
1287	 * Look for the opcode processor
1288	 */
1289	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1290		if (cc->control_code == res_opcode) {
1291			DPRINTF(3, ("opcode %d, found command handler\n",
1292				    res_opcode));
1293			if (cc->flags == AUTH
1294			    && (!res_authokay
1295				|| res_keyid != ctl_auth_keyid)) {
1296				ctl_error(CERR_PERMISSION);
1297				return;
1298			}
1299			(cc->handler)(rbufp, restrict_mask);
1300			return;
1301		}
1302	}
1303
1304	/*
1305	 * Can't find this one, return an error.
1306	 */
1307	numctlbadop++;
1308	ctl_error(CERR_BADOP);
1309	return;
1310}
1311
1312
1313/*
1314 * ctlpeerstatus - return a status word for this peer
1315 */
1316u_short
1317ctlpeerstatus(
1318	register struct peer *p
1319	)
1320{
1321	u_short status;
1322
1323	status = p->status;
1324	if (FLAG_CONFIG & p->flags)
1325		status |= CTL_PST_CONFIG;
1326	if (p->keyid)
1327		status |= CTL_PST_AUTHENABLE;
1328	if (FLAG_AUTHENTIC & p->flags)
1329		status |= CTL_PST_AUTHENTIC;
1330	if (p->reach)
1331		status |= CTL_PST_REACH;
1332	if (MDF_TXONLY_MASK & p->cast_flags)
1333		status |= CTL_PST_BCAST;
1334
1335	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1336}
1337
1338
1339/*
1340 * ctlclkstatus - return a status word for this clock
1341 */
1342#ifdef REFCLOCK
1343static u_short
1344ctlclkstatus(
1345	struct refclockstat *pcs
1346	)
1347{
1348	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1349}
1350#endif
1351
1352
1353/*
1354 * ctlsysstatus - return the system status word
1355 */
1356u_short
1357ctlsysstatus(void)
1358{
1359	register u_char this_clock;
1360
1361	this_clock = CTL_SST_TS_UNSPEC;
1362#ifdef REFCLOCK
1363	if (sys_peer != NULL) {
1364		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1365			this_clock = sys_peer->sstclktype;
1366		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1367			this_clock = clocktypes[sys_peer->refclktype];
1368	}
1369#else /* REFCLOCK */
1370	if (sys_peer != 0)
1371		this_clock = CTL_SST_TS_NTP;
1372#endif /* REFCLOCK */
1373	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1374			      ctl_sys_last_event);
1375}
1376
1377
1378/*
1379 * ctl_flushpkt - write out the current packet and prepare
1380 *		  another if necessary.
1381 */
1382static void
1383ctl_flushpkt(
1384	u_char more
1385	)
1386{
1387	size_t i;
1388	size_t dlen;
1389	size_t sendlen;
1390	size_t maclen;
1391	size_t totlen;
1392	keyid_t keyid;
1393
1394	dlen = datapt - rpkt.u.data;
1395	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1396		/*
1397		 * Big hack, output a trailing \r\n
1398		 */
1399		*datapt++ = '\r';
1400		*datapt++ = '\n';
1401		dlen += 2;
1402	}
1403	sendlen = dlen + CTL_HEADER_LEN;
1404
1405	/*
1406	 * Pad to a multiple of 32 bits
1407	 */
1408	while (sendlen & 0x3) {
1409		*datapt++ = '\0';
1410		sendlen++;
1411	}
1412
1413	/*
1414	 * Fill in the packet with the current info
1415	 */
1416	rpkt.r_m_e_op = CTL_RESPONSE | more |
1417			(res_opcode & CTL_OP_MASK);
1418	rpkt.count = htons((u_short)dlen);
1419	rpkt.offset = htons((u_short)res_offset);
1420	if (res_async) {
1421		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1422			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1423				rpkt.li_vn_mode =
1424				    PKT_LI_VN_MODE(
1425					sys_leap,
1426					ctl_traps[i].tr_version,
1427					MODE_CONTROL);
1428				rpkt.sequence =
1429				    htons(ctl_traps[i].tr_sequence);
1430				sendpkt(&ctl_traps[i].tr_addr,
1431					ctl_traps[i].tr_localaddr, -4,
1432					(struct pkt *)&rpkt, sendlen);
1433				if (!more)
1434					ctl_traps[i].tr_sequence++;
1435				numasyncmsgs++;
1436			}
1437		}
1438	} else {
1439		if (res_authenticate && sys_authenticate) {
1440			totlen = sendlen;
1441			/*
1442			 * If we are going to authenticate, then there
1443			 * is an additional requirement that the MAC
1444			 * begin on a 64 bit boundary.
1445			 */
1446			while (totlen & 7) {
1447				*datapt++ = '\0';
1448				totlen++;
1449			}
1450			keyid = htonl(res_keyid);
1451			memcpy(datapt, &keyid, sizeof(keyid));
1452			maclen = authencrypt(res_keyid,
1453					     (u_int32 *)&rpkt, totlen);
1454			sendpkt(rmt_addr, lcl_inter, -5,
1455				(struct pkt *)&rpkt, totlen + maclen);
1456		} else {
1457			sendpkt(rmt_addr, lcl_inter, -6,
1458				(struct pkt *)&rpkt, sendlen);
1459		}
1460		if (more)
1461			numctlfrags++;
1462		else
1463			numctlresponses++;
1464	}
1465
1466	/*
1467	 * Set us up for another go around.
1468	 */
1469	res_frags++;
1470	res_offset += dlen;
1471	datapt = rpkt.u.data;
1472}
1473
1474
1475/*
1476 * ctl_putdata - write data into the packet, fragmenting and starting
1477 * another if this one is full.
1478 */
1479static void
1480ctl_putdata(
1481	const char *dp,
1482	unsigned int dlen,
1483	int bin			/* set to 1 when data is binary */
1484	)
1485{
1486	int overhead;
1487	unsigned int currentlen;
1488
1489	overhead = 0;
1490	if (!bin) {
1491		datanotbinflag = TRUE;
1492		overhead = 3;
1493		if (datasent) {
1494			*datapt++ = ',';
1495			datalinelen++;
1496			if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1497				*datapt++ = '\r';
1498				*datapt++ = '\n';
1499				datalinelen = 0;
1500			} else {
1501				*datapt++ = ' ';
1502				datalinelen++;
1503			}
1504		}
1505	}
1506
1507	/*
1508	 * Save room for trailing junk
1509	 */
1510	while (dlen + overhead + datapt > dataend) {
1511		/*
1512		 * Not enough room in this one, flush it out.
1513		 */
1514		currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1515
1516		memcpy(datapt, dp, currentlen);
1517
1518		datapt += currentlen;
1519		dp += currentlen;
1520		dlen -= currentlen;
1521		datalinelen += currentlen;
1522
1523		ctl_flushpkt(CTL_MORE);
1524	}
1525
1526	memcpy(datapt, dp, dlen);
1527	datapt += dlen;
1528	datalinelen += dlen;
1529	datasent = TRUE;
1530}
1531
1532
1533/*
1534 * ctl_putstr - write a tagged string into the response packet
1535 *		in the form:
1536 *
1537 *		tag="data"
1538 *
1539 *		len is the data length excluding the NUL terminator,
1540 *		as in ctl_putstr("var", "value", strlen("value"));
1541 */
1542static void
1543ctl_putstr(
1544	const char *	tag,
1545	const char *	data,
1546	size_t		len
1547	)
1548{
1549	char buffer[512];
1550	int  rc;
1551
1552	INSIST(len < sizeof(buffer));
1553	if (len)
1554	    rc = snprintf(buffer, sizeof(buffer), "%s=\"%.*s\"", tag, (int)len, data);
1555	else
1556	    rc = snprintf(buffer, sizeof(buffer), "%s", tag);
1557	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1558	ctl_putdata(buffer, (u_int)rc, 0);
1559}
1560
1561
1562/*
1563 * ctl_putunqstr - write a tagged string into the response packet
1564 *		   in the form:
1565 *
1566 *		   tag=data
1567 *
1568 *	len is the data length excluding the NUL terminator.
1569 *	data must not contain a comma or whitespace.
1570 */
1571static void
1572ctl_putunqstr(
1573	const char *	tag,
1574	const char *	data,
1575	size_t		len
1576	)
1577{
1578	char buffer[512];
1579	int  rc;
1580
1581	INSIST(len < sizeof(buffer));
1582	if (len)
1583	    rc = snprintf(buffer, sizeof(buffer), "%s=%.*s", tag, (int)len, data);
1584	else
1585	    rc = snprintf(buffer, sizeof(buffer), "%s", tag);
1586	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1587	ctl_putdata(buffer, (u_int)rc, 0);
1588}
1589
1590
1591/*
1592 * ctl_putdblf - write a tagged, signed double into the response packet
1593 */
1594static void
1595ctl_putdblf(
1596	const char *	tag,
1597	int		use_f,
1598	int		precision,
1599	double		d
1600	)
1601{
1602	char buffer[200];
1603	int  rc;
1604
1605	rc = snprintf(buffer, sizeof(buffer),
1606		      (use_f ? "%s=%.*f" : "%s=%.*g"),
1607		      tag, precision, d);
1608	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1609	ctl_putdata(buffer, (u_int)rc, 0);
1610}
1611
1612/*
1613 * ctl_putuint - write a tagged unsigned integer into the response
1614 */
1615static void
1616ctl_putuint(
1617	const char *tag,
1618	u_long uval
1619	)
1620{
1621	char buffer[200];
1622	int  rc;
1623
1624	rc = snprintf(buffer, sizeof(buffer), "%s=%lu", tag, uval);
1625	INSIST(rc >= 0 && rc < sizeof(buffer));
1626	ctl_putdata(buffer, (u_int)rc, 0);
1627}
1628
1629/*
1630 * ctl_putcal - write a decoded calendar data into the response.
1631 * only used with AUTOKEY currently, so compiled conditional
1632 */
1633#ifdef AUTOKEY
1634static void
1635ctl_putcal(
1636	const char *tag,
1637	const struct calendar *pcal
1638	)
1639{
1640	char buffer[100];
1641	int  rc;
1642
1643	rc = snprintf(buffer, sizeof(buffer),
1644		      "%s=%04d%02d%02d%02d%02d",
1645		      tag,
1646		      pcal->year, pcal->month, pcal->monthday,
1647		      pcal->hour, pcal->minute
1648		);
1649	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1650	ctl_putdata(buffer, (u_int)rc, 0);
1651}
1652#endif
1653
1654/*
1655 * ctl_putfs - write a decoded filestamp into the response
1656 */
1657static void
1658ctl_putfs(
1659	const char *tag,
1660	tstamp_t uval
1661	)
1662{
1663	char buffer[200];
1664	struct tm *tm = NULL;
1665	time_t fstamp;
1666	int    rc;
1667
1668	fstamp = (time_t)uval - JAN_1970;
1669	tm = gmtime(&fstamp);
1670	if (NULL == tm)
1671		return;
1672
1673	rc = snprintf(buffer, sizeof(buffer),
1674		      "%s=%04d%02d%02d%02d%02d",
1675		      tag,
1676		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1677		      tm->tm_hour, tm->tm_min);
1678	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1679	ctl_putdata(buffer, (u_int)rc, 0);
1680}
1681
1682
1683/*
1684 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1685 * response
1686 */
1687static void
1688ctl_puthex(
1689	const char *tag,
1690	u_long uval
1691	)
1692{
1693	char buffer[200];
1694	int  rc;
1695
1696	rc = snprintf(buffer, sizeof(buffer), "%s=0x%lx", tag, uval);
1697	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1698	ctl_putdata(buffer, (u_int)rc, 0);
1699}
1700
1701
1702/*
1703 * ctl_putint - write a tagged signed integer into the response
1704 */
1705static void
1706ctl_putint(
1707	const char *tag,
1708	long ival
1709	)
1710{
1711	char buffer[200];
1712	int  rc;
1713
1714	rc = snprintf(buffer, sizeof(buffer), "%s=%ld", tag, ival);
1715	INSIST(rc >= 0 && rc < sizeof(buffer));
1716	ctl_putdata(buffer, (u_int)rc, 0);
1717}
1718
1719
1720/*
1721 * ctl_putts - write a tagged timestamp, in hex, into the response
1722 */
1723static void
1724ctl_putts(
1725	const char *tag,
1726	l_fp *ts
1727	)
1728{
1729	char buffer[200];
1730	int  rc;
1731
1732	rc = snprintf(buffer, sizeof(buffer),
1733		      "%s=0x%08lx.%08lx",
1734		      tag, (u_long)ts->l_ui, (u_long)ts->l_uf);
1735	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1736	ctl_putdata(buffer, (u_int)rc, 0);
1737}
1738
1739
1740/*
1741 * ctl_putadr - write an IP address into the response
1742 */
1743static void
1744ctl_putadr(
1745	const char *tag,
1746	u_int32 addr32,
1747	sockaddr_u *addr
1748	)
1749{
1750	const char *cq;
1751	char buffer[200];
1752	int  rc;
1753
1754	if (NULL == addr)
1755		cq = numtoa(addr32);
1756	else
1757		cq = stoa(addr);
1758	rc = snprintf(buffer, sizeof(buffer), "%s=%s", tag, cq);
1759	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1760	ctl_putdata(buffer, (u_int)rc, 0);
1761}
1762
1763
1764/*
1765 * ctl_putrefid - send a u_int32 refid as printable text
1766 */
1767static void
1768ctl_putrefid(
1769	const char *	tag,
1770	u_int32		refid
1771	)
1772{
1773	char buffer[128];
1774	int  rc, i;
1775
1776	union {
1777		uint32_t w;
1778		uint8_t  b[sizeof(uint32_t)];
1779	} bytes;
1780
1781	bytes.w = refid;
1782	for (i = 0; i < sizeof(bytes.b); ++i)
1783		if (bytes.b[i] && !isprint(bytes.b[i]))
1784			bytes.b[i] = '.';
1785	rc = snprintf(buffer, sizeof(buffer), "%s=%.*s",
1786		      tag, (int)sizeof(bytes.b), bytes.b);
1787	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1788	ctl_putdata(buffer, (u_int)rc, FALSE);
1789}
1790
1791
1792/*
1793 * ctl_putarray - write a tagged eight element double array into the response
1794 */
1795static void
1796ctl_putarray(
1797	const char *tag,
1798	double *arr,
1799	int start
1800	)
1801{
1802	char *cp, *ep;
1803	char buffer[200];
1804	int  i, rc;
1805
1806	cp = buffer;
1807	ep = buffer + sizeof(buffer);
1808
1809	rc  = snprintf(cp, (size_t)(ep - cp), "%s=", tag);
1810	INSIST(rc >= 0 && rc < (ep - cp));
1811	cp += rc;
1812
1813	i = start;
1814	do {
1815		if (i == 0)
1816			i = NTP_SHIFT;
1817		i--;
1818		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1819		INSIST(rc >= 0 && rc < (ep - cp));
1820		cp += rc;
1821	} while (i != start);
1822	ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1823}
1824
1825/*
1826 * ctl_printf - put a formatted string into the data buffer
1827 */
1828static void
1829ctl_printf(
1830	const char * fmt,
1831	...
1832	)
1833{
1834	static const char * ellipsis = "[...]";
1835	va_list va;
1836	char    fmtbuf[128];
1837	int     rc;
1838
1839	va_start(va, fmt);
1840	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1841	va_end(va);
1842	if (rc < 0 || rc >= sizeof(fmtbuf))
1843		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1844		       ellipsis);
1845	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1846}
1847
1848
1849/*
1850 * ctl_putsys - output a system variable
1851 */
1852static void
1853ctl_putsys(
1854	int varid
1855	)
1856{
1857	l_fp tmp;
1858	char str[256];
1859	u_int u;
1860	double kb;
1861	double dtemp;
1862	const char *ss;
1863#ifdef AUTOKEY
1864	struct cert_info *cp;
1865#endif	/* AUTOKEY */
1866#ifdef KERNEL_PLL
1867	static struct timex ntx;
1868	static u_long ntp_adjtime_time;
1869
1870	static const double to_ms =
1871# ifdef STA_NANO
1872		1.0e-6; /* nsec to msec */
1873# else
1874		1.0e-3; /* usec to msec */
1875# endif
1876
1877	/*
1878	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1879	 */
1880	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1881	    current_time != ntp_adjtime_time) {
1882		ZERO(ntx);
1883		if (ntp_adjtime(&ntx) < 0)
1884			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1885		else
1886			ntp_adjtime_time = current_time;
1887	}
1888#endif	/* KERNEL_PLL */
1889
1890	switch (varid) {
1891
1892	case CS_LEAP:
1893		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1894		break;
1895
1896	case CS_STRATUM:
1897		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1898		break;
1899
1900	case CS_PRECISION:
1901		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1902		break;
1903
1904	case CS_ROOTDELAY:
1905		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1906			   1e3);
1907		break;
1908
1909	case CS_ROOTDISPERSION:
1910		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1911			   sys_rootdisp * 1e3);
1912		break;
1913
1914	case CS_REFID:
1915		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1916			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1917		else
1918			ctl_putrefid(sys_var[varid].text, sys_refid);
1919		break;
1920
1921	case CS_REFTIME:
1922		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1923		break;
1924
1925	case CS_POLL:
1926		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1927		break;
1928
1929	case CS_PEERID:
1930		if (sys_peer == NULL)
1931			ctl_putuint(sys_var[CS_PEERID].text, 0);
1932		else
1933			ctl_putuint(sys_var[CS_PEERID].text,
1934				    sys_peer->associd);
1935		break;
1936
1937	case CS_PEERADR:
1938		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1939			ss = sptoa(&sys_peer->srcadr);
1940		else
1941			ss = "0.0.0.0:0";
1942		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1943		break;
1944
1945	case CS_PEERMODE:
1946		u = (sys_peer != NULL)
1947			? sys_peer->hmode
1948			: MODE_UNSPEC;
1949		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1950		break;
1951
1952	case CS_OFFSET:
1953		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1954		break;
1955
1956	case CS_DRIFT:
1957		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1958		break;
1959
1960	case CS_JITTER:
1961		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1962		break;
1963
1964	case CS_ERROR:
1965		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1966		break;
1967
1968	case CS_CLOCK:
1969		get_systime(&tmp);
1970		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1971		break;
1972
1973	case CS_PROCESSOR:
1974#ifndef HAVE_UNAME
1975		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1976			   sizeof(str_processor) - 1);
1977#else
1978		ctl_putstr(sys_var[CS_PROCESSOR].text,
1979			   utsnamebuf.machine, strlen(utsnamebuf.machine));
1980#endif /* HAVE_UNAME */
1981		break;
1982
1983	case CS_SYSTEM:
1984#ifndef HAVE_UNAME
1985		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1986			   sizeof(str_system) - 1);
1987#else
1988		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1989			 utsnamebuf.release);
1990		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1991#endif /* HAVE_UNAME */
1992		break;
1993
1994	case CS_VERSION:
1995		ctl_putstr(sys_var[CS_VERSION].text, Version,
1996			   strlen(Version));
1997		break;
1998
1999	case CS_STABIL:
2000		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2001			   1e6);
2002		break;
2003
2004	case CS_VARLIST:
2005	{
2006		char buf[CTL_MAX_DATA_LEN];
2007		//buffPointer, firstElementPointer, buffEndPointer
2008		char *buffp, *buffend;
2009		int firstVarName;
2010		const char *ss1;
2011		int len;
2012		const struct ctl_var *k;
2013
2014		buffp = buf;
2015		buffend = buf + sizeof(buf);
2016		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2017			break;	/* really long var name */
2018
2019		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2020		buffp += strlen(buffp);
2021		firstVarName = TRUE;
2022		for (k = sys_var; !(k->flags & EOV); k++) {
2023			if (k->flags & PADDING)
2024				continue;
2025			len = strlen(k->text);
2026			if (len + 1 >= buffend - buffp)
2027				break;
2028			if (!firstVarName)
2029				*buffp++ = ',';
2030			else
2031				firstVarName = FALSE;
2032			memcpy(buffp, k->text, len);
2033			buffp += len;
2034		}
2035
2036		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2037			if (k->flags & PADDING)
2038				continue;
2039			if (NULL == k->text)
2040				continue;
2041			ss1 = strchr(k->text, '=');
2042			if (NULL == ss1)
2043				len = strlen(k->text);
2044			else
2045				len = ss1 - k->text;
2046			if (len + 1 >= buffend - buffp)
2047				break;
2048			if (firstVarName) {
2049				*buffp++ = ',';
2050				firstVarName = FALSE;
2051			}
2052			memcpy(buffp, k->text,(unsigned)len);
2053			buffp += len;
2054		}
2055		if (2 >= buffend - buffp)
2056			break;
2057
2058		*buffp++ = '"';
2059		*buffp = '\0';
2060
2061		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2062		break;
2063	}
2064
2065	case CS_TAI:
2066		if (sys_tai > 0)
2067			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2068		break;
2069
2070	case CS_LEAPTAB:
2071	{
2072		leap_signature_t lsig;
2073		leapsec_getsig(&lsig);
2074		if (lsig.ttime > 0)
2075			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2076		break;
2077	}
2078
2079	case CS_LEAPEND:
2080	{
2081		leap_signature_t lsig;
2082		leapsec_getsig(&lsig);
2083		if (lsig.etime > 0)
2084			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2085		break;
2086	}
2087
2088#ifdef LEAP_SMEAR
2089	case CS_LEAPSMEARINTV:
2090		if (leap_smear_intv > 0)
2091			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2092		break;
2093
2094	case CS_LEAPSMEAROFFS:
2095		if (leap_smear_intv > 0)
2096			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2097				   leap_smear.doffset * 1e3);
2098		break;
2099#endif	/* LEAP_SMEAR */
2100
2101	case CS_RATE:
2102		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2103		break;
2104
2105	case CS_MRU_ENABLED:
2106		ctl_puthex(sys_var[varid].text, mon_enabled);
2107		break;
2108
2109	case CS_MRU_DEPTH:
2110		ctl_putuint(sys_var[varid].text, mru_entries);
2111		break;
2112
2113	case CS_MRU_MEM:
2114		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2115		u = (u_int)kb;
2116		if (kb - u >= 0.5)
2117			u++;
2118		ctl_putuint(sys_var[varid].text, u);
2119		break;
2120
2121	case CS_MRU_DEEPEST:
2122		ctl_putuint(sys_var[varid].text, mru_peakentries);
2123		break;
2124
2125	case CS_MRU_MINDEPTH:
2126		ctl_putuint(sys_var[varid].text, mru_mindepth);
2127		break;
2128
2129	case CS_MRU_MAXAGE:
2130		ctl_putint(sys_var[varid].text, mru_maxage);
2131		break;
2132
2133	case CS_MRU_MAXDEPTH:
2134		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2135		break;
2136
2137	case CS_MRU_MAXMEM:
2138		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2139		u = (u_int)kb;
2140		if (kb - u >= 0.5)
2141			u++;
2142		ctl_putuint(sys_var[varid].text, u);
2143		break;
2144
2145	case CS_SS_UPTIME:
2146		ctl_putuint(sys_var[varid].text, current_time);
2147		break;
2148
2149	case CS_SS_RESET:
2150		ctl_putuint(sys_var[varid].text,
2151			    current_time - sys_stattime);
2152		break;
2153
2154	case CS_SS_RECEIVED:
2155		ctl_putuint(sys_var[varid].text, sys_received);
2156		break;
2157
2158	case CS_SS_THISVER:
2159		ctl_putuint(sys_var[varid].text, sys_newversion);
2160		break;
2161
2162	case CS_SS_OLDVER:
2163		ctl_putuint(sys_var[varid].text, sys_oldversion);
2164		break;
2165
2166	case CS_SS_BADFORMAT:
2167		ctl_putuint(sys_var[varid].text, sys_badlength);
2168		break;
2169
2170	case CS_SS_BADAUTH:
2171		ctl_putuint(sys_var[varid].text, sys_badauth);
2172		break;
2173
2174	case CS_SS_DECLINED:
2175		ctl_putuint(sys_var[varid].text, sys_declined);
2176		break;
2177
2178	case CS_SS_RESTRICTED:
2179		ctl_putuint(sys_var[varid].text, sys_restricted);
2180		break;
2181
2182	case CS_SS_LIMITED:
2183		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2184		break;
2185
2186	case CS_SS_KODSENT:
2187		ctl_putuint(sys_var[varid].text, sys_kodsent);
2188		break;
2189
2190	case CS_SS_PROCESSED:
2191		ctl_putuint(sys_var[varid].text, sys_processed);
2192		break;
2193
2194	case CS_BCASTDELAY:
2195		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2196		break;
2197
2198	case CS_AUTHDELAY:
2199		LFPTOD(&sys_authdelay, dtemp);
2200		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2201		break;
2202
2203	case CS_AUTHKEYS:
2204		ctl_putuint(sys_var[varid].text, authnumkeys);
2205		break;
2206
2207	case CS_AUTHFREEK:
2208		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2209		break;
2210
2211	case CS_AUTHKLOOKUPS:
2212		ctl_putuint(sys_var[varid].text, authkeylookups);
2213		break;
2214
2215	case CS_AUTHKNOTFOUND:
2216		ctl_putuint(sys_var[varid].text, authkeynotfound);
2217		break;
2218
2219	case CS_AUTHKUNCACHED:
2220		ctl_putuint(sys_var[varid].text, authkeyuncached);
2221		break;
2222
2223	case CS_AUTHKEXPIRED:
2224		ctl_putuint(sys_var[varid].text, authkeyexpired);
2225		break;
2226
2227	case CS_AUTHENCRYPTS:
2228		ctl_putuint(sys_var[varid].text, authencryptions);
2229		break;
2230
2231	case CS_AUTHDECRYPTS:
2232		ctl_putuint(sys_var[varid].text, authdecryptions);
2233		break;
2234
2235	case CS_AUTHRESET:
2236		ctl_putuint(sys_var[varid].text,
2237			    current_time - auth_timereset);
2238		break;
2239
2240		/*
2241		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2242		 * unavailable, otherwise calls putfunc with args.
2243		 */
2244#ifndef KERNEL_PLL
2245# define	CTL_IF_KERNLOOP(putfunc, args)	\
2246		ctl_putint(sys_var[varid].text, 0)
2247#else
2248# define	CTL_IF_KERNLOOP(putfunc, args)	\
2249		putfunc args
2250#endif
2251
2252		/*
2253		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2254		 * loop is unavailable, or kernel hard PPS is not
2255		 * active, otherwise calls putfunc with args.
2256		 */
2257#ifndef KERNEL_PLL
2258# define	CTL_IF_KERNPPS(putfunc, args)	\
2259		ctl_putint(sys_var[varid].text, 0)
2260#else
2261# define	CTL_IF_KERNPPS(putfunc, args)			\
2262		if (0 == ntx.shift)				\
2263			ctl_putint(sys_var[varid].text, 0);	\
2264		else						\
2265			putfunc args	/* no trailing ; */
2266#endif
2267
2268	case CS_K_OFFSET:
2269		CTL_IF_KERNLOOP(
2270			ctl_putdblf,
2271			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2272		);
2273		break;
2274
2275	case CS_K_FREQ:
2276		CTL_IF_KERNLOOP(
2277			ctl_putsfp,
2278			(sys_var[varid].text, ntx.freq)
2279		);
2280		break;
2281
2282	case CS_K_MAXERR:
2283		CTL_IF_KERNLOOP(
2284			ctl_putdblf,
2285			(sys_var[varid].text, 0, 6,
2286			 to_ms * ntx.maxerror)
2287		);
2288		break;
2289
2290	case CS_K_ESTERR:
2291		CTL_IF_KERNLOOP(
2292			ctl_putdblf,
2293			(sys_var[varid].text, 0, 6,
2294			 to_ms * ntx.esterror)
2295		);
2296		break;
2297
2298	case CS_K_STFLAGS:
2299#ifndef KERNEL_PLL
2300		ss = "";
2301#else
2302		ss = k_st_flags(ntx.status);
2303#endif
2304		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2305		break;
2306
2307	case CS_K_TIMECONST:
2308		CTL_IF_KERNLOOP(
2309			ctl_putint,
2310			(sys_var[varid].text, ntx.constant)
2311		);
2312		break;
2313
2314	case CS_K_PRECISION:
2315		CTL_IF_KERNLOOP(
2316			ctl_putdblf,
2317			(sys_var[varid].text, 0, 6,
2318			    to_ms * ntx.precision)
2319		);
2320		break;
2321
2322	case CS_K_FREQTOL:
2323		CTL_IF_KERNLOOP(
2324			ctl_putsfp,
2325			(sys_var[varid].text, ntx.tolerance)
2326		);
2327		break;
2328
2329	case CS_K_PPS_FREQ:
2330		CTL_IF_KERNPPS(
2331			ctl_putsfp,
2332			(sys_var[varid].text, ntx.ppsfreq)
2333		);
2334		break;
2335
2336	case CS_K_PPS_STABIL:
2337		CTL_IF_KERNPPS(
2338			ctl_putsfp,
2339			(sys_var[varid].text, ntx.stabil)
2340		);
2341		break;
2342
2343	case CS_K_PPS_JITTER:
2344		CTL_IF_KERNPPS(
2345			ctl_putdbl,
2346			(sys_var[varid].text, to_ms * ntx.jitter)
2347		);
2348		break;
2349
2350	case CS_K_PPS_CALIBDUR:
2351		CTL_IF_KERNPPS(
2352			ctl_putint,
2353			(sys_var[varid].text, 1 << ntx.shift)
2354		);
2355		break;
2356
2357	case CS_K_PPS_CALIBS:
2358		CTL_IF_KERNPPS(
2359			ctl_putint,
2360			(sys_var[varid].text, ntx.calcnt)
2361		);
2362		break;
2363
2364	case CS_K_PPS_CALIBERRS:
2365		CTL_IF_KERNPPS(
2366			ctl_putint,
2367			(sys_var[varid].text, ntx.errcnt)
2368		);
2369		break;
2370
2371	case CS_K_PPS_JITEXC:
2372		CTL_IF_KERNPPS(
2373			ctl_putint,
2374			(sys_var[varid].text, ntx.jitcnt)
2375		);
2376		break;
2377
2378	case CS_K_PPS_STBEXC:
2379		CTL_IF_KERNPPS(
2380			ctl_putint,
2381			(sys_var[varid].text, ntx.stbcnt)
2382		);
2383		break;
2384
2385	case CS_IOSTATS_RESET:
2386		ctl_putuint(sys_var[varid].text,
2387			    current_time - io_timereset);
2388		break;
2389
2390	case CS_TOTAL_RBUF:
2391		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2392		break;
2393
2394	case CS_FREE_RBUF:
2395		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2396		break;
2397
2398	case CS_USED_RBUF:
2399		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2400		break;
2401
2402	case CS_RBUF_LOWATER:
2403		ctl_putuint(sys_var[varid].text, lowater_additions());
2404		break;
2405
2406	case CS_IO_DROPPED:
2407		ctl_putuint(sys_var[varid].text, packets_dropped);
2408		break;
2409
2410	case CS_IO_IGNORED:
2411		ctl_putuint(sys_var[varid].text, packets_ignored);
2412		break;
2413
2414	case CS_IO_RECEIVED:
2415		ctl_putuint(sys_var[varid].text, packets_received);
2416		break;
2417
2418	case CS_IO_SENT:
2419		ctl_putuint(sys_var[varid].text, packets_sent);
2420		break;
2421
2422	case CS_IO_SENDFAILED:
2423		ctl_putuint(sys_var[varid].text, packets_notsent);
2424		break;
2425
2426	case CS_IO_WAKEUPS:
2427		ctl_putuint(sys_var[varid].text, handler_calls);
2428		break;
2429
2430	case CS_IO_GOODWAKEUPS:
2431		ctl_putuint(sys_var[varid].text, handler_pkts);
2432		break;
2433
2434	case CS_TIMERSTATS_RESET:
2435		ctl_putuint(sys_var[varid].text,
2436			    current_time - timer_timereset);
2437		break;
2438
2439	case CS_TIMER_OVERRUNS:
2440		ctl_putuint(sys_var[varid].text, alarm_overflow);
2441		break;
2442
2443	case CS_TIMER_XMTS:
2444		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2445		break;
2446
2447	case CS_FUZZ:
2448		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2449		break;
2450	case CS_WANDER_THRESH:
2451		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2452		break;
2453#ifdef AUTOKEY
2454	case CS_FLAGS:
2455		if (crypto_flags)
2456			ctl_puthex(sys_var[CS_FLAGS].text,
2457			    crypto_flags);
2458		break;
2459
2460	case CS_DIGEST:
2461		if (crypto_flags) {
2462			strlcpy(str, OBJ_nid2ln(crypto_nid),
2463			    COUNTOF(str));
2464			ctl_putstr(sys_var[CS_DIGEST].text, str,
2465			    strlen(str));
2466		}
2467		break;
2468
2469	case CS_SIGNATURE:
2470		if (crypto_flags) {
2471			const EVP_MD *dp;
2472
2473			dp = EVP_get_digestbynid(crypto_flags >> 16);
2474			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2475			    COUNTOF(str));
2476			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2477			    strlen(str));
2478		}
2479		break;
2480
2481	case CS_HOST:
2482		if (hostval.ptr != NULL)
2483			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2484			    strlen(hostval.ptr));
2485		break;
2486
2487	case CS_IDENT:
2488		if (sys_ident != NULL)
2489			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2490			    strlen(sys_ident));
2491		break;
2492
2493	case CS_CERTIF:
2494		for (cp = cinfo; cp != NULL; cp = cp->link) {
2495			snprintf(str, sizeof(str), "%s %s 0x%x",
2496			    cp->subject, cp->issuer, cp->flags);
2497			ctl_putstr(sys_var[CS_CERTIF].text, str,
2498			    strlen(str));
2499			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2500		}
2501		break;
2502
2503	case CS_PUBLIC:
2504		if (hostval.tstamp != 0)
2505			ctl_putfs(sys_var[CS_PUBLIC].text,
2506			    ntohl(hostval.tstamp));
2507		break;
2508#endif	/* AUTOKEY */
2509
2510	default:
2511		break;
2512	}
2513}
2514
2515
2516/*
2517 * ctl_putpeer - output a peer variable
2518 */
2519static void
2520ctl_putpeer(
2521	int id,
2522	struct peer *p
2523	)
2524{
2525	char buf[CTL_MAX_DATA_LEN];
2526	char *s;
2527	char *t;
2528	char *be;
2529	int i;
2530	const struct ctl_var *k;
2531#ifdef AUTOKEY
2532	struct autokey *ap;
2533	const EVP_MD *dp;
2534	const char *str;
2535#endif	/* AUTOKEY */
2536
2537	switch (id) {
2538
2539	case CP_CONFIG:
2540		ctl_putuint(peer_var[id].text,
2541			    !(FLAG_PREEMPT & p->flags));
2542		break;
2543
2544	case CP_AUTHENABLE:
2545		ctl_putuint(peer_var[id].text, !(p->keyid));
2546		break;
2547
2548	case CP_AUTHENTIC:
2549		ctl_putuint(peer_var[id].text,
2550			    !!(FLAG_AUTHENTIC & p->flags));
2551		break;
2552
2553	case CP_SRCADR:
2554		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2555		break;
2556
2557	case CP_SRCPORT:
2558		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2559		break;
2560
2561	case CP_SRCHOST:
2562		if (p->hostname != NULL)
2563			ctl_putstr(peer_var[id].text, p->hostname,
2564				   strlen(p->hostname));
2565		break;
2566
2567	case CP_DSTADR:
2568		ctl_putadr(peer_var[id].text, 0,
2569			   (p->dstadr != NULL)
2570				? &p->dstadr->sin
2571				: NULL);
2572		break;
2573
2574	case CP_DSTPORT:
2575		ctl_putuint(peer_var[id].text,
2576			    (p->dstadr != NULL)
2577				? SRCPORT(&p->dstadr->sin)
2578				: 0);
2579		break;
2580
2581	case CP_IN:
2582		if (p->r21 > 0.)
2583			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2584		break;
2585
2586	case CP_OUT:
2587		if (p->r34 > 0.)
2588			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2589		break;
2590
2591	case CP_RATE:
2592		ctl_putuint(peer_var[id].text, p->throttle);
2593		break;
2594
2595	case CP_LEAP:
2596		ctl_putuint(peer_var[id].text, p->leap);
2597		break;
2598
2599	case CP_HMODE:
2600		ctl_putuint(peer_var[id].text, p->hmode);
2601		break;
2602
2603	case CP_STRATUM:
2604		ctl_putuint(peer_var[id].text, p->stratum);
2605		break;
2606
2607	case CP_PPOLL:
2608		ctl_putuint(peer_var[id].text, p->ppoll);
2609		break;
2610
2611	case CP_HPOLL:
2612		ctl_putuint(peer_var[id].text, p->hpoll);
2613		break;
2614
2615	case CP_PRECISION:
2616		ctl_putint(peer_var[id].text, p->precision);
2617		break;
2618
2619	case CP_ROOTDELAY:
2620		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2621		break;
2622
2623	case CP_ROOTDISPERSION:
2624		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2625		break;
2626
2627	case CP_REFID:
2628#ifdef REFCLOCK
2629		if (p->flags & FLAG_REFCLOCK) {
2630			ctl_putrefid(peer_var[id].text, p->refid);
2631			break;
2632		}
2633#endif
2634		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2635			ctl_putadr(peer_var[id].text, p->refid,
2636				   NULL);
2637		else
2638			ctl_putrefid(peer_var[id].text, p->refid);
2639		break;
2640
2641	case CP_REFTIME:
2642		ctl_putts(peer_var[id].text, &p->reftime);
2643		break;
2644
2645	case CP_ORG:
2646		ctl_putts(peer_var[id].text, &p->aorg);
2647		break;
2648
2649	case CP_REC:
2650		ctl_putts(peer_var[id].text, &p->dst);
2651		break;
2652
2653	case CP_XMT:
2654		if (p->xleave)
2655			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2656		break;
2657
2658	case CP_BIAS:
2659		if (p->bias != 0.)
2660			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2661		break;
2662
2663	case CP_REACH:
2664		ctl_puthex(peer_var[id].text, p->reach);
2665		break;
2666
2667	case CP_FLASH:
2668		ctl_puthex(peer_var[id].text, p->flash);
2669		break;
2670
2671	case CP_TTL:
2672#ifdef REFCLOCK
2673		if (p->flags & FLAG_REFCLOCK) {
2674			ctl_putuint(peer_var[id].text, p->ttl);
2675			break;
2676		}
2677#endif
2678		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2679			ctl_putint(peer_var[id].text,
2680				   sys_ttl[p->ttl]);
2681		break;
2682
2683	case CP_UNREACH:
2684		ctl_putuint(peer_var[id].text, p->unreach);
2685		break;
2686
2687	case CP_TIMER:
2688		ctl_putuint(peer_var[id].text,
2689			    p->nextdate - current_time);
2690		break;
2691
2692	case CP_DELAY:
2693		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2694		break;
2695
2696	case CP_OFFSET:
2697		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2698		break;
2699
2700	case CP_JITTER:
2701		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2702		break;
2703
2704	case CP_DISPERSION:
2705		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2706		break;
2707
2708	case CP_KEYID:
2709		if (p->keyid > NTP_MAXKEY)
2710			ctl_puthex(peer_var[id].text, p->keyid);
2711		else
2712			ctl_putuint(peer_var[id].text, p->keyid);
2713		break;
2714
2715	case CP_FILTDELAY:
2716		ctl_putarray(peer_var[id].text, p->filter_delay,
2717			     p->filter_nextpt);
2718		break;
2719
2720	case CP_FILTOFFSET:
2721		ctl_putarray(peer_var[id].text, p->filter_offset,
2722			     p->filter_nextpt);
2723		break;
2724
2725	case CP_FILTERROR:
2726		ctl_putarray(peer_var[id].text, p->filter_disp,
2727			     p->filter_nextpt);
2728		break;
2729
2730	case CP_PMODE:
2731		ctl_putuint(peer_var[id].text, p->pmode);
2732		break;
2733
2734	case CP_RECEIVED:
2735		ctl_putuint(peer_var[id].text, p->received);
2736		break;
2737
2738	case CP_SENT:
2739		ctl_putuint(peer_var[id].text, p->sent);
2740		break;
2741
2742	case CP_VARLIST:
2743		s = buf;
2744		be = buf + sizeof(buf);
2745		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2746			break;	/* really long var name */
2747
2748		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2749		s += strlen(s);
2750		t = s;
2751		for (k = peer_var; !(EOV & k->flags); k++) {
2752			if (PADDING & k->flags)
2753				continue;
2754			i = strlen(k->text);
2755			if (s + i + 1 >= be)
2756				break;
2757			if (s != t)
2758				*s++ = ',';
2759			memcpy(s, k->text, i);
2760			s += i;
2761		}
2762		if (s + 2 < be) {
2763			*s++ = '"';
2764			*s = '\0';
2765			ctl_putdata(buf, (u_int)(s - buf), 0);
2766		}
2767		break;
2768
2769	case CP_TIMEREC:
2770		ctl_putuint(peer_var[id].text,
2771			    current_time - p->timereceived);
2772		break;
2773
2774	case CP_TIMEREACH:
2775		ctl_putuint(peer_var[id].text,
2776			    current_time - p->timereachable);
2777		break;
2778
2779	case CP_BADAUTH:
2780		ctl_putuint(peer_var[id].text, p->badauth);
2781		break;
2782
2783	case CP_BOGUSORG:
2784		ctl_putuint(peer_var[id].text, p->bogusorg);
2785		break;
2786
2787	case CP_OLDPKT:
2788		ctl_putuint(peer_var[id].text, p->oldpkt);
2789		break;
2790
2791	case CP_SELDISP:
2792		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2793		break;
2794
2795	case CP_SELBROKEN:
2796		ctl_putuint(peer_var[id].text, p->selbroken);
2797		break;
2798
2799	case CP_CANDIDATE:
2800		ctl_putuint(peer_var[id].text, p->status);
2801		break;
2802#ifdef AUTOKEY
2803	case CP_FLAGS:
2804		if (p->crypto)
2805			ctl_puthex(peer_var[id].text, p->crypto);
2806		break;
2807
2808	case CP_SIGNATURE:
2809		if (p->crypto) {
2810			dp = EVP_get_digestbynid(p->crypto >> 16);
2811			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2812			ctl_putstr(peer_var[id].text, str, strlen(str));
2813		}
2814		break;
2815
2816	case CP_HOST:
2817		if (p->subject != NULL)
2818			ctl_putstr(peer_var[id].text, p->subject,
2819			    strlen(p->subject));
2820		break;
2821
2822	case CP_VALID:		/* not used */
2823		break;
2824
2825	case CP_INITSEQ:
2826		if (NULL == (ap = p->recval.ptr))
2827			break;
2828
2829		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2830		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2831		ctl_putfs(peer_var[CP_INITTSP].text,
2832			  ntohl(p->recval.tstamp));
2833		break;
2834
2835	case CP_IDENT:
2836		if (p->ident != NULL)
2837			ctl_putstr(peer_var[id].text, p->ident,
2838			    strlen(p->ident));
2839		break;
2840
2841
2842#endif	/* AUTOKEY */
2843	}
2844}
2845
2846
2847#ifdef REFCLOCK
2848/*
2849 * ctl_putclock - output clock variables
2850 */
2851static void
2852ctl_putclock(
2853	int id,
2854	struct refclockstat *pcs,
2855	int mustput
2856	)
2857{
2858	char buf[CTL_MAX_DATA_LEN];
2859	char *s, *t, *be;
2860	const char *ss;
2861	int i;
2862	const struct ctl_var *k;
2863
2864	switch (id) {
2865
2866	case CC_TYPE:
2867		if (mustput || pcs->clockdesc == NULL
2868		    || *(pcs->clockdesc) == '\0') {
2869			ctl_putuint(clock_var[id].text, pcs->type);
2870		}
2871		break;
2872	case CC_TIMECODE:
2873		ctl_putstr(clock_var[id].text,
2874			   pcs->p_lastcode,
2875			   (unsigned)pcs->lencode);
2876		break;
2877
2878	case CC_POLL:
2879		ctl_putuint(clock_var[id].text, pcs->polls);
2880		break;
2881
2882	case CC_NOREPLY:
2883		ctl_putuint(clock_var[id].text,
2884			    pcs->noresponse);
2885		break;
2886
2887	case CC_BADFORMAT:
2888		ctl_putuint(clock_var[id].text,
2889			    pcs->badformat);
2890		break;
2891
2892	case CC_BADDATA:
2893		ctl_putuint(clock_var[id].text,
2894			    pcs->baddata);
2895		break;
2896
2897	case CC_FUDGETIME1:
2898		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2899			ctl_putdbl(clock_var[id].text,
2900				   pcs->fudgetime1 * 1e3);
2901		break;
2902
2903	case CC_FUDGETIME2:
2904		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2905			ctl_putdbl(clock_var[id].text,
2906				   pcs->fudgetime2 * 1e3);
2907		break;
2908
2909	case CC_FUDGEVAL1:
2910		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2911			ctl_putint(clock_var[id].text,
2912				   pcs->fudgeval1);
2913		break;
2914
2915	case CC_FUDGEVAL2:
2916		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2917			if (pcs->fudgeval1 > 1)
2918				ctl_putadr(clock_var[id].text,
2919					   pcs->fudgeval2, NULL);
2920			else
2921				ctl_putrefid(clock_var[id].text,
2922					     pcs->fudgeval2);
2923		}
2924		break;
2925
2926	case CC_FLAGS:
2927		ctl_putuint(clock_var[id].text, pcs->flags);
2928		break;
2929
2930	case CC_DEVICE:
2931		if (pcs->clockdesc == NULL ||
2932		    *(pcs->clockdesc) == '\0') {
2933			if (mustput)
2934				ctl_putstr(clock_var[id].text,
2935					   "", 0);
2936		} else {
2937			ctl_putstr(clock_var[id].text,
2938				   pcs->clockdesc,
2939				   strlen(pcs->clockdesc));
2940		}
2941		break;
2942
2943	case CC_VARLIST:
2944		s = buf;
2945		be = buf + sizeof(buf);
2946		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2947		    sizeof(buf))
2948			break;	/* really long var name */
2949
2950		snprintf(s, sizeof(buf), "%s=\"",
2951			 clock_var[CC_VARLIST].text);
2952		s += strlen(s);
2953		t = s;
2954
2955		for (k = clock_var; !(EOV & k->flags); k++) {
2956			if (PADDING & k->flags)
2957				continue;
2958
2959			i = strlen(k->text);
2960			if (s + i + 1 >= be)
2961				break;
2962
2963			if (s != t)
2964				*s++ = ',';
2965			memcpy(s, k->text, i);
2966			s += i;
2967		}
2968
2969		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2970			if (PADDING & k->flags)
2971				continue;
2972
2973			ss = k->text;
2974			if (NULL == ss)
2975				continue;
2976
2977			while (*ss && *ss != '=')
2978				ss++;
2979			i = ss - k->text;
2980			if (s + i + 1 >= be)
2981				break;
2982
2983			if (s != t)
2984				*s++ = ',';
2985			memcpy(s, k->text, (unsigned)i);
2986			s += i;
2987			*s = '\0';
2988		}
2989		if (s + 2 >= be)
2990			break;
2991
2992		*s++ = '"';
2993		*s = '\0';
2994		ctl_putdata(buf, (unsigned)(s - buf), 0);
2995		break;
2996	}
2997}
2998#endif
2999
3000
3001
3002/*
3003 * ctl_getitem - get the next data item from the incoming packet
3004 */
3005static const struct ctl_var *
3006ctl_getitem(
3007	const struct ctl_var *var_list,
3008	char **data
3009	)
3010{
3011	/* [Bug 3008] First check the packet data sanity, then search
3012	 * the key. This improves the consistency of result values: If
3013	 * the result is NULL once, it will never be EOV again for this
3014	 * packet; If it's EOV, it will never be NULL again until the
3015	 * variable is found and processed in a given 'var_list'. (That
3016	 * is, a result is returned that is neither NULL nor EOV).
3017	 */
3018	static const struct ctl_var eol = { 0, EOV, NULL };
3019	static char buf[128];
3020	static u_long quiet_until;
3021	const struct ctl_var *v;
3022	char *cp;
3023	char *tp;
3024
3025	/*
3026	 * Part One: Validate the packet state
3027	 */
3028
3029	/* Delete leading commas and white space */
3030	while (reqpt < reqend && (*reqpt == ',' ||
3031				  isspace((unsigned char)*reqpt)))
3032		reqpt++;
3033	if (reqpt >= reqend)
3034		return NULL;
3035
3036	/* Scan the string in the packet until we hit comma or
3037	 * EoB. Register position of first '=' on the fly. */
3038	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3039		if (*cp == '=' && tp == NULL)
3040			tp = cp;
3041		if (*cp == ',')
3042			break;
3043	}
3044
3045	/* Process payload, if any. */
3046	*data = NULL;
3047	if (NULL != tp) {
3048		/* eventually strip white space from argument. */
3049		const char *plhead = tp + 1; /* skip the '=' */
3050		const char *pltail = cp;
3051		size_t      plsize;
3052
3053		while (plhead != pltail && isspace((u_char)plhead[0]))
3054			++plhead;
3055		while (plhead != pltail && isspace((u_char)pltail[-1]))
3056			--pltail;
3057
3058		/* check payload size, terminate packet on overflow */
3059		plsize = (size_t)(pltail - plhead);
3060		if (plsize >= sizeof(buf))
3061			goto badpacket;
3062
3063		/* copy data, NUL terminate, and set result data ptr */
3064		memcpy(buf, plhead, plsize);
3065		buf[plsize] = '\0';
3066		*data = buf;
3067	} else {
3068		/* no payload, current end --> current name termination */
3069		tp = cp;
3070	}
3071
3072	/* Part Two
3073	 *
3074	 * Now we're sure that the packet data itself is sane. Scan the
3075	 * list now. Make sure a NULL list is properly treated by
3076	 * returning a synthetic End-Of-Values record. We must not
3077	 * return NULL pointers after this point, or the behaviour would
3078	 * become inconsistent if called several times with different
3079	 * variable lists after an EoV was returned.  (Such a behavior
3080	 * actually caused Bug 3008.)
3081	 */
3082
3083	if (NULL == var_list)
3084		return &eol;
3085
3086	for (v = var_list; !(EOV & v->flags); ++v)
3087		if (!(PADDING & v->flags)) {
3088			/* Check if the var name matches the buffer. The
3089			 * name is bracketed by [reqpt..tp] and not NUL
3090			 * terminated, and it contains no '=' char. The
3091			 * lookup value IS NUL-terminated but might
3092			 * include a '='... We have to look out for
3093			 * that!
3094			 */
3095			const char *sp1 = reqpt;
3096			const char *sp2 = v->text;
3097
3098			while ((sp1 != tp) && (*sp1 == *sp2)) {
3099				++sp1;
3100				++sp2;
3101			}
3102			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3103				break;
3104		}
3105
3106	/* See if we have found a valid entry or not. If found, advance
3107	 * the request pointer for the next round; if not, clear the
3108	 * data pointer so we have no dangling garbage here.
3109	 */
3110	if (EOV & v->flags)
3111		*data = NULL;
3112	else
3113		reqpt = cp + (cp != reqend);
3114	return v;
3115
3116  badpacket:
3117	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3118	numctlbadpkts++;
3119	NLOG(NLOG_SYSEVENT)
3120	    if (quiet_until <= current_time) {
3121		    quiet_until = current_time + 300;
3122		    msyslog(LOG_WARNING,
3123			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3124			    stoa(rmt_addr), SRCPORT(rmt_addr));
3125	    }
3126	reqpt = reqend; /* never again for this packet! */
3127	return NULL;
3128}
3129
3130
3131/*
3132 * control_unspec - response to an unspecified op-code
3133 */
3134/*ARGSUSED*/
3135static void
3136control_unspec(
3137	struct recvbuf *rbufp,
3138	int restrict_mask
3139	)
3140{
3141	struct peer *peer;
3142
3143	/*
3144	 * What is an appropriate response to an unspecified op-code?
3145	 * I return no errors and no data, unless a specified assocation
3146	 * doesn't exist.
3147	 */
3148	if (res_associd) {
3149		peer = findpeerbyassoc(res_associd);
3150		if (NULL == peer) {
3151			ctl_error(CERR_BADASSOC);
3152			return;
3153		}
3154		rpkt.status = htons(ctlpeerstatus(peer));
3155	} else
3156		rpkt.status = htons(ctlsysstatus());
3157	ctl_flushpkt(0);
3158}
3159
3160
3161/*
3162 * read_status - return either a list of associd's, or a particular
3163 * peer's status.
3164 */
3165/*ARGSUSED*/
3166static void
3167read_status(
3168	struct recvbuf *rbufp,
3169	int restrict_mask
3170	)
3171{
3172	struct peer *peer;
3173	const u_char *cp;
3174	size_t n;
3175	/* a_st holds association ID, status pairs alternating */
3176	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3177
3178#ifdef DEBUG
3179	if (debug > 2)
3180		printf("read_status: ID %d\n", res_associd);
3181#endif
3182	/*
3183	 * Two choices here. If the specified association ID is
3184	 * zero we return all known assocation ID's.  Otherwise
3185	 * we return a bunch of stuff about the particular peer.
3186	 */
3187	if (res_associd) {
3188		peer = findpeerbyassoc(res_associd);
3189		if (NULL == peer) {
3190			ctl_error(CERR_BADASSOC);
3191			return;
3192		}
3193		rpkt.status = htons(ctlpeerstatus(peer));
3194		if (res_authokay)
3195			peer->num_events = 0;
3196		/*
3197		 * For now, output everything we know about the
3198		 * peer. May be more selective later.
3199		 */
3200		for (cp = def_peer_var; *cp != 0; cp++)
3201			ctl_putpeer((int)*cp, peer);
3202		ctl_flushpkt(0);
3203		return;
3204	}
3205	n = 0;
3206	rpkt.status = htons(ctlsysstatus());
3207	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3208		a_st[n++] = htons(peer->associd);
3209		a_st[n++] = htons(ctlpeerstatus(peer));
3210		/* two entries each loop iteration, so n + 1 */
3211		if (n + 1 >= COUNTOF(a_st)) {
3212			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3213				    1);
3214			n = 0;
3215		}
3216	}
3217	if (n)
3218		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3219	ctl_flushpkt(0);
3220}
3221
3222
3223/*
3224 * read_peervars - half of read_variables() implementation
3225 */
3226static void
3227read_peervars(void)
3228{
3229	const struct ctl_var *v;
3230	struct peer *peer;
3231	const u_char *cp;
3232	size_t i;
3233	char *	valuep;
3234	u_char	wants[CP_MAXCODE + 1];
3235	u_int	gotvar;
3236
3237	/*
3238	 * Wants info for a particular peer. See if we know
3239	 * the guy.
3240	 */
3241	peer = findpeerbyassoc(res_associd);
3242	if (NULL == peer) {
3243		ctl_error(CERR_BADASSOC);
3244		return;
3245	}
3246	rpkt.status = htons(ctlpeerstatus(peer));
3247	if (res_authokay)
3248		peer->num_events = 0;
3249	ZERO(wants);
3250	gotvar = 0;
3251	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3252		if (v->flags & EOV) {
3253			ctl_error(CERR_UNKNOWNVAR);
3254			return;
3255		}
3256		INSIST(v->code < COUNTOF(wants));
3257		wants[v->code] = 1;
3258		gotvar = 1;
3259	}
3260	if (gotvar) {
3261		for (i = 1; i < COUNTOF(wants); i++)
3262			if (wants[i])
3263				ctl_putpeer(i, peer);
3264	} else
3265		for (cp = def_peer_var; *cp != 0; cp++)
3266			ctl_putpeer((int)*cp, peer);
3267	ctl_flushpkt(0);
3268}
3269
3270
3271/*
3272 * read_sysvars - half of read_variables() implementation
3273 */
3274static void
3275read_sysvars(void)
3276{
3277	const struct ctl_var *v;
3278	struct ctl_var *kv;
3279	u_int	n;
3280	u_int	gotvar;
3281	const u_char *cs;
3282	char *	valuep;
3283	const char * pch;
3284	u_char *wants;
3285	size_t	wants_count;
3286
3287	/*
3288	 * Wants system variables. Figure out which he wants
3289	 * and give them to him.
3290	 */
3291	rpkt.status = htons(ctlsysstatus());
3292	if (res_authokay)
3293		ctl_sys_num_events = 0;
3294	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3295	wants = emalloc_zero(wants_count);
3296	gotvar = 0;
3297	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3298		if (!(EOV & v->flags)) {
3299			INSIST(v->code < wants_count);
3300			wants[v->code] = 1;
3301			gotvar = 1;
3302		} else {
3303			v = ctl_getitem(ext_sys_var, &valuep);
3304			if (NULL == v) {
3305				ctl_error(CERR_BADVALUE);
3306				free(wants);
3307				return;
3308			}
3309			if (EOV & v->flags) {
3310				ctl_error(CERR_UNKNOWNVAR);
3311				free(wants);
3312				return;
3313			}
3314			n = v->code + CS_MAXCODE + 1;
3315			INSIST(n < wants_count);
3316			wants[n] = 1;
3317			gotvar = 1;
3318		}
3319	}
3320	if (gotvar) {
3321		for (n = 1; n <= CS_MAXCODE; n++)
3322			if (wants[n])
3323				ctl_putsys(n);
3324		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3325			if (wants[n + CS_MAXCODE + 1]) {
3326				pch = ext_sys_var[n].text;
3327				ctl_putdata(pch, strlen(pch), 0);
3328			}
3329	} else {
3330		for (cs = def_sys_var; *cs != 0; cs++)
3331			ctl_putsys((int)*cs);
3332		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3333			if (DEF & kv->flags)
3334				ctl_putdata(kv->text, strlen(kv->text),
3335					    0);
3336	}
3337	free(wants);
3338	ctl_flushpkt(0);
3339}
3340
3341
3342/*
3343 * read_variables - return the variables the caller asks for
3344 */
3345/*ARGSUSED*/
3346static void
3347read_variables(
3348	struct recvbuf *rbufp,
3349	int restrict_mask
3350	)
3351{
3352	if (res_associd)
3353		read_peervars();
3354	else
3355		read_sysvars();
3356}
3357
3358
3359/*
3360 * write_variables - write into variables. We only allow leap bit
3361 * writing this way.
3362 */
3363/*ARGSUSED*/
3364static void
3365write_variables(
3366	struct recvbuf *rbufp,
3367	int restrict_mask
3368	)
3369{
3370	const struct ctl_var *v;
3371	int ext_var;
3372	char *valuep;
3373	long val;
3374	size_t octets;
3375	char *vareqv;
3376	const char *t;
3377	char *tt;
3378
3379	val = 0;
3380	/*
3381	 * If he's trying to write into a peer tell him no way
3382	 */
3383	if (res_associd != 0) {
3384		ctl_error(CERR_PERMISSION);
3385		return;
3386	}
3387
3388	/*
3389	 * Set status
3390	 */
3391	rpkt.status = htons(ctlsysstatus());
3392
3393	/*
3394	 * Look through the variables. Dump out at the first sign of
3395	 * trouble.
3396	 */
3397	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3398		ext_var = 0;
3399		if (v->flags & EOV) {
3400			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3401			    0) {
3402				if (v->flags & EOV) {
3403					ctl_error(CERR_UNKNOWNVAR);
3404					return;
3405				}
3406				ext_var = 1;
3407			} else {
3408				break;
3409			}
3410		}
3411		if (!(v->flags & CAN_WRITE)) {
3412			ctl_error(CERR_PERMISSION);
3413			return;
3414		}
3415		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3416							    &val))) {
3417			ctl_error(CERR_BADFMT);
3418			return;
3419		}
3420		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3421			ctl_error(CERR_BADVALUE);
3422			return;
3423		}
3424
3425		if (ext_var) {
3426			octets = strlen(v->text) + strlen(valuep) + 2;
3427			vareqv = emalloc(octets);
3428			tt = vareqv;
3429			t = v->text;
3430			while (*t && *t != '=')
3431				*tt++ = *t++;
3432			*tt++ = '=';
3433			memcpy(tt, valuep, 1 + strlen(valuep));
3434			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3435			free(vareqv);
3436		} else {
3437			ctl_error(CERR_UNSPEC); /* really */
3438			return;
3439		}
3440	}
3441
3442	/*
3443	 * If we got anything, do it. xxx nothing to do ***
3444	 */
3445	/*
3446	  if (leapind != ~0 || leapwarn != ~0) {
3447	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3448	  ctl_error(CERR_PERMISSION);
3449	  return;
3450	  }
3451	  }
3452	*/
3453	ctl_flushpkt(0);
3454}
3455
3456
3457/*
3458 * configure() processes ntpq :config/config-from-file, allowing
3459 *		generic runtime reconfiguration.
3460 */
3461static void configure(
3462	struct recvbuf *rbufp,
3463	int restrict_mask
3464	)
3465{
3466	size_t data_count;
3467	int retval;
3468
3469	/* I haven't yet implemented changes to an existing association.
3470	 * Hence check if the association id is 0
3471	 */
3472	if (res_associd != 0) {
3473		ctl_error(CERR_BADVALUE);
3474		return;
3475	}
3476
3477	if (RES_NOMODIFY & restrict_mask) {
3478		snprintf(remote_config.err_msg,
3479			 sizeof(remote_config.err_msg),
3480			 "runtime configuration prohibited by restrict ... nomodify");
3481		ctl_putdata(remote_config.err_msg,
3482			    strlen(remote_config.err_msg), 0);
3483		ctl_flushpkt(0);
3484		NLOG(NLOG_SYSINFO)
3485			msyslog(LOG_NOTICE,
3486				"runtime config from %s rejected due to nomodify restriction",
3487				stoa(&rbufp->recv_srcadr));
3488		sys_restricted++;
3489		return;
3490	}
3491
3492	/* Initialize the remote config buffer */
3493	data_count = remoteconfig_cmdlength(reqpt, reqend);
3494
3495	if (data_count > sizeof(remote_config.buffer) - 2) {
3496		snprintf(remote_config.err_msg,
3497			 sizeof(remote_config.err_msg),
3498			 "runtime configuration failed: request too long");
3499		ctl_putdata(remote_config.err_msg,
3500			    strlen(remote_config.err_msg), 0);
3501		ctl_flushpkt(0);
3502		msyslog(LOG_NOTICE,
3503			"runtime config from %s rejected: request too long",
3504			stoa(&rbufp->recv_srcadr));
3505		return;
3506	}
3507	/* Bug 2853 -- check if all characters were acceptable */
3508	if (data_count != (size_t)(reqend - reqpt)) {
3509		snprintf(remote_config.err_msg,
3510			 sizeof(remote_config.err_msg),
3511			 "runtime configuration failed: request contains an unprintable character");
3512		ctl_putdata(remote_config.err_msg,
3513			    strlen(remote_config.err_msg), 0);
3514		ctl_flushpkt(0);
3515		msyslog(LOG_NOTICE,
3516			"runtime config from %s rejected: request contains an unprintable character: %0x",
3517			stoa(&rbufp->recv_srcadr),
3518			reqpt[data_count]);
3519		return;
3520	}
3521
3522	memcpy(remote_config.buffer, reqpt, data_count);
3523	/* The buffer has no trailing linefeed or NUL right now. For
3524	 * logging, we do not want a newline, so we do that first after
3525	 * adding the necessary NUL byte.
3526	 */
3527	remote_config.buffer[data_count] = '\0';
3528	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3529		remote_config.buffer));
3530	msyslog(LOG_NOTICE, "%s config: %s",
3531		stoa(&rbufp->recv_srcadr),
3532		remote_config.buffer);
3533
3534	/* Now we have to make sure there is a NL/NUL sequence at the
3535	 * end of the buffer before we parse it.
3536	 */
3537	remote_config.buffer[data_count++] = '\n';
3538	remote_config.buffer[data_count] = '\0';
3539	remote_config.pos = 0;
3540	remote_config.err_pos = 0;
3541	remote_config.no_errors = 0;
3542	config_remotely(&rbufp->recv_srcadr);
3543
3544	/*
3545	 * Check if errors were reported. If not, output 'Config
3546	 * Succeeded'.  Else output the error count.  It would be nice
3547	 * to output any parser error messages.
3548	 */
3549	if (0 == remote_config.no_errors) {
3550		retval = snprintf(remote_config.err_msg,
3551				  sizeof(remote_config.err_msg),
3552				  "Config Succeeded");
3553		if (retval > 0)
3554			remote_config.err_pos += retval;
3555	}
3556
3557	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3558	ctl_flushpkt(0);
3559
3560	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3561
3562	if (remote_config.no_errors > 0)
3563		msyslog(LOG_NOTICE, "%d error in %s config",
3564			remote_config.no_errors,
3565			stoa(&rbufp->recv_srcadr));
3566}
3567
3568
3569/*
3570 * derive_nonce - generate client-address-specific nonce value
3571 *		  associated with a given timestamp.
3572 */
3573static u_int32 derive_nonce(
3574	sockaddr_u *	addr,
3575	u_int32		ts_i,
3576	u_int32		ts_f
3577	)
3578{
3579	static u_int32	salt[4];
3580	static u_long	last_salt_update;
3581	union d_tag {
3582		u_char	digest[EVP_MAX_MD_SIZE];
3583		u_int32 extract;
3584	}		d;
3585	EVP_MD_CTX	*ctx;
3586	u_int		len;
3587
3588	while (!salt[0] || current_time - last_salt_update >= 3600) {
3589		salt[0] = ntp_random();
3590		salt[1] = ntp_random();
3591		salt[2] = ntp_random();
3592		salt[3] = ntp_random();
3593		last_salt_update = current_time;
3594	}
3595
3596	ctx = EVP_MD_CTX_new();
3597	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3598	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3599	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3600	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3601	if (IS_IPV4(addr))
3602		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3603			         sizeof(SOCK_ADDR4(addr)));
3604	else
3605		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3606			         sizeof(SOCK_ADDR6(addr)));
3607	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3608	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3609	EVP_DigestFinal(ctx, d.digest, &len);
3610	EVP_MD_CTX_free(ctx);
3611
3612	return d.extract;
3613}
3614
3615
3616/*
3617 * generate_nonce - generate client-address-specific nonce string.
3618 */
3619static void generate_nonce(
3620	struct recvbuf *	rbufp,
3621	char *			nonce,
3622	size_t			nonce_octets
3623	)
3624{
3625	u_int32 derived;
3626
3627	derived = derive_nonce(&rbufp->recv_srcadr,
3628			       rbufp->recv_time.l_ui,
3629			       rbufp->recv_time.l_uf);
3630	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3631		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3632}
3633
3634
3635/*
3636 * validate_nonce - validate client-address-specific nonce string.
3637 *
3638 * Returns TRUE if the local calculation of the nonce matches the
3639 * client-provided value and the timestamp is recent enough.
3640 */
3641static int validate_nonce(
3642	const char *		pnonce,
3643	struct recvbuf *	rbufp
3644	)
3645{
3646	u_int	ts_i;
3647	u_int	ts_f;
3648	l_fp	ts;
3649	l_fp	now_delta;
3650	u_int	supposed;
3651	u_int	derived;
3652
3653	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3654		return FALSE;
3655
3656	ts.l_ui = (u_int32)ts_i;
3657	ts.l_uf = (u_int32)ts_f;
3658	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3659	get_systime(&now_delta);
3660	L_SUB(&now_delta, &ts);
3661
3662	return (supposed == derived && now_delta.l_ui < 16);
3663}
3664
3665
3666/*
3667 * send_random_tag_value - send a randomly-generated three character
3668 *			   tag prefix, a '.', an index, a '=' and a
3669 *			   random integer value.
3670 *
3671 * To try to force clients to ignore unrecognized tags in mrulist,
3672 * reslist, and ifstats responses, the first and last rows are spiced
3673 * with randomly-generated tag names with correct .# index.  Make it
3674 * three characters knowing that none of the currently-used subscripted
3675 * tags have that length, avoiding the need to test for
3676 * tag collision.
3677 */
3678static void
3679send_random_tag_value(
3680	int	indx
3681	)
3682{
3683	int	noise;
3684	char	buf[32];
3685
3686	noise = rand() ^ (rand() << 16);
3687	buf[0] = 'a' + noise % 26;
3688	noise >>= 5;
3689	buf[1] = 'a' + noise % 26;
3690	noise >>= 5;
3691	buf[2] = 'a' + noise % 26;
3692	noise >>= 5;
3693	buf[3] = '.';
3694	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3695	ctl_putuint(buf, noise);
3696}
3697
3698
3699/*
3700 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3701 *
3702 * To keep clients honest about not depending on the order of values,
3703 * and thereby avoid being locked into ugly workarounds to maintain
3704 * backward compatibility later as new fields are added to the response,
3705 * the order is random.
3706 */
3707static void
3708send_mru_entry(
3709	mon_entry *	mon,
3710	int		count
3711	)
3712{
3713	const char first_fmt[] =	"first.%d";
3714	const char ct_fmt[] =		"ct.%d";
3715	const char mv_fmt[] =		"mv.%d";
3716	const char rs_fmt[] =		"rs.%d";
3717	char	tag[32];
3718	u_char	sent[6]; /* 6 tag=value pairs */
3719	u_int32 noise;
3720	u_int	which;
3721	u_int	remaining;
3722	const char * pch;
3723
3724	remaining = COUNTOF(sent);
3725	ZERO(sent);
3726	noise = (u_int32)(rand() ^ (rand() << 16));
3727	while (remaining > 0) {
3728		which = (noise & 7) % COUNTOF(sent);
3729		noise >>= 3;
3730		while (sent[which])
3731			which = (which + 1) % COUNTOF(sent);
3732
3733		switch (which) {
3734
3735		case 0:
3736			snprintf(tag, sizeof(tag), addr_fmt, count);
3737			pch = sptoa(&mon->rmtadr);
3738			ctl_putunqstr(tag, pch, strlen(pch));
3739			break;
3740
3741		case 1:
3742			snprintf(tag, sizeof(tag), last_fmt, count);
3743			ctl_putts(tag, &mon->last);
3744			break;
3745
3746		case 2:
3747			snprintf(tag, sizeof(tag), first_fmt, count);
3748			ctl_putts(tag, &mon->first);
3749			break;
3750
3751		case 3:
3752			snprintf(tag, sizeof(tag), ct_fmt, count);
3753			ctl_putint(tag, mon->count);
3754			break;
3755
3756		case 4:
3757			snprintf(tag, sizeof(tag), mv_fmt, count);
3758			ctl_putuint(tag, mon->vn_mode);
3759			break;
3760
3761		case 5:
3762			snprintf(tag, sizeof(tag), rs_fmt, count);
3763			ctl_puthex(tag, mon->flags);
3764			break;
3765		}
3766		sent[which] = TRUE;
3767		remaining--;
3768	}
3769}
3770
3771
3772/*
3773 * read_mru_list - supports ntpq's mrulist command.
3774 *
3775 * The challenge here is to match ntpdc's monlist functionality without
3776 * being limited to hundreds of entries returned total, and without
3777 * requiring state on the server.  If state were required, ntpq's
3778 * mrulist command would require authentication.
3779 *
3780 * The approach was suggested by Ry Jones.  A finite and variable number
3781 * of entries are retrieved per request, to avoid having responses with
3782 * such large numbers of packets that socket buffers are overflowed and
3783 * packets lost.  The entries are retrieved oldest-first, taking into
3784 * account that the MRU list will be changing between each request.  We
3785 * can expect to see duplicate entries for addresses updated in the MRU
3786 * list during the fetch operation.  In the end, the client can assemble
3787 * a close approximation of the MRU list at the point in time the last
3788 * response was sent by ntpd.  The only difference is it may be longer,
3789 * containing some number of oldest entries which have since been
3790 * reclaimed.  If necessary, the protocol could be extended to zap those
3791 * from the client snapshot at the end, but so far that doesn't seem
3792 * useful.
3793 *
3794 * To accomodate the changing MRU list, the starting point for requests
3795 * after the first request is supplied as a series of last seen
3796 * timestamps and associated addresses, the newest ones the client has
3797 * received.  As long as at least one of those entries hasn't been
3798 * bumped to the head of the MRU list, ntpd can pick up at that point.
3799 * Otherwise, the request is failed and it is up to ntpq to back up and
3800 * provide the next newest entry's timestamps and addresses, conceivably
3801 * backing up all the way to the starting point.
3802 *
3803 * input parameters:
3804 *	nonce=		Regurgitated nonce retrieved by the client
3805 *			previously using CTL_OP_REQ_NONCE, demonstrating
3806 *			ability to receive traffic sent to its address.
3807 *	frags=		Limit on datagrams (fragments) in response.  Used
3808 *			by newer ntpq versions instead of limit= when
3809 *			retrieving multiple entries.
3810 *	limit=		Limit on MRU entries returned.  One of frags= or
3811 *			limit= must be provided.
3812 *			limit=1 is a special case:  Instead of fetching
3813 *			beginning with the supplied starting point's
3814 *			newer neighbor, fetch the supplied entry, and
3815 *			in that case the #.last timestamp can be zero.
3816 *			This enables fetching a single entry by IP
3817 *			address.  When limit is not one and frags= is
3818 *			provided, the fragment limit controls.
3819 *	mincount=	(decimal) Return entries with count >= mincount.
3820 *	laddr=		Return entries associated with the server's IP
3821 *			address given.  No port specification is needed,
3822 *			and any supplied is ignored.
3823 *	resall=		0x-prefixed hex restrict bits which must all be
3824 *			lit for an MRU entry to be included.
3825 *			Has precedence over any resany=.
3826 *	resany=		0x-prefixed hex restrict bits, at least one of
3827 *			which must be list for an MRU entry to be
3828 *			included.
3829 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3830 *			which client previously received.
3831 *	addr.0=		text of newest entry's IP address and port,
3832 *			IPv6 addresses in bracketed form: [::]:123
3833 *	last.1=		timestamp of 2nd newest entry client has.
3834 *	addr.1=		address of 2nd newest entry.
3835 *	[...]
3836 *
3837 * ntpq provides as many last/addr pairs as will fit in a single request
3838 * packet, except for the first request in a MRU fetch operation.
3839 *
3840 * The response begins with a new nonce value to be used for any
3841 * followup request.  Following the nonce is the next newer entry than
3842 * referred to by last.0 and addr.0, if the "0" entry has not been
3843 * bumped to the front.  If it has, the first entry returned will be the
3844 * next entry newer than referred to by last.1 and addr.1, and so on.
3845 * If none of the referenced entries remain unchanged, the request fails
3846 * and ntpq backs up to the next earlier set of entries to resync.
3847 *
3848 * Except for the first response, the response begins with confirmation
3849 * of the entry that precedes the first additional entry provided:
3850 *
3851 *	last.older=	hex l_fp timestamp matching one of the input
3852 *			.last timestamps, which entry now precedes the
3853 *			response 0. entry in the MRU list.
3854 *	addr.older=	text of address corresponding to older.last.
3855 *
3856 * And in any case, a successful response contains sets of values
3857 * comprising entries, with the oldest numbered 0 and incrementing from
3858 * there:
3859 *
3860 *	addr.#		text of IPv4 or IPv6 address and port
3861 *	last.#		hex l_fp timestamp of last receipt
3862 *	first.#		hex l_fp timestamp of first receipt
3863 *	ct.#		count of packets received
3864 *	mv.#		mode and version
3865 *	rs.#		restriction mask (RES_* bits)
3866 *
3867 * Note the code currently assumes there are no valid three letter
3868 * tags sent with each row, and needs to be adjusted if that changes.
3869 *
3870 * The client should accept the values in any order, and ignore .#
3871 * values which it does not understand, to allow a smooth path to
3872 * future changes without requiring a new opcode.  Clients can rely
3873 * on all *.0 values preceding any *.1 values, that is all values for
3874 * a given index number are together in the response.
3875 *
3876 * The end of the response list is noted with one or two tag=value
3877 * pairs.  Unconditionally:
3878 *
3879 *	now=		0x-prefixed l_fp timestamp at the server marking
3880 *			the end of the operation.
3881 *
3882 * If any entries were returned, now= is followed by:
3883 *
3884 *	last.newest=	hex l_fp identical to last.# of the prior
3885 *			entry.
3886 */
3887static void read_mru_list(
3888	struct recvbuf *rbufp,
3889	int restrict_mask
3890	)
3891{
3892	static const char	nulltxt[1] = 		{ '\0' };
3893	static const char	nonce_text[] =		"nonce";
3894	static const char	frags_text[] =		"frags";
3895	static const char	limit_text[] =		"limit";
3896	static const char	mincount_text[] =	"mincount";
3897	static const char	resall_text[] =		"resall";
3898	static const char	resany_text[] =		"resany";
3899	static const char	maxlstint_text[] =	"maxlstint";
3900	static const char	laddr_text[] =		"laddr";
3901	static const char	resaxx_fmt[] =		"0x%hx";
3902
3903	u_int			limit;
3904	u_short			frags;
3905	u_short			resall;
3906	u_short			resany;
3907	int			mincount;
3908	u_int			maxlstint;
3909	sockaddr_u		laddr;
3910	struct interface *	lcladr;
3911	u_int			count;
3912	u_int			ui;
3913	u_int			uf;
3914	l_fp			last[16];
3915	sockaddr_u		addr[COUNTOF(last)];
3916	char			buf[128];
3917	struct ctl_var *	in_parms;
3918	const struct ctl_var *	v;
3919	const char *		val;
3920	const char *		pch;
3921	char *			pnonce;
3922	int			nonce_valid;
3923	size_t			i;
3924	int			priors;
3925	u_short			hash;
3926	mon_entry *		mon;
3927	mon_entry *		prior_mon;
3928	l_fp			now;
3929
3930	if (RES_NOMRULIST & restrict_mask) {
3931		ctl_error(CERR_PERMISSION);
3932		NLOG(NLOG_SYSINFO)
3933			msyslog(LOG_NOTICE,
3934				"mrulist from %s rejected due to nomrulist restriction",
3935				stoa(&rbufp->recv_srcadr));
3936		sys_restricted++;
3937		return;
3938	}
3939	/*
3940	 * fill in_parms var list with all possible input parameters.
3941	 */
3942	in_parms = NULL;
3943	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3944	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3945	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3946	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3947	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3948	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3949	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3950	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3951	for (i = 0; i < COUNTOF(last); i++) {
3952		snprintf(buf, sizeof(buf), last_fmt, (int)i);
3953		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3954		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3955		set_var(&in_parms, buf, strlen(buf) + 1, 0);
3956	}
3957
3958	/* decode input parms */
3959	pnonce = NULL;
3960	frags = 0;
3961	limit = 0;
3962	mincount = 0;
3963	resall = 0;
3964	resany = 0;
3965	maxlstint = 0;
3966	lcladr = NULL;
3967	priors = 0;
3968	ZERO(last);
3969	ZERO(addr);
3970
3971	/* have to go through '(void*)' to drop 'const' property from pointer.
3972	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
3973	 */
3974	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
3975	       !(EOV & v->flags)) {
3976		int si;
3977
3978		if (NULL == val)
3979			val = nulltxt;
3980
3981		if (!strcmp(nonce_text, v->text)) {
3982			free(pnonce);
3983			pnonce = (*val) ? estrdup(val) : NULL;
3984		} else if (!strcmp(frags_text, v->text)) {
3985			if (1 != sscanf(val, "%hu", &frags))
3986				goto blooper;
3987		} else if (!strcmp(limit_text, v->text)) {
3988			if (1 != sscanf(val, "%u", &limit))
3989				goto blooper;
3990		} else if (!strcmp(mincount_text, v->text)) {
3991			if (1 != sscanf(val, "%d", &mincount))
3992				goto blooper;
3993			if (mincount < 0)
3994				mincount = 0;
3995		} else if (!strcmp(resall_text, v->text)) {
3996			if (1 != sscanf(val, resaxx_fmt, &resall))
3997				goto blooper;
3998		} else if (!strcmp(resany_text, v->text)) {
3999			if (1 != sscanf(val, resaxx_fmt, &resany))
4000				goto blooper;
4001		} else if (!strcmp(maxlstint_text, v->text)) {
4002			if (1 != sscanf(val, "%u", &maxlstint))
4003				goto blooper;
4004		} else if (!strcmp(laddr_text, v->text)) {
4005			if (!decodenetnum(val, &laddr))
4006				goto blooper;
4007			lcladr = getinterface(&laddr, 0);
4008		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4009			   (size_t)si < COUNTOF(last)) {
4010			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4011				goto blooper;
4012			last[si].l_ui = ui;
4013			last[si].l_uf = uf;
4014			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4015				priors++;
4016		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4017			   (size_t)si < COUNTOF(addr)) {
4018			if (!decodenetnum(val, &addr[si]))
4019				goto blooper;
4020			if (last[si].l_ui && last[si].l_uf && si == priors)
4021				priors++;
4022		} else {
4023			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4024				    v->text));
4025			continue;
4026
4027		blooper:
4028			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4029				    v->text, val));
4030			free(pnonce);
4031			pnonce = NULL;
4032			break;
4033		}
4034	}
4035	free_varlist(in_parms);
4036	in_parms = NULL;
4037
4038	/* return no responses until the nonce is validated */
4039	if (NULL == pnonce)
4040		return;
4041
4042	nonce_valid = validate_nonce(pnonce, rbufp);
4043	free(pnonce);
4044	if (!nonce_valid)
4045		return;
4046
4047	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4048	    frags > MRU_FRAGS_LIMIT) {
4049		ctl_error(CERR_BADVALUE);
4050		return;
4051	}
4052
4053	/*
4054	 * If either frags or limit is not given, use the max.
4055	 */
4056	if (0 != frags && 0 == limit)
4057		limit = UINT_MAX;
4058	else if (0 != limit && 0 == frags)
4059		frags = MRU_FRAGS_LIMIT;
4060
4061	/*
4062	 * Find the starting point if one was provided.
4063	 */
4064	mon = NULL;
4065	for (i = 0; i < (size_t)priors; i++) {
4066		hash = MON_HASH(&addr[i]);
4067		for (mon = mon_hash[hash];
4068		     mon != NULL;
4069		     mon = mon->hash_next)
4070			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4071				break;
4072		if (mon != NULL) {
4073			if (L_ISEQU(&mon->last, &last[i]))
4074				break;
4075			mon = NULL;
4076		}
4077	}
4078
4079	/* If a starting point was provided... */
4080	if (priors) {
4081		/* and none could be found unmodified... */
4082		if (NULL == mon) {
4083			/* tell ntpq to try again with older entries */
4084			ctl_error(CERR_UNKNOWNVAR);
4085			return;
4086		}
4087		/* confirm the prior entry used as starting point */
4088		ctl_putts("last.older", &mon->last);
4089		pch = sptoa(&mon->rmtadr);
4090		ctl_putunqstr("addr.older", pch, strlen(pch));
4091
4092		/*
4093		 * Move on to the first entry the client doesn't have,
4094		 * except in the special case of a limit of one.  In
4095		 * that case return the starting point entry.
4096		 */
4097		if (limit > 1)
4098			mon = PREV_DLIST(mon_mru_list, mon, mru);
4099	} else {	/* start with the oldest */
4100		mon = TAIL_DLIST(mon_mru_list, mru);
4101	}
4102
4103	/*
4104	 * send up to limit= entries in up to frags= datagrams
4105	 */
4106	get_systime(&now);
4107	generate_nonce(rbufp, buf, sizeof(buf));
4108	ctl_putunqstr("nonce", buf, strlen(buf));
4109	prior_mon = NULL;
4110	for (count = 0;
4111	     mon != NULL && res_frags < frags && count < limit;
4112	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4113
4114		if (mon->count < mincount)
4115			continue;
4116		if (resall && resall != (resall & mon->flags))
4117			continue;
4118		if (resany && !(resany & mon->flags))
4119			continue;
4120		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4121		    maxlstint)
4122			continue;
4123		if (lcladr != NULL && mon->lcladr != lcladr)
4124			continue;
4125
4126		send_mru_entry(mon, count);
4127		if (!count)
4128			send_random_tag_value(0);
4129		count++;
4130		prior_mon = mon;
4131	}
4132
4133	/*
4134	 * If this batch completes the MRU list, say so explicitly with
4135	 * a now= l_fp timestamp.
4136	 */
4137	if (NULL == mon) {
4138		if (count > 1)
4139			send_random_tag_value(count - 1);
4140		ctl_putts("now", &now);
4141		/* if any entries were returned confirm the last */
4142		if (prior_mon != NULL)
4143			ctl_putts("last.newest", &prior_mon->last);
4144	}
4145	ctl_flushpkt(0);
4146}
4147
4148
4149/*
4150 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4151 *
4152 * To keep clients honest about not depending on the order of values,
4153 * and thereby avoid being locked into ugly workarounds to maintain
4154 * backward compatibility later as new fields are added to the response,
4155 * the order is random.
4156 */
4157static void
4158send_ifstats_entry(
4159	endpt *	la,
4160	u_int	ifnum
4161	)
4162{
4163	const char addr_fmtu[] =	"addr.%u";
4164	const char bcast_fmt[] =	"bcast.%u";
4165	const char en_fmt[] =		"en.%u";	/* enabled */
4166	const char name_fmt[] =		"name.%u";
4167	const char flags_fmt[] =	"flags.%u";
4168	const char tl_fmt[] =		"tl.%u";	/* ttl */
4169	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4170	const char rx_fmt[] =		"rx.%u";
4171	const char tx_fmt[] =		"tx.%u";
4172	const char txerr_fmt[] =	"txerr.%u";
4173	const char pc_fmt[] =		"pc.%u";	/* peer count */
4174	const char up_fmt[] =		"up.%u";	/* uptime */
4175	char	tag[32];
4176	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4177	int	noisebits;
4178	u_int32 noise;
4179	u_int	which;
4180	u_int	remaining;
4181	const char *pch;
4182
4183	remaining = COUNTOF(sent);
4184	ZERO(sent);
4185	noise = 0;
4186	noisebits = 0;
4187	while (remaining > 0) {
4188		if (noisebits < 4) {
4189			noise = rand() ^ (rand() << 16);
4190			noisebits = 31;
4191		}
4192		which = (noise & 0xf) % COUNTOF(sent);
4193		noise >>= 4;
4194		noisebits -= 4;
4195
4196		while (sent[which])
4197			which = (which + 1) % COUNTOF(sent);
4198
4199		switch (which) {
4200
4201		case 0:
4202			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4203			pch = sptoa(&la->sin);
4204			ctl_putunqstr(tag, pch, strlen(pch));
4205			break;
4206
4207		case 1:
4208			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4209			if (INT_BCASTOPEN & la->flags)
4210				pch = sptoa(&la->bcast);
4211			else
4212				pch = "";
4213			ctl_putunqstr(tag, pch, strlen(pch));
4214			break;
4215
4216		case 2:
4217			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4218			ctl_putint(tag, !la->ignore_packets);
4219			break;
4220
4221		case 3:
4222			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4223			ctl_putstr(tag, la->name, strlen(la->name));
4224			break;
4225
4226		case 4:
4227			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4228			ctl_puthex(tag, (u_int)la->flags);
4229			break;
4230
4231		case 5:
4232			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4233			ctl_putint(tag, la->last_ttl);
4234			break;
4235
4236		case 6:
4237			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4238			ctl_putint(tag, la->num_mcast);
4239			break;
4240
4241		case 7:
4242			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4243			ctl_putint(tag, la->received);
4244			break;
4245
4246		case 8:
4247			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4248			ctl_putint(tag, la->sent);
4249			break;
4250
4251		case 9:
4252			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4253			ctl_putint(tag, la->notsent);
4254			break;
4255
4256		case 10:
4257			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4258			ctl_putuint(tag, la->peercnt);
4259			break;
4260
4261		case 11:
4262			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4263			ctl_putuint(tag, current_time - la->starttime);
4264			break;
4265		}
4266		sent[which] = TRUE;
4267		remaining--;
4268	}
4269	send_random_tag_value((int)ifnum);
4270}
4271
4272
4273/*
4274 * read_ifstats - send statistics for each local address, exposed by
4275 *		  ntpq -c ifstats
4276 */
4277static void
4278read_ifstats(
4279	struct recvbuf *	rbufp
4280	)
4281{
4282	u_int	ifidx;
4283	endpt *	la;
4284
4285	/*
4286	 * loop over [0..sys_ifnum] searching ep_list for each
4287	 * ifnum in turn.
4288	 */
4289	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4290		for (la = ep_list; la != NULL; la = la->elink)
4291			if (ifidx == la->ifnum)
4292				break;
4293		if (NULL == la)
4294			continue;
4295		/* return stats for one local address */
4296		send_ifstats_entry(la, ifidx);
4297	}
4298	ctl_flushpkt(0);
4299}
4300
4301static void
4302sockaddrs_from_restrict_u(
4303	sockaddr_u *	psaA,
4304	sockaddr_u *	psaM,
4305	restrict_u *	pres,
4306	int		ipv6
4307	)
4308{
4309	ZERO(*psaA);
4310	ZERO(*psaM);
4311	if (!ipv6) {
4312		psaA->sa.sa_family = AF_INET;
4313		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4314		psaM->sa.sa_family = AF_INET;
4315		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4316	} else {
4317		psaA->sa.sa_family = AF_INET6;
4318		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4319		       sizeof(psaA->sa6.sin6_addr));
4320		psaM->sa.sa_family = AF_INET6;
4321		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4322		       sizeof(psaA->sa6.sin6_addr));
4323	}
4324}
4325
4326
4327/*
4328 * Send a restrict entry in response to a "ntpq -c reslist" request.
4329 *
4330 * To keep clients honest about not depending on the order of values,
4331 * and thereby avoid being locked into ugly workarounds to maintain
4332 * backward compatibility later as new fields are added to the response,
4333 * the order is random.
4334 */
4335static void
4336send_restrict_entry(
4337	restrict_u *	pres,
4338	int		ipv6,
4339	u_int		idx
4340	)
4341{
4342	const char addr_fmtu[] =	"addr.%u";
4343	const char mask_fmtu[] =	"mask.%u";
4344	const char hits_fmt[] =		"hits.%u";
4345	const char flags_fmt[] =	"flags.%u";
4346	char		tag[32];
4347	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4348	int		noisebits;
4349	u_int32		noise;
4350	u_int		which;
4351	u_int		remaining;
4352	sockaddr_u	addr;
4353	sockaddr_u	mask;
4354	const char *	pch;
4355	char *		buf;
4356	const char *	match_str;
4357	const char *	access_str;
4358
4359	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4360	remaining = COUNTOF(sent);
4361	ZERO(sent);
4362	noise = 0;
4363	noisebits = 0;
4364	while (remaining > 0) {
4365		if (noisebits < 2) {
4366			noise = rand() ^ (rand() << 16);
4367			noisebits = 31;
4368		}
4369		which = (noise & 0x3) % COUNTOF(sent);
4370		noise >>= 2;
4371		noisebits -= 2;
4372
4373		while (sent[which])
4374			which = (which + 1) % COUNTOF(sent);
4375
4376		switch (which) {
4377
4378		case 0:
4379			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4380			pch = stoa(&addr);
4381			ctl_putunqstr(tag, pch, strlen(pch));
4382			break;
4383
4384		case 1:
4385			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4386			pch = stoa(&mask);
4387			ctl_putunqstr(tag, pch, strlen(pch));
4388			break;
4389
4390		case 2:
4391			snprintf(tag, sizeof(tag), hits_fmt, idx);
4392			ctl_putuint(tag, pres->count);
4393			break;
4394
4395		case 3:
4396			snprintf(tag, sizeof(tag), flags_fmt, idx);
4397			match_str = res_match_flags(pres->mflags);
4398			access_str = res_access_flags(pres->flags);
4399			if ('\0' == match_str[0]) {
4400				pch = access_str;
4401			} else {
4402				LIB_GETBUF(buf);
4403				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4404					 match_str, access_str);
4405				pch = buf;
4406			}
4407			ctl_putunqstr(tag, pch, strlen(pch));
4408			break;
4409		}
4410		sent[which] = TRUE;
4411		remaining--;
4412	}
4413	send_random_tag_value((int)idx);
4414}
4415
4416
4417static void
4418send_restrict_list(
4419	restrict_u *	pres,
4420	int		ipv6,
4421	u_int *		pidx
4422	)
4423{
4424	for ( ; pres != NULL; pres = pres->link) {
4425		send_restrict_entry(pres, ipv6, *pidx);
4426		(*pidx)++;
4427	}
4428}
4429
4430
4431/*
4432 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4433 */
4434static void
4435read_addr_restrictions(
4436	struct recvbuf *	rbufp
4437)
4438{
4439	u_int idx;
4440
4441	idx = 0;
4442	send_restrict_list(restrictlist4, FALSE, &idx);
4443	send_restrict_list(restrictlist6, TRUE, &idx);
4444	ctl_flushpkt(0);
4445}
4446
4447
4448/*
4449 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4450 */
4451static void
4452read_ordlist(
4453	struct recvbuf *	rbufp,
4454	int			restrict_mask
4455	)
4456{
4457	const char ifstats_s[] = "ifstats";
4458	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4459	const char addr_rst_s[] = "addr_restrictions";
4460	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4461	struct ntp_control *	cpkt;
4462	u_short			qdata_octets;
4463
4464	/*
4465	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4466	 * used only for ntpq -c ifstats.  With the addition of reslist
4467	 * the same opcode was generalized to retrieve ordered lists
4468	 * which require authentication.  The request data is empty or
4469	 * contains "ifstats" (not null terminated) to retrieve local
4470	 * addresses and associated stats.  It is "addr_restrictions"
4471	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4472	 * which are access control lists.  Other request data return
4473	 * CERR_UNKNOWNVAR.
4474	 */
4475	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4476	qdata_octets = ntohs(cpkt->count);
4477	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4478	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4479		read_ifstats(rbufp);
4480		return;
4481	}
4482	if (a_r_chars == qdata_octets &&
4483	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4484		read_addr_restrictions(rbufp);
4485		return;
4486	}
4487	ctl_error(CERR_UNKNOWNVAR);
4488}
4489
4490
4491/*
4492 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4493 */
4494static void req_nonce(
4495	struct recvbuf *	rbufp,
4496	int			restrict_mask
4497	)
4498{
4499	char	buf[64];
4500
4501	generate_nonce(rbufp, buf, sizeof(buf));
4502	ctl_putunqstr("nonce", buf, strlen(buf));
4503	ctl_flushpkt(0);
4504}
4505
4506
4507/*
4508 * read_clockstatus - return clock radio status
4509 */
4510/*ARGSUSED*/
4511static void
4512read_clockstatus(
4513	struct recvbuf *rbufp,
4514	int restrict_mask
4515	)
4516{
4517#ifndef REFCLOCK
4518	/*
4519	 * If no refclock support, no data to return
4520	 */
4521	ctl_error(CERR_BADASSOC);
4522#else
4523	const struct ctl_var *	v;
4524	int			i;
4525	struct peer *		peer;
4526	char *			valuep;
4527	u_char *		wants;
4528	size_t			wants_alloc;
4529	int			gotvar;
4530	const u_char *		cc;
4531	struct ctl_var *	kv;
4532	struct refclockstat	cs;
4533
4534	if (res_associd != 0) {
4535		peer = findpeerbyassoc(res_associd);
4536	} else {
4537		/*
4538		 * Find a clock for this jerk.	If the system peer
4539		 * is a clock use it, else search peer_list for one.
4540		 */
4541		if (sys_peer != NULL && (FLAG_REFCLOCK &
4542		    sys_peer->flags))
4543			peer = sys_peer;
4544		else
4545			for (peer = peer_list;
4546			     peer != NULL;
4547			     peer = peer->p_link)
4548				if (FLAG_REFCLOCK & peer->flags)
4549					break;
4550	}
4551	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4552		ctl_error(CERR_BADASSOC);
4553		return;
4554	}
4555	/*
4556	 * If we got here we have a peer which is a clock. Get his
4557	 * status.
4558	 */
4559	cs.kv_list = NULL;
4560	refclock_control(&peer->srcadr, NULL, &cs);
4561	kv = cs.kv_list;
4562	/*
4563	 * Look for variables in the packet.
4564	 */
4565	rpkt.status = htons(ctlclkstatus(&cs));
4566	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4567	wants = emalloc_zero(wants_alloc);
4568	gotvar = FALSE;
4569	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4570		if (!(EOV & v->flags)) {
4571			wants[v->code] = TRUE;
4572			gotvar = TRUE;
4573		} else {
4574			v = ctl_getitem(kv, &valuep);
4575			if (NULL == v) {
4576				ctl_error(CERR_BADVALUE);
4577				free(wants);
4578				free_varlist(cs.kv_list);
4579				return;
4580			}
4581			if (EOV & v->flags) {
4582				ctl_error(CERR_UNKNOWNVAR);
4583				free(wants);
4584				free_varlist(cs.kv_list);
4585				return;
4586			}
4587			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4588			gotvar = TRUE;
4589		}
4590	}
4591
4592	if (gotvar) {
4593		for (i = 1; i <= CC_MAXCODE; i++)
4594			if (wants[i])
4595				ctl_putclock(i, &cs, TRUE);
4596		if (kv != NULL)
4597			for (i = 0; !(EOV & kv[i].flags); i++)
4598				if (wants[i + CC_MAXCODE + 1])
4599					ctl_putdata(kv[i].text,
4600						    strlen(kv[i].text),
4601						    FALSE);
4602	} else {
4603		for (cc = def_clock_var; *cc != 0; cc++)
4604			ctl_putclock((int)*cc, &cs, FALSE);
4605		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4606			if (DEF & kv->flags)
4607				ctl_putdata(kv->text, strlen(kv->text),
4608					    FALSE);
4609	}
4610
4611	free(wants);
4612	free_varlist(cs.kv_list);
4613
4614	ctl_flushpkt(0);
4615#endif
4616}
4617
4618
4619/*
4620 * write_clockstatus - we don't do this
4621 */
4622/*ARGSUSED*/
4623static void
4624write_clockstatus(
4625	struct recvbuf *rbufp,
4626	int restrict_mask
4627	)
4628{
4629	ctl_error(CERR_PERMISSION);
4630}
4631
4632/*
4633 * Trap support from here on down. We send async trap messages when the
4634 * upper levels report trouble. Traps can by set either by control
4635 * messages or by configuration.
4636 */
4637/*
4638 * set_trap - set a trap in response to a control message
4639 */
4640static void
4641set_trap(
4642	struct recvbuf *rbufp,
4643	int restrict_mask
4644	)
4645{
4646	int traptype;
4647
4648	/*
4649	 * See if this guy is allowed
4650	 */
4651	if (restrict_mask & RES_NOTRAP) {
4652		ctl_error(CERR_PERMISSION);
4653		return;
4654	}
4655
4656	/*
4657	 * Determine his allowed trap type.
4658	 */
4659	traptype = TRAP_TYPE_PRIO;
4660	if (restrict_mask & RES_LPTRAP)
4661		traptype = TRAP_TYPE_NONPRIO;
4662
4663	/*
4664	 * Call ctlsettrap() to do the work.  Return
4665	 * an error if it can't assign the trap.
4666	 */
4667	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4668			(int)res_version))
4669		ctl_error(CERR_NORESOURCE);
4670	ctl_flushpkt(0);
4671}
4672
4673
4674/*
4675 * unset_trap - unset a trap in response to a control message
4676 */
4677static void
4678unset_trap(
4679	struct recvbuf *rbufp,
4680	int restrict_mask
4681	)
4682{
4683	int traptype;
4684
4685	/*
4686	 * We don't prevent anyone from removing his own trap unless the
4687	 * trap is configured. Note we also must be aware of the
4688	 * possibility that restriction flags were changed since this
4689	 * guy last set his trap. Set the trap type based on this.
4690	 */
4691	traptype = TRAP_TYPE_PRIO;
4692	if (restrict_mask & RES_LPTRAP)
4693		traptype = TRAP_TYPE_NONPRIO;
4694
4695	/*
4696	 * Call ctlclrtrap() to clear this out.
4697	 */
4698	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4699		ctl_error(CERR_BADASSOC);
4700	ctl_flushpkt(0);
4701}
4702
4703
4704/*
4705 * ctlsettrap - called to set a trap
4706 */
4707int
4708ctlsettrap(
4709	sockaddr_u *raddr,
4710	struct interface *linter,
4711	int traptype,
4712	int version
4713	)
4714{
4715	size_t n;
4716	struct ctl_trap *tp;
4717	struct ctl_trap *tptouse;
4718
4719	/*
4720	 * See if we can find this trap.  If so, we only need update
4721	 * the flags and the time.
4722	 */
4723	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4724		switch (traptype) {
4725
4726		case TRAP_TYPE_CONFIG:
4727			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4728			break;
4729
4730		case TRAP_TYPE_PRIO:
4731			if (tp->tr_flags & TRAP_CONFIGURED)
4732				return (1); /* don't change anything */
4733			tp->tr_flags = TRAP_INUSE;
4734			break;
4735
4736		case TRAP_TYPE_NONPRIO:
4737			if (tp->tr_flags & TRAP_CONFIGURED)
4738				return (1); /* don't change anything */
4739			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4740			break;
4741		}
4742		tp->tr_settime = current_time;
4743		tp->tr_resets++;
4744		return (1);
4745	}
4746
4747	/*
4748	 * First we heard of this guy.	Try to find a trap structure
4749	 * for him to use, clearing out lesser priority guys if we
4750	 * have to. Clear out anyone who's expired while we're at it.
4751	 */
4752	tptouse = NULL;
4753	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4754		tp = &ctl_traps[n];
4755		if ((TRAP_INUSE & tp->tr_flags) &&
4756		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4757		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4758			tp->tr_flags = 0;
4759			num_ctl_traps--;
4760		}
4761		if (!(TRAP_INUSE & tp->tr_flags)) {
4762			tptouse = tp;
4763		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4764			switch (traptype) {
4765
4766			case TRAP_TYPE_CONFIG:
4767				if (tptouse == NULL) {
4768					tptouse = tp;
4769					break;
4770				}
4771				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4772				    !(TRAP_NONPRIO & tp->tr_flags))
4773					break;
4774
4775				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4776				    && (TRAP_NONPRIO & tp->tr_flags)) {
4777					tptouse = tp;
4778					break;
4779				}
4780				if (tptouse->tr_origtime <
4781				    tp->tr_origtime)
4782					tptouse = tp;
4783				break;
4784
4785			case TRAP_TYPE_PRIO:
4786				if ( TRAP_NONPRIO & tp->tr_flags) {
4787					if (tptouse == NULL ||
4788					    ((TRAP_INUSE &
4789					      tptouse->tr_flags) &&
4790					     tptouse->tr_origtime <
4791					     tp->tr_origtime))
4792						tptouse = tp;
4793				}
4794				break;
4795
4796			case TRAP_TYPE_NONPRIO:
4797				break;
4798			}
4799		}
4800	}
4801
4802	/*
4803	 * If we don't have room for him return an error.
4804	 */
4805	if (tptouse == NULL)
4806		return (0);
4807
4808	/*
4809	 * Set up this structure for him.
4810	 */
4811	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4812	tptouse->tr_count = tptouse->tr_resets = 0;
4813	tptouse->tr_sequence = 1;
4814	tptouse->tr_addr = *raddr;
4815	tptouse->tr_localaddr = linter;
4816	tptouse->tr_version = (u_char) version;
4817	tptouse->tr_flags = TRAP_INUSE;
4818	if (traptype == TRAP_TYPE_CONFIG)
4819		tptouse->tr_flags |= TRAP_CONFIGURED;
4820	else if (traptype == TRAP_TYPE_NONPRIO)
4821		tptouse->tr_flags |= TRAP_NONPRIO;
4822	num_ctl_traps++;
4823	return (1);
4824}
4825
4826
4827/*
4828 * ctlclrtrap - called to clear a trap
4829 */
4830int
4831ctlclrtrap(
4832	sockaddr_u *raddr,
4833	struct interface *linter,
4834	int traptype
4835	)
4836{
4837	register struct ctl_trap *tp;
4838
4839	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4840		return (0);
4841
4842	if (tp->tr_flags & TRAP_CONFIGURED
4843	    && traptype != TRAP_TYPE_CONFIG)
4844		return (0);
4845
4846	tp->tr_flags = 0;
4847	num_ctl_traps--;
4848	return (1);
4849}
4850
4851
4852/*
4853 * ctlfindtrap - find a trap given the remote and local addresses
4854 */
4855static struct ctl_trap *
4856ctlfindtrap(
4857	sockaddr_u *raddr,
4858	struct interface *linter
4859	)
4860{
4861	size_t	n;
4862
4863	for (n = 0; n < COUNTOF(ctl_traps); n++)
4864		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4865		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4866		    && (linter == ctl_traps[n].tr_localaddr))
4867			return &ctl_traps[n];
4868
4869	return NULL;
4870}
4871
4872
4873/*
4874 * report_event - report an event to the trappers
4875 */
4876void
4877report_event(
4878	int	err,		/* error code */
4879	struct peer *peer,	/* peer structure pointer */
4880	const char *str		/* protostats string */
4881	)
4882{
4883	char	statstr[NTP_MAXSTRLEN];
4884	int	i;
4885	size_t	len;
4886
4887	/*
4888	 * Report the error to the protostats file, system log and
4889	 * trappers.
4890	 */
4891	if (peer == NULL) {
4892
4893		/*
4894		 * Discard a system report if the number of reports of
4895		 * the same type exceeds the maximum.
4896		 */
4897		if (ctl_sys_last_event != (u_char)err)
4898			ctl_sys_num_events= 0;
4899		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4900			return;
4901
4902		ctl_sys_last_event = (u_char)err;
4903		ctl_sys_num_events++;
4904		snprintf(statstr, sizeof(statstr),
4905		    "0.0.0.0 %04x %02x %s",
4906		    ctlsysstatus(), err, eventstr(err));
4907		if (str != NULL) {
4908			len = strlen(statstr);
4909			snprintf(statstr + len, sizeof(statstr) - len,
4910			    " %s", str);
4911		}
4912		NLOG(NLOG_SYSEVENT)
4913			msyslog(LOG_INFO, "%s", statstr);
4914	} else {
4915
4916		/*
4917		 * Discard a peer report if the number of reports of
4918		 * the same type exceeds the maximum for that peer.
4919		 */
4920		const char *	src;
4921		u_char		errlast;
4922
4923		errlast = (u_char)err & ~PEER_EVENT;
4924		if (peer->last_event != errlast)
4925			peer->num_events = 0;
4926		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4927			return;
4928
4929		peer->last_event = errlast;
4930		peer->num_events++;
4931		if (ISREFCLOCKADR(&peer->srcadr))
4932			src = refnumtoa(&peer->srcadr);
4933		else
4934			src = stoa(&peer->srcadr);
4935
4936		snprintf(statstr, sizeof(statstr),
4937		    "%s %04x %02x %s", src,
4938		    ctlpeerstatus(peer), err, eventstr(err));
4939		if (str != NULL) {
4940			len = strlen(statstr);
4941			snprintf(statstr + len, sizeof(statstr) - len,
4942			    " %s", str);
4943		}
4944		NLOG(NLOG_PEEREVENT)
4945			msyslog(LOG_INFO, "%s", statstr);
4946	}
4947	record_proto_stats(statstr);
4948#if DEBUG
4949	if (debug)
4950		printf("event at %lu %s\n", current_time, statstr);
4951#endif
4952
4953	/*
4954	 * If no trappers, return.
4955	 */
4956	if (num_ctl_traps <= 0)
4957		return;
4958
4959	/* [Bug 3119]
4960	 * Peer Events should be associated with a peer -- hence the
4961	 * name. But there are instances where this function is called
4962	 * *without* a valid peer. This happens e.g. with an unsolicited
4963	 * CryptoNAK, or when a leap second alarm is going off while
4964	 * currently without a system peer.
4965	 *
4966	 * The most sensible approach to this seems to bail out here if
4967	 * this happens. Avoiding to call this function would also
4968	 * bypass the log reporting in the first part of this function,
4969	 * and this is probably not the best of all options.
4970	 *   -*-perlinger@ntp.org-*-
4971	 */
4972	if ((err & PEER_EVENT) && !peer)
4973		return;
4974
4975	/*
4976	 * Set up the outgoing packet variables
4977	 */
4978	res_opcode = CTL_OP_ASYNCMSG;
4979	res_offset = 0;
4980	res_async = TRUE;
4981	res_authenticate = FALSE;
4982	datapt = rpkt.u.data;
4983	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4984	if (!(err & PEER_EVENT)) {
4985		rpkt.associd = 0;
4986		rpkt.status = htons(ctlsysstatus());
4987
4988		/* Include the core system variables and the list. */
4989		for (i = 1; i <= CS_VARLIST; i++)
4990			ctl_putsys(i);
4991	} else if (NULL != peer) { /* paranoia -- skip output */
4992		rpkt.associd = htons(peer->associd);
4993		rpkt.status = htons(ctlpeerstatus(peer));
4994
4995		/* Dump it all. Later, maybe less. */
4996		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4997			ctl_putpeer(i, peer);
4998#	    ifdef REFCLOCK
4999		/*
5000		 * for clock exception events: add clock variables to
5001		 * reflect info on exception
5002		 */
5003		if (err == PEVNT_CLOCK) {
5004			struct refclockstat cs;
5005			struct ctl_var *kv;
5006
5007			cs.kv_list = NULL;
5008			refclock_control(&peer->srcadr, NULL, &cs);
5009
5010			ctl_puthex("refclockstatus",
5011				   ctlclkstatus(&cs));
5012
5013			for (i = 1; i <= CC_MAXCODE; i++)
5014				ctl_putclock(i, &cs, FALSE);
5015			for (kv = cs.kv_list;
5016			     kv != NULL && !(EOV & kv->flags);
5017			     kv++)
5018				if (DEF & kv->flags)
5019					ctl_putdata(kv->text,
5020						    strlen(kv->text),
5021						    FALSE);
5022			free_varlist(cs.kv_list);
5023		}
5024#	    endif /* REFCLOCK */
5025	}
5026
5027	/*
5028	 * We're done, return.
5029	 */
5030	ctl_flushpkt(0);
5031}
5032
5033
5034/*
5035 * mprintf_event - printf-style varargs variant of report_event()
5036 */
5037int
5038mprintf_event(
5039	int		evcode,		/* event code */
5040	struct peer *	p,		/* may be NULL */
5041	const char *	fmt,		/* msnprintf format */
5042	...
5043	)
5044{
5045	va_list	ap;
5046	int	rc;
5047	char	msg[512];
5048
5049	va_start(ap, fmt);
5050	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5051	va_end(ap);
5052	report_event(evcode, p, msg);
5053
5054	return rc;
5055}
5056
5057
5058/*
5059 * ctl_clr_stats - clear stat counters
5060 */
5061void
5062ctl_clr_stats(void)
5063{
5064	ctltimereset = current_time;
5065	numctlreq = 0;
5066	numctlbadpkts = 0;
5067	numctlresponses = 0;
5068	numctlfrags = 0;
5069	numctlerrors = 0;
5070	numctlfrags = 0;
5071	numctltooshort = 0;
5072	numctlinputresp = 0;
5073	numctlinputfrag = 0;
5074	numctlinputerr = 0;
5075	numctlbadoffset = 0;
5076	numctlbadversion = 0;
5077	numctldatatooshort = 0;
5078	numctlbadop = 0;
5079	numasyncmsgs = 0;
5080}
5081
5082static u_short
5083count_var(
5084	const struct ctl_var *k
5085	)
5086{
5087	u_int c;
5088
5089	if (NULL == k)
5090		return 0;
5091
5092	c = 0;
5093	while (!(EOV & (k++)->flags))
5094		c++;
5095
5096	ENSURE(c <= USHRT_MAX);
5097	return (u_short)c;
5098}
5099
5100
5101char *
5102add_var(
5103	struct ctl_var **kv,
5104	u_long size,
5105	u_short def
5106	)
5107{
5108	u_short		c;
5109	struct ctl_var *k;
5110	char *		buf;
5111
5112	c = count_var(*kv);
5113	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5114	k = *kv;
5115	buf = emalloc(size);
5116	k[c].code  = c;
5117	k[c].text  = buf;
5118	k[c].flags = def;
5119	k[c + 1].code  = 0;
5120	k[c + 1].text  = NULL;
5121	k[c + 1].flags = EOV;
5122
5123	return buf;
5124}
5125
5126
5127void
5128set_var(
5129	struct ctl_var **kv,
5130	const char *data,
5131	u_long size,
5132	u_short def
5133	)
5134{
5135	struct ctl_var *k;
5136	const char *s;
5137	const char *t;
5138	char *td;
5139
5140	if (NULL == data || !size)
5141		return;
5142
5143	k = *kv;
5144	if (k != NULL) {
5145		while (!(EOV & k->flags)) {
5146			if (NULL == k->text)	{
5147				td = emalloc(size);
5148				memcpy(td, data, size);
5149				k->text = td;
5150				k->flags = def;
5151				return;
5152			} else {
5153				s = data;
5154				t = k->text;
5155				while (*t != '=' && *s == *t) {
5156					s++;
5157					t++;
5158				}
5159				if (*s == *t && ((*t == '=') || !*t)) {
5160					td = erealloc((void *)(intptr_t)k->text, size);
5161					memcpy(td, data, size);
5162					k->text = td;
5163					k->flags = def;
5164					return;
5165				}
5166			}
5167			k++;
5168		}
5169	}
5170	td = add_var(kv, size, def);
5171	memcpy(td, data, size);
5172}
5173
5174
5175void
5176set_sys_var(
5177	const char *data,
5178	u_long size,
5179	u_short def
5180	)
5181{
5182	set_var(&ext_sys_var, data, size, def);
5183}
5184
5185
5186/*
5187 * get_ext_sys_var() retrieves the value of a user-defined variable or
5188 * NULL if the variable has not been setvar'd.
5189 */
5190const char *
5191get_ext_sys_var(const char *tag)
5192{
5193	struct ctl_var *	v;
5194	size_t			c;
5195	const char *		val;
5196
5197	val = NULL;
5198	c = strlen(tag);
5199	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5200		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5201			if ('=' == v->text[c]) {
5202				val = v->text + c + 1;
5203				break;
5204			} else if ('\0' == v->text[c]) {
5205				val = "";
5206				break;
5207			}
5208		}
5209	}
5210
5211	return val;
5212}
5213
5214
5215void
5216free_varlist(
5217	struct ctl_var *kv
5218	)
5219{
5220	struct ctl_var *k;
5221	if (kv) {
5222		for (k = kv; !(k->flags & EOV); k++)
5223			free((void *)(intptr_t)k->text);
5224		free((void *)kv);
5225	}
5226}
5227