1//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class parses the Schedule.td file and produces an API that can be used
11// to reason about whether an instruction can be added to a packet on a VLIW
12// architecture. The class internally generates a deterministic finite
13// automaton (DFA) that models all possible mappings of machine instructions
14// to functional units as instructions are added to a packet.
15//
16//===----------------------------------------------------------------------===//
17
18#include "CodeGenTarget.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/TableGen/Record.h"
22#include "llvm/TableGen/TableGenBackend.h"
23#include <list>
24#include <map>
25#include <string>
26using namespace llvm;
27
28//
29// class DFAPacketizerEmitter: class that generates and prints out the DFA
30// for resource tracking.
31//
32namespace {
33class DFAPacketizerEmitter {
34private:
35  std::string TargetName;
36  //
37  // allInsnClasses is the set of all possible resources consumed by an
38  // InstrStage.
39  //
40  DenseSet<unsigned> allInsnClasses;
41  RecordKeeper &Records;
42
43public:
44  DFAPacketizerEmitter(RecordKeeper &R);
45
46  //
47  // collectAllInsnClasses: Populate allInsnClasses which is a set of units
48  // used in each stage.
49  //
50  void collectAllInsnClasses(const std::string &Name,
51                             Record *ItinData,
52                             unsigned &NStages,
53                             raw_ostream &OS);
54
55  void run(raw_ostream &OS);
56};
57} // End anonymous namespace.
58
59//
60//
61// State represents the usage of machine resources if the packet contains
62// a set of instruction classes.
63//
64// Specifically, currentState is a set of bit-masks.
65// The nth bit in a bit-mask indicates whether the nth resource is being used
66// by this state. The set of bit-masks in a state represent the different
67// possible outcomes of transitioning to this state.
68// For example: consider a two resource architecture: resource L and resource M
69// with three instruction classes: L, M, and L_or_M.
70// From the initial state (currentState = 0x00), if we add instruction class
71// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
72// represents the possible resource states that can result from adding a L_or_M
73// instruction
74//
75// Another way of thinking about this transition is we are mapping a NDFA with
76// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10].
77//
78// A State instance also contains a collection of transitions from that state:
79// a map from inputs to new states.
80//
81namespace {
82class State {
83 public:
84  static int currentStateNum;
85  int stateNum;
86  bool isInitial;
87  std::set<unsigned> stateInfo;
88  typedef std::map<unsigned, State *> TransitionMap;
89  TransitionMap Transitions;
90
91  State();
92  State(const State &S);
93
94  bool operator<(const State &s) const {
95    return stateNum < s.stateNum;
96  }
97
98  //
99  // canAddInsnClass - Returns true if an instruction of type InsnClass is a
100  // valid transition from this state, i.e., can an instruction of type InsnClass
101  // be added to the packet represented by this state.
102  //
103  // PossibleStates is the set of valid resource states that ensue from valid
104  // transitions.
105  //
106  bool canAddInsnClass(unsigned InsnClass) const;
107  //
108  // AddInsnClass - Return all combinations of resource reservation
109  // which are possible from this state (PossibleStates).
110  //
111  void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates);
112  //
113  // addTransition - Add a transition from this state given the input InsnClass
114  //
115  void addTransition(unsigned InsnClass, State *To);
116  //
117  // hasTransition - Returns true if there is a transition from this state
118  // given the input InsnClass
119  //
120  bool hasTransition(unsigned InsnClass);
121};
122} // End anonymous namespace.
123
124//
125// class DFA: deterministic finite automaton for processor resource tracking.
126//
127namespace {
128class DFA {
129public:
130  DFA();
131  ~DFA();
132
133  // Set of states. Need to keep this sorted to emit the transition table.
134  typedef std::set<State *, less_ptr<State> > StateSet;
135  StateSet states;
136
137  State *currentState;
138
139  //
140  // Modify the DFA.
141  //
142  void initialize();
143  void addState(State *);
144
145  //
146  // writeTable: Print out a table representing the DFA.
147  //
148  void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName);
149};
150} // End anonymous namespace.
151
152
153//
154// Constructors and destructors for State and DFA
155//
156State::State() :
157  stateNum(currentStateNum++), isInitial(false) {}
158
159
160State::State(const State &S) :
161  stateNum(currentStateNum++), isInitial(S.isInitial),
162  stateInfo(S.stateInfo) {}
163
164DFA::DFA(): currentState(NULL) {}
165
166DFA::~DFA() {
167  DeleteContainerPointers(states);
168}
169
170//
171// addTransition - Add a transition from this state given the input InsnClass
172//
173void State::addTransition(unsigned InsnClass, State *To) {
174  assert(!Transitions.count(InsnClass) &&
175      "Cannot have multiple transitions for the same input");
176  Transitions[InsnClass] = To;
177}
178
179//
180// hasTransition - Returns true if there is a transition from this state
181// given the input InsnClass
182//
183bool State::hasTransition(unsigned InsnClass) {
184  return Transitions.count(InsnClass) > 0;
185}
186
187//
188// AddInsnClass - Return all combinations of resource reservation
189// which are possible from this state (PossibleStates).
190//
191void State::AddInsnClass(unsigned InsnClass,
192                            std::set<unsigned> &PossibleStates) {
193  //
194  // Iterate over all resource states in currentState.
195  //
196
197  for (std::set<unsigned>::iterator SI = stateInfo.begin();
198       SI != stateInfo.end(); ++SI) {
199    unsigned thisState = *SI;
200
201    //
202    // Iterate over all possible resources used in InsnClass.
203    // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}.
204    //
205
206    DenseSet<unsigned> VisitedResourceStates;
207    for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
208      if ((0x1 << j) & InsnClass) {
209        //
210        // For each possible resource used in InsnClass, generate the
211        // resource state if that resource was used.
212        //
213        unsigned ResultingResourceState = thisState | (0x1 << j);
214        //
215        // Check if the resulting resource state can be accommodated in this
216        // packet.
217        // We compute ResultingResourceState OR thisState.
218        // If the result of the OR is different than thisState, it implies
219        // that there is at least one resource that can be used to schedule
220        // InsnClass in the current packet.
221        // Insert ResultingResourceState into PossibleStates only if we haven't
222        // processed ResultingResourceState before.
223        //
224        if ((ResultingResourceState != thisState) &&
225            (VisitedResourceStates.count(ResultingResourceState) == 0)) {
226          VisitedResourceStates.insert(ResultingResourceState);
227          PossibleStates.insert(ResultingResourceState);
228        }
229      }
230    }
231  }
232
233}
234
235
236//
237// canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a
238// valid transition from this state i.e., can an instruction of type InsnClass
239// be added to the packet represented by this state.
240//
241bool State::canAddInsnClass(unsigned InsnClass) const {
242  for (std::set<unsigned>::const_iterator SI = stateInfo.begin();
243       SI != stateInfo.end(); ++SI) {
244    if (~*SI & InsnClass)
245      return true;
246  }
247  return false;
248}
249
250
251void DFA::initialize() {
252  assert(currentState && "Missing current state");
253  currentState->isInitial = true;
254}
255
256
257void DFA::addState(State *S) {
258  assert(!states.count(S) && "State already exists");
259  states.insert(S);
260}
261
262
263int State::currentStateNum = 0;
264
265DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R):
266  TargetName(CodeGenTarget(R).getName()),
267  allInsnClasses(), Records(R) {}
268
269
270//
271// writeTableAndAPI - Print out a table representing the DFA and the
272// associated API to create a DFA packetizer.
273//
274// Format:
275// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
276//                           transitions.
277// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
278//                         the ith state.
279//
280//
281void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) {
282  static const std::string SentinelEntry = "{-1, -1}";
283  DFA::StateSet::iterator SI = states.begin();
284  // This table provides a map to the beginning of the transitions for State s
285  // in DFAStateInputTable.
286  std::vector<int> StateEntry(states.size());
287
288  OS << "namespace llvm {\n\n";
289  OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
290
291  // Tracks the total valid transitions encountered so far. It is used
292  // to construct the StateEntry table.
293  int ValidTransitions = 0;
294  for (unsigned i = 0; i < states.size(); ++i, ++SI) {
295    assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
296    StateEntry[i] = ValidTransitions;
297    for (State::TransitionMap::iterator
298        II = (*SI)->Transitions.begin(), IE = (*SI)->Transitions.end();
299        II != IE; ++II) {
300      OS << "{" << II->first << ", "
301         << II->second->stateNum
302         << "},    ";
303    }
304    ValidTransitions += (*SI)->Transitions.size();
305
306    // If there are no valid transitions from this stage, we need a sentinel
307    // transition.
308    if (ValidTransitions == StateEntry[i]) {
309      OS << SentinelEntry << ",";
310      ++ValidTransitions;
311    }
312
313    OS << "\n";
314  }
315
316  // Print out a sentinel entry at the end of the StateInputTable. This is
317  // needed to iterate over StateInputTable in DFAPacketizer::ReadTable()
318  OS << SentinelEntry << "\n";
319
320  OS << "};\n\n";
321  OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
322
323  // Multiply i by 2 since each entry in DFAStateInputTable is a set of
324  // two numbers.
325  for (unsigned i = 0; i < states.size(); ++i)
326    OS << StateEntry[i] << ", ";
327
328  // Print out the index to the sentinel entry in StateInputTable
329  OS << ValidTransitions << ", ";
330
331  OS << "\n};\n";
332  OS << "} // namespace\n";
333
334
335  //
336  // Emit DFA Packetizer tables if the target is a VLIW machine.
337  //
338  std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
339  OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
340  OS << "namespace llvm {\n";
341  OS << "DFAPacketizer *" << SubTargetClassName << "::"
342     << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
343     << "   return new DFAPacketizer(IID, " << TargetName
344     << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
345  OS << "} // End llvm namespace \n";
346}
347
348
349//
350// collectAllInsnClasses - Populate allInsnClasses which is a set of units
351// used in each stage.
352//
353void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name,
354                                  Record *ItinData,
355                                  unsigned &NStages,
356                                  raw_ostream &OS) {
357  // Collect processor itineraries.
358  std::vector<Record*> ProcItinList =
359    Records.getAllDerivedDefinitions("ProcessorItineraries");
360
361  // If just no itinerary then don't bother.
362  if (ProcItinList.size() < 2)
363    return;
364  std::map<std::string, unsigned> NameToBitsMap;
365
366  // Parse functional units for all the itineraries.
367  for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
368    Record *Proc = ProcItinList[i];
369    std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
370
371    // Convert macros to bits for each stage.
372    for (unsigned i = 0, N = FUs.size(); i < N; ++i)
373      NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
374  }
375
376  const std::vector<Record*> &StageList =
377    ItinData->getValueAsListOfDefs("Stages");
378
379  // The number of stages.
380  NStages = StageList.size();
381
382  // For each unit.
383  unsigned UnitBitValue = 0;
384
385  // Compute the bitwise or of each unit used in this stage.
386  for (unsigned i = 0; i < NStages; ++i) {
387    const Record *Stage = StageList[i];
388
389    // Get unit list.
390    const std::vector<Record*> &UnitList =
391      Stage->getValueAsListOfDefs("Units");
392
393    for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
394      // Conduct bitwise or.
395      std::string UnitName = UnitList[j]->getName();
396      assert(NameToBitsMap.count(UnitName));
397      UnitBitValue |= NameToBitsMap[UnitName];
398    }
399
400    if (UnitBitValue != 0)
401      allInsnClasses.insert(UnitBitValue);
402  }
403}
404
405
406//
407// Run the worklist algorithm to generate the DFA.
408//
409void DFAPacketizerEmitter::run(raw_ostream &OS) {
410
411  // Collect processor iteraries.
412  std::vector<Record*> ProcItinList =
413    Records.getAllDerivedDefinitions("ProcessorItineraries");
414
415  //
416  // Collect the instruction classes.
417  //
418  for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
419    Record *Proc = ProcItinList[i];
420
421    // Get processor itinerary name.
422    const std::string &Name = Proc->getName();
423
424    // Skip default.
425    if (Name == "NoItineraries")
426      continue;
427
428    // Sanity check for at least one instruction itinerary class.
429    unsigned NItinClasses =
430      Records.getAllDerivedDefinitions("InstrItinClass").size();
431    if (NItinClasses == 0)
432      return;
433
434    // Get itinerary data list.
435    std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
436
437    // Collect instruction classes for all itinerary data.
438    for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
439      Record *ItinData = ItinDataList[j];
440      unsigned NStages;
441      collectAllInsnClasses(Name, ItinData, NStages, OS);
442    }
443  }
444
445
446  //
447  // Run a worklist algorithm to generate the DFA.
448  //
449  DFA D;
450  State *Initial = new State;
451  Initial->isInitial = true;
452  Initial->stateInfo.insert(0x0);
453  D.addState(Initial);
454  SmallVector<State*, 32> WorkList;
455  std::map<std::set<unsigned>, State*> Visited;
456
457  WorkList.push_back(Initial);
458
459  //
460  // Worklist algorithm to create a DFA for processor resource tracking.
461  // C = {set of InsnClasses}
462  // Begin with initial node in worklist. Initial node does not have
463  // any consumed resources,
464  //     ResourceState = 0x0
465  // Visited = {}
466  // While worklist != empty
467  //    S = first element of worklist
468  //    For every instruction class C
469  //      if we can accommodate C in S:
470  //          S' = state with resource states = {S Union C}
471  //          Add a new transition: S x C -> S'
472  //          If S' is not in Visited:
473  //             Add S' to worklist
474  //             Add S' to Visited
475  //
476  while (!WorkList.empty()) {
477    State *current = WorkList.pop_back_val();
478    for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
479           CE = allInsnClasses.end(); CI != CE; ++CI) {
480      unsigned InsnClass = *CI;
481
482      std::set<unsigned> NewStateResources;
483      //
484      // If we haven't already created a transition for this input
485      // and the state can accommodate this InsnClass, create a transition.
486      //
487      if (!current->hasTransition(InsnClass) &&
488          current->canAddInsnClass(InsnClass)) {
489        State *NewState = NULL;
490        current->AddInsnClass(InsnClass, NewStateResources);
491        assert(NewStateResources.size() && "New states must be generated");
492
493        //
494        // If we have seen this state before, then do not create a new state.
495        //
496        //
497        std::map<std::set<unsigned>, State*>::iterator VI;
498        if ((VI = Visited.find(NewStateResources)) != Visited.end())
499          NewState = VI->second;
500        else {
501          NewState = new State;
502          NewState->stateInfo = NewStateResources;
503          D.addState(NewState);
504          Visited[NewStateResources] = NewState;
505          WorkList.push_back(NewState);
506        }
507
508        current->addTransition(InsnClass, NewState);
509      }
510    }
511  }
512
513  // Print out the table.
514  D.writeTableAndAPI(OS, TargetName);
515}
516
517namespace llvm {
518
519void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) {
520  emitSourceFileHeader("Target DFA Packetizer Tables", OS);
521  DFAPacketizerEmitter(RK).run(OS);
522}
523
524} // End llvm namespace
525