1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include <rc_cmdlength.h>
32#ifdef KERNEL_PLL
33# include "ntp_syscall.h"
34#endif
35
36/*
37 * Structure to hold request procedure information
38 */
39
40struct ctl_proc {
41	short control_code;		/* defined request code */
42#define NO_REQUEST	(-1)
43	u_short flags;			/* flags word */
44	/* Only one flag.  Authentication required or not. */
45#define NOAUTH	0
46#define AUTH	1
47	void (*handler) (struct recvbuf *, int); /* handle request */
48};
49
50
51/*
52 * Request processing routines
53 */
54static	void	ctl_error	(u_char);
55#ifdef REFCLOCK
56static	u_short ctlclkstatus	(struct refclockstat *);
57#endif
58static	void	ctl_flushpkt	(u_char);
59static	void	ctl_putdata	(const char *, unsigned int, int);
60static	void	ctl_putstr	(const char *, const char *, size_t);
61static	void	ctl_putdblf	(const char *, int, int, double);
62#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
63#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
64#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
65					    FPTOD(sfp))
66static	void	ctl_putuint	(const char *, u_long);
67static	void	ctl_puthex	(const char *, u_long);
68static	void	ctl_putint	(const char *, long);
69static	void	ctl_putts	(const char *, l_fp *);
70static	void	ctl_putadr	(const char *, u_int32,
71				 sockaddr_u *);
72static	void	ctl_putrefid	(const char *, u_int32);
73static	void	ctl_putarray	(const char *, double *, int);
74static	void	ctl_putsys	(int);
75static	void	ctl_putpeer	(int, struct peer *);
76static	void	ctl_putfs	(const char *, tstamp_t);
77static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
78#ifdef REFCLOCK
79static	void	ctl_putclock	(int, struct refclockstat *, int);
80#endif	/* REFCLOCK */
81static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
82					  char **);
83static	u_short	count_var	(const struct ctl_var *);
84static	void	control_unspec	(struct recvbuf *, int);
85static	void	read_status	(struct recvbuf *, int);
86static	void	read_sysvars	(void);
87static	void	read_peervars	(void);
88static	void	read_variables	(struct recvbuf *, int);
89static	void	write_variables (struct recvbuf *, int);
90static	void	read_clockstatus(struct recvbuf *, int);
91static	void	write_clockstatus(struct recvbuf *, int);
92static	void	set_trap	(struct recvbuf *, int);
93static	void	save_config	(struct recvbuf *, int);
94static	void	configure	(struct recvbuf *, int);
95static	void	send_mru_entry	(mon_entry *, int);
96static	void	send_random_tag_value(int);
97static	void	read_mru_list	(struct recvbuf *, int);
98static	void	send_ifstats_entry(endpt *, u_int);
99static	void	read_ifstats	(struct recvbuf *);
100static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
101					  restrict_u *, int);
102static	void	send_restrict_entry(restrict_u *, int, u_int);
103static	void	send_restrict_list(restrict_u *, int, u_int *);
104static	void	read_addr_restrictions(struct recvbuf *);
105static	void	read_ordlist	(struct recvbuf *, int);
106static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
107static	void	generate_nonce	(struct recvbuf *, char *, size_t);
108static	int	validate_nonce	(const char *, struct recvbuf *);
109static	void	req_nonce	(struct recvbuf *, int);
110static	void	unset_trap	(struct recvbuf *, int);
111static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
112				     struct interface *);
113
114int/*BOOL*/ is_safe_filename(const char * name);
115
116static const struct ctl_proc control_codes[] = {
117	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
118	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
119	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
120	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
121	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
122	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
123	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
124	{ CTL_OP_CONFIGURE,		AUTH,	configure },
125	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
126	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
127	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
128	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
129	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
130	{ NO_REQUEST,			0,	NULL }
131};
132
133/*
134 * System variables we understand
135 */
136#define	CS_LEAP			1
137#define	CS_STRATUM		2
138#define	CS_PRECISION		3
139#define	CS_ROOTDELAY		4
140#define	CS_ROOTDISPERSION	5
141#define	CS_REFID		6
142#define	CS_REFTIME		7
143#define	CS_POLL			8
144#define	CS_PEERID		9
145#define	CS_OFFSET		10
146#define	CS_DRIFT		11
147#define	CS_JITTER		12
148#define	CS_ERROR		13
149#define	CS_CLOCK		14
150#define	CS_PROCESSOR		15
151#define	CS_SYSTEM		16
152#define	CS_VERSION		17
153#define	CS_STABIL		18
154#define	CS_VARLIST		19
155#define	CS_TAI			20
156#define	CS_LEAPTAB		21
157#define	CS_LEAPEND		22
158#define	CS_RATE			23
159#define	CS_MRU_ENABLED		24
160#define	CS_MRU_DEPTH		25
161#define	CS_MRU_DEEPEST		26
162#define	CS_MRU_MINDEPTH		27
163#define	CS_MRU_MAXAGE		28
164#define	CS_MRU_MAXDEPTH		29
165#define	CS_MRU_MEM		30
166#define	CS_MRU_MAXMEM		31
167#define	CS_SS_UPTIME		32
168#define	CS_SS_RESET		33
169#define	CS_SS_RECEIVED		34
170#define	CS_SS_THISVER		35
171#define	CS_SS_OLDVER		36
172#define	CS_SS_BADFORMAT		37
173#define	CS_SS_BADAUTH		38
174#define	CS_SS_DECLINED		39
175#define	CS_SS_RESTRICTED	40
176#define	CS_SS_LIMITED		41
177#define	CS_SS_KODSENT		42
178#define	CS_SS_PROCESSED		43
179#define	CS_SS_LAMPORT		44
180#define	CS_SS_TSROUNDING	45
181#define	CS_PEERADR		46
182#define	CS_PEERMODE		47
183#define	CS_BCASTDELAY		48
184#define	CS_AUTHDELAY		49
185#define	CS_AUTHKEYS		50
186#define	CS_AUTHFREEK		51
187#define	CS_AUTHKLOOKUPS		52
188#define	CS_AUTHKNOTFOUND	53
189#define	CS_AUTHKUNCACHED	54
190#define	CS_AUTHKEXPIRED		55
191#define	CS_AUTHENCRYPTS		56
192#define	CS_AUTHDECRYPTS		57
193#define	CS_AUTHRESET		58
194#define	CS_K_OFFSET		59
195#define	CS_K_FREQ		60
196#define	CS_K_MAXERR		61
197#define	CS_K_ESTERR		62
198#define	CS_K_STFLAGS		63
199#define	CS_K_TIMECONST		64
200#define	CS_K_PRECISION		65
201#define	CS_K_FREQTOL		66
202#define	CS_K_PPS_FREQ		67
203#define	CS_K_PPS_STABIL		68
204#define	CS_K_PPS_JITTER		69
205#define	CS_K_PPS_CALIBDUR	70
206#define	CS_K_PPS_CALIBS		71
207#define	CS_K_PPS_CALIBERRS	72
208#define	CS_K_PPS_JITEXC		73
209#define	CS_K_PPS_STBEXC		74
210#define	CS_KERN_FIRST		CS_K_OFFSET
211#define	CS_KERN_LAST		CS_K_PPS_STBEXC
212#define	CS_IOSTATS_RESET	75
213#define	CS_TOTAL_RBUF		76
214#define	CS_FREE_RBUF		77
215#define	CS_USED_RBUF		78
216#define	CS_RBUF_LOWATER		79
217#define	CS_IO_DROPPED		80
218#define	CS_IO_IGNORED		81
219#define	CS_IO_RECEIVED		82
220#define	CS_IO_SENT		83
221#define	CS_IO_SENDFAILED	84
222#define	CS_IO_WAKEUPS		85
223#define	CS_IO_GOODWAKEUPS	86
224#define	CS_TIMERSTATS_RESET	87
225#define	CS_TIMER_OVERRUNS	88
226#define	CS_TIMER_XMTS		89
227#define	CS_FUZZ			90
228#define	CS_WANDER_THRESH	91
229#define	CS_LEAPSMEARINTV	92
230#define	CS_LEAPSMEAROFFS	93
231#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
232#ifdef AUTOKEY
233#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
234#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
235#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
236#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
237#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
238#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
239#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
240#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
241#define	CS_MAXCODE		CS_DIGEST
242#else	/* !AUTOKEY follows */
243#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
244#endif	/* !AUTOKEY */
245
246/*
247 * Peer variables we understand
248 */
249#define	CP_CONFIG		1
250#define	CP_AUTHENABLE		2
251#define	CP_AUTHENTIC		3
252#define	CP_SRCADR		4
253#define	CP_SRCPORT		5
254#define	CP_DSTADR		6
255#define	CP_DSTPORT		7
256#define	CP_LEAP			8
257#define	CP_HMODE		9
258#define	CP_STRATUM		10
259#define	CP_PPOLL		11
260#define	CP_HPOLL		12
261#define	CP_PRECISION		13
262#define	CP_ROOTDELAY		14
263#define	CP_ROOTDISPERSION	15
264#define	CP_REFID		16
265#define	CP_REFTIME		17
266#define	CP_ORG			18
267#define	CP_REC			19
268#define	CP_XMT			20
269#define	CP_REACH		21
270#define	CP_UNREACH		22
271#define	CP_TIMER		23
272#define	CP_DELAY		24
273#define	CP_OFFSET		25
274#define	CP_JITTER		26
275#define	CP_DISPERSION		27
276#define	CP_KEYID		28
277#define	CP_FILTDELAY		29
278#define	CP_FILTOFFSET		30
279#define	CP_PMODE		31
280#define	CP_RECEIVED		32
281#define	CP_SENT			33
282#define	CP_FILTERROR		34
283#define	CP_FLASH		35
284#define	CP_TTL			36
285#define	CP_VARLIST		37
286#define	CP_IN			38
287#define	CP_OUT			39
288#define	CP_RATE			40
289#define	CP_BIAS			41
290#define	CP_SRCHOST		42
291#define	CP_TIMEREC		43
292#define	CP_TIMEREACH		44
293#define	CP_BADAUTH		45
294#define	CP_BOGUSORG		46
295#define	CP_OLDPKT		47
296#define	CP_SELDISP		48
297#define	CP_SELBROKEN		49
298#define	CP_CANDIDATE		50
299#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
300#ifdef AUTOKEY
301#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
302#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
303#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
304#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
305#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
306#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
307#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
308#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
309#define	CP_MAXCODE		CP_IDENT
310#else	/* !AUTOKEY follows */
311#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
312#endif	/* !AUTOKEY */
313
314/*
315 * Clock variables we understand
316 */
317#define	CC_TYPE		1
318#define	CC_TIMECODE	2
319#define	CC_POLL		3
320#define	CC_NOREPLY	4
321#define	CC_BADFORMAT	5
322#define	CC_BADDATA	6
323#define	CC_FUDGETIME1	7
324#define	CC_FUDGETIME2	8
325#define	CC_FUDGEVAL1	9
326#define	CC_FUDGEVAL2	10
327#define	CC_FLAGS	11
328#define	CC_DEVICE	12
329#define	CC_VARLIST	13
330#define	CC_MAXCODE	CC_VARLIST
331
332/*
333 * System variable values. The array can be indexed by the variable
334 * index to find the textual name.
335 */
336static const struct ctl_var sys_var[] = {
337	{ 0,		PADDING, "" },		/* 0 */
338	{ CS_LEAP,	RW, "leap" },		/* 1 */
339	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
340	{ CS_PRECISION, RO, "precision" },	/* 3 */
341	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
342	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
343	{ CS_REFID,	RO, "refid" },		/* 6 */
344	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
345	{ CS_POLL,	RO, "tc" },		/* 8 */
346	{ CS_PEERID,	RO, "peer" },		/* 9 */
347	{ CS_OFFSET,	RO, "offset" },		/* 10 */
348	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
349	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
350	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
351	{ CS_CLOCK,	RO, "clock" },		/* 14 */
352	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
353	{ CS_SYSTEM,	RO, "system" },		/* 16 */
354	{ CS_VERSION,	RO, "version" },	/* 17 */
355	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
356	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
357	{ CS_TAI,	RO, "tai" },		/* 20 */
358	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
359	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
360	{ CS_RATE,	RO, "mintc" },		/* 23 */
361	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
362	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
363	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
364	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
365	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
366	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
367	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
368	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
369	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
370	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
371	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
372	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
373	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
374	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
375	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
376	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
377	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
378	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
379	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
380	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
381	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
382	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
383	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
384	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
385	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
386	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
387	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
388	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
389	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
390	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
391	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
392	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
393	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
394	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
395	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
396	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
397	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
398	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
399	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
400	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
401	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
402	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
403	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
404	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
405	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
406	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
407	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
408	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
409	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
410	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
411	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
412	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
413	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
414	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
415	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
416	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
417	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
418	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
419	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
420	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
421	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
422	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
423	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
424	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
425	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
426	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
427	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
428	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
429
430	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
431	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
432
433#ifdef AUTOKEY
434	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
435	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
436	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
437	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
438	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
439	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
440	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
441	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
442#endif	/* AUTOKEY */
443	{ 0,		EOV, "" }		/* 94/102 */
444};
445
446static struct ctl_var *ext_sys_var = NULL;
447
448/*
449 * System variables we print by default (in fuzzball order,
450 * more-or-less)
451 */
452static const u_char def_sys_var[] = {
453	CS_VERSION,
454	CS_PROCESSOR,
455	CS_SYSTEM,
456	CS_LEAP,
457	CS_STRATUM,
458	CS_PRECISION,
459	CS_ROOTDELAY,
460	CS_ROOTDISPERSION,
461	CS_REFID,
462	CS_REFTIME,
463	CS_CLOCK,
464	CS_PEERID,
465	CS_POLL,
466	CS_RATE,
467	CS_OFFSET,
468	CS_DRIFT,
469	CS_JITTER,
470	CS_ERROR,
471	CS_STABIL,
472	CS_TAI,
473	CS_LEAPTAB,
474	CS_LEAPEND,
475	CS_LEAPSMEARINTV,
476	CS_LEAPSMEAROFFS,
477#ifdef AUTOKEY
478	CS_HOST,
479	CS_IDENT,
480	CS_FLAGS,
481	CS_DIGEST,
482	CS_SIGNATURE,
483	CS_PUBLIC,
484	CS_CERTIF,
485#endif	/* AUTOKEY */
486	0
487};
488
489
490/*
491 * Peer variable list
492 */
493static const struct ctl_var peer_var[] = {
494	{ 0,		PADDING, "" },		/* 0 */
495	{ CP_CONFIG,	RO, "config" },		/* 1 */
496	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
497	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
498	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
499	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
500	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
501	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
502	{ CP_LEAP,	RO, "leap" },		/* 8 */
503	{ CP_HMODE,	RO, "hmode" },		/* 9 */
504	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
505	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
506	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
507	{ CP_PRECISION,	RO, "precision" },	/* 13 */
508	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
509	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
510	{ CP_REFID,	RO, "refid" },		/* 16 */
511	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
512	{ CP_ORG,	RO, "org" },		/* 18 */
513	{ CP_REC,	RO, "rec" },		/* 19 */
514	{ CP_XMT,	RO, "xleave" },		/* 20 */
515	{ CP_REACH,	RO, "reach" },		/* 21 */
516	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
517	{ CP_TIMER,	RO, "timer" },		/* 23 */
518	{ CP_DELAY,	RO, "delay" },		/* 24 */
519	{ CP_OFFSET,	RO, "offset" },		/* 25 */
520	{ CP_JITTER,	RO, "jitter" },		/* 26 */
521	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
522	{ CP_KEYID,	RO, "keyid" },		/* 28 */
523	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
524	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
525	{ CP_PMODE,	RO, "pmode" },		/* 31 */
526	{ CP_RECEIVED,	RO, "received"},	/* 32 */
527	{ CP_SENT,	RO, "sent" },		/* 33 */
528	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
529	{ CP_FLASH,	RO, "flash" },		/* 35 */
530	{ CP_TTL,	RO, "ttl" },		/* 36 */
531	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
532	{ CP_IN,	RO, "in" },		/* 38 */
533	{ CP_OUT,	RO, "out" },		/* 39 */
534	{ CP_RATE,	RO, "headway" },	/* 40 */
535	{ CP_BIAS,	RO, "bias" },		/* 41 */
536	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
537	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
538	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
539	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
540	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
541	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
542	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
543	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
544	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
545#ifdef AUTOKEY
546	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
547	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
548	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
549	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
550	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
551	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
552	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
553	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
554#endif	/* AUTOKEY */
555	{ 0,		EOV, "" }		/* 50/58 */
556};
557
558
559/*
560 * Peer variables we print by default
561 */
562static const u_char def_peer_var[] = {
563	CP_SRCADR,
564	CP_SRCPORT,
565	CP_SRCHOST,
566	CP_DSTADR,
567	CP_DSTPORT,
568	CP_OUT,
569	CP_IN,
570	CP_LEAP,
571	CP_STRATUM,
572	CP_PRECISION,
573	CP_ROOTDELAY,
574	CP_ROOTDISPERSION,
575	CP_REFID,
576	CP_REFTIME,
577	CP_REC,
578	CP_REACH,
579	CP_UNREACH,
580	CP_HMODE,
581	CP_PMODE,
582	CP_HPOLL,
583	CP_PPOLL,
584	CP_RATE,
585	CP_FLASH,
586	CP_KEYID,
587	CP_TTL,
588	CP_OFFSET,
589	CP_DELAY,
590	CP_DISPERSION,
591	CP_JITTER,
592	CP_XMT,
593	CP_BIAS,
594	CP_FILTDELAY,
595	CP_FILTOFFSET,
596	CP_FILTERROR,
597#ifdef AUTOKEY
598	CP_HOST,
599	CP_FLAGS,
600	CP_SIGNATURE,
601	CP_VALID,
602	CP_INITSEQ,
603	CP_IDENT,
604#endif	/* AUTOKEY */
605	0
606};
607
608
609#ifdef REFCLOCK
610/*
611 * Clock variable list
612 */
613static const struct ctl_var clock_var[] = {
614	{ 0,		PADDING, "" },		/* 0 */
615	{ CC_TYPE,	RO, "type" },		/* 1 */
616	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
617	{ CC_POLL,	RO, "poll" },		/* 3 */
618	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
619	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
620	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
621	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
622	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
623	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
624	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
625	{ CC_FLAGS,	RO, "flags" },		/* 11 */
626	{ CC_DEVICE,	RO, "device" },		/* 12 */
627	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
628	{ 0,		EOV, ""  }		/* 14 */
629};
630
631
632/*
633 * Clock variables printed by default
634 */
635static const u_char def_clock_var[] = {
636	CC_DEVICE,
637	CC_TYPE,	/* won't be output if device = known */
638	CC_TIMECODE,
639	CC_POLL,
640	CC_NOREPLY,
641	CC_BADFORMAT,
642	CC_BADDATA,
643	CC_FUDGETIME1,
644	CC_FUDGETIME2,
645	CC_FUDGEVAL1,
646	CC_FUDGEVAL2,
647	CC_FLAGS,
648	0
649};
650#endif
651
652/*
653 * MRU string constants shared by send_mru_entry() and read_mru_list().
654 */
655static const char addr_fmt[] =		"addr.%d";
656static const char last_fmt[] =		"last.%d";
657
658/*
659 * System and processor definitions.
660 */
661#ifndef HAVE_UNAME
662# ifndef STR_SYSTEM
663#  define		STR_SYSTEM	"UNIX"
664# endif
665# ifndef STR_PROCESSOR
666#  define		STR_PROCESSOR	"unknown"
667# endif
668
669static const char str_system[] = STR_SYSTEM;
670static const char str_processor[] = STR_PROCESSOR;
671#else
672# include <sys/utsname.h>
673static struct utsname utsnamebuf;
674#endif /* HAVE_UNAME */
675
676/*
677 * Trap structures. We only allow a few of these, and send a copy of
678 * each async message to each live one. Traps time out after an hour, it
679 * is up to the trap receipient to keep resetting it to avoid being
680 * timed out.
681 */
682/* ntp_request.c */
683struct ctl_trap ctl_traps[CTL_MAXTRAPS];
684int num_ctl_traps;
685
686/*
687 * Type bits, for ctlsettrap() call.
688 */
689#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
690#define TRAP_TYPE_PRIO		1	/* priority trap */
691#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
692
693
694/*
695 * List relating reference clock types to control message time sources.
696 * Index by the reference clock type. This list will only be used iff
697 * the reference clock driver doesn't set peer->sstclktype to something
698 * different than CTL_SST_TS_UNSPEC.
699 */
700#ifdef REFCLOCK
701static const u_char clocktypes[] = {
702	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
703	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
704	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
705	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
706	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
707	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
708	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
709	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
710	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
711	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
712	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
713	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
714	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
715	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
716	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
717	CTL_SST_TS_NTP,		/* not used (15) */
718	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
719	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
720	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
721	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
722	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
723	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
724	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
725	CTL_SST_TS_NTP,		/* not used (23) */
726	CTL_SST_TS_NTP,		/* not used (24) */
727	CTL_SST_TS_NTP,		/* not used (25) */
728	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
729	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
730	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
731	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
732	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
733	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
734	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
735	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
736	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
737	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
738	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
739	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
740	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
741	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
742	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
743	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
744	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
745	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
746	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
747	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
748	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
749};
750#endif  /* REFCLOCK */
751
752
753/*
754 * Keyid used for authenticating write requests.
755 */
756keyid_t ctl_auth_keyid;
757
758/*
759 * We keep track of the last error reported by the system internally
760 */
761static	u_char ctl_sys_last_event;
762static	u_char ctl_sys_num_events;
763
764
765/*
766 * Statistic counters to keep track of requests and responses.
767 */
768u_long ctltimereset;		/* time stats reset */
769u_long numctlreq;		/* number of requests we've received */
770u_long numctlbadpkts;		/* number of bad control packets */
771u_long numctlresponses;		/* number of resp packets sent with data */
772u_long numctlfrags;		/* number of fragments sent */
773u_long numctlerrors;		/* number of error responses sent */
774u_long numctltooshort;		/* number of too short input packets */
775u_long numctlinputresp;		/* number of responses on input */
776u_long numctlinputfrag;		/* number of fragments on input */
777u_long numctlinputerr;		/* number of input pkts with err bit set */
778u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
779u_long numctlbadversion;	/* number of input pkts with unknown version */
780u_long numctldatatooshort;	/* data too short for count */
781u_long numctlbadop;		/* bad op code found in packet */
782u_long numasyncmsgs;		/* number of async messages we've sent */
783
784/*
785 * Response packet used by these routines. Also some state information
786 * so that we can handle packet formatting within a common set of
787 * subroutines.  Note we try to enter data in place whenever possible,
788 * but the need to set the more bit correctly means we occasionally
789 * use the extra buffer and copy.
790 */
791static struct ntp_control rpkt;
792static u_char	res_version;
793static u_char	res_opcode;
794static associd_t res_associd;
795static u_short	res_frags;	/* datagrams in this response */
796static int	res_offset;	/* offset of payload in response */
797static u_char * datapt;
798static u_char * dataend;
799static int	datalinelen;
800static int	datasent;	/* flag to avoid initial ", " */
801static int	datanotbinflag;
802static sockaddr_u *rmt_addr;
803static struct interface *lcl_inter;
804
805static u_char	res_authenticate;
806static u_char	res_authokay;
807static keyid_t	res_keyid;
808
809#define MAXDATALINELEN	(72)
810
811static u_char	res_async;	/* sending async trap response? */
812
813/*
814 * Pointers for saving state when decoding request packets
815 */
816static	char *reqpt;
817static	char *reqend;
818
819#ifndef MIN
820#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
821#endif
822
823/*
824 * init_control - initialize request data
825 */
826void
827init_control(void)
828{
829	size_t i;
830
831#ifdef HAVE_UNAME
832	uname(&utsnamebuf);
833#endif /* HAVE_UNAME */
834
835	ctl_clr_stats();
836
837	ctl_auth_keyid = 0;
838	ctl_sys_last_event = EVNT_UNSPEC;
839	ctl_sys_num_events = 0;
840
841	num_ctl_traps = 0;
842	for (i = 0; i < COUNTOF(ctl_traps); i++)
843		ctl_traps[i].tr_flags = 0;
844}
845
846
847/*
848 * ctl_error - send an error response for the current request
849 */
850static void
851ctl_error(
852	u_char errcode
853	)
854{
855	size_t		maclen;
856
857	numctlerrors++;
858	DPRINTF(3, ("sending control error %u\n", errcode));
859
860	/*
861	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
862	 * have already been filled in.
863	 */
864	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
865			(res_opcode & CTL_OP_MASK);
866	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
867	rpkt.count = 0;
868
869	/*
870	 * send packet and bump counters
871	 */
872	if (res_authenticate && sys_authenticate) {
873		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
874				     CTL_HEADER_LEN);
875		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
876			CTL_HEADER_LEN + maclen);
877	} else
878		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
879			CTL_HEADER_LEN);
880}
881
882int/*BOOL*/
883is_safe_filename(const char * name)
884{
885	/* We need a strict validation of filenames we should write: The
886	 * daemon might run with special permissions and is remote
887	 * controllable, so we better take care what we allow as file
888	 * name!
889	 *
890	 * The first character must be digit or a letter from the ASCII
891	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
892	 * must be from [-._+A-Za-z0-9].
893	 *
894	 * We do not trust the character classification much here: Since
895	 * the NTP protocol makes no provisions for UTF-8 or local code
896	 * pages, we strictly require the 7bit ASCII code page.
897	 *
898	 * The following table is a packed bit field of 128 two-bit
899	 * groups. The LSB in each group tells us if a character is
900	 * acceptable at the first position, the MSB if the character is
901	 * accepted at any other position.
902	 *
903	 * This does not ensure that the file name is syntactically
904	 * correct (multiple dots will not work with VMS...) but it will
905	 * exclude potential globbing bombs and directory traversal. It
906	 * also rules out drive selection. (For systems that have this
907	 * notion, like Windows or VMS.)
908	 */
909	static const uint32_t chclass[8] = {
910		0x00000000, 0x00000000,
911		0x28800000, 0x000FFFFF,
912		0xFFFFFFFC, 0xC03FFFFF,
913		0xFFFFFFFC, 0x003FFFFF
914	};
915
916	u_int widx, bidx, mask;
917	if ( ! (name && *name))
918		return FALSE;
919
920	mask = 1u;
921	while (0 != (widx = (u_char)*name++)) {
922		bidx = (widx & 15) << 1;
923		widx = widx >> 4;
924		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
925			return FALSE;
926		if (0 == ((chclass[widx] >> bidx) & mask))
927			return FALSE;
928		mask = 2u;
929	}
930	return TRUE;
931}
932
933
934/*
935 * save_config - Implements ntpq -c "saveconfig <filename>"
936 *		 Writes current configuration including any runtime
937 *		 changes by ntpq's :config or config-from-file
938 *
939 * Note: There should be no buffer overflow or truncation in the
940 * processing of file names -- both cause security problems. This is bit
941 * painful to code but essential here.
942 */
943void
944save_config(
945	struct recvbuf *rbufp,
946	int restrict_mask
947	)
948{
949	/* block directory traversal by searching for characters that
950	 * indicate directory components in a file path.
951	 *
952	 * Conceptually we should be searching for DIRSEP in filename,
953	 * however Windows actually recognizes both forward and
954	 * backslashes as equivalent directory separators at the API
955	 * level.  On POSIX systems we could allow '\\' but such
956	 * filenames are tricky to manipulate from a shell, so just
957	 * reject both types of slashes on all platforms.
958	 */
959	/* TALOS-CAN-0062: block directory traversal for VMS, too */
960	static const char * illegal_in_filename =
961#if defined(VMS)
962	    ":[]"	/* do not allow drive and path components here */
963#elif defined(SYS_WINNT)
964	    ":\\/"	/* path and drive separators */
965#else
966	    "\\/"	/* separator and critical char for POSIX */
967#endif
968	    ;
969	char reply[128];
970#ifdef SAVECONFIG
971	static const char savedconfig_eq[] = "savedconfig=";
972
973	/* Build a safe open mode from the available mode flags. We want
974	 * to create a new file and write it in text mode (when
975	 * applicable -- only Windows does this...)
976	 */
977	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
978#  if defined(O_EXCL)		/* posix, vms */
979	    | O_EXCL
980#  elif defined(_O_EXCL)	/* windows is alway very special... */
981	    | _O_EXCL
982#  endif
983#  if defined(_O_TEXT)		/* windows, again */
984	    | _O_TEXT
985#endif
986	    ;
987
988	char filespec[128];
989	char filename[128];
990	char fullpath[512];
991	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
992	time_t now;
993	int fd;
994	FILE *fptr;
995	int prc;
996	size_t reqlen;
997#endif
998
999	if (RES_NOMODIFY & restrict_mask) {
1000		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1001		ctl_flushpkt(0);
1002		NLOG(NLOG_SYSINFO)
1003			msyslog(LOG_NOTICE,
1004				"saveconfig from %s rejected due to nomodify restriction",
1005				stoa(&rbufp->recv_srcadr));
1006		sys_restricted++;
1007		return;
1008	}
1009
1010#ifdef SAVECONFIG
1011	if (NULL == saveconfigdir) {
1012		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1013		ctl_flushpkt(0);
1014		NLOG(NLOG_SYSINFO)
1015			msyslog(LOG_NOTICE,
1016				"saveconfig from %s rejected, no saveconfigdir",
1017				stoa(&rbufp->recv_srcadr));
1018		return;
1019	}
1020
1021	/* The length checking stuff gets serious. Do not assume a NUL
1022	 * byte can be found, but if so, use it to calculate the needed
1023	 * buffer size. If the available buffer is too short, bail out;
1024	 * likewise if there is no file spec. (The latter will not
1025	 * happen when using NTPQ, but there are other ways to craft a
1026	 * network packet!)
1027	 */
1028	reqlen = (size_t)(reqend - reqpt);
1029	if (0 != reqlen) {
1030		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1031		if (NULL != nulpos)
1032			reqlen = (size_t)(nulpos - reqpt);
1033	}
1034	if (0 == reqlen)
1035		return;
1036	if (reqlen >= sizeof(filespec)) {
1037		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1038			   (u_int)sizeof(filespec));
1039		ctl_flushpkt(0);
1040		msyslog(LOG_NOTICE,
1041			"saveconfig exceeded maximum raw name length from %s",
1042			stoa(&rbufp->recv_srcadr));
1043		return;
1044	}
1045
1046	/* copy data directly as we exactly know the size */
1047	memcpy(filespec, reqpt, reqlen);
1048	filespec[reqlen] = '\0';
1049
1050	/*
1051	 * allow timestamping of the saved config filename with
1052	 * strftime() format such as:
1053	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1054	 * XXX: Nice feature, but not too safe.
1055	 * YYY: The check for permitted characters in file names should
1056	 *      weed out the worst. Let's hope 'strftime()' does not
1057	 *      develop pathological problems.
1058	 */
1059	time(&now);
1060	if (0 == strftime(filename, sizeof(filename), filespec,
1061			  localtime(&now)))
1062	{
1063		/*
1064		 * If we arrive here, 'strftime()' balked; most likely
1065		 * the buffer was too short. (Or it encounterd an empty
1066		 * format, or just a format that expands to an empty
1067		 * string.) We try to use the original name, though this
1068		 * is very likely to fail later if there are format
1069		 * specs in the string. Note that truncation cannot
1070		 * happen here as long as both buffers have the same
1071		 * size!
1072		 */
1073		strlcpy(filename, filespec, sizeof(filename));
1074	}
1075
1076	/*
1077	 * Check the file name for sanity. This might/will rule out file
1078	 * names that would be legal but problematic, and it blocks
1079	 * directory traversal.
1080	 */
1081	if (!is_safe_filename(filename)) {
1082		ctl_printf("saveconfig rejects unsafe file name '%s'",
1083			   filename);
1084		ctl_flushpkt(0);
1085		msyslog(LOG_NOTICE,
1086			"saveconfig rejects unsafe file name from %s",
1087			stoa(&rbufp->recv_srcadr));
1088		return;
1089	}
1090
1091	/*
1092	 * XXX: This next test may not be needed with is_safe_filename()
1093	 */
1094
1095	/* block directory/drive traversal */
1096	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1097	if (NULL != strpbrk(filename, illegal_in_filename)) {
1098		snprintf(reply, sizeof(reply),
1099			 "saveconfig does not allow directory in filename");
1100		ctl_putdata(reply, strlen(reply), 0);
1101		ctl_flushpkt(0);
1102		msyslog(LOG_NOTICE,
1103			"saveconfig rejects unsafe file name from %s",
1104			stoa(&rbufp->recv_srcadr));
1105		return;
1106	}
1107
1108	/* concatenation of directory and path can cause another
1109	 * truncation...
1110	 */
1111	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1112		       saveconfigdir, filename);
1113	if (prc < 0 || prc >= sizeof(fullpath)) {
1114		ctl_printf("saveconfig exceeded maximum path length (%u)",
1115			   (u_int)sizeof(fullpath));
1116		ctl_flushpkt(0);
1117		msyslog(LOG_NOTICE,
1118			"saveconfig exceeded maximum path length from %s",
1119			stoa(&rbufp->recv_srcadr));
1120		return;
1121	}
1122
1123	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1124	if (-1 == fd)
1125		fptr = NULL;
1126	else
1127		fptr = fdopen(fd, "w");
1128
1129	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1130		ctl_printf("Unable to save configuration to file '%s': %m",
1131			   filename);
1132		msyslog(LOG_ERR,
1133			"saveconfig %s from %s failed", filename,
1134			stoa(&rbufp->recv_srcadr));
1135	} else {
1136		ctl_printf("Configuration saved to '%s'", filename);
1137		msyslog(LOG_NOTICE,
1138			"Configuration saved to '%s' (requested by %s)",
1139			fullpath, stoa(&rbufp->recv_srcadr));
1140		/*
1141		 * save the output filename in system variable
1142		 * savedconfig, retrieved with:
1143		 *   ntpq -c "rv 0 savedconfig"
1144		 * Note: the way 'savedconfig' is defined makes overflow
1145		 * checks unnecessary here.
1146		 */
1147		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1148			 savedconfig_eq, filename);
1149		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1150	}
1151
1152	if (NULL != fptr)
1153		fclose(fptr);
1154#else	/* !SAVECONFIG follows */
1155	ctl_printf("%s",
1156		   "saveconfig unavailable, configured with --disable-saveconfig");
1157#endif
1158	ctl_flushpkt(0);
1159}
1160
1161
1162/*
1163 * process_control - process an incoming control message
1164 */
1165void
1166process_control(
1167	struct recvbuf *rbufp,
1168	int restrict_mask
1169	)
1170{
1171	struct ntp_control *pkt;
1172	int req_count;
1173	int req_data;
1174	const struct ctl_proc *cc;
1175	keyid_t *pkid;
1176	int properlen;
1177	size_t maclen;
1178
1179	DPRINTF(3, ("in process_control()\n"));
1180
1181	/*
1182	 * Save the addresses for error responses
1183	 */
1184	numctlreq++;
1185	rmt_addr = &rbufp->recv_srcadr;
1186	lcl_inter = rbufp->dstadr;
1187	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1188
1189	/*
1190	 * If the length is less than required for the header, or
1191	 * it is a response or a fragment, ignore this.
1192	 */
1193	if (rbufp->recv_length < (int)CTL_HEADER_LEN
1194	    || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1195	    || pkt->offset != 0) {
1196		DPRINTF(1, ("invalid format in control packet\n"));
1197		if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1198			numctltooshort++;
1199		if (CTL_RESPONSE & pkt->r_m_e_op)
1200			numctlinputresp++;
1201		if (CTL_MORE & pkt->r_m_e_op)
1202			numctlinputfrag++;
1203		if (CTL_ERROR & pkt->r_m_e_op)
1204			numctlinputerr++;
1205		if (pkt->offset != 0)
1206			numctlbadoffset++;
1207		return;
1208	}
1209	res_version = PKT_VERSION(pkt->li_vn_mode);
1210	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1211		DPRINTF(1, ("unknown version %d in control packet\n",
1212			    res_version));
1213		numctlbadversion++;
1214		return;
1215	}
1216
1217	/*
1218	 * Pull enough data from the packet to make intelligent
1219	 * responses
1220	 */
1221	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1222					 MODE_CONTROL);
1223	res_opcode = pkt->r_m_e_op;
1224	rpkt.sequence = pkt->sequence;
1225	rpkt.associd = pkt->associd;
1226	rpkt.status = 0;
1227	res_frags = 1;
1228	res_offset = 0;
1229	res_associd = htons(pkt->associd);
1230	res_async = FALSE;
1231	res_authenticate = FALSE;
1232	res_keyid = 0;
1233	res_authokay = FALSE;
1234	req_count = (int)ntohs(pkt->count);
1235	datanotbinflag = FALSE;
1236	datalinelen = 0;
1237	datasent = 0;
1238	datapt = rpkt.u.data;
1239	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1240
1241	if ((rbufp->recv_length & 0x3) != 0)
1242		DPRINTF(3, ("Control packet length %d unrounded\n",
1243			    rbufp->recv_length));
1244
1245	/*
1246	 * We're set up now. Make sure we've got at least enough
1247	 * incoming data space to match the count.
1248	 */
1249	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1250	if (req_data < req_count || rbufp->recv_length & 0x3) {
1251		ctl_error(CERR_BADFMT);
1252		numctldatatooshort++;
1253		return;
1254	}
1255
1256	properlen = req_count + CTL_HEADER_LEN;
1257	/* round up proper len to a 8 octet boundary */
1258
1259	properlen = (properlen + 7) & ~7;
1260	maclen = rbufp->recv_length - properlen;
1261	if ((rbufp->recv_length & 3) == 0 &&
1262	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1263	    sys_authenticate) {
1264		res_authenticate = TRUE;
1265		pkid = (void *)((char *)pkt + properlen);
1266		res_keyid = ntohl(*pkid);
1267		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1268			    rbufp->recv_length, properlen, res_keyid,
1269			    maclen));
1270
1271		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1272			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1273		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1274				     rbufp->recv_length - maclen,
1275				     maclen)) {
1276			res_authokay = TRUE;
1277			DPRINTF(3, ("authenticated okay\n"));
1278		} else {
1279			res_keyid = 0;
1280			DPRINTF(3, ("authentication failed\n"));
1281		}
1282	}
1283
1284	/*
1285	 * Set up translate pointers
1286	 */
1287	reqpt = (char *)pkt->u.data;
1288	reqend = reqpt + req_count;
1289
1290	/*
1291	 * Look for the opcode processor
1292	 */
1293	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1294		if (cc->control_code == res_opcode) {
1295			DPRINTF(3, ("opcode %d, found command handler\n",
1296				    res_opcode));
1297			if (cc->flags == AUTH
1298			    && (!res_authokay
1299				|| res_keyid != ctl_auth_keyid)) {
1300				ctl_error(CERR_PERMISSION);
1301				return;
1302			}
1303			(cc->handler)(rbufp, restrict_mask);
1304			return;
1305		}
1306	}
1307
1308	/*
1309	 * Can't find this one, return an error.
1310	 */
1311	numctlbadop++;
1312	ctl_error(CERR_BADOP);
1313	return;
1314}
1315
1316
1317/*
1318 * ctlpeerstatus - return a status word for this peer
1319 */
1320u_short
1321ctlpeerstatus(
1322	register struct peer *p
1323	)
1324{
1325	u_short status;
1326
1327	status = p->status;
1328	if (FLAG_CONFIG & p->flags)
1329		status |= CTL_PST_CONFIG;
1330	if (p->keyid)
1331		status |= CTL_PST_AUTHENABLE;
1332	if (FLAG_AUTHENTIC & p->flags)
1333		status |= CTL_PST_AUTHENTIC;
1334	if (p->reach)
1335		status |= CTL_PST_REACH;
1336	if (MDF_TXONLY_MASK & p->cast_flags)
1337		status |= CTL_PST_BCAST;
1338
1339	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1340}
1341
1342
1343/*
1344 * ctlclkstatus - return a status word for this clock
1345 */
1346#ifdef REFCLOCK
1347static u_short
1348ctlclkstatus(
1349	struct refclockstat *pcs
1350	)
1351{
1352	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1353}
1354#endif
1355
1356
1357/*
1358 * ctlsysstatus - return the system status word
1359 */
1360u_short
1361ctlsysstatus(void)
1362{
1363	register u_char this_clock;
1364
1365	this_clock = CTL_SST_TS_UNSPEC;
1366#ifdef REFCLOCK
1367	if (sys_peer != NULL) {
1368		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1369			this_clock = sys_peer->sstclktype;
1370		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1371			this_clock = clocktypes[sys_peer->refclktype];
1372	}
1373#else /* REFCLOCK */
1374	if (sys_peer != 0)
1375		this_clock = CTL_SST_TS_NTP;
1376#endif /* REFCLOCK */
1377	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1378			      ctl_sys_last_event);
1379}
1380
1381
1382/*
1383 * ctl_flushpkt - write out the current packet and prepare
1384 *		  another if necessary.
1385 */
1386static void
1387ctl_flushpkt(
1388	u_char more
1389	)
1390{
1391	size_t i;
1392	size_t dlen;
1393	size_t sendlen;
1394	size_t maclen;
1395	size_t totlen;
1396	keyid_t keyid;
1397
1398	dlen = datapt - rpkt.u.data;
1399	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1400		/*
1401		 * Big hack, output a trailing \r\n
1402		 */
1403		*datapt++ = '\r';
1404		*datapt++ = '\n';
1405		dlen += 2;
1406	}
1407	sendlen = dlen + CTL_HEADER_LEN;
1408
1409	/*
1410	 * Pad to a multiple of 32 bits
1411	 */
1412	while (sendlen & 0x3) {
1413		*datapt++ = '\0';
1414		sendlen++;
1415	}
1416
1417	/*
1418	 * Fill in the packet with the current info
1419	 */
1420	rpkt.r_m_e_op = CTL_RESPONSE | more |
1421			(res_opcode & CTL_OP_MASK);
1422	rpkt.count = htons((u_short)dlen);
1423	rpkt.offset = htons((u_short)res_offset);
1424	if (res_async) {
1425		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1426			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1427				rpkt.li_vn_mode =
1428				    PKT_LI_VN_MODE(
1429					sys_leap,
1430					ctl_traps[i].tr_version,
1431					MODE_CONTROL);
1432				rpkt.sequence =
1433				    htons(ctl_traps[i].tr_sequence);
1434				sendpkt(&ctl_traps[i].tr_addr,
1435					ctl_traps[i].tr_localaddr, -4,
1436					(struct pkt *)&rpkt, sendlen);
1437				if (!more)
1438					ctl_traps[i].tr_sequence++;
1439				numasyncmsgs++;
1440			}
1441		}
1442	} else {
1443		if (res_authenticate && sys_authenticate) {
1444			totlen = sendlen;
1445			/*
1446			 * If we are going to authenticate, then there
1447			 * is an additional requirement that the MAC
1448			 * begin on a 64 bit boundary.
1449			 */
1450			while (totlen & 7) {
1451				*datapt++ = '\0';
1452				totlen++;
1453			}
1454			keyid = htonl(res_keyid);
1455			memcpy(datapt, &keyid, sizeof(keyid));
1456			maclen = authencrypt(res_keyid,
1457					     (u_int32 *)&rpkt, totlen);
1458			sendpkt(rmt_addr, lcl_inter, -5,
1459				(struct pkt *)&rpkt, totlen + maclen);
1460		} else {
1461			sendpkt(rmt_addr, lcl_inter, -6,
1462				(struct pkt *)&rpkt, sendlen);
1463		}
1464		if (more)
1465			numctlfrags++;
1466		else
1467			numctlresponses++;
1468	}
1469
1470	/*
1471	 * Set us up for another go around.
1472	 */
1473	res_frags++;
1474	res_offset += dlen;
1475	datapt = rpkt.u.data;
1476}
1477
1478
1479/* --------------------------------------------------------------------
1480 * block transfer API -- stream string/data fragments into xmit buffer
1481 * without additional copying
1482 */
1483
1484/* buffer descriptor: address & size of fragment
1485 * 'buf' may only be NULL when 'len' is zero!
1486 */
1487typedef struct {
1488	const void  *buf;
1489	size_t       len;
1490} CtlMemBufT;
1491
1492/* put ctl data in a gather-style operation */
1493static void
1494ctl_putdata_ex(
1495	const CtlMemBufT * argv,
1496	size_t             argc,
1497	int/*BOOL*/        bin		/* set to 1 when data is binary */
1498	)
1499{
1500	const char * src_ptr;
1501	size_t       src_len, cur_len, add_len, argi;
1502
1503	/* text / binary preprocessing, possibly create new linefeed */
1504	if (bin) {
1505		add_len = 0;
1506	} else {
1507		datanotbinflag = TRUE;
1508		add_len = 3;
1509
1510		if (datasent) {
1511			*datapt++ = ',';
1512			datalinelen++;
1513
1514			/* sum up total length */
1515			for (argi = 0, src_len = 0; argi < argc; ++argi)
1516				src_len += argv[argi].len;
1517			/* possibly start a new line, assume no size_t overflow */
1518			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1519				*datapt++ = '\r';
1520				*datapt++ = '\n';
1521				datalinelen = 0;
1522			} else {
1523				*datapt++ = ' ';
1524				datalinelen++;
1525			}
1526		}
1527	}
1528
1529	/* now stream out all buffers */
1530	for (argi = 0; argi < argc; ++argi) {
1531		src_ptr = argv[argi].buf;
1532		src_len = argv[argi].len;
1533
1534		if ( ! (src_ptr && src_len))
1535			continue;
1536
1537		cur_len = (size_t)(dataend - datapt);
1538		while ((src_len + add_len) > cur_len) {
1539			/* Not enough room in this one, flush it out. */
1540			if (src_len < cur_len)
1541				cur_len = src_len;
1542
1543			memcpy(datapt, src_ptr, cur_len);
1544			datapt      += cur_len;
1545			datalinelen += cur_len;
1546
1547			src_ptr     += cur_len;
1548			src_len     -= cur_len;
1549
1550			ctl_flushpkt(CTL_MORE);
1551			cur_len = (size_t)(dataend - datapt);
1552		}
1553
1554		memcpy(datapt, src_ptr, src_len);
1555		datapt      += src_len;
1556		datalinelen += src_len;
1557
1558		datasent = TRUE;
1559	}
1560}
1561
1562/*
1563 * ctl_putdata - write data into the packet, fragmenting and starting
1564 * another if this one is full.
1565 */
1566static void
1567ctl_putdata(
1568	const char *dp,
1569	unsigned int dlen,
1570	int bin			/* set to 1 when data is binary */
1571	)
1572{
1573	CtlMemBufT args[1];
1574
1575	args[0].buf = dp;
1576	args[0].len = dlen;
1577	ctl_putdata_ex(args, 1, bin);
1578}
1579
1580/*
1581 * ctl_putstr - write a tagged string into the response packet
1582 *		in the form:
1583 *
1584 *		tag="data"
1585 *
1586 *		len is the data length excluding the NUL terminator,
1587 *		as in ctl_putstr("var", "value", strlen("value"));
1588 */
1589static void
1590ctl_putstr(
1591	const char *	tag,
1592	const char *	data,
1593	size_t		len
1594	)
1595{
1596	CtlMemBufT args[4];
1597
1598	args[0].buf = tag;
1599	args[0].len = strlen(tag);
1600	if (data && len) {
1601	    args[1].buf = "=\"";
1602	    args[1].len = 2;
1603	    args[2].buf = data;
1604	    args[2].len = len;
1605	    args[3].buf = "\"";
1606	    args[3].len = 1;
1607	    ctl_putdata_ex(args, 4, FALSE);
1608	} else {
1609	    ctl_putdata_ex(args, 1, FALSE);
1610	}
1611}
1612
1613
1614/*
1615 * ctl_putunqstr - write a tagged string into the response packet
1616 *		   in the form:
1617 *
1618 *		   tag=data
1619 *
1620 *	len is the data length excluding the NUL terminator.
1621 *	data must not contain a comma or whitespace.
1622 */
1623static void
1624ctl_putunqstr(
1625	const char *	tag,
1626	const char *	data,
1627	size_t		len
1628	)
1629{
1630	CtlMemBufT args[3];
1631
1632	args[0].buf = tag;
1633	args[0].len = strlen(tag);
1634	if (data && len) {
1635	    args[1].buf = "=";
1636	    args[1].len = 1;
1637	    args[2].buf = data;
1638	    args[2].len = len;
1639	    ctl_putdata_ex(args, 3, FALSE);
1640	} else {
1641	    ctl_putdata_ex(args, 1, FALSE);
1642	}
1643}
1644
1645
1646/*
1647 * ctl_putdblf - write a tagged, signed double into the response packet
1648 */
1649static void
1650ctl_putdblf(
1651	const char *	tag,
1652	int		use_f,
1653	int		precision,
1654	double		d
1655	)
1656{
1657	char buffer[40];
1658	int  rc;
1659
1660	rc = snprintf(buffer, sizeof(buffer),
1661		      (use_f ? "%.*f" : "%.*g"),
1662		      precision, d);
1663	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1664	ctl_putunqstr(tag, buffer, rc);
1665}
1666
1667/*
1668 * ctl_putuint - write a tagged unsigned integer into the response
1669 */
1670static void
1671ctl_putuint(
1672	const char *tag,
1673	u_long uval
1674	)
1675{
1676	char buffer[24]; /* needs to fit for 64 bits! */
1677	int  rc;
1678
1679	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1680	INSIST(rc >= 0 && rc < sizeof(buffer));
1681	ctl_putunqstr(tag, buffer, rc);
1682}
1683
1684/*
1685 * ctl_putcal - write a decoded calendar data into the response.
1686 * only used with AUTOKEY currently, so compiled conditional
1687 */
1688#ifdef AUTOKEY
1689static void
1690ctl_putcal(
1691	const char *tag,
1692	const struct calendar *pcal
1693	)
1694{
1695	char buffer[16];
1696	int  rc;
1697
1698	rc = snprintf(buffer, sizeof(buffer),
1699		      "%04d%02d%02d%02d%02d",
1700		      pcal->year, pcal->month, pcal->monthday,
1701		      pcal->hour, pcal->minute
1702		);
1703	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1704	ctl_putunqstr(tag, buffer, rc);
1705}
1706#endif
1707
1708/*
1709 * ctl_putfs - write a decoded filestamp into the response
1710 */
1711static void
1712ctl_putfs(
1713	const char *tag,
1714	tstamp_t uval
1715	)
1716{
1717	char buffer[16];
1718	int  rc;
1719
1720	time_t fstamp = (time_t)uval - JAN_1970;
1721	struct tm *tm = gmtime(&fstamp);
1722
1723	if (NULL == tm)
1724		return;
1725
1726	rc = snprintf(buffer, sizeof(buffer),
1727		      "%04d%02d%02d%02d%02d",
1728		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1729		      tm->tm_hour, tm->tm_min);
1730	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1731	ctl_putunqstr(tag, buffer, rc);
1732}
1733
1734
1735/*
1736 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1737 * response
1738 */
1739static void
1740ctl_puthex(
1741	const char *tag,
1742	u_long uval
1743	)
1744{
1745	char buffer[24];	/* must fit 64bit int! */
1746	int  rc;
1747
1748	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1749	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1750	ctl_putunqstr(tag, buffer, rc);
1751}
1752
1753
1754/*
1755 * ctl_putint - write a tagged signed integer into the response
1756 */
1757static void
1758ctl_putint(
1759	const char *tag,
1760	long ival
1761	)
1762{
1763	char buffer[24];	/*must fit 64bit int */
1764	int  rc;
1765
1766	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1767	INSIST(rc >= 0 && rc < sizeof(buffer));
1768	ctl_putunqstr(tag, buffer, rc);
1769}
1770
1771
1772/*
1773 * ctl_putts - write a tagged timestamp, in hex, into the response
1774 */
1775static void
1776ctl_putts(
1777	const char *tag,
1778	l_fp *ts
1779	)
1780{
1781	char buffer[24];
1782	int  rc;
1783
1784	rc = snprintf(buffer, sizeof(buffer),
1785		      "0x%08lx.%08lx",
1786		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1787	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1788	ctl_putunqstr(tag, buffer, rc);
1789}
1790
1791
1792/*
1793 * ctl_putadr - write an IP address into the response
1794 */
1795static void
1796ctl_putadr(
1797	const char *tag,
1798	u_int32 addr32,
1799	sockaddr_u *addr
1800	)
1801{
1802	const char *cq;
1803
1804	if (NULL == addr)
1805		cq = numtoa(addr32);
1806	else
1807		cq = stoa(addr);
1808	ctl_putunqstr(tag, cq, strlen(cq));
1809}
1810
1811
1812/*
1813 * ctl_putrefid - send a u_int32 refid as printable text
1814 */
1815static void
1816ctl_putrefid(
1817	const char *	tag,
1818	u_int32		refid
1819	)
1820{
1821	size_t nc;
1822
1823	union {
1824		uint32_t w;
1825		uint8_t  b[sizeof(uint32_t)];
1826	} bytes;
1827
1828	bytes.w = refid;
1829	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1830		if (!isprint(bytes.b[nc]))
1831			bytes.b[nc] = '.';
1832	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1833}
1834
1835
1836/*
1837 * ctl_putarray - write a tagged eight element double array into the response
1838 */
1839static void
1840ctl_putarray(
1841	const char *tag,
1842	double *arr,
1843	int start
1844	)
1845{
1846	char *cp, *ep;
1847	char buffer[200];
1848	int  i, rc;
1849
1850	cp = buffer;
1851	ep = buffer + sizeof(buffer);
1852	i  = start;
1853	do {
1854		if (i == 0)
1855			i = NTP_SHIFT;
1856		i--;
1857		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1858		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1859		cp += rc;
1860	} while (i != start);
1861	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1862}
1863
1864/*
1865 * ctl_printf - put a formatted string into the data buffer
1866 */
1867static void
1868ctl_printf(
1869	const char * fmt,
1870	...
1871	)
1872{
1873	static const char * ellipsis = "[...]";
1874	va_list va;
1875	char    fmtbuf[128];
1876	int     rc;
1877
1878	va_start(va, fmt);
1879	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1880	va_end(va);
1881	if (rc < 0 || rc >= sizeof(fmtbuf))
1882		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1883		       ellipsis);
1884	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1885}
1886
1887
1888/*
1889 * ctl_putsys - output a system variable
1890 */
1891static void
1892ctl_putsys(
1893	int varid
1894	)
1895{
1896	l_fp tmp;
1897	char str[256];
1898	u_int u;
1899	double kb;
1900	double dtemp;
1901	const char *ss;
1902#ifdef AUTOKEY
1903	struct cert_info *cp;
1904#endif	/* AUTOKEY */
1905#ifdef KERNEL_PLL
1906	static struct timex ntx;
1907	static u_long ntp_adjtime_time;
1908
1909	static const double to_ms =
1910# ifdef STA_NANO
1911		1.0e-6; /* nsec to msec */
1912# else
1913		1.0e-3; /* usec to msec */
1914# endif
1915
1916	/*
1917	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1918	 */
1919	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1920	    current_time != ntp_adjtime_time) {
1921		ZERO(ntx);
1922		if (ntp_adjtime(&ntx) < 0)
1923			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1924		else
1925			ntp_adjtime_time = current_time;
1926	}
1927#endif	/* KERNEL_PLL */
1928
1929	switch (varid) {
1930
1931	case CS_LEAP:
1932		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1933		break;
1934
1935	case CS_STRATUM:
1936		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1937		break;
1938
1939	case CS_PRECISION:
1940		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1941		break;
1942
1943	case CS_ROOTDELAY:
1944		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1945			   1e3);
1946		break;
1947
1948	case CS_ROOTDISPERSION:
1949		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1950			   sys_rootdisp * 1e3);
1951		break;
1952
1953	case CS_REFID:
1954		if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1955			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1956		else
1957			ctl_putrefid(sys_var[varid].text, sys_refid);
1958		break;
1959
1960	case CS_REFTIME:
1961		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1962		break;
1963
1964	case CS_POLL:
1965		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1966		break;
1967
1968	case CS_PEERID:
1969		if (sys_peer == NULL)
1970			ctl_putuint(sys_var[CS_PEERID].text, 0);
1971		else
1972			ctl_putuint(sys_var[CS_PEERID].text,
1973				    sys_peer->associd);
1974		break;
1975
1976	case CS_PEERADR:
1977		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1978			ss = sptoa(&sys_peer->srcadr);
1979		else
1980			ss = "0.0.0.0:0";
1981		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1982		break;
1983
1984	case CS_PEERMODE:
1985		u = (sys_peer != NULL)
1986			? sys_peer->hmode
1987			: MODE_UNSPEC;
1988		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1989		break;
1990
1991	case CS_OFFSET:
1992		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1993		break;
1994
1995	case CS_DRIFT:
1996		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1997		break;
1998
1999	case CS_JITTER:
2000		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2001		break;
2002
2003	case CS_ERROR:
2004		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2005		break;
2006
2007	case CS_CLOCK:
2008		get_systime(&tmp);
2009		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2010		break;
2011
2012	case CS_PROCESSOR:
2013#ifndef HAVE_UNAME
2014		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2015			   sizeof(str_processor) - 1);
2016#else
2017		ctl_putstr(sys_var[CS_PROCESSOR].text,
2018			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2019#endif /* HAVE_UNAME */
2020		break;
2021
2022	case CS_SYSTEM:
2023#ifndef HAVE_UNAME
2024		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2025			   sizeof(str_system) - 1);
2026#else
2027		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2028			 utsnamebuf.release);
2029		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2030#endif /* HAVE_UNAME */
2031		break;
2032
2033	case CS_VERSION:
2034		ctl_putstr(sys_var[CS_VERSION].text, Version,
2035			   strlen(Version));
2036		break;
2037
2038	case CS_STABIL:
2039		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2040			   1e6);
2041		break;
2042
2043	case CS_VARLIST:
2044	{
2045		char buf[CTL_MAX_DATA_LEN];
2046		//buffPointer, firstElementPointer, buffEndPointer
2047		char *buffp, *buffend;
2048		int firstVarName;
2049		const char *ss1;
2050		int len;
2051		const struct ctl_var *k;
2052
2053		buffp = buf;
2054		buffend = buf + sizeof(buf);
2055		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2056			break;	/* really long var name */
2057
2058		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2059		buffp += strlen(buffp);
2060		firstVarName = TRUE;
2061		for (k = sys_var; !(k->flags & EOV); k++) {
2062			if (k->flags & PADDING)
2063				continue;
2064			len = strlen(k->text);
2065			if (len + 1 >= buffend - buffp)
2066				break;
2067			if (!firstVarName)
2068				*buffp++ = ',';
2069			else
2070				firstVarName = FALSE;
2071			memcpy(buffp, k->text, len);
2072			buffp += len;
2073		}
2074
2075		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2076			if (k->flags & PADDING)
2077				continue;
2078			if (NULL == k->text)
2079				continue;
2080			ss1 = strchr(k->text, '=');
2081			if (NULL == ss1)
2082				len = strlen(k->text);
2083			else
2084				len = ss1 - k->text;
2085			if (len + 1 >= buffend - buffp)
2086				break;
2087			if (firstVarName) {
2088				*buffp++ = ',';
2089				firstVarName = FALSE;
2090			}
2091			memcpy(buffp, k->text,(unsigned)len);
2092			buffp += len;
2093		}
2094		if (2 >= buffend - buffp)
2095			break;
2096
2097		*buffp++ = '"';
2098		*buffp = '\0';
2099
2100		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2101		break;
2102	}
2103
2104	case CS_TAI:
2105		if (sys_tai > 0)
2106			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2107		break;
2108
2109	case CS_LEAPTAB:
2110	{
2111		leap_signature_t lsig;
2112		leapsec_getsig(&lsig);
2113		if (lsig.ttime > 0)
2114			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2115		break;
2116	}
2117
2118	case CS_LEAPEND:
2119	{
2120		leap_signature_t lsig;
2121		leapsec_getsig(&lsig);
2122		if (lsig.etime > 0)
2123			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2124		break;
2125	}
2126
2127#ifdef LEAP_SMEAR
2128	case CS_LEAPSMEARINTV:
2129		if (leap_smear_intv > 0)
2130			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2131		break;
2132
2133	case CS_LEAPSMEAROFFS:
2134		if (leap_smear_intv > 0)
2135			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2136				   leap_smear.doffset * 1e3);
2137		break;
2138#endif	/* LEAP_SMEAR */
2139
2140	case CS_RATE:
2141		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2142		break;
2143
2144	case CS_MRU_ENABLED:
2145		ctl_puthex(sys_var[varid].text, mon_enabled);
2146		break;
2147
2148	case CS_MRU_DEPTH:
2149		ctl_putuint(sys_var[varid].text, mru_entries);
2150		break;
2151
2152	case CS_MRU_MEM:
2153		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2154		u = (u_int)kb;
2155		if (kb - u >= 0.5)
2156			u++;
2157		ctl_putuint(sys_var[varid].text, u);
2158		break;
2159
2160	case CS_MRU_DEEPEST:
2161		ctl_putuint(sys_var[varid].text, mru_peakentries);
2162		break;
2163
2164	case CS_MRU_MINDEPTH:
2165		ctl_putuint(sys_var[varid].text, mru_mindepth);
2166		break;
2167
2168	case CS_MRU_MAXAGE:
2169		ctl_putint(sys_var[varid].text, mru_maxage);
2170		break;
2171
2172	case CS_MRU_MAXDEPTH:
2173		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2174		break;
2175
2176	case CS_MRU_MAXMEM:
2177		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2178		u = (u_int)kb;
2179		if (kb - u >= 0.5)
2180			u++;
2181		ctl_putuint(sys_var[varid].text, u);
2182		break;
2183
2184	case CS_SS_UPTIME:
2185		ctl_putuint(sys_var[varid].text, current_time);
2186		break;
2187
2188	case CS_SS_RESET:
2189		ctl_putuint(sys_var[varid].text,
2190			    current_time - sys_stattime);
2191		break;
2192
2193	case CS_SS_RECEIVED:
2194		ctl_putuint(sys_var[varid].text, sys_received);
2195		break;
2196
2197	case CS_SS_THISVER:
2198		ctl_putuint(sys_var[varid].text, sys_newversion);
2199		break;
2200
2201	case CS_SS_OLDVER:
2202		ctl_putuint(sys_var[varid].text, sys_oldversion);
2203		break;
2204
2205	case CS_SS_BADFORMAT:
2206		ctl_putuint(sys_var[varid].text, sys_badlength);
2207		break;
2208
2209	case CS_SS_BADAUTH:
2210		ctl_putuint(sys_var[varid].text, sys_badauth);
2211		break;
2212
2213	case CS_SS_DECLINED:
2214		ctl_putuint(sys_var[varid].text, sys_declined);
2215		break;
2216
2217	case CS_SS_RESTRICTED:
2218		ctl_putuint(sys_var[varid].text, sys_restricted);
2219		break;
2220
2221	case CS_SS_LIMITED:
2222		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2223		break;
2224
2225	case CS_SS_LAMPORT:
2226		ctl_putuint(sys_var[varid].text, sys_lamport);
2227		break;
2228
2229	case CS_SS_TSROUNDING:
2230		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2231		break;
2232
2233	case CS_SS_KODSENT:
2234		ctl_putuint(sys_var[varid].text, sys_kodsent);
2235		break;
2236
2237	case CS_SS_PROCESSED:
2238		ctl_putuint(sys_var[varid].text, sys_processed);
2239		break;
2240
2241	case CS_BCASTDELAY:
2242		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2243		break;
2244
2245	case CS_AUTHDELAY:
2246		LFPTOD(&sys_authdelay, dtemp);
2247		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2248		break;
2249
2250	case CS_AUTHKEYS:
2251		ctl_putuint(sys_var[varid].text, authnumkeys);
2252		break;
2253
2254	case CS_AUTHFREEK:
2255		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2256		break;
2257
2258	case CS_AUTHKLOOKUPS:
2259		ctl_putuint(sys_var[varid].text, authkeylookups);
2260		break;
2261
2262	case CS_AUTHKNOTFOUND:
2263		ctl_putuint(sys_var[varid].text, authkeynotfound);
2264		break;
2265
2266	case CS_AUTHKUNCACHED:
2267		ctl_putuint(sys_var[varid].text, authkeyuncached);
2268		break;
2269
2270	case CS_AUTHKEXPIRED:
2271		ctl_putuint(sys_var[varid].text, authkeyexpired);
2272		break;
2273
2274	case CS_AUTHENCRYPTS:
2275		ctl_putuint(sys_var[varid].text, authencryptions);
2276		break;
2277
2278	case CS_AUTHDECRYPTS:
2279		ctl_putuint(sys_var[varid].text, authdecryptions);
2280		break;
2281
2282	case CS_AUTHRESET:
2283		ctl_putuint(sys_var[varid].text,
2284			    current_time - auth_timereset);
2285		break;
2286
2287		/*
2288		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2289		 * unavailable, otherwise calls putfunc with args.
2290		 */
2291#ifndef KERNEL_PLL
2292# define	CTL_IF_KERNLOOP(putfunc, args)	\
2293		ctl_putint(sys_var[varid].text, 0)
2294#else
2295# define	CTL_IF_KERNLOOP(putfunc, args)	\
2296		putfunc args
2297#endif
2298
2299		/*
2300		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2301		 * loop is unavailable, or kernel hard PPS is not
2302		 * active, otherwise calls putfunc with args.
2303		 */
2304#ifndef KERNEL_PLL
2305# define	CTL_IF_KERNPPS(putfunc, args)	\
2306		ctl_putint(sys_var[varid].text, 0)
2307#else
2308# define	CTL_IF_KERNPPS(putfunc, args)			\
2309		if (0 == ntx.shift)				\
2310			ctl_putint(sys_var[varid].text, 0);	\
2311		else						\
2312			putfunc args	/* no trailing ; */
2313#endif
2314
2315	case CS_K_OFFSET:
2316		CTL_IF_KERNLOOP(
2317			ctl_putdblf,
2318			(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2319		);
2320		break;
2321
2322	case CS_K_FREQ:
2323		CTL_IF_KERNLOOP(
2324			ctl_putsfp,
2325			(sys_var[varid].text, ntx.freq)
2326		);
2327		break;
2328
2329	case CS_K_MAXERR:
2330		CTL_IF_KERNLOOP(
2331			ctl_putdblf,
2332			(sys_var[varid].text, 0, 6,
2333			 to_ms * ntx.maxerror)
2334		);
2335		break;
2336
2337	case CS_K_ESTERR:
2338		CTL_IF_KERNLOOP(
2339			ctl_putdblf,
2340			(sys_var[varid].text, 0, 6,
2341			 to_ms * ntx.esterror)
2342		);
2343		break;
2344
2345	case CS_K_STFLAGS:
2346#ifndef KERNEL_PLL
2347		ss = "";
2348#else
2349		ss = k_st_flags(ntx.status);
2350#endif
2351		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2352		break;
2353
2354	case CS_K_TIMECONST:
2355		CTL_IF_KERNLOOP(
2356			ctl_putint,
2357			(sys_var[varid].text, ntx.constant)
2358		);
2359		break;
2360
2361	case CS_K_PRECISION:
2362		CTL_IF_KERNLOOP(
2363			ctl_putdblf,
2364			(sys_var[varid].text, 0, 6,
2365			    to_ms * ntx.precision)
2366		);
2367		break;
2368
2369	case CS_K_FREQTOL:
2370		CTL_IF_KERNLOOP(
2371			ctl_putsfp,
2372			(sys_var[varid].text, ntx.tolerance)
2373		);
2374		break;
2375
2376	case CS_K_PPS_FREQ:
2377		CTL_IF_KERNPPS(
2378			ctl_putsfp,
2379			(sys_var[varid].text, ntx.ppsfreq)
2380		);
2381		break;
2382
2383	case CS_K_PPS_STABIL:
2384		CTL_IF_KERNPPS(
2385			ctl_putsfp,
2386			(sys_var[varid].text, ntx.stabil)
2387		);
2388		break;
2389
2390	case CS_K_PPS_JITTER:
2391		CTL_IF_KERNPPS(
2392			ctl_putdbl,
2393			(sys_var[varid].text, to_ms * ntx.jitter)
2394		);
2395		break;
2396
2397	case CS_K_PPS_CALIBDUR:
2398		CTL_IF_KERNPPS(
2399			ctl_putint,
2400			(sys_var[varid].text, 1 << ntx.shift)
2401		);
2402		break;
2403
2404	case CS_K_PPS_CALIBS:
2405		CTL_IF_KERNPPS(
2406			ctl_putint,
2407			(sys_var[varid].text, ntx.calcnt)
2408		);
2409		break;
2410
2411	case CS_K_PPS_CALIBERRS:
2412		CTL_IF_KERNPPS(
2413			ctl_putint,
2414			(sys_var[varid].text, ntx.errcnt)
2415		);
2416		break;
2417
2418	case CS_K_PPS_JITEXC:
2419		CTL_IF_KERNPPS(
2420			ctl_putint,
2421			(sys_var[varid].text, ntx.jitcnt)
2422		);
2423		break;
2424
2425	case CS_K_PPS_STBEXC:
2426		CTL_IF_KERNPPS(
2427			ctl_putint,
2428			(sys_var[varid].text, ntx.stbcnt)
2429		);
2430		break;
2431
2432	case CS_IOSTATS_RESET:
2433		ctl_putuint(sys_var[varid].text,
2434			    current_time - io_timereset);
2435		break;
2436
2437	case CS_TOTAL_RBUF:
2438		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2439		break;
2440
2441	case CS_FREE_RBUF:
2442		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2443		break;
2444
2445	case CS_USED_RBUF:
2446		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2447		break;
2448
2449	case CS_RBUF_LOWATER:
2450		ctl_putuint(sys_var[varid].text, lowater_additions());
2451		break;
2452
2453	case CS_IO_DROPPED:
2454		ctl_putuint(sys_var[varid].text, packets_dropped);
2455		break;
2456
2457	case CS_IO_IGNORED:
2458		ctl_putuint(sys_var[varid].text, packets_ignored);
2459		break;
2460
2461	case CS_IO_RECEIVED:
2462		ctl_putuint(sys_var[varid].text, packets_received);
2463		break;
2464
2465	case CS_IO_SENT:
2466		ctl_putuint(sys_var[varid].text, packets_sent);
2467		break;
2468
2469	case CS_IO_SENDFAILED:
2470		ctl_putuint(sys_var[varid].text, packets_notsent);
2471		break;
2472
2473	case CS_IO_WAKEUPS:
2474		ctl_putuint(sys_var[varid].text, handler_calls);
2475		break;
2476
2477	case CS_IO_GOODWAKEUPS:
2478		ctl_putuint(sys_var[varid].text, handler_pkts);
2479		break;
2480
2481	case CS_TIMERSTATS_RESET:
2482		ctl_putuint(sys_var[varid].text,
2483			    current_time - timer_timereset);
2484		break;
2485
2486	case CS_TIMER_OVERRUNS:
2487		ctl_putuint(sys_var[varid].text, alarm_overflow);
2488		break;
2489
2490	case CS_TIMER_XMTS:
2491		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2492		break;
2493
2494	case CS_FUZZ:
2495		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2496		break;
2497	case CS_WANDER_THRESH:
2498		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2499		break;
2500#ifdef AUTOKEY
2501	case CS_FLAGS:
2502		if (crypto_flags)
2503			ctl_puthex(sys_var[CS_FLAGS].text,
2504			    crypto_flags);
2505		break;
2506
2507	case CS_DIGEST:
2508		if (crypto_flags) {
2509			strlcpy(str, OBJ_nid2ln(crypto_nid),
2510			    COUNTOF(str));
2511			ctl_putstr(sys_var[CS_DIGEST].text, str,
2512			    strlen(str));
2513		}
2514		break;
2515
2516	case CS_SIGNATURE:
2517		if (crypto_flags) {
2518			const EVP_MD *dp;
2519
2520			dp = EVP_get_digestbynid(crypto_flags >> 16);
2521			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2522			    COUNTOF(str));
2523			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2524			    strlen(str));
2525		}
2526		break;
2527
2528	case CS_HOST:
2529		if (hostval.ptr != NULL)
2530			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2531			    strlen(hostval.ptr));
2532		break;
2533
2534	case CS_IDENT:
2535		if (sys_ident != NULL)
2536			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2537			    strlen(sys_ident));
2538		break;
2539
2540	case CS_CERTIF:
2541		for (cp = cinfo; cp != NULL; cp = cp->link) {
2542			snprintf(str, sizeof(str), "%s %s 0x%x",
2543			    cp->subject, cp->issuer, cp->flags);
2544			ctl_putstr(sys_var[CS_CERTIF].text, str,
2545			    strlen(str));
2546			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2547		}
2548		break;
2549
2550	case CS_PUBLIC:
2551		if (hostval.tstamp != 0)
2552			ctl_putfs(sys_var[CS_PUBLIC].text,
2553			    ntohl(hostval.tstamp));
2554		break;
2555#endif	/* AUTOKEY */
2556
2557	default:
2558		break;
2559	}
2560}
2561
2562
2563/*
2564 * ctl_putpeer - output a peer variable
2565 */
2566static void
2567ctl_putpeer(
2568	int id,
2569	struct peer *p
2570	)
2571{
2572	char buf[CTL_MAX_DATA_LEN];
2573	char *s;
2574	char *t;
2575	char *be;
2576	int i;
2577	const struct ctl_var *k;
2578#ifdef AUTOKEY
2579	struct autokey *ap;
2580	const EVP_MD *dp;
2581	const char *str;
2582#endif	/* AUTOKEY */
2583
2584	switch (id) {
2585
2586	case CP_CONFIG:
2587		ctl_putuint(peer_var[id].text,
2588			    !(FLAG_PREEMPT & p->flags));
2589		break;
2590
2591	case CP_AUTHENABLE:
2592		ctl_putuint(peer_var[id].text, !(p->keyid));
2593		break;
2594
2595	case CP_AUTHENTIC:
2596		ctl_putuint(peer_var[id].text,
2597			    !!(FLAG_AUTHENTIC & p->flags));
2598		break;
2599
2600	case CP_SRCADR:
2601		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2602		break;
2603
2604	case CP_SRCPORT:
2605		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2606		break;
2607
2608	case CP_SRCHOST:
2609		if (p->hostname != NULL)
2610			ctl_putstr(peer_var[id].text, p->hostname,
2611				   strlen(p->hostname));
2612		break;
2613
2614	case CP_DSTADR:
2615		ctl_putadr(peer_var[id].text, 0,
2616			   (p->dstadr != NULL)
2617				? &p->dstadr->sin
2618				: NULL);
2619		break;
2620
2621	case CP_DSTPORT:
2622		ctl_putuint(peer_var[id].text,
2623			    (p->dstadr != NULL)
2624				? SRCPORT(&p->dstadr->sin)
2625				: 0);
2626		break;
2627
2628	case CP_IN:
2629		if (p->r21 > 0.)
2630			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2631		break;
2632
2633	case CP_OUT:
2634		if (p->r34 > 0.)
2635			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2636		break;
2637
2638	case CP_RATE:
2639		ctl_putuint(peer_var[id].text, p->throttle);
2640		break;
2641
2642	case CP_LEAP:
2643		ctl_putuint(peer_var[id].text, p->leap);
2644		break;
2645
2646	case CP_HMODE:
2647		ctl_putuint(peer_var[id].text, p->hmode);
2648		break;
2649
2650	case CP_STRATUM:
2651		ctl_putuint(peer_var[id].text, p->stratum);
2652		break;
2653
2654	case CP_PPOLL:
2655		ctl_putuint(peer_var[id].text, p->ppoll);
2656		break;
2657
2658	case CP_HPOLL:
2659		ctl_putuint(peer_var[id].text, p->hpoll);
2660		break;
2661
2662	case CP_PRECISION:
2663		ctl_putint(peer_var[id].text, p->precision);
2664		break;
2665
2666	case CP_ROOTDELAY:
2667		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2668		break;
2669
2670	case CP_ROOTDISPERSION:
2671		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2672		break;
2673
2674	case CP_REFID:
2675#ifdef REFCLOCK
2676		if (p->flags & FLAG_REFCLOCK) {
2677			ctl_putrefid(peer_var[id].text, p->refid);
2678			break;
2679		}
2680#endif
2681		if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2682			ctl_putadr(peer_var[id].text, p->refid,
2683				   NULL);
2684		else
2685			ctl_putrefid(peer_var[id].text, p->refid);
2686		break;
2687
2688	case CP_REFTIME:
2689		ctl_putts(peer_var[id].text, &p->reftime);
2690		break;
2691
2692	case CP_ORG:
2693		ctl_putts(peer_var[id].text, &p->aorg);
2694		break;
2695
2696	case CP_REC:
2697		ctl_putts(peer_var[id].text, &p->dst);
2698		break;
2699
2700	case CP_XMT:
2701		if (p->xleave)
2702			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2703		break;
2704
2705	case CP_BIAS:
2706		if (p->bias != 0.)
2707			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2708		break;
2709
2710	case CP_REACH:
2711		ctl_puthex(peer_var[id].text, p->reach);
2712		break;
2713
2714	case CP_FLASH:
2715		ctl_puthex(peer_var[id].text, p->flash);
2716		break;
2717
2718	case CP_TTL:
2719#ifdef REFCLOCK
2720		if (p->flags & FLAG_REFCLOCK) {
2721			ctl_putuint(peer_var[id].text, p->ttl);
2722			break;
2723		}
2724#endif
2725		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2726			ctl_putint(peer_var[id].text,
2727				   sys_ttl[p->ttl]);
2728		break;
2729
2730	case CP_UNREACH:
2731		ctl_putuint(peer_var[id].text, p->unreach);
2732		break;
2733
2734	case CP_TIMER:
2735		ctl_putuint(peer_var[id].text,
2736			    p->nextdate - current_time);
2737		break;
2738
2739	case CP_DELAY:
2740		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2741		break;
2742
2743	case CP_OFFSET:
2744		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2745		break;
2746
2747	case CP_JITTER:
2748		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2749		break;
2750
2751	case CP_DISPERSION:
2752		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2753		break;
2754
2755	case CP_KEYID:
2756		if (p->keyid > NTP_MAXKEY)
2757			ctl_puthex(peer_var[id].text, p->keyid);
2758		else
2759			ctl_putuint(peer_var[id].text, p->keyid);
2760		break;
2761
2762	case CP_FILTDELAY:
2763		ctl_putarray(peer_var[id].text, p->filter_delay,
2764			     p->filter_nextpt);
2765		break;
2766
2767	case CP_FILTOFFSET:
2768		ctl_putarray(peer_var[id].text, p->filter_offset,
2769			     p->filter_nextpt);
2770		break;
2771
2772	case CP_FILTERROR:
2773		ctl_putarray(peer_var[id].text, p->filter_disp,
2774			     p->filter_nextpt);
2775		break;
2776
2777	case CP_PMODE:
2778		ctl_putuint(peer_var[id].text, p->pmode);
2779		break;
2780
2781	case CP_RECEIVED:
2782		ctl_putuint(peer_var[id].text, p->received);
2783		break;
2784
2785	case CP_SENT:
2786		ctl_putuint(peer_var[id].text, p->sent);
2787		break;
2788
2789	case CP_VARLIST:
2790		s = buf;
2791		be = buf + sizeof(buf);
2792		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2793			break;	/* really long var name */
2794
2795		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2796		s += strlen(s);
2797		t = s;
2798		for (k = peer_var; !(EOV & k->flags); k++) {
2799			if (PADDING & k->flags)
2800				continue;
2801			i = strlen(k->text);
2802			if (s + i + 1 >= be)
2803				break;
2804			if (s != t)
2805				*s++ = ',';
2806			memcpy(s, k->text, i);
2807			s += i;
2808		}
2809		if (s + 2 < be) {
2810			*s++ = '"';
2811			*s = '\0';
2812			ctl_putdata(buf, (u_int)(s - buf), 0);
2813		}
2814		break;
2815
2816	case CP_TIMEREC:
2817		ctl_putuint(peer_var[id].text,
2818			    current_time - p->timereceived);
2819		break;
2820
2821	case CP_TIMEREACH:
2822		ctl_putuint(peer_var[id].text,
2823			    current_time - p->timereachable);
2824		break;
2825
2826	case CP_BADAUTH:
2827		ctl_putuint(peer_var[id].text, p->badauth);
2828		break;
2829
2830	case CP_BOGUSORG:
2831		ctl_putuint(peer_var[id].text, p->bogusorg);
2832		break;
2833
2834	case CP_OLDPKT:
2835		ctl_putuint(peer_var[id].text, p->oldpkt);
2836		break;
2837
2838	case CP_SELDISP:
2839		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2840		break;
2841
2842	case CP_SELBROKEN:
2843		ctl_putuint(peer_var[id].text, p->selbroken);
2844		break;
2845
2846	case CP_CANDIDATE:
2847		ctl_putuint(peer_var[id].text, p->status);
2848		break;
2849#ifdef AUTOKEY
2850	case CP_FLAGS:
2851		if (p->crypto)
2852			ctl_puthex(peer_var[id].text, p->crypto);
2853		break;
2854
2855	case CP_SIGNATURE:
2856		if (p->crypto) {
2857			dp = EVP_get_digestbynid(p->crypto >> 16);
2858			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2859			ctl_putstr(peer_var[id].text, str, strlen(str));
2860		}
2861		break;
2862
2863	case CP_HOST:
2864		if (p->subject != NULL)
2865			ctl_putstr(peer_var[id].text, p->subject,
2866			    strlen(p->subject));
2867		break;
2868
2869	case CP_VALID:		/* not used */
2870		break;
2871
2872	case CP_INITSEQ:
2873		if (NULL == (ap = p->recval.ptr))
2874			break;
2875
2876		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2877		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2878		ctl_putfs(peer_var[CP_INITTSP].text,
2879			  ntohl(p->recval.tstamp));
2880		break;
2881
2882	case CP_IDENT:
2883		if (p->ident != NULL)
2884			ctl_putstr(peer_var[id].text, p->ident,
2885			    strlen(p->ident));
2886		break;
2887
2888
2889#endif	/* AUTOKEY */
2890	}
2891}
2892
2893
2894#ifdef REFCLOCK
2895/*
2896 * ctl_putclock - output clock variables
2897 */
2898static void
2899ctl_putclock(
2900	int id,
2901	struct refclockstat *pcs,
2902	int mustput
2903	)
2904{
2905	char buf[CTL_MAX_DATA_LEN];
2906	char *s, *t, *be;
2907	const char *ss;
2908	int i;
2909	const struct ctl_var *k;
2910
2911	switch (id) {
2912
2913	case CC_TYPE:
2914		if (mustput || pcs->clockdesc == NULL
2915		    || *(pcs->clockdesc) == '\0') {
2916			ctl_putuint(clock_var[id].text, pcs->type);
2917		}
2918		break;
2919	case CC_TIMECODE:
2920		ctl_putstr(clock_var[id].text,
2921			   pcs->p_lastcode,
2922			   (unsigned)pcs->lencode);
2923		break;
2924
2925	case CC_POLL:
2926		ctl_putuint(clock_var[id].text, pcs->polls);
2927		break;
2928
2929	case CC_NOREPLY:
2930		ctl_putuint(clock_var[id].text,
2931			    pcs->noresponse);
2932		break;
2933
2934	case CC_BADFORMAT:
2935		ctl_putuint(clock_var[id].text,
2936			    pcs->badformat);
2937		break;
2938
2939	case CC_BADDATA:
2940		ctl_putuint(clock_var[id].text,
2941			    pcs->baddata);
2942		break;
2943
2944	case CC_FUDGETIME1:
2945		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2946			ctl_putdbl(clock_var[id].text,
2947				   pcs->fudgetime1 * 1e3);
2948		break;
2949
2950	case CC_FUDGETIME2:
2951		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2952			ctl_putdbl(clock_var[id].text,
2953				   pcs->fudgetime2 * 1e3);
2954		break;
2955
2956	case CC_FUDGEVAL1:
2957		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2958			ctl_putint(clock_var[id].text,
2959				   pcs->fudgeval1);
2960		break;
2961
2962	case CC_FUDGEVAL2:
2963		if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2964			if (pcs->fudgeval1 > 1)
2965				ctl_putadr(clock_var[id].text,
2966					   pcs->fudgeval2, NULL);
2967			else
2968				ctl_putrefid(clock_var[id].text,
2969					     pcs->fudgeval2);
2970		}
2971		break;
2972
2973	case CC_FLAGS:
2974		ctl_putuint(clock_var[id].text, pcs->flags);
2975		break;
2976
2977	case CC_DEVICE:
2978		if (pcs->clockdesc == NULL ||
2979		    *(pcs->clockdesc) == '\0') {
2980			if (mustput)
2981				ctl_putstr(clock_var[id].text,
2982					   "", 0);
2983		} else {
2984			ctl_putstr(clock_var[id].text,
2985				   pcs->clockdesc,
2986				   strlen(pcs->clockdesc));
2987		}
2988		break;
2989
2990	case CC_VARLIST:
2991		s = buf;
2992		be = buf + sizeof(buf);
2993		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2994		    sizeof(buf))
2995			break;	/* really long var name */
2996
2997		snprintf(s, sizeof(buf), "%s=\"",
2998			 clock_var[CC_VARLIST].text);
2999		s += strlen(s);
3000		t = s;
3001
3002		for (k = clock_var; !(EOV & k->flags); k++) {
3003			if (PADDING & k->flags)
3004				continue;
3005
3006			i = strlen(k->text);
3007			if (s + i + 1 >= be)
3008				break;
3009
3010			if (s != t)
3011				*s++ = ',';
3012			memcpy(s, k->text, i);
3013			s += i;
3014		}
3015
3016		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3017			if (PADDING & k->flags)
3018				continue;
3019
3020			ss = k->text;
3021			if (NULL == ss)
3022				continue;
3023
3024			while (*ss && *ss != '=')
3025				ss++;
3026			i = ss - k->text;
3027			if (s + i + 1 >= be)
3028				break;
3029
3030			if (s != t)
3031				*s++ = ',';
3032			memcpy(s, k->text, (unsigned)i);
3033			s += i;
3034			*s = '\0';
3035		}
3036		if (s + 2 >= be)
3037			break;
3038
3039		*s++ = '"';
3040		*s = '\0';
3041		ctl_putdata(buf, (unsigned)(s - buf), 0);
3042		break;
3043	}
3044}
3045#endif
3046
3047
3048
3049/*
3050 * ctl_getitem - get the next data item from the incoming packet
3051 */
3052static const struct ctl_var *
3053ctl_getitem(
3054	const struct ctl_var *var_list,
3055	char **data
3056	)
3057{
3058	/* [Bug 3008] First check the packet data sanity, then search
3059	 * the key. This improves the consistency of result values: If
3060	 * the result is NULL once, it will never be EOV again for this
3061	 * packet; If it's EOV, it will never be NULL again until the
3062	 * variable is found and processed in a given 'var_list'. (That
3063	 * is, a result is returned that is neither NULL nor EOV).
3064	 */
3065	static const struct ctl_var eol = { 0, EOV, NULL };
3066	static char buf[128];
3067	static u_long quiet_until;
3068	const struct ctl_var *v;
3069	char *cp;
3070	char *tp;
3071
3072	/*
3073	 * Part One: Validate the packet state
3074	 */
3075
3076	/* Delete leading commas and white space */
3077	while (reqpt < reqend && (*reqpt == ',' ||
3078				  isspace((unsigned char)*reqpt)))
3079		reqpt++;
3080	if (reqpt >= reqend)
3081		return NULL;
3082
3083	/* Scan the string in the packet until we hit comma or
3084	 * EoB. Register position of first '=' on the fly. */
3085	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3086		if (*cp == '=' && tp == NULL)
3087			tp = cp;
3088		if (*cp == ',')
3089			break;
3090	}
3091
3092	/* Process payload, if any. */
3093	*data = NULL;
3094	if (NULL != tp) {
3095		/* eventually strip white space from argument. */
3096		const char *plhead = tp + 1; /* skip the '=' */
3097		const char *pltail = cp;
3098		size_t      plsize;
3099
3100		while (plhead != pltail && isspace((u_char)plhead[0]))
3101			++plhead;
3102		while (plhead != pltail && isspace((u_char)pltail[-1]))
3103			--pltail;
3104
3105		/* check payload size, terminate packet on overflow */
3106		plsize = (size_t)(pltail - plhead);
3107		if (plsize >= sizeof(buf))
3108			goto badpacket;
3109
3110		/* copy data, NUL terminate, and set result data ptr */
3111		memcpy(buf, plhead, plsize);
3112		buf[plsize] = '\0';
3113		*data = buf;
3114	} else {
3115		/* no payload, current end --> current name termination */
3116		tp = cp;
3117	}
3118
3119	/* Part Two
3120	 *
3121	 * Now we're sure that the packet data itself is sane. Scan the
3122	 * list now. Make sure a NULL list is properly treated by
3123	 * returning a synthetic End-Of-Values record. We must not
3124	 * return NULL pointers after this point, or the behaviour would
3125	 * become inconsistent if called several times with different
3126	 * variable lists after an EoV was returned.  (Such a behavior
3127	 * actually caused Bug 3008.)
3128	 */
3129
3130	if (NULL == var_list)
3131		return &eol;
3132
3133	for (v = var_list; !(EOV & v->flags); ++v)
3134		if (!(PADDING & v->flags)) {
3135			/* Check if the var name matches the buffer. The
3136			 * name is bracketed by [reqpt..tp] and not NUL
3137			 * terminated, and it contains no '=' char. The
3138			 * lookup value IS NUL-terminated but might
3139			 * include a '='... We have to look out for
3140			 * that!
3141			 */
3142			const char *sp1 = reqpt;
3143			const char *sp2 = v->text;
3144
3145			/* [Bug 3412] do not compare past NUL byte in name */
3146			while (   (sp1 != tp)
3147			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3148				++sp1;
3149				++sp2;
3150			}
3151			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3152				break;
3153		}
3154
3155	/* See if we have found a valid entry or not. If found, advance
3156	 * the request pointer for the next round; if not, clear the
3157	 * data pointer so we have no dangling garbage here.
3158	 */
3159	if (EOV & v->flags)
3160		*data = NULL;
3161	else
3162		reqpt = cp + (cp != reqend);
3163	return v;
3164
3165  badpacket:
3166	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3167	numctlbadpkts++;
3168	NLOG(NLOG_SYSEVENT)
3169	    if (quiet_until <= current_time) {
3170		    quiet_until = current_time + 300;
3171		    msyslog(LOG_WARNING,
3172			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3173			    stoa(rmt_addr), SRCPORT(rmt_addr));
3174	    }
3175	reqpt = reqend; /* never again for this packet! */
3176	return NULL;
3177}
3178
3179
3180/*
3181 * control_unspec - response to an unspecified op-code
3182 */
3183/*ARGSUSED*/
3184static void
3185control_unspec(
3186	struct recvbuf *rbufp,
3187	int restrict_mask
3188	)
3189{
3190	struct peer *peer;
3191
3192	/*
3193	 * What is an appropriate response to an unspecified op-code?
3194	 * I return no errors and no data, unless a specified assocation
3195	 * doesn't exist.
3196	 */
3197	if (res_associd) {
3198		peer = findpeerbyassoc(res_associd);
3199		if (NULL == peer) {
3200			ctl_error(CERR_BADASSOC);
3201			return;
3202		}
3203		rpkt.status = htons(ctlpeerstatus(peer));
3204	} else
3205		rpkt.status = htons(ctlsysstatus());
3206	ctl_flushpkt(0);
3207}
3208
3209
3210/*
3211 * read_status - return either a list of associd's, or a particular
3212 * peer's status.
3213 */
3214/*ARGSUSED*/
3215static void
3216read_status(
3217	struct recvbuf *rbufp,
3218	int restrict_mask
3219	)
3220{
3221	struct peer *peer;
3222	const u_char *cp;
3223	size_t n;
3224	/* a_st holds association ID, status pairs alternating */
3225	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3226
3227#ifdef DEBUG
3228	if (debug > 2)
3229		printf("read_status: ID %d\n", res_associd);
3230#endif
3231	/*
3232	 * Two choices here. If the specified association ID is
3233	 * zero we return all known assocation ID's.  Otherwise
3234	 * we return a bunch of stuff about the particular peer.
3235	 */
3236	if (res_associd) {
3237		peer = findpeerbyassoc(res_associd);
3238		if (NULL == peer) {
3239			ctl_error(CERR_BADASSOC);
3240			return;
3241		}
3242		rpkt.status = htons(ctlpeerstatus(peer));
3243		if (res_authokay)
3244			peer->num_events = 0;
3245		/*
3246		 * For now, output everything we know about the
3247		 * peer. May be more selective later.
3248		 */
3249		for (cp = def_peer_var; *cp != 0; cp++)
3250			ctl_putpeer((int)*cp, peer);
3251		ctl_flushpkt(0);
3252		return;
3253	}
3254	n = 0;
3255	rpkt.status = htons(ctlsysstatus());
3256	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3257		a_st[n++] = htons(peer->associd);
3258		a_st[n++] = htons(ctlpeerstatus(peer));
3259		/* two entries each loop iteration, so n + 1 */
3260		if (n + 1 >= COUNTOF(a_st)) {
3261			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3262				    1);
3263			n = 0;
3264		}
3265	}
3266	if (n)
3267		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3268	ctl_flushpkt(0);
3269}
3270
3271
3272/*
3273 * read_peervars - half of read_variables() implementation
3274 */
3275static void
3276read_peervars(void)
3277{
3278	const struct ctl_var *v;
3279	struct peer *peer;
3280	const u_char *cp;
3281	size_t i;
3282	char *	valuep;
3283	u_char	wants[CP_MAXCODE + 1];
3284	u_int	gotvar;
3285
3286	/*
3287	 * Wants info for a particular peer. See if we know
3288	 * the guy.
3289	 */
3290	peer = findpeerbyassoc(res_associd);
3291	if (NULL == peer) {
3292		ctl_error(CERR_BADASSOC);
3293		return;
3294	}
3295	rpkt.status = htons(ctlpeerstatus(peer));
3296	if (res_authokay)
3297		peer->num_events = 0;
3298	ZERO(wants);
3299	gotvar = 0;
3300	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3301		if (v->flags & EOV) {
3302			ctl_error(CERR_UNKNOWNVAR);
3303			return;
3304		}
3305		INSIST(v->code < COUNTOF(wants));
3306		wants[v->code] = 1;
3307		gotvar = 1;
3308	}
3309	if (gotvar) {
3310		for (i = 1; i < COUNTOF(wants); i++)
3311			if (wants[i])
3312				ctl_putpeer(i, peer);
3313	} else
3314		for (cp = def_peer_var; *cp != 0; cp++)
3315			ctl_putpeer((int)*cp, peer);
3316	ctl_flushpkt(0);
3317}
3318
3319
3320/*
3321 * read_sysvars - half of read_variables() implementation
3322 */
3323static void
3324read_sysvars(void)
3325{
3326	const struct ctl_var *v;
3327	struct ctl_var *kv;
3328	u_int	n;
3329	u_int	gotvar;
3330	const u_char *cs;
3331	char *	valuep;
3332	const char * pch;
3333	u_char *wants;
3334	size_t	wants_count;
3335
3336	/*
3337	 * Wants system variables. Figure out which he wants
3338	 * and give them to him.
3339	 */
3340	rpkt.status = htons(ctlsysstatus());
3341	if (res_authokay)
3342		ctl_sys_num_events = 0;
3343	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3344	wants = emalloc_zero(wants_count);
3345	gotvar = 0;
3346	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3347		if (!(EOV & v->flags)) {
3348			INSIST(v->code < wants_count);
3349			wants[v->code] = 1;
3350			gotvar = 1;
3351		} else {
3352			v = ctl_getitem(ext_sys_var, &valuep);
3353			if (NULL == v) {
3354				ctl_error(CERR_BADVALUE);
3355				free(wants);
3356				return;
3357			}
3358			if (EOV & v->flags) {
3359				ctl_error(CERR_UNKNOWNVAR);
3360				free(wants);
3361				return;
3362			}
3363			n = v->code + CS_MAXCODE + 1;
3364			INSIST(n < wants_count);
3365			wants[n] = 1;
3366			gotvar = 1;
3367		}
3368	}
3369	if (gotvar) {
3370		for (n = 1; n <= CS_MAXCODE; n++)
3371			if (wants[n])
3372				ctl_putsys(n);
3373		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3374			if (wants[n + CS_MAXCODE + 1]) {
3375				pch = ext_sys_var[n].text;
3376				ctl_putdata(pch, strlen(pch), 0);
3377			}
3378	} else {
3379		for (cs = def_sys_var; *cs != 0; cs++)
3380			ctl_putsys((int)*cs);
3381		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3382			if (DEF & kv->flags)
3383				ctl_putdata(kv->text, strlen(kv->text),
3384					    0);
3385	}
3386	free(wants);
3387	ctl_flushpkt(0);
3388}
3389
3390
3391/*
3392 * read_variables - return the variables the caller asks for
3393 */
3394/*ARGSUSED*/
3395static void
3396read_variables(
3397	struct recvbuf *rbufp,
3398	int restrict_mask
3399	)
3400{
3401	if (res_associd)
3402		read_peervars();
3403	else
3404		read_sysvars();
3405}
3406
3407
3408/*
3409 * write_variables - write into variables. We only allow leap bit
3410 * writing this way.
3411 */
3412/*ARGSUSED*/
3413static void
3414write_variables(
3415	struct recvbuf *rbufp,
3416	int restrict_mask
3417	)
3418{
3419	const struct ctl_var *v;
3420	int ext_var;
3421	char *valuep;
3422	long val;
3423	size_t octets;
3424	char *vareqv;
3425	const char *t;
3426	char *tt;
3427
3428	val = 0;
3429	/*
3430	 * If he's trying to write into a peer tell him no way
3431	 */
3432	if (res_associd != 0) {
3433		ctl_error(CERR_PERMISSION);
3434		return;
3435	}
3436
3437	/*
3438	 * Set status
3439	 */
3440	rpkt.status = htons(ctlsysstatus());
3441
3442	/*
3443	 * Look through the variables. Dump out at the first sign of
3444	 * trouble.
3445	 */
3446	while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3447		ext_var = 0;
3448		if (v->flags & EOV) {
3449			if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3450			    0) {
3451				if (v->flags & EOV) {
3452					ctl_error(CERR_UNKNOWNVAR);
3453					return;
3454				}
3455				ext_var = 1;
3456			} else {
3457				break;
3458			}
3459		}
3460		if (!(v->flags & CAN_WRITE)) {
3461			ctl_error(CERR_PERMISSION);
3462			return;
3463		}
3464		if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3465							    &val))) {
3466			ctl_error(CERR_BADFMT);
3467			return;
3468		}
3469		if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3470			ctl_error(CERR_BADVALUE);
3471			return;
3472		}
3473
3474		if (ext_var) {
3475			octets = strlen(v->text) + strlen(valuep) + 2;
3476			vareqv = emalloc(octets);
3477			tt = vareqv;
3478			t = v->text;
3479			while (*t && *t != '=')
3480				*tt++ = *t++;
3481			*tt++ = '=';
3482			memcpy(tt, valuep, 1 + strlen(valuep));
3483			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3484			free(vareqv);
3485		} else {
3486			ctl_error(CERR_UNSPEC); /* really */
3487			return;
3488		}
3489	}
3490
3491	/*
3492	 * If we got anything, do it. xxx nothing to do ***
3493	 */
3494	/*
3495	  if (leapind != ~0 || leapwarn != ~0) {
3496	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3497	  ctl_error(CERR_PERMISSION);
3498	  return;
3499	  }
3500	  }
3501	*/
3502	ctl_flushpkt(0);
3503}
3504
3505
3506/*
3507 * configure() processes ntpq :config/config-from-file, allowing
3508 *		generic runtime reconfiguration.
3509 */
3510static void configure(
3511	struct recvbuf *rbufp,
3512	int restrict_mask
3513	)
3514{
3515	size_t data_count;
3516	int retval;
3517
3518	/* I haven't yet implemented changes to an existing association.
3519	 * Hence check if the association id is 0
3520	 */
3521	if (res_associd != 0) {
3522		ctl_error(CERR_BADVALUE);
3523		return;
3524	}
3525
3526	if (RES_NOMODIFY & restrict_mask) {
3527		snprintf(remote_config.err_msg,
3528			 sizeof(remote_config.err_msg),
3529			 "runtime configuration prohibited by restrict ... nomodify");
3530		ctl_putdata(remote_config.err_msg,
3531			    strlen(remote_config.err_msg), 0);
3532		ctl_flushpkt(0);
3533		NLOG(NLOG_SYSINFO)
3534			msyslog(LOG_NOTICE,
3535				"runtime config from %s rejected due to nomodify restriction",
3536				stoa(&rbufp->recv_srcadr));
3537		sys_restricted++;
3538		return;
3539	}
3540
3541	/* Initialize the remote config buffer */
3542	data_count = remoteconfig_cmdlength(reqpt, reqend);
3543
3544	if (data_count > sizeof(remote_config.buffer) - 2) {
3545		snprintf(remote_config.err_msg,
3546			 sizeof(remote_config.err_msg),
3547			 "runtime configuration failed: request too long");
3548		ctl_putdata(remote_config.err_msg,
3549			    strlen(remote_config.err_msg), 0);
3550		ctl_flushpkt(0);
3551		msyslog(LOG_NOTICE,
3552			"runtime config from %s rejected: request too long",
3553			stoa(&rbufp->recv_srcadr));
3554		return;
3555	}
3556	/* Bug 2853 -- check if all characters were acceptable */
3557	if (data_count != (size_t)(reqend - reqpt)) {
3558		snprintf(remote_config.err_msg,
3559			 sizeof(remote_config.err_msg),
3560			 "runtime configuration failed: request contains an unprintable character");
3561		ctl_putdata(remote_config.err_msg,
3562			    strlen(remote_config.err_msg), 0);
3563		ctl_flushpkt(0);
3564		msyslog(LOG_NOTICE,
3565			"runtime config from %s rejected: request contains an unprintable character: %0x",
3566			stoa(&rbufp->recv_srcadr),
3567			reqpt[data_count]);
3568		return;
3569	}
3570
3571	memcpy(remote_config.buffer, reqpt, data_count);
3572	/* The buffer has no trailing linefeed or NUL right now. For
3573	 * logging, we do not want a newline, so we do that first after
3574	 * adding the necessary NUL byte.
3575	 */
3576	remote_config.buffer[data_count] = '\0';
3577	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3578		remote_config.buffer));
3579	msyslog(LOG_NOTICE, "%s config: %s",
3580		stoa(&rbufp->recv_srcadr),
3581		remote_config.buffer);
3582
3583	/* Now we have to make sure there is a NL/NUL sequence at the
3584	 * end of the buffer before we parse it.
3585	 */
3586	remote_config.buffer[data_count++] = '\n';
3587	remote_config.buffer[data_count] = '\0';
3588	remote_config.pos = 0;
3589	remote_config.err_pos = 0;
3590	remote_config.no_errors = 0;
3591	config_remotely(&rbufp->recv_srcadr);
3592
3593	/*
3594	 * Check if errors were reported. If not, output 'Config
3595	 * Succeeded'.  Else output the error count.  It would be nice
3596	 * to output any parser error messages.
3597	 */
3598	if (0 == remote_config.no_errors) {
3599		retval = snprintf(remote_config.err_msg,
3600				  sizeof(remote_config.err_msg),
3601				  "Config Succeeded");
3602		if (retval > 0)
3603			remote_config.err_pos += retval;
3604	}
3605
3606	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3607	ctl_flushpkt(0);
3608
3609	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3610
3611	if (remote_config.no_errors > 0)
3612		msyslog(LOG_NOTICE, "%d error in %s config",
3613			remote_config.no_errors,
3614			stoa(&rbufp->recv_srcadr));
3615}
3616
3617
3618/*
3619 * derive_nonce - generate client-address-specific nonce value
3620 *		  associated with a given timestamp.
3621 */
3622static u_int32 derive_nonce(
3623	sockaddr_u *	addr,
3624	u_int32		ts_i,
3625	u_int32		ts_f
3626	)
3627{
3628	static u_int32	salt[4];
3629	static u_long	last_salt_update;
3630	union d_tag {
3631		u_char	digest[EVP_MAX_MD_SIZE];
3632		u_int32 extract;
3633	}		d;
3634	EVP_MD_CTX	*ctx;
3635	u_int		len;
3636
3637	while (!salt[0] || current_time - last_salt_update >= 3600) {
3638		salt[0] = ntp_random();
3639		salt[1] = ntp_random();
3640		salt[2] = ntp_random();
3641		salt[3] = ntp_random();
3642		last_salt_update = current_time;
3643	}
3644
3645	ctx = EVP_MD_CTX_new();
3646#   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3647	/* [Bug 3457] set flags and don't kill them again */
3648	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3649	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3650#   else
3651	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3652#   endif
3653	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3654	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3655	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3656	if (IS_IPV4(addr))
3657		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3658			         sizeof(SOCK_ADDR4(addr)));
3659	else
3660		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3661			         sizeof(SOCK_ADDR6(addr)));
3662	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3663	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3664	EVP_DigestFinal(ctx, d.digest, &len);
3665	EVP_MD_CTX_free(ctx);
3666
3667	return d.extract;
3668}
3669
3670
3671/*
3672 * generate_nonce - generate client-address-specific nonce string.
3673 */
3674static void generate_nonce(
3675	struct recvbuf *	rbufp,
3676	char *			nonce,
3677	size_t			nonce_octets
3678	)
3679{
3680	u_int32 derived;
3681
3682	derived = derive_nonce(&rbufp->recv_srcadr,
3683			       rbufp->recv_time.l_ui,
3684			       rbufp->recv_time.l_uf);
3685	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3686		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3687}
3688
3689
3690/*
3691 * validate_nonce - validate client-address-specific nonce string.
3692 *
3693 * Returns TRUE if the local calculation of the nonce matches the
3694 * client-provided value and the timestamp is recent enough.
3695 */
3696static int validate_nonce(
3697	const char *		pnonce,
3698	struct recvbuf *	rbufp
3699	)
3700{
3701	u_int	ts_i;
3702	u_int	ts_f;
3703	l_fp	ts;
3704	l_fp	now_delta;
3705	u_int	supposed;
3706	u_int	derived;
3707
3708	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3709		return FALSE;
3710
3711	ts.l_ui = (u_int32)ts_i;
3712	ts.l_uf = (u_int32)ts_f;
3713	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3714	get_systime(&now_delta);
3715	L_SUB(&now_delta, &ts);
3716
3717	return (supposed == derived && now_delta.l_ui < 16);
3718}
3719
3720
3721/*
3722 * send_random_tag_value - send a randomly-generated three character
3723 *			   tag prefix, a '.', an index, a '=' and a
3724 *			   random integer value.
3725 *
3726 * To try to force clients to ignore unrecognized tags in mrulist,
3727 * reslist, and ifstats responses, the first and last rows are spiced
3728 * with randomly-generated tag names with correct .# index.  Make it
3729 * three characters knowing that none of the currently-used subscripted
3730 * tags have that length, avoiding the need to test for
3731 * tag collision.
3732 */
3733static void
3734send_random_tag_value(
3735	int	indx
3736	)
3737{
3738	int	noise;
3739	char	buf[32];
3740
3741	noise = rand() ^ (rand() << 16);
3742	buf[0] = 'a' + noise % 26;
3743	noise >>= 5;
3744	buf[1] = 'a' + noise % 26;
3745	noise >>= 5;
3746	buf[2] = 'a' + noise % 26;
3747	noise >>= 5;
3748	buf[3] = '.';
3749	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3750	ctl_putuint(buf, noise);
3751}
3752
3753
3754/*
3755 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3756 *
3757 * To keep clients honest about not depending on the order of values,
3758 * and thereby avoid being locked into ugly workarounds to maintain
3759 * backward compatibility later as new fields are added to the response,
3760 * the order is random.
3761 */
3762static void
3763send_mru_entry(
3764	mon_entry *	mon,
3765	int		count
3766	)
3767{
3768	const char first_fmt[] =	"first.%d";
3769	const char ct_fmt[] =		"ct.%d";
3770	const char mv_fmt[] =		"mv.%d";
3771	const char rs_fmt[] =		"rs.%d";
3772	char	tag[32];
3773	u_char	sent[6]; /* 6 tag=value pairs */
3774	u_int32 noise;
3775	u_int	which;
3776	u_int	remaining;
3777	const char * pch;
3778
3779	remaining = COUNTOF(sent);
3780	ZERO(sent);
3781	noise = (u_int32)(rand() ^ (rand() << 16));
3782	while (remaining > 0) {
3783		which = (noise & 7) % COUNTOF(sent);
3784		noise >>= 3;
3785		while (sent[which])
3786			which = (which + 1) % COUNTOF(sent);
3787
3788		switch (which) {
3789
3790		case 0:
3791			snprintf(tag, sizeof(tag), addr_fmt, count);
3792			pch = sptoa(&mon->rmtadr);
3793			ctl_putunqstr(tag, pch, strlen(pch));
3794			break;
3795
3796		case 1:
3797			snprintf(tag, sizeof(tag), last_fmt, count);
3798			ctl_putts(tag, &mon->last);
3799			break;
3800
3801		case 2:
3802			snprintf(tag, sizeof(tag), first_fmt, count);
3803			ctl_putts(tag, &mon->first);
3804			break;
3805
3806		case 3:
3807			snprintf(tag, sizeof(tag), ct_fmt, count);
3808			ctl_putint(tag, mon->count);
3809			break;
3810
3811		case 4:
3812			snprintf(tag, sizeof(tag), mv_fmt, count);
3813			ctl_putuint(tag, mon->vn_mode);
3814			break;
3815
3816		case 5:
3817			snprintf(tag, sizeof(tag), rs_fmt, count);
3818			ctl_puthex(tag, mon->flags);
3819			break;
3820		}
3821		sent[which] = TRUE;
3822		remaining--;
3823	}
3824}
3825
3826
3827/*
3828 * read_mru_list - supports ntpq's mrulist command.
3829 *
3830 * The challenge here is to match ntpdc's monlist functionality without
3831 * being limited to hundreds of entries returned total, and without
3832 * requiring state on the server.  If state were required, ntpq's
3833 * mrulist command would require authentication.
3834 *
3835 * The approach was suggested by Ry Jones.  A finite and variable number
3836 * of entries are retrieved per request, to avoid having responses with
3837 * such large numbers of packets that socket buffers are overflowed and
3838 * packets lost.  The entries are retrieved oldest-first, taking into
3839 * account that the MRU list will be changing between each request.  We
3840 * can expect to see duplicate entries for addresses updated in the MRU
3841 * list during the fetch operation.  In the end, the client can assemble
3842 * a close approximation of the MRU list at the point in time the last
3843 * response was sent by ntpd.  The only difference is it may be longer,
3844 * containing some number of oldest entries which have since been
3845 * reclaimed.  If necessary, the protocol could be extended to zap those
3846 * from the client snapshot at the end, but so far that doesn't seem
3847 * useful.
3848 *
3849 * To accomodate the changing MRU list, the starting point for requests
3850 * after the first request is supplied as a series of last seen
3851 * timestamps and associated addresses, the newest ones the client has
3852 * received.  As long as at least one of those entries hasn't been
3853 * bumped to the head of the MRU list, ntpd can pick up at that point.
3854 * Otherwise, the request is failed and it is up to ntpq to back up and
3855 * provide the next newest entry's timestamps and addresses, conceivably
3856 * backing up all the way to the starting point.
3857 *
3858 * input parameters:
3859 *	nonce=		Regurgitated nonce retrieved by the client
3860 *			previously using CTL_OP_REQ_NONCE, demonstrating
3861 *			ability to receive traffic sent to its address.
3862 *	frags=		Limit on datagrams (fragments) in response.  Used
3863 *			by newer ntpq versions instead of limit= when
3864 *			retrieving multiple entries.
3865 *	limit=		Limit on MRU entries returned.  One of frags= or
3866 *			limit= must be provided.
3867 *			limit=1 is a special case:  Instead of fetching
3868 *			beginning with the supplied starting point's
3869 *			newer neighbor, fetch the supplied entry, and
3870 *			in that case the #.last timestamp can be zero.
3871 *			This enables fetching a single entry by IP
3872 *			address.  When limit is not one and frags= is
3873 *			provided, the fragment limit controls.
3874 *	mincount=	(decimal) Return entries with count >= mincount.
3875 *	laddr=		Return entries associated with the server's IP
3876 *			address given.  No port specification is needed,
3877 *			and any supplied is ignored.
3878 *	resall=		0x-prefixed hex restrict bits which must all be
3879 *			lit for an MRU entry to be included.
3880 *			Has precedence over any resany=.
3881 *	resany=		0x-prefixed hex restrict bits, at least one of
3882 *			which must be list for an MRU entry to be
3883 *			included.
3884 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3885 *			which client previously received.
3886 *	addr.0=		text of newest entry's IP address and port,
3887 *			IPv6 addresses in bracketed form: [::]:123
3888 *	last.1=		timestamp of 2nd newest entry client has.
3889 *	addr.1=		address of 2nd newest entry.
3890 *	[...]
3891 *
3892 * ntpq provides as many last/addr pairs as will fit in a single request
3893 * packet, except for the first request in a MRU fetch operation.
3894 *
3895 * The response begins with a new nonce value to be used for any
3896 * followup request.  Following the nonce is the next newer entry than
3897 * referred to by last.0 and addr.0, if the "0" entry has not been
3898 * bumped to the front.  If it has, the first entry returned will be the
3899 * next entry newer than referred to by last.1 and addr.1, and so on.
3900 * If none of the referenced entries remain unchanged, the request fails
3901 * and ntpq backs up to the next earlier set of entries to resync.
3902 *
3903 * Except for the first response, the response begins with confirmation
3904 * of the entry that precedes the first additional entry provided:
3905 *
3906 *	last.older=	hex l_fp timestamp matching one of the input
3907 *			.last timestamps, which entry now precedes the
3908 *			response 0. entry in the MRU list.
3909 *	addr.older=	text of address corresponding to older.last.
3910 *
3911 * And in any case, a successful response contains sets of values
3912 * comprising entries, with the oldest numbered 0 and incrementing from
3913 * there:
3914 *
3915 *	addr.#		text of IPv4 or IPv6 address and port
3916 *	last.#		hex l_fp timestamp of last receipt
3917 *	first.#		hex l_fp timestamp of first receipt
3918 *	ct.#		count of packets received
3919 *	mv.#		mode and version
3920 *	rs.#		restriction mask (RES_* bits)
3921 *
3922 * Note the code currently assumes there are no valid three letter
3923 * tags sent with each row, and needs to be adjusted if that changes.
3924 *
3925 * The client should accept the values in any order, and ignore .#
3926 * values which it does not understand, to allow a smooth path to
3927 * future changes without requiring a new opcode.  Clients can rely
3928 * on all *.0 values preceding any *.1 values, that is all values for
3929 * a given index number are together in the response.
3930 *
3931 * The end of the response list is noted with one or two tag=value
3932 * pairs.  Unconditionally:
3933 *
3934 *	now=		0x-prefixed l_fp timestamp at the server marking
3935 *			the end of the operation.
3936 *
3937 * If any entries were returned, now= is followed by:
3938 *
3939 *	last.newest=	hex l_fp identical to last.# of the prior
3940 *			entry.
3941 */
3942static void read_mru_list(
3943	struct recvbuf *rbufp,
3944	int restrict_mask
3945	)
3946{
3947	static const char	nulltxt[1] = 		{ '\0' };
3948	static const char	nonce_text[] =		"nonce";
3949	static const char	frags_text[] =		"frags";
3950	static const char	limit_text[] =		"limit";
3951	static const char	mincount_text[] =	"mincount";
3952	static const char	resall_text[] =		"resall";
3953	static const char	resany_text[] =		"resany";
3954	static const char	maxlstint_text[] =	"maxlstint";
3955	static const char	laddr_text[] =		"laddr";
3956	static const char	resaxx_fmt[] =		"0x%hx";
3957
3958	u_int			limit;
3959	u_short			frags;
3960	u_short			resall;
3961	u_short			resany;
3962	int			mincount;
3963	u_int			maxlstint;
3964	sockaddr_u		laddr;
3965	struct interface *	lcladr;
3966	u_int			count;
3967	u_int			ui;
3968	u_int			uf;
3969	l_fp			last[16];
3970	sockaddr_u		addr[COUNTOF(last)];
3971	char			buf[128];
3972	struct ctl_var *	in_parms;
3973	const struct ctl_var *	v;
3974	const char *		val;
3975	const char *		pch;
3976	char *			pnonce;
3977	int			nonce_valid;
3978	size_t			i;
3979	int			priors;
3980	u_short			hash;
3981	mon_entry *		mon;
3982	mon_entry *		prior_mon;
3983	l_fp			now;
3984
3985	if (RES_NOMRULIST & restrict_mask) {
3986		ctl_error(CERR_PERMISSION);
3987		NLOG(NLOG_SYSINFO)
3988			msyslog(LOG_NOTICE,
3989				"mrulist from %s rejected due to nomrulist restriction",
3990				stoa(&rbufp->recv_srcadr));
3991		sys_restricted++;
3992		return;
3993	}
3994	/*
3995	 * fill in_parms var list with all possible input parameters.
3996	 */
3997	in_parms = NULL;
3998	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3999	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4000	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4001	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4002	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4003	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4004	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4005	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4006	for (i = 0; i < COUNTOF(last); i++) {
4007		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4008		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4009		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4010		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4011	}
4012
4013	/* decode input parms */
4014	pnonce = NULL;
4015	frags = 0;
4016	limit = 0;
4017	mincount = 0;
4018	resall = 0;
4019	resany = 0;
4020	maxlstint = 0;
4021	lcladr = NULL;
4022	priors = 0;
4023	ZERO(last);
4024	ZERO(addr);
4025
4026	/* have to go through '(void*)' to drop 'const' property from pointer.
4027	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4028	 */
4029	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4030	       !(EOV & v->flags)) {
4031		int si;
4032
4033		if (NULL == val)
4034			val = nulltxt;
4035
4036		if (!strcmp(nonce_text, v->text)) {
4037			free(pnonce);
4038			pnonce = (*val) ? estrdup(val) : NULL;
4039		} else if (!strcmp(frags_text, v->text)) {
4040			if (1 != sscanf(val, "%hu", &frags))
4041				goto blooper;
4042		} else if (!strcmp(limit_text, v->text)) {
4043			if (1 != sscanf(val, "%u", &limit))
4044				goto blooper;
4045		} else if (!strcmp(mincount_text, v->text)) {
4046			if (1 != sscanf(val, "%d", &mincount))
4047				goto blooper;
4048			if (mincount < 0)
4049				mincount = 0;
4050		} else if (!strcmp(resall_text, v->text)) {
4051			if (1 != sscanf(val, resaxx_fmt, &resall))
4052				goto blooper;
4053		} else if (!strcmp(resany_text, v->text)) {
4054			if (1 != sscanf(val, resaxx_fmt, &resany))
4055				goto blooper;
4056		} else if (!strcmp(maxlstint_text, v->text)) {
4057			if (1 != sscanf(val, "%u", &maxlstint))
4058				goto blooper;
4059		} else if (!strcmp(laddr_text, v->text)) {
4060			if (!decodenetnum(val, &laddr))
4061				goto blooper;
4062			lcladr = getinterface(&laddr, 0);
4063		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4064			   (size_t)si < COUNTOF(last)) {
4065			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4066				goto blooper;
4067			last[si].l_ui = ui;
4068			last[si].l_uf = uf;
4069			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4070				priors++;
4071		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4072			   (size_t)si < COUNTOF(addr)) {
4073			if (!decodenetnum(val, &addr[si]))
4074				goto blooper;
4075			if (last[si].l_ui && last[si].l_uf && si == priors)
4076				priors++;
4077		} else {
4078			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4079				    v->text));
4080			continue;
4081
4082		blooper:
4083			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4084				    v->text, val));
4085			free(pnonce);
4086			pnonce = NULL;
4087			break;
4088		}
4089	}
4090	free_varlist(in_parms);
4091	in_parms = NULL;
4092
4093	/* return no responses until the nonce is validated */
4094	if (NULL == pnonce)
4095		return;
4096
4097	nonce_valid = validate_nonce(pnonce, rbufp);
4098	free(pnonce);
4099	if (!nonce_valid)
4100		return;
4101
4102	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4103	    frags > MRU_FRAGS_LIMIT) {
4104		ctl_error(CERR_BADVALUE);
4105		return;
4106	}
4107
4108	/*
4109	 * If either frags or limit is not given, use the max.
4110	 */
4111	if (0 != frags && 0 == limit)
4112		limit = UINT_MAX;
4113	else if (0 != limit && 0 == frags)
4114		frags = MRU_FRAGS_LIMIT;
4115
4116	/*
4117	 * Find the starting point if one was provided.
4118	 */
4119	mon = NULL;
4120	for (i = 0; i < (size_t)priors; i++) {
4121		hash = MON_HASH(&addr[i]);
4122		for (mon = mon_hash[hash];
4123		     mon != NULL;
4124		     mon = mon->hash_next)
4125			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4126				break;
4127		if (mon != NULL) {
4128			if (L_ISEQU(&mon->last, &last[i]))
4129				break;
4130			mon = NULL;
4131		}
4132	}
4133
4134	/* If a starting point was provided... */
4135	if (priors) {
4136		/* and none could be found unmodified... */
4137		if (NULL == mon) {
4138			/* tell ntpq to try again with older entries */
4139			ctl_error(CERR_UNKNOWNVAR);
4140			return;
4141		}
4142		/* confirm the prior entry used as starting point */
4143		ctl_putts("last.older", &mon->last);
4144		pch = sptoa(&mon->rmtadr);
4145		ctl_putunqstr("addr.older", pch, strlen(pch));
4146
4147		/*
4148		 * Move on to the first entry the client doesn't have,
4149		 * except in the special case of a limit of one.  In
4150		 * that case return the starting point entry.
4151		 */
4152		if (limit > 1)
4153			mon = PREV_DLIST(mon_mru_list, mon, mru);
4154	} else {	/* start with the oldest */
4155		mon = TAIL_DLIST(mon_mru_list, mru);
4156	}
4157
4158	/*
4159	 * send up to limit= entries in up to frags= datagrams
4160	 */
4161	get_systime(&now);
4162	generate_nonce(rbufp, buf, sizeof(buf));
4163	ctl_putunqstr("nonce", buf, strlen(buf));
4164	prior_mon = NULL;
4165	for (count = 0;
4166	     mon != NULL && res_frags < frags && count < limit;
4167	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4168
4169		if (mon->count < mincount)
4170			continue;
4171		if (resall && resall != (resall & mon->flags))
4172			continue;
4173		if (resany && !(resany & mon->flags))
4174			continue;
4175		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4176		    maxlstint)
4177			continue;
4178		if (lcladr != NULL && mon->lcladr != lcladr)
4179			continue;
4180
4181		send_mru_entry(mon, count);
4182		if (!count)
4183			send_random_tag_value(0);
4184		count++;
4185		prior_mon = mon;
4186	}
4187
4188	/*
4189	 * If this batch completes the MRU list, say so explicitly with
4190	 * a now= l_fp timestamp.
4191	 */
4192	if (NULL == mon) {
4193		if (count > 1)
4194			send_random_tag_value(count - 1);
4195		ctl_putts("now", &now);
4196		/* if any entries were returned confirm the last */
4197		if (prior_mon != NULL)
4198			ctl_putts("last.newest", &prior_mon->last);
4199	}
4200	ctl_flushpkt(0);
4201}
4202
4203
4204/*
4205 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4206 *
4207 * To keep clients honest about not depending on the order of values,
4208 * and thereby avoid being locked into ugly workarounds to maintain
4209 * backward compatibility later as new fields are added to the response,
4210 * the order is random.
4211 */
4212static void
4213send_ifstats_entry(
4214	endpt *	la,
4215	u_int	ifnum
4216	)
4217{
4218	const char addr_fmtu[] =	"addr.%u";
4219	const char bcast_fmt[] =	"bcast.%u";
4220	const char en_fmt[] =		"en.%u";	/* enabled */
4221	const char name_fmt[] =		"name.%u";
4222	const char flags_fmt[] =	"flags.%u";
4223	const char tl_fmt[] =		"tl.%u";	/* ttl */
4224	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4225	const char rx_fmt[] =		"rx.%u";
4226	const char tx_fmt[] =		"tx.%u";
4227	const char txerr_fmt[] =	"txerr.%u";
4228	const char pc_fmt[] =		"pc.%u";	/* peer count */
4229	const char up_fmt[] =		"up.%u";	/* uptime */
4230	char	tag[32];
4231	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4232	int	noisebits;
4233	u_int32 noise;
4234	u_int	which;
4235	u_int	remaining;
4236	const char *pch;
4237
4238	remaining = COUNTOF(sent);
4239	ZERO(sent);
4240	noise = 0;
4241	noisebits = 0;
4242	while (remaining > 0) {
4243		if (noisebits < 4) {
4244			noise = rand() ^ (rand() << 16);
4245			noisebits = 31;
4246		}
4247		which = (noise & 0xf) % COUNTOF(sent);
4248		noise >>= 4;
4249		noisebits -= 4;
4250
4251		while (sent[which])
4252			which = (which + 1) % COUNTOF(sent);
4253
4254		switch (which) {
4255
4256		case 0:
4257			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4258			pch = sptoa(&la->sin);
4259			ctl_putunqstr(tag, pch, strlen(pch));
4260			break;
4261
4262		case 1:
4263			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4264			if (INT_BCASTOPEN & la->flags)
4265				pch = sptoa(&la->bcast);
4266			else
4267				pch = "";
4268			ctl_putunqstr(tag, pch, strlen(pch));
4269			break;
4270
4271		case 2:
4272			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4273			ctl_putint(tag, !la->ignore_packets);
4274			break;
4275
4276		case 3:
4277			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4278			ctl_putstr(tag, la->name, strlen(la->name));
4279			break;
4280
4281		case 4:
4282			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4283			ctl_puthex(tag, (u_int)la->flags);
4284			break;
4285
4286		case 5:
4287			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4288			ctl_putint(tag, la->last_ttl);
4289			break;
4290
4291		case 6:
4292			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4293			ctl_putint(tag, la->num_mcast);
4294			break;
4295
4296		case 7:
4297			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4298			ctl_putint(tag, la->received);
4299			break;
4300
4301		case 8:
4302			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4303			ctl_putint(tag, la->sent);
4304			break;
4305
4306		case 9:
4307			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4308			ctl_putint(tag, la->notsent);
4309			break;
4310
4311		case 10:
4312			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4313			ctl_putuint(tag, la->peercnt);
4314			break;
4315
4316		case 11:
4317			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4318			ctl_putuint(tag, current_time - la->starttime);
4319			break;
4320		}
4321		sent[which] = TRUE;
4322		remaining--;
4323	}
4324	send_random_tag_value((int)ifnum);
4325}
4326
4327
4328/*
4329 * read_ifstats - send statistics for each local address, exposed by
4330 *		  ntpq -c ifstats
4331 */
4332static void
4333read_ifstats(
4334	struct recvbuf *	rbufp
4335	)
4336{
4337	u_int	ifidx;
4338	endpt *	la;
4339
4340	/*
4341	 * loop over [0..sys_ifnum] searching ep_list for each
4342	 * ifnum in turn.
4343	 */
4344	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4345		for (la = ep_list; la != NULL; la = la->elink)
4346			if (ifidx == la->ifnum)
4347				break;
4348		if (NULL == la)
4349			continue;
4350		/* return stats for one local address */
4351		send_ifstats_entry(la, ifidx);
4352	}
4353	ctl_flushpkt(0);
4354}
4355
4356static void
4357sockaddrs_from_restrict_u(
4358	sockaddr_u *	psaA,
4359	sockaddr_u *	psaM,
4360	restrict_u *	pres,
4361	int		ipv6
4362	)
4363{
4364	ZERO(*psaA);
4365	ZERO(*psaM);
4366	if (!ipv6) {
4367		psaA->sa.sa_family = AF_INET;
4368		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4369		psaM->sa.sa_family = AF_INET;
4370		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4371	} else {
4372		psaA->sa.sa_family = AF_INET6;
4373		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4374		       sizeof(psaA->sa6.sin6_addr));
4375		psaM->sa.sa_family = AF_INET6;
4376		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4377		       sizeof(psaA->sa6.sin6_addr));
4378	}
4379}
4380
4381
4382/*
4383 * Send a restrict entry in response to a "ntpq -c reslist" request.
4384 *
4385 * To keep clients honest about not depending on the order of values,
4386 * and thereby avoid being locked into ugly workarounds to maintain
4387 * backward compatibility later as new fields are added to the response,
4388 * the order is random.
4389 */
4390static void
4391send_restrict_entry(
4392	restrict_u *	pres,
4393	int		ipv6,
4394	u_int		idx
4395	)
4396{
4397	const char addr_fmtu[] =	"addr.%u";
4398	const char mask_fmtu[] =	"mask.%u";
4399	const char hits_fmt[] =		"hits.%u";
4400	const char flags_fmt[] =	"flags.%u";
4401	char		tag[32];
4402	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4403	int		noisebits;
4404	u_int32		noise;
4405	u_int		which;
4406	u_int		remaining;
4407	sockaddr_u	addr;
4408	sockaddr_u	mask;
4409	const char *	pch;
4410	char *		buf;
4411	const char *	match_str;
4412	const char *	access_str;
4413
4414	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4415	remaining = COUNTOF(sent);
4416	ZERO(sent);
4417	noise = 0;
4418	noisebits = 0;
4419	while (remaining > 0) {
4420		if (noisebits < 2) {
4421			noise = rand() ^ (rand() << 16);
4422			noisebits = 31;
4423		}
4424		which = (noise & 0x3) % COUNTOF(sent);
4425		noise >>= 2;
4426		noisebits -= 2;
4427
4428		while (sent[which])
4429			which = (which + 1) % COUNTOF(sent);
4430
4431		/* XXX: Numbers?  Really? */
4432		switch (which) {
4433
4434		case 0:
4435			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4436			pch = stoa(&addr);
4437			ctl_putunqstr(tag, pch, strlen(pch));
4438			break;
4439
4440		case 1:
4441			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4442			pch = stoa(&mask);
4443			ctl_putunqstr(tag, pch, strlen(pch));
4444			break;
4445
4446		case 2:
4447			snprintf(tag, sizeof(tag), hits_fmt, idx);
4448			ctl_putuint(tag, pres->count);
4449			break;
4450
4451		case 3:
4452			snprintf(tag, sizeof(tag), flags_fmt, idx);
4453			match_str = res_match_flags(pres->mflags);
4454			access_str = res_access_flags(pres->rflags);
4455			if ('\0' == match_str[0]) {
4456				pch = access_str;
4457			} else {
4458				LIB_GETBUF(buf);
4459				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4460					 match_str, access_str);
4461				pch = buf;
4462			}
4463			ctl_putunqstr(tag, pch, strlen(pch));
4464			break;
4465		}
4466		sent[which] = TRUE;
4467		remaining--;
4468	}
4469	send_random_tag_value((int)idx);
4470}
4471
4472
4473static void
4474send_restrict_list(
4475	restrict_u *	pres,
4476	int		ipv6,
4477	u_int *		pidx
4478	)
4479{
4480	for ( ; pres != NULL; pres = pres->link) {
4481		send_restrict_entry(pres, ipv6, *pidx);
4482		(*pidx)++;
4483	}
4484}
4485
4486
4487/*
4488 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4489 */
4490static void
4491read_addr_restrictions(
4492	struct recvbuf *	rbufp
4493)
4494{
4495	u_int idx;
4496
4497	idx = 0;
4498	send_restrict_list(restrictlist4, FALSE, &idx);
4499	send_restrict_list(restrictlist6, TRUE, &idx);
4500	ctl_flushpkt(0);
4501}
4502
4503
4504/*
4505 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4506 */
4507static void
4508read_ordlist(
4509	struct recvbuf *	rbufp,
4510	int			restrict_mask
4511	)
4512{
4513	const char ifstats_s[] = "ifstats";
4514	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4515	const char addr_rst_s[] = "addr_restrictions";
4516	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4517	struct ntp_control *	cpkt;
4518	u_short			qdata_octets;
4519
4520	/*
4521	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4522	 * used only for ntpq -c ifstats.  With the addition of reslist
4523	 * the same opcode was generalized to retrieve ordered lists
4524	 * which require authentication.  The request data is empty or
4525	 * contains "ifstats" (not null terminated) to retrieve local
4526	 * addresses and associated stats.  It is "addr_restrictions"
4527	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4528	 * which are access control lists.  Other request data return
4529	 * CERR_UNKNOWNVAR.
4530	 */
4531	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4532	qdata_octets = ntohs(cpkt->count);
4533	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4534	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4535		read_ifstats(rbufp);
4536		return;
4537	}
4538	if (a_r_chars == qdata_octets &&
4539	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4540		read_addr_restrictions(rbufp);
4541		return;
4542	}
4543	ctl_error(CERR_UNKNOWNVAR);
4544}
4545
4546
4547/*
4548 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4549 */
4550static void req_nonce(
4551	struct recvbuf *	rbufp,
4552	int			restrict_mask
4553	)
4554{
4555	char	buf[64];
4556
4557	generate_nonce(rbufp, buf, sizeof(buf));
4558	ctl_putunqstr("nonce", buf, strlen(buf));
4559	ctl_flushpkt(0);
4560}
4561
4562
4563/*
4564 * read_clockstatus - return clock radio status
4565 */
4566/*ARGSUSED*/
4567static void
4568read_clockstatus(
4569	struct recvbuf *rbufp,
4570	int restrict_mask
4571	)
4572{
4573#ifndef REFCLOCK
4574	/*
4575	 * If no refclock support, no data to return
4576	 */
4577	ctl_error(CERR_BADASSOC);
4578#else
4579	const struct ctl_var *	v;
4580	int			i;
4581	struct peer *		peer;
4582	char *			valuep;
4583	u_char *		wants;
4584	size_t			wants_alloc;
4585	int			gotvar;
4586	const u_char *		cc;
4587	struct ctl_var *	kv;
4588	struct refclockstat	cs;
4589
4590	if (res_associd != 0) {
4591		peer = findpeerbyassoc(res_associd);
4592	} else {
4593		/*
4594		 * Find a clock for this jerk.	If the system peer
4595		 * is a clock use it, else search peer_list for one.
4596		 */
4597		if (sys_peer != NULL && (FLAG_REFCLOCK &
4598		    sys_peer->flags))
4599			peer = sys_peer;
4600		else
4601			for (peer = peer_list;
4602			     peer != NULL;
4603			     peer = peer->p_link)
4604				if (FLAG_REFCLOCK & peer->flags)
4605					break;
4606	}
4607	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4608		ctl_error(CERR_BADASSOC);
4609		return;
4610	}
4611	/*
4612	 * If we got here we have a peer which is a clock. Get his
4613	 * status.
4614	 */
4615	cs.kv_list = NULL;
4616	refclock_control(&peer->srcadr, NULL, &cs);
4617	kv = cs.kv_list;
4618	/*
4619	 * Look for variables in the packet.
4620	 */
4621	rpkt.status = htons(ctlclkstatus(&cs));
4622	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4623	wants = emalloc_zero(wants_alloc);
4624	gotvar = FALSE;
4625	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4626		if (!(EOV & v->flags)) {
4627			wants[v->code] = TRUE;
4628			gotvar = TRUE;
4629		} else {
4630			v = ctl_getitem(kv, &valuep);
4631			if (NULL == v) {
4632				ctl_error(CERR_BADVALUE);
4633				free(wants);
4634				free_varlist(cs.kv_list);
4635				return;
4636			}
4637			if (EOV & v->flags) {
4638				ctl_error(CERR_UNKNOWNVAR);
4639				free(wants);
4640				free_varlist(cs.kv_list);
4641				return;
4642			}
4643			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4644			gotvar = TRUE;
4645		}
4646	}
4647
4648	if (gotvar) {
4649		for (i = 1; i <= CC_MAXCODE; i++)
4650			if (wants[i])
4651				ctl_putclock(i, &cs, TRUE);
4652		if (kv != NULL)
4653			for (i = 0; !(EOV & kv[i].flags); i++)
4654				if (wants[i + CC_MAXCODE + 1])
4655					ctl_putdata(kv[i].text,
4656						    strlen(kv[i].text),
4657						    FALSE);
4658	} else {
4659		for (cc = def_clock_var; *cc != 0; cc++)
4660			ctl_putclock((int)*cc, &cs, FALSE);
4661		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4662			if (DEF & kv->flags)
4663				ctl_putdata(kv->text, strlen(kv->text),
4664					    FALSE);
4665	}
4666
4667	free(wants);
4668	free_varlist(cs.kv_list);
4669
4670	ctl_flushpkt(0);
4671#endif
4672}
4673
4674
4675/*
4676 * write_clockstatus - we don't do this
4677 */
4678/*ARGSUSED*/
4679static void
4680write_clockstatus(
4681	struct recvbuf *rbufp,
4682	int restrict_mask
4683	)
4684{
4685	ctl_error(CERR_PERMISSION);
4686}
4687
4688/*
4689 * Trap support from here on down. We send async trap messages when the
4690 * upper levels report trouble. Traps can by set either by control
4691 * messages or by configuration.
4692 */
4693/*
4694 * set_trap - set a trap in response to a control message
4695 */
4696static void
4697set_trap(
4698	struct recvbuf *rbufp,
4699	int restrict_mask
4700	)
4701{
4702	int traptype;
4703
4704	/*
4705	 * See if this guy is allowed
4706	 */
4707	if (restrict_mask & RES_NOTRAP) {
4708		ctl_error(CERR_PERMISSION);
4709		return;
4710	}
4711
4712	/*
4713	 * Determine his allowed trap type.
4714	 */
4715	traptype = TRAP_TYPE_PRIO;
4716	if (restrict_mask & RES_LPTRAP)
4717		traptype = TRAP_TYPE_NONPRIO;
4718
4719	/*
4720	 * Call ctlsettrap() to do the work.  Return
4721	 * an error if it can't assign the trap.
4722	 */
4723	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4724			(int)res_version))
4725		ctl_error(CERR_NORESOURCE);
4726	ctl_flushpkt(0);
4727}
4728
4729
4730/*
4731 * unset_trap - unset a trap in response to a control message
4732 */
4733static void
4734unset_trap(
4735	struct recvbuf *rbufp,
4736	int restrict_mask
4737	)
4738{
4739	int traptype;
4740
4741	/*
4742	 * We don't prevent anyone from removing his own trap unless the
4743	 * trap is configured. Note we also must be aware of the
4744	 * possibility that restriction flags were changed since this
4745	 * guy last set his trap. Set the trap type based on this.
4746	 */
4747	traptype = TRAP_TYPE_PRIO;
4748	if (restrict_mask & RES_LPTRAP)
4749		traptype = TRAP_TYPE_NONPRIO;
4750
4751	/*
4752	 * Call ctlclrtrap() to clear this out.
4753	 */
4754	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4755		ctl_error(CERR_BADASSOC);
4756	ctl_flushpkt(0);
4757}
4758
4759
4760/*
4761 * ctlsettrap - called to set a trap
4762 */
4763int
4764ctlsettrap(
4765	sockaddr_u *raddr,
4766	struct interface *linter,
4767	int traptype,
4768	int version
4769	)
4770{
4771	size_t n;
4772	struct ctl_trap *tp;
4773	struct ctl_trap *tptouse;
4774
4775	/*
4776	 * See if we can find this trap.  If so, we only need update
4777	 * the flags and the time.
4778	 */
4779	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4780		switch (traptype) {
4781
4782		case TRAP_TYPE_CONFIG:
4783			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4784			break;
4785
4786		case TRAP_TYPE_PRIO:
4787			if (tp->tr_flags & TRAP_CONFIGURED)
4788				return (1); /* don't change anything */
4789			tp->tr_flags = TRAP_INUSE;
4790			break;
4791
4792		case TRAP_TYPE_NONPRIO:
4793			if (tp->tr_flags & TRAP_CONFIGURED)
4794				return (1); /* don't change anything */
4795			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4796			break;
4797		}
4798		tp->tr_settime = current_time;
4799		tp->tr_resets++;
4800		return (1);
4801	}
4802
4803	/*
4804	 * First we heard of this guy.	Try to find a trap structure
4805	 * for him to use, clearing out lesser priority guys if we
4806	 * have to. Clear out anyone who's expired while we're at it.
4807	 */
4808	tptouse = NULL;
4809	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4810		tp = &ctl_traps[n];
4811		if ((TRAP_INUSE & tp->tr_flags) &&
4812		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4813		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4814			tp->tr_flags = 0;
4815			num_ctl_traps--;
4816		}
4817		if (!(TRAP_INUSE & tp->tr_flags)) {
4818			tptouse = tp;
4819		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4820			switch (traptype) {
4821
4822			case TRAP_TYPE_CONFIG:
4823				if (tptouse == NULL) {
4824					tptouse = tp;
4825					break;
4826				}
4827				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4828				    !(TRAP_NONPRIO & tp->tr_flags))
4829					break;
4830
4831				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4832				    && (TRAP_NONPRIO & tp->tr_flags)) {
4833					tptouse = tp;
4834					break;
4835				}
4836				if (tptouse->tr_origtime <
4837				    tp->tr_origtime)
4838					tptouse = tp;
4839				break;
4840
4841			case TRAP_TYPE_PRIO:
4842				if ( TRAP_NONPRIO & tp->tr_flags) {
4843					if (tptouse == NULL ||
4844					    ((TRAP_INUSE &
4845					      tptouse->tr_flags) &&
4846					     tptouse->tr_origtime <
4847					     tp->tr_origtime))
4848						tptouse = tp;
4849				}
4850				break;
4851
4852			case TRAP_TYPE_NONPRIO:
4853				break;
4854			}
4855		}
4856	}
4857
4858	/*
4859	 * If we don't have room for him return an error.
4860	 */
4861	if (tptouse == NULL)
4862		return (0);
4863
4864	/*
4865	 * Set up this structure for him.
4866	 */
4867	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4868	tptouse->tr_count = tptouse->tr_resets = 0;
4869	tptouse->tr_sequence = 1;
4870	tptouse->tr_addr = *raddr;
4871	tptouse->tr_localaddr = linter;
4872	tptouse->tr_version = (u_char) version;
4873	tptouse->tr_flags = TRAP_INUSE;
4874	if (traptype == TRAP_TYPE_CONFIG)
4875		tptouse->tr_flags |= TRAP_CONFIGURED;
4876	else if (traptype == TRAP_TYPE_NONPRIO)
4877		tptouse->tr_flags |= TRAP_NONPRIO;
4878	num_ctl_traps++;
4879	return (1);
4880}
4881
4882
4883/*
4884 * ctlclrtrap - called to clear a trap
4885 */
4886int
4887ctlclrtrap(
4888	sockaddr_u *raddr,
4889	struct interface *linter,
4890	int traptype
4891	)
4892{
4893	register struct ctl_trap *tp;
4894
4895	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4896		return (0);
4897
4898	if (tp->tr_flags & TRAP_CONFIGURED
4899	    && traptype != TRAP_TYPE_CONFIG)
4900		return (0);
4901
4902	tp->tr_flags = 0;
4903	num_ctl_traps--;
4904	return (1);
4905}
4906
4907
4908/*
4909 * ctlfindtrap - find a trap given the remote and local addresses
4910 */
4911static struct ctl_trap *
4912ctlfindtrap(
4913	sockaddr_u *raddr,
4914	struct interface *linter
4915	)
4916{
4917	size_t	n;
4918
4919	for (n = 0; n < COUNTOF(ctl_traps); n++)
4920		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4921		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4922		    && (linter == ctl_traps[n].tr_localaddr))
4923			return &ctl_traps[n];
4924
4925	return NULL;
4926}
4927
4928
4929/*
4930 * report_event - report an event to the trappers
4931 */
4932void
4933report_event(
4934	int	err,		/* error code */
4935	struct peer *peer,	/* peer structure pointer */
4936	const char *str		/* protostats string */
4937	)
4938{
4939	char	statstr[NTP_MAXSTRLEN];
4940	int	i;
4941	size_t	len;
4942
4943	/*
4944	 * Report the error to the protostats file, system log and
4945	 * trappers.
4946	 */
4947	if (peer == NULL) {
4948
4949		/*
4950		 * Discard a system report if the number of reports of
4951		 * the same type exceeds the maximum.
4952		 */
4953		if (ctl_sys_last_event != (u_char)err)
4954			ctl_sys_num_events= 0;
4955		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4956			return;
4957
4958		ctl_sys_last_event = (u_char)err;
4959		ctl_sys_num_events++;
4960		snprintf(statstr, sizeof(statstr),
4961		    "0.0.0.0 %04x %02x %s",
4962		    ctlsysstatus(), err, eventstr(err));
4963		if (str != NULL) {
4964			len = strlen(statstr);
4965			snprintf(statstr + len, sizeof(statstr) - len,
4966			    " %s", str);
4967		}
4968		NLOG(NLOG_SYSEVENT)
4969			msyslog(LOG_INFO, "%s", statstr);
4970	} else {
4971
4972		/*
4973		 * Discard a peer report if the number of reports of
4974		 * the same type exceeds the maximum for that peer.
4975		 */
4976		const char *	src;
4977		u_char		errlast;
4978
4979		errlast = (u_char)err & ~PEER_EVENT;
4980		if (peer->last_event != errlast)
4981			peer->num_events = 0;
4982		if (peer->num_events >= CTL_PEER_MAXEVENTS)
4983			return;
4984
4985		peer->last_event = errlast;
4986		peer->num_events++;
4987		if (ISREFCLOCKADR(&peer->srcadr))
4988			src = refnumtoa(&peer->srcadr);
4989		else
4990			src = stoa(&peer->srcadr);
4991
4992		snprintf(statstr, sizeof(statstr),
4993		    "%s %04x %02x %s", src,
4994		    ctlpeerstatus(peer), err, eventstr(err));
4995		if (str != NULL) {
4996			len = strlen(statstr);
4997			snprintf(statstr + len, sizeof(statstr) - len,
4998			    " %s", str);
4999		}
5000		NLOG(NLOG_PEEREVENT)
5001			msyslog(LOG_INFO, "%s", statstr);
5002	}
5003	record_proto_stats(statstr);
5004#if DEBUG
5005	if (debug)
5006		printf("event at %lu %s\n", current_time, statstr);
5007#endif
5008
5009	/*
5010	 * If no trappers, return.
5011	 */
5012	if (num_ctl_traps <= 0)
5013		return;
5014
5015	/* [Bug 3119]
5016	 * Peer Events should be associated with a peer -- hence the
5017	 * name. But there are instances where this function is called
5018	 * *without* a valid peer. This happens e.g. with an unsolicited
5019	 * CryptoNAK, or when a leap second alarm is going off while
5020	 * currently without a system peer.
5021	 *
5022	 * The most sensible approach to this seems to bail out here if
5023	 * this happens. Avoiding to call this function would also
5024	 * bypass the log reporting in the first part of this function,
5025	 * and this is probably not the best of all options.
5026	 *   -*-perlinger@ntp.org-*-
5027	 */
5028	if ((err & PEER_EVENT) && !peer)
5029		return;
5030
5031	/*
5032	 * Set up the outgoing packet variables
5033	 */
5034	res_opcode = CTL_OP_ASYNCMSG;
5035	res_offset = 0;
5036	res_async = TRUE;
5037	res_authenticate = FALSE;
5038	datapt = rpkt.u.data;
5039	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5040	if (!(err & PEER_EVENT)) {
5041		rpkt.associd = 0;
5042		rpkt.status = htons(ctlsysstatus());
5043
5044		/* Include the core system variables and the list. */
5045		for (i = 1; i <= CS_VARLIST; i++)
5046			ctl_putsys(i);
5047	} else if (NULL != peer) { /* paranoia -- skip output */
5048		rpkt.associd = htons(peer->associd);
5049		rpkt.status = htons(ctlpeerstatus(peer));
5050
5051		/* Dump it all. Later, maybe less. */
5052		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5053			ctl_putpeer(i, peer);
5054#	    ifdef REFCLOCK
5055		/*
5056		 * for clock exception events: add clock variables to
5057		 * reflect info on exception
5058		 */
5059		if (err == PEVNT_CLOCK) {
5060			struct refclockstat cs;
5061			struct ctl_var *kv;
5062
5063			cs.kv_list = NULL;
5064			refclock_control(&peer->srcadr, NULL, &cs);
5065
5066			ctl_puthex("refclockstatus",
5067				   ctlclkstatus(&cs));
5068
5069			for (i = 1; i <= CC_MAXCODE; i++)
5070				ctl_putclock(i, &cs, FALSE);
5071			for (kv = cs.kv_list;
5072			     kv != NULL && !(EOV & kv->flags);
5073			     kv++)
5074				if (DEF & kv->flags)
5075					ctl_putdata(kv->text,
5076						    strlen(kv->text),
5077						    FALSE);
5078			free_varlist(cs.kv_list);
5079		}
5080#	    endif /* REFCLOCK */
5081	}
5082
5083	/*
5084	 * We're done, return.
5085	 */
5086	ctl_flushpkt(0);
5087}
5088
5089
5090/*
5091 * mprintf_event - printf-style varargs variant of report_event()
5092 */
5093int
5094mprintf_event(
5095	int		evcode,		/* event code */
5096	struct peer *	p,		/* may be NULL */
5097	const char *	fmt,		/* msnprintf format */
5098	...
5099	)
5100{
5101	va_list	ap;
5102	int	rc;
5103	char	msg[512];
5104
5105	va_start(ap, fmt);
5106	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5107	va_end(ap);
5108	report_event(evcode, p, msg);
5109
5110	return rc;
5111}
5112
5113
5114/*
5115 * ctl_clr_stats - clear stat counters
5116 */
5117void
5118ctl_clr_stats(void)
5119{
5120	ctltimereset = current_time;
5121	numctlreq = 0;
5122	numctlbadpkts = 0;
5123	numctlresponses = 0;
5124	numctlfrags = 0;
5125	numctlerrors = 0;
5126	numctlfrags = 0;
5127	numctltooshort = 0;
5128	numctlinputresp = 0;
5129	numctlinputfrag = 0;
5130	numctlinputerr = 0;
5131	numctlbadoffset = 0;
5132	numctlbadversion = 0;
5133	numctldatatooshort = 0;
5134	numctlbadop = 0;
5135	numasyncmsgs = 0;
5136}
5137
5138static u_short
5139count_var(
5140	const struct ctl_var *k
5141	)
5142{
5143	u_int c;
5144
5145	if (NULL == k)
5146		return 0;
5147
5148	c = 0;
5149	while (!(EOV & (k++)->flags))
5150		c++;
5151
5152	ENSURE(c <= USHRT_MAX);
5153	return (u_short)c;
5154}
5155
5156
5157char *
5158add_var(
5159	struct ctl_var **kv,
5160	u_long size,
5161	u_short def
5162	)
5163{
5164	u_short		c;
5165	struct ctl_var *k;
5166	char *		buf;
5167
5168	c = count_var(*kv);
5169	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5170	k = *kv;
5171	buf = emalloc(size);
5172	k[c].code  = c;
5173	k[c].text  = buf;
5174	k[c].flags = def;
5175	k[c + 1].code  = 0;
5176	k[c + 1].text  = NULL;
5177	k[c + 1].flags = EOV;
5178
5179	return buf;
5180}
5181
5182
5183void
5184set_var(
5185	struct ctl_var **kv,
5186	const char *data,
5187	u_long size,
5188	u_short def
5189	)
5190{
5191	struct ctl_var *k;
5192	const char *s;
5193	const char *t;
5194	char *td;
5195
5196	if (NULL == data || !size)
5197		return;
5198
5199	k = *kv;
5200	if (k != NULL) {
5201		while (!(EOV & k->flags)) {
5202			if (NULL == k->text)	{
5203				td = emalloc(size);
5204				memcpy(td, data, size);
5205				k->text = td;
5206				k->flags = def;
5207				return;
5208			} else {
5209				s = data;
5210				t = k->text;
5211				while (*t != '=' && *s == *t) {
5212					s++;
5213					t++;
5214				}
5215				if (*s == *t && ((*t == '=') || !*t)) {
5216					td = erealloc((void *)(intptr_t)k->text, size);
5217					memcpy(td, data, size);
5218					k->text = td;
5219					k->flags = def;
5220					return;
5221				}
5222			}
5223			k++;
5224		}
5225	}
5226	td = add_var(kv, size, def);
5227	memcpy(td, data, size);
5228}
5229
5230
5231void
5232set_sys_var(
5233	const char *data,
5234	u_long size,
5235	u_short def
5236	)
5237{
5238	set_var(&ext_sys_var, data, size, def);
5239}
5240
5241
5242/*
5243 * get_ext_sys_var() retrieves the value of a user-defined variable or
5244 * NULL if the variable has not been setvar'd.
5245 */
5246const char *
5247get_ext_sys_var(const char *tag)
5248{
5249	struct ctl_var *	v;
5250	size_t			c;
5251	const char *		val;
5252
5253	val = NULL;
5254	c = strlen(tag);
5255	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5256		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5257			if ('=' == v->text[c]) {
5258				val = v->text + c + 1;
5259				break;
5260			} else if ('\0' == v->text[c]) {
5261				val = "";
5262				break;
5263			}
5264		}
5265	}
5266
5267	return val;
5268}
5269
5270
5271void
5272free_varlist(
5273	struct ctl_var *kv
5274	)
5275{
5276	struct ctl_var *k;
5277	if (kv) {
5278		for (k = kv; !(k->flags & EOV); k++)
5279			free((void *)(intptr_t)k->text);
5280		free((void *)kv);
5281	}
5282}
5283