1//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Provides the Expression parsing implementation.
12///
13/// Expressions in C99 basically consist of a bunch of binary operators with
14/// unary operators and other random stuff at the leaves.
15///
16/// In the C99 grammar, these unary operators bind tightest and are represented
17/// as the 'cast-expression' production.  Everything else is either a binary
18/// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
19/// handled by ParseCastExpression, the higher level pieces are handled by
20/// ParseBinaryExpression.
21///
22//===----------------------------------------------------------------------===//
23
24#include "clang/Parse/Parser.h"
25#include "RAIIObjectsForParser.h"
26#include "clang/Basic/PrettyStackTrace.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/ParsedTemplate.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/TypoCorrection.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/SmallVector.h"
33using namespace clang;
34
35/// \brief Simple precedence-based parser for binary/ternary operators.
36///
37/// Note: we diverge from the C99 grammar when parsing the assignment-expression
38/// production.  C99 specifies that the LHS of an assignment operator should be
39/// parsed as a unary-expression, but consistency dictates that it be a
40/// conditional-expession.  In practice, the important thing here is that the
41/// LHS of an assignment has to be an l-value, which productions between
42/// unary-expression and conditional-expression don't produce.  Because we want
43/// consistency, we parse the LHS as a conditional-expression, then check for
44/// l-value-ness in semantic analysis stages.
45///
46/// \verbatim
47///       pm-expression: [C++ 5.5]
48///         cast-expression
49///         pm-expression '.*' cast-expression
50///         pm-expression '->*' cast-expression
51///
52///       multiplicative-expression: [C99 6.5.5]
53///     Note: in C++, apply pm-expression instead of cast-expression
54///         cast-expression
55///         multiplicative-expression '*' cast-expression
56///         multiplicative-expression '/' cast-expression
57///         multiplicative-expression '%' cast-expression
58///
59///       additive-expression: [C99 6.5.6]
60///         multiplicative-expression
61///         additive-expression '+' multiplicative-expression
62///         additive-expression '-' multiplicative-expression
63///
64///       shift-expression: [C99 6.5.7]
65///         additive-expression
66///         shift-expression '<<' additive-expression
67///         shift-expression '>>' additive-expression
68///
69///       relational-expression: [C99 6.5.8]
70///         shift-expression
71///         relational-expression '<' shift-expression
72///         relational-expression '>' shift-expression
73///         relational-expression '<=' shift-expression
74///         relational-expression '>=' shift-expression
75///
76///       equality-expression: [C99 6.5.9]
77///         relational-expression
78///         equality-expression '==' relational-expression
79///         equality-expression '!=' relational-expression
80///
81///       AND-expression: [C99 6.5.10]
82///         equality-expression
83///         AND-expression '&' equality-expression
84///
85///       exclusive-OR-expression: [C99 6.5.11]
86///         AND-expression
87///         exclusive-OR-expression '^' AND-expression
88///
89///       inclusive-OR-expression: [C99 6.5.12]
90///         exclusive-OR-expression
91///         inclusive-OR-expression '|' exclusive-OR-expression
92///
93///       logical-AND-expression: [C99 6.5.13]
94///         inclusive-OR-expression
95///         logical-AND-expression '&&' inclusive-OR-expression
96///
97///       logical-OR-expression: [C99 6.5.14]
98///         logical-AND-expression
99///         logical-OR-expression '||' logical-AND-expression
100///
101///       conditional-expression: [C99 6.5.15]
102///         logical-OR-expression
103///         logical-OR-expression '?' expression ':' conditional-expression
104/// [GNU]   logical-OR-expression '?' ':' conditional-expression
105/// [C++] the third operand is an assignment-expression
106///
107///       assignment-expression: [C99 6.5.16]
108///         conditional-expression
109///         unary-expression assignment-operator assignment-expression
110/// [C++]   throw-expression [C++ 15]
111///
112///       assignment-operator: one of
113///         = *= /= %= += -= <<= >>= &= ^= |=
114///
115///       expression: [C99 6.5.17]
116///         assignment-expression ...[opt]
117///         expression ',' assignment-expression ...[opt]
118/// \endverbatim
119ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
120  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
121  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
122}
123
124/// This routine is called when the '@' is seen and consumed.
125/// Current token is an Identifier and is not a 'try'. This
126/// routine is necessary to disambiguate \@try-statement from,
127/// for example, \@encode-expression.
128///
129ExprResult
130Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
131  ExprResult LHS(ParseObjCAtExpression(AtLoc));
132  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
133}
134
135/// This routine is called when a leading '__extension__' is seen and
136/// consumed.  This is necessary because the token gets consumed in the
137/// process of disambiguating between an expression and a declaration.
138ExprResult
139Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
140  ExprResult LHS(true);
141  {
142    // Silence extension warnings in the sub-expression
143    ExtensionRAIIObject O(Diags);
144
145    LHS = ParseCastExpression(false);
146  }
147
148  if (!LHS.isInvalid())
149    LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
150                               LHS.take());
151
152  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
153}
154
155/// \brief Parse an expr that doesn't include (top-level) commas.
156ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
157  if (Tok.is(tok::code_completion)) {
158    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
159    cutOffParsing();
160    return ExprError();
161  }
162
163  if (Tok.is(tok::kw_throw))
164    return ParseThrowExpression();
165
166  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
167                                       /*isAddressOfOperand=*/false,
168                                       isTypeCast);
169  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
170}
171
172/// \brief Parse an assignment expression where part of an Objective-C message
173/// send has already been parsed.
174///
175/// In this case \p LBracLoc indicates the location of the '[' of the message
176/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
177/// the receiver of the message.
178///
179/// Since this handles full assignment-expression's, it handles postfix
180/// expressions and other binary operators for these expressions as well.
181ExprResult
182Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
183                                                    SourceLocation SuperLoc,
184                                                    ParsedType ReceiverType,
185                                                    Expr *ReceiverExpr) {
186  ExprResult R
187    = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
188                                     ReceiverType, ReceiverExpr);
189  R = ParsePostfixExpressionSuffix(R);
190  return ParseRHSOfBinaryExpression(R, prec::Assignment);
191}
192
193
194ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
195  // C++03 [basic.def.odr]p2:
196  //   An expression is potentially evaluated unless it appears where an
197  //   integral constant expression is required (see 5.19) [...].
198  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
199  EnterExpressionEvaluationContext Unevaluated(Actions,
200                                               Sema::ConstantEvaluated);
201
202  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
203  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
204  return Actions.ActOnConstantExpression(Res);
205}
206
207bool Parser::isNotExpressionStart() {
208  tok::TokenKind K = Tok.getKind();
209  if (K == tok::l_brace || K == tok::r_brace  ||
210      K == tok::kw_for  || K == tok::kw_while ||
211      K == tok::kw_if   || K == tok::kw_else  ||
212      K == tok::kw_goto || K == tok::kw_try)
213    return true;
214  // If this is a decl-specifier, we can't be at the start of an expression.
215  return isKnownToBeDeclarationSpecifier();
216}
217
218/// \brief Parse a binary expression that starts with \p LHS and has a
219/// precedence of at least \p MinPrec.
220ExprResult
221Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
222  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
223                                               GreaterThanIsOperator,
224                                               getLangOpts().CPlusPlus11);
225  SourceLocation ColonLoc;
226
227  while (1) {
228    // If this token has a lower precedence than we are allowed to parse (e.g.
229    // because we are called recursively, or because the token is not a binop),
230    // then we are done!
231    if (NextTokPrec < MinPrec)
232      return LHS;
233
234    // Consume the operator, saving the operator token for error reporting.
235    Token OpToken = Tok;
236    ConsumeToken();
237
238    // Bail out when encountering a comma followed by a token which can't
239    // possibly be the start of an expression. For instance:
240    //   int f() { return 1, }
241    // We can't do this before consuming the comma, because
242    // isNotExpressionStart() looks at the token stream.
243    if (OpToken.is(tok::comma) && isNotExpressionStart()) {
244      PP.EnterToken(Tok);
245      Tok = OpToken;
246      return LHS;
247    }
248
249    // Special case handling for the ternary operator.
250    ExprResult TernaryMiddle(true);
251    if (NextTokPrec == prec::Conditional) {
252      if (Tok.isNot(tok::colon)) {
253        // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
254        ColonProtectionRAIIObject X(*this);
255
256        // Handle this production specially:
257        //   logical-OR-expression '?' expression ':' conditional-expression
258        // In particular, the RHS of the '?' is 'expression', not
259        // 'logical-OR-expression' as we might expect.
260        TernaryMiddle = ParseExpression();
261        if (TernaryMiddle.isInvalid()) {
262          LHS = ExprError();
263          TernaryMiddle = 0;
264        }
265      } else {
266        // Special case handling of "X ? Y : Z" where Y is empty:
267        //   logical-OR-expression '?' ':' conditional-expression   [GNU]
268        TernaryMiddle = 0;
269        Diag(Tok, diag::ext_gnu_conditional_expr);
270      }
271
272      if (Tok.is(tok::colon)) {
273        // Eat the colon.
274        ColonLoc = ConsumeToken();
275      } else {
276        // Otherwise, we're missing a ':'.  Assume that this was a typo that
277        // the user forgot. If we're not in a macro expansion, we can suggest
278        // a fixit hint. If there were two spaces before the current token,
279        // suggest inserting the colon in between them, otherwise insert ": ".
280        SourceLocation FILoc = Tok.getLocation();
281        const char *FIText = ": ";
282        const SourceManager &SM = PP.getSourceManager();
283        if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
284          assert(FILoc.isFileID());
285          bool IsInvalid = false;
286          const char *SourcePtr =
287            SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
288          if (!IsInvalid && *SourcePtr == ' ') {
289            SourcePtr =
290              SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
291            if (!IsInvalid && *SourcePtr == ' ') {
292              FILoc = FILoc.getLocWithOffset(-1);
293              FIText = ":";
294            }
295          }
296        }
297
298        Diag(Tok, diag::err_expected_colon)
299          << FixItHint::CreateInsertion(FILoc, FIText);
300        Diag(OpToken, diag::note_matching) << "?";
301        ColonLoc = Tok.getLocation();
302      }
303    }
304
305    // Code completion for the right-hand side of an assignment expression
306    // goes through a special hook that takes the left-hand side into account.
307    if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
308      Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
309      cutOffParsing();
310      return ExprError();
311    }
312
313    // Parse another leaf here for the RHS of the operator.
314    // ParseCastExpression works here because all RHS expressions in C have it
315    // as a prefix, at least. However, in C++, an assignment-expression could
316    // be a throw-expression, which is not a valid cast-expression.
317    // Therefore we need some special-casing here.
318    // Also note that the third operand of the conditional operator is
319    // an assignment-expression in C++, and in C++11, we can have a
320    // braced-init-list on the RHS of an assignment. For better diagnostics,
321    // parse as if we were allowed braced-init-lists everywhere, and check that
322    // they only appear on the RHS of assignments later.
323    ExprResult RHS;
324    bool RHSIsInitList = false;
325    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
326      RHS = ParseBraceInitializer();
327      RHSIsInitList = true;
328    } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
329      RHS = ParseAssignmentExpression();
330    else
331      RHS = ParseCastExpression(false);
332
333    if (RHS.isInvalid())
334      LHS = ExprError();
335
336    // Remember the precedence of this operator and get the precedence of the
337    // operator immediately to the right of the RHS.
338    prec::Level ThisPrec = NextTokPrec;
339    NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
340                                     getLangOpts().CPlusPlus11);
341
342    // Assignment and conditional expressions are right-associative.
343    bool isRightAssoc = ThisPrec == prec::Conditional ||
344                        ThisPrec == prec::Assignment;
345
346    // Get the precedence of the operator to the right of the RHS.  If it binds
347    // more tightly with RHS than we do, evaluate it completely first.
348    if (ThisPrec < NextTokPrec ||
349        (ThisPrec == NextTokPrec && isRightAssoc)) {
350      if (!RHS.isInvalid() && RHSIsInitList) {
351        Diag(Tok, diag::err_init_list_bin_op)
352          << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
353        RHS = ExprError();
354      }
355      // If this is left-associative, only parse things on the RHS that bind
356      // more tightly than the current operator.  If it is left-associative, it
357      // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
358      // A=(B=(C=D)), where each paren is a level of recursion here.
359      // The function takes ownership of the RHS.
360      RHS = ParseRHSOfBinaryExpression(RHS,
361                            static_cast<prec::Level>(ThisPrec + !isRightAssoc));
362      RHSIsInitList = false;
363
364      if (RHS.isInvalid())
365        LHS = ExprError();
366
367      NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
368                                       getLangOpts().CPlusPlus11);
369    }
370    assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
371
372    if (!RHS.isInvalid() && RHSIsInitList) {
373      if (ThisPrec == prec::Assignment) {
374        Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
375          << Actions.getExprRange(RHS.get());
376      } else {
377        Diag(OpToken, diag::err_init_list_bin_op)
378          << /*RHS*/1 << PP.getSpelling(OpToken)
379          << Actions.getExprRange(RHS.get());
380        LHS = ExprError();
381      }
382    }
383
384    if (!LHS.isInvalid()) {
385      // Combine the LHS and RHS into the LHS (e.g. build AST).
386      if (TernaryMiddle.isInvalid()) {
387        // If we're using '>>' as an operator within a template
388        // argument list (in C++98), suggest the addition of
389        // parentheses so that the code remains well-formed in C++0x.
390        if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
391          SuggestParentheses(OpToken.getLocation(),
392                             diag::warn_cxx11_right_shift_in_template_arg,
393                         SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
394                                     Actions.getExprRange(RHS.get()).getEnd()));
395
396        LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
397                                 OpToken.getKind(), LHS.take(), RHS.take());
398      } else
399        LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
400                                         LHS.take(), TernaryMiddle.take(),
401                                         RHS.take());
402    }
403  }
404}
405
406/// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
407/// parse a unary-expression.
408///
409/// \p isAddressOfOperand exists because an id-expression that is the
410/// operand of address-of gets special treatment due to member pointers.
411///
412ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
413                                       bool isAddressOfOperand,
414                                       TypeCastState isTypeCast) {
415  bool NotCastExpr;
416  ExprResult Res = ParseCastExpression(isUnaryExpression,
417                                       isAddressOfOperand,
418                                       NotCastExpr,
419                                       isTypeCast);
420  if (NotCastExpr)
421    Diag(Tok, diag::err_expected_expression);
422  return Res;
423}
424
425namespace {
426class CastExpressionIdValidator : public CorrectionCandidateCallback {
427 public:
428  CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
429      : AllowNonTypes(AllowNonTypes) {
430    WantTypeSpecifiers = AllowTypes;
431  }
432
433  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434    NamedDecl *ND = candidate.getCorrectionDecl();
435    if (!ND)
436      return candidate.isKeyword();
437
438    if (isa<TypeDecl>(ND))
439      return WantTypeSpecifiers;
440    return AllowNonTypes;
441  }
442
443 private:
444  bool AllowNonTypes;
445};
446}
447
448/// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
449/// a unary-expression.
450///
451/// \p isAddressOfOperand exists because an id-expression that is the operand
452/// of address-of gets special treatment due to member pointers. NotCastExpr
453/// is set to true if the token is not the start of a cast-expression, and no
454/// diagnostic is emitted in this case.
455///
456/// \verbatim
457///       cast-expression: [C99 6.5.4]
458///         unary-expression
459///         '(' type-name ')' cast-expression
460///
461///       unary-expression:  [C99 6.5.3]
462///         postfix-expression
463///         '++' unary-expression
464///         '--' unary-expression
465///         unary-operator cast-expression
466///         'sizeof' unary-expression
467///         'sizeof' '(' type-name ')'
468/// [C++11] 'sizeof' '...' '(' identifier ')'
469/// [GNU]   '__alignof' unary-expression
470/// [GNU]   '__alignof' '(' type-name ')'
471/// [C11]   '_Alignof' '(' type-name ')'
472/// [C++11] 'alignof' '(' type-id ')'
473/// [GNU]   '&&' identifier
474/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
475/// [C++]   new-expression
476/// [C++]   delete-expression
477///
478///       unary-operator: one of
479///         '&'  '*'  '+'  '-'  '~'  '!'
480/// [GNU]   '__extension__'  '__real'  '__imag'
481///
482///       primary-expression: [C99 6.5.1]
483/// [C99]   identifier
484/// [C++]   id-expression
485///         constant
486///         string-literal
487/// [C++]   boolean-literal  [C++ 2.13.5]
488/// [C++11] 'nullptr'        [C++11 2.14.7]
489/// [C++11] user-defined-literal
490///         '(' expression ')'
491/// [C11]   generic-selection
492///         '__func__'        [C99 6.4.2.2]
493/// [GNU]   '__FUNCTION__'
494/// [MS]    '__FUNCDNAME__'
495/// [MS]    'L__FUNCTION__'
496/// [GNU]   '__PRETTY_FUNCTION__'
497/// [GNU]   '(' compound-statement ')'
498/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
499/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
500/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
501///                                     assign-expr ')'
502/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
503/// [GNU]   '__null'
504/// [OBJC]  '[' objc-message-expr ']'
505/// [OBJC]  '\@selector' '(' objc-selector-arg ')'
506/// [OBJC]  '\@protocol' '(' identifier ')'
507/// [OBJC]  '\@encode' '(' type-name ')'
508/// [OBJC]  objc-string-literal
509/// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
510/// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
511/// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
512/// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
513/// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
514/// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
515/// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
516/// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
517/// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
518/// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
519/// [C++]   'this'          [C++ 9.3.2]
520/// [G++]   unary-type-trait '(' type-id ')'
521/// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
522/// [EMBT]  array-type-trait '(' type-id ',' integer ')'
523/// [clang] '^' block-literal
524///
525///       constant: [C99 6.4.4]
526///         integer-constant
527///         floating-constant
528///         enumeration-constant -> identifier
529///         character-constant
530///
531///       id-expression: [C++ 5.1]
532///                   unqualified-id
533///                   qualified-id
534///
535///       unqualified-id: [C++ 5.1]
536///                   identifier
537///                   operator-function-id
538///                   conversion-function-id
539///                   '~' class-name
540///                   template-id
541///
542///       new-expression: [C++ 5.3.4]
543///                   '::'[opt] 'new' new-placement[opt] new-type-id
544///                                     new-initializer[opt]
545///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
546///                                     new-initializer[opt]
547///
548///       delete-expression: [C++ 5.3.5]
549///                   '::'[opt] 'delete' cast-expression
550///                   '::'[opt] 'delete' '[' ']' cast-expression
551///
552/// [GNU/Embarcadero] unary-type-trait:
553///                   '__is_arithmetic'
554///                   '__is_floating_point'
555///                   '__is_integral'
556///                   '__is_lvalue_expr'
557///                   '__is_rvalue_expr'
558///                   '__is_complete_type'
559///                   '__is_void'
560///                   '__is_array'
561///                   '__is_function'
562///                   '__is_reference'
563///                   '__is_lvalue_reference'
564///                   '__is_rvalue_reference'
565///                   '__is_fundamental'
566///                   '__is_object'
567///                   '__is_scalar'
568///                   '__is_compound'
569///                   '__is_pointer'
570///                   '__is_member_object_pointer'
571///                   '__is_member_function_pointer'
572///                   '__is_member_pointer'
573///                   '__is_const'
574///                   '__is_volatile'
575///                   '__is_trivial'
576///                   '__is_standard_layout'
577///                   '__is_signed'
578///                   '__is_unsigned'
579///
580/// [GNU] unary-type-trait:
581///                   '__has_nothrow_assign'
582///                   '__has_nothrow_copy'
583///                   '__has_nothrow_constructor'
584///                   '__has_trivial_assign'                  [TODO]
585///                   '__has_trivial_copy'                    [TODO]
586///                   '__has_trivial_constructor'
587///                   '__has_trivial_destructor'
588///                   '__has_virtual_destructor'
589///                   '__is_abstract'                         [TODO]
590///                   '__is_class'
591///                   '__is_empty'                            [TODO]
592///                   '__is_enum'
593///                   '__is_final'
594///                   '__is_pod'
595///                   '__is_polymorphic'
596///                   '__is_sealed'                           [MS]
597///                   '__is_trivial'
598///                   '__is_union'
599///
600/// [Clang] unary-type-trait:
601///                   '__trivially_copyable'
602///
603///       binary-type-trait:
604/// [GNU]             '__is_base_of'
605/// [MS]              '__is_convertible_to'
606///                   '__is_convertible'
607///                   '__is_same'
608///
609/// [Embarcadero] array-type-trait:
610///                   '__array_rank'
611///                   '__array_extent'
612///
613/// [Embarcadero] expression-trait:
614///                   '__is_lvalue_expr'
615///                   '__is_rvalue_expr'
616/// \endverbatim
617///
618ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
619                                       bool isAddressOfOperand,
620                                       bool &NotCastExpr,
621                                       TypeCastState isTypeCast) {
622  ExprResult Res;
623  tok::TokenKind SavedKind = Tok.getKind();
624  NotCastExpr = false;
625
626  // This handles all of cast-expression, unary-expression, postfix-expression,
627  // and primary-expression.  We handle them together like this for efficiency
628  // and to simplify handling of an expression starting with a '(' token: which
629  // may be one of a parenthesized expression, cast-expression, compound literal
630  // expression, or statement expression.
631  //
632  // If the parsed tokens consist of a primary-expression, the cases below
633  // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
634  // to handle the postfix expression suffixes.  Cases that cannot be followed
635  // by postfix exprs should return without invoking
636  // ParsePostfixExpressionSuffix.
637  switch (SavedKind) {
638  case tok::l_paren: {
639    // If this expression is limited to being a unary-expression, the parent can
640    // not start a cast expression.
641    ParenParseOption ParenExprType =
642      (isUnaryExpression && !getLangOpts().CPlusPlus)? CompoundLiteral : CastExpr;
643    ParsedType CastTy;
644    SourceLocation RParenLoc;
645
646    {
647      // The inside of the parens don't need to be a colon protected scope, and
648      // isn't immediately a message send.
649      ColonProtectionRAIIObject X(*this, false);
650
651      Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
652                                 isTypeCast == IsTypeCast, CastTy, RParenLoc);
653    }
654
655    switch (ParenExprType) {
656    case SimpleExpr:   break;    // Nothing else to do.
657    case CompoundStmt: break;  // Nothing else to do.
658    case CompoundLiteral:
659      // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
660      // postfix-expression exist, parse them now.
661      break;
662    case CastExpr:
663      // We have parsed the cast-expression and no postfix-expr pieces are
664      // following.
665      return Res;
666    }
667
668    break;
669  }
670
671    // primary-expression
672  case tok::numeric_constant:
673    // constant: integer-constant
674    // constant: floating-constant
675
676    Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
677    ConsumeToken();
678    break;
679
680  case tok::kw_true:
681  case tok::kw_false:
682    return ParseCXXBoolLiteral();
683
684  case tok::kw___objc_yes:
685  case tok::kw___objc_no:
686      return ParseObjCBoolLiteral();
687
688  case tok::kw_nullptr:
689    Diag(Tok, diag::warn_cxx98_compat_nullptr);
690    return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
691
692  case tok::annot_primary_expr:
693    assert(Res.get() == 0 && "Stray primary-expression annotation?");
694    Res = getExprAnnotation(Tok);
695    ConsumeToken();
696    break;
697
698  case tok::kw_decltype:
699    // Annotate the token and tail recurse.
700    if (TryAnnotateTypeOrScopeToken())
701      return ExprError();
702    assert(Tok.isNot(tok::kw_decltype));
703    return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
704
705  case tok::identifier: {      // primary-expression: identifier
706                               // unqualified-id: identifier
707                               // constant: enumeration-constant
708    // Turn a potentially qualified name into a annot_typename or
709    // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
710    if (getLangOpts().CPlusPlus) {
711      // Avoid the unnecessary parse-time lookup in the common case
712      // where the syntax forbids a type.
713      const Token &Next = NextToken();
714
715      // If this identifier was reverted from a token ID, and the next token
716      // is a parenthesis, this is likely to be a use of a type trait. Check
717      // those tokens.
718      if (Next.is(tok::l_paren) &&
719          Tok.is(tok::identifier) &&
720          Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
721        IdentifierInfo *II = Tok.getIdentifierInfo();
722        // Build up the mapping of revertable type traits, for future use.
723        if (RevertableTypeTraits.empty()) {
724#define RTT_JOIN(X,Y) X##Y
725#define REVERTABLE_TYPE_TRAIT(Name)                         \
726          RevertableTypeTraits[PP.getIdentifierInfo(#Name)] \
727            = RTT_JOIN(tok::kw_,Name)
728
729          REVERTABLE_TYPE_TRAIT(__is_arithmetic);
730          REVERTABLE_TYPE_TRAIT(__is_convertible);
731          REVERTABLE_TYPE_TRAIT(__is_empty);
732          REVERTABLE_TYPE_TRAIT(__is_floating_point);
733          REVERTABLE_TYPE_TRAIT(__is_function);
734          REVERTABLE_TYPE_TRAIT(__is_fundamental);
735          REVERTABLE_TYPE_TRAIT(__is_integral);
736          REVERTABLE_TYPE_TRAIT(__is_member_function_pointer);
737          REVERTABLE_TYPE_TRAIT(__is_member_pointer);
738          REVERTABLE_TYPE_TRAIT(__is_pod);
739          REVERTABLE_TYPE_TRAIT(__is_pointer);
740          REVERTABLE_TYPE_TRAIT(__is_same);
741          REVERTABLE_TYPE_TRAIT(__is_scalar);
742          REVERTABLE_TYPE_TRAIT(__is_signed);
743          REVERTABLE_TYPE_TRAIT(__is_unsigned);
744          REVERTABLE_TYPE_TRAIT(__is_void);
745#undef REVERTABLE_TYPE_TRAIT
746#undef RTT_JOIN
747        }
748
749        // If we find that this is in fact the name of a type trait,
750        // update the token kind in place and parse again to treat it as
751        // the appropriate kind of type trait.
752        llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
753          = RevertableTypeTraits.find(II);
754        if (Known != RevertableTypeTraits.end()) {
755          Tok.setKind(Known->second);
756          return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
757                                     NotCastExpr, isTypeCast);
758        }
759      }
760
761      if (Next.is(tok::coloncolon) ||
762          (!ColonIsSacred && Next.is(tok::colon)) ||
763          Next.is(tok::less) ||
764          Next.is(tok::l_paren) ||
765          Next.is(tok::l_brace)) {
766        // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
767        if (TryAnnotateTypeOrScopeToken())
768          return ExprError();
769        if (!Tok.is(tok::identifier))
770          return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
771      }
772    }
773
774    // Consume the identifier so that we can see if it is followed by a '(' or
775    // '.'.
776    IdentifierInfo &II = *Tok.getIdentifierInfo();
777    SourceLocation ILoc = ConsumeToken();
778
779    // Support 'Class.property' and 'super.property' notation.
780    if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
781        (Actions.getTypeName(II, ILoc, getCurScope()) ||
782         // Allow the base to be 'super' if in an objc-method.
783         (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
784      ConsumeToken();
785
786      // Allow either an identifier or the keyword 'class' (in C++).
787      if (Tok.isNot(tok::identifier) &&
788          !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
789        Diag(Tok, diag::err_expected_property_name);
790        return ExprError();
791      }
792      IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
793      SourceLocation PropertyLoc = ConsumeToken();
794
795      Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
796                                              ILoc, PropertyLoc);
797      break;
798    }
799
800    // In an Objective-C method, if we have "super" followed by an identifier,
801    // the token sequence is ill-formed. However, if there's a ':' or ']' after
802    // that identifier, this is probably a message send with a missing open
803    // bracket. Treat it as such.
804    if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
805        getCurScope()->isInObjcMethodScope() &&
806        ((Tok.is(tok::identifier) &&
807         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
808         Tok.is(tok::code_completion))) {
809      Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
810                                           0);
811      break;
812    }
813
814    // If we have an Objective-C class name followed by an identifier
815    // and either ':' or ']', this is an Objective-C class message
816    // send that's missing the opening '['. Recovery
817    // appropriately. Also take this path if we're performing code
818    // completion after an Objective-C class name.
819    if (getLangOpts().ObjC1 &&
820        ((Tok.is(tok::identifier) && !InMessageExpression) ||
821         Tok.is(tok::code_completion))) {
822      const Token& Next = NextToken();
823      if (Tok.is(tok::code_completion) ||
824          Next.is(tok::colon) || Next.is(tok::r_square))
825        if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
826          if (Typ.get()->isObjCObjectOrInterfaceType()) {
827            // Fake up a Declarator to use with ActOnTypeName.
828            DeclSpec DS(AttrFactory);
829            DS.SetRangeStart(ILoc);
830            DS.SetRangeEnd(ILoc);
831            const char *PrevSpec = 0;
832            unsigned DiagID;
833            DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ);
834
835            Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
836            TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
837                                                  DeclaratorInfo);
838            if (Ty.isInvalid())
839              break;
840
841            Res = ParseObjCMessageExpressionBody(SourceLocation(),
842                                                 SourceLocation(),
843                                                 Ty.get(), 0);
844            break;
845          }
846    }
847
848    // Make sure to pass down the right value for isAddressOfOperand.
849    if (isAddressOfOperand && isPostfixExpressionSuffixStart())
850      isAddressOfOperand = false;
851
852    // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
853    // need to know whether or not this identifier is a function designator or
854    // not.
855    UnqualifiedId Name;
856    CXXScopeSpec ScopeSpec;
857    SourceLocation TemplateKWLoc;
858    CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
859                                        isTypeCast != IsTypeCast);
860    Name.setIdentifier(&II, ILoc);
861    Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
862                                    Name, Tok.is(tok::l_paren),
863                                    isAddressOfOperand, &Validator);
864    break;
865  }
866  case tok::char_constant:     // constant: character-constant
867  case tok::wide_char_constant:
868  case tok::utf16_char_constant:
869  case tok::utf32_char_constant:
870    Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
871    ConsumeToken();
872    break;
873  case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
874  case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
875  case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
876  case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
877  case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
878    Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
879    ConsumeToken();
880    break;
881  case tok::string_literal:    // primary-expression: string-literal
882  case tok::wide_string_literal:
883  case tok::utf8_string_literal:
884  case tok::utf16_string_literal:
885  case tok::utf32_string_literal:
886    Res = ParseStringLiteralExpression(true);
887    break;
888  case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
889    Res = ParseGenericSelectionExpression();
890    break;
891  case tok::kw___builtin_va_arg:
892  case tok::kw___builtin_offsetof:
893  case tok::kw___builtin_choose_expr:
894  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
895  case tok::kw___builtin_convertvector:
896    return ParseBuiltinPrimaryExpression();
897  case tok::kw___null:
898    return Actions.ActOnGNUNullExpr(ConsumeToken());
899
900  case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
901  case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
902    // C++ [expr.unary] has:
903    //   unary-expression:
904    //     ++ cast-expression
905    //     -- cast-expression
906    SourceLocation SavedLoc = ConsumeToken();
907    Res = ParseCastExpression(!getLangOpts().CPlusPlus);
908    if (!Res.isInvalid())
909      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
910    return Res;
911  }
912  case tok::amp: {         // unary-expression: '&' cast-expression
913    // Special treatment because of member pointers
914    SourceLocation SavedLoc = ConsumeToken();
915    Res = ParseCastExpression(false, true);
916    if (!Res.isInvalid())
917      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
918    return Res;
919  }
920
921  case tok::star:          // unary-expression: '*' cast-expression
922  case tok::plus:          // unary-expression: '+' cast-expression
923  case tok::minus:         // unary-expression: '-' cast-expression
924  case tok::tilde:         // unary-expression: '~' cast-expression
925  case tok::exclaim:       // unary-expression: '!' cast-expression
926  case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
927  case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
928    SourceLocation SavedLoc = ConsumeToken();
929    Res = ParseCastExpression(false);
930    if (!Res.isInvalid())
931      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
932    return Res;
933  }
934
935  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
936    // __extension__ silences extension warnings in the subexpression.
937    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
938    SourceLocation SavedLoc = ConsumeToken();
939    Res = ParseCastExpression(false);
940    if (!Res.isInvalid())
941      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
942    return Res;
943  }
944  case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
945    if (!getLangOpts().C11)
946      Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
947    // fallthrough
948  case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
949  case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
950                           // unary-expression: '__alignof' '(' type-name ')'
951  case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
952                           // unary-expression: 'sizeof' '(' type-name ')'
953  case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
954    return ParseUnaryExprOrTypeTraitExpression();
955  case tok::ampamp: {      // unary-expression: '&&' identifier
956    SourceLocation AmpAmpLoc = ConsumeToken();
957    if (Tok.isNot(tok::identifier))
958      return ExprError(Diag(Tok, diag::err_expected_ident));
959
960    if (getCurScope()->getFnParent() == 0)
961      return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
962
963    Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
964    LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
965                                                Tok.getLocation());
966    Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
967    ConsumeToken();
968    return Res;
969  }
970  case tok::kw_const_cast:
971  case tok::kw_dynamic_cast:
972  case tok::kw_reinterpret_cast:
973  case tok::kw_static_cast:
974    Res = ParseCXXCasts();
975    break;
976  case tok::kw_typeid:
977    Res = ParseCXXTypeid();
978    break;
979  case tok::kw___uuidof:
980    Res = ParseCXXUuidof();
981    break;
982  case tok::kw_this:
983    Res = ParseCXXThis();
984    break;
985
986  case tok::annot_typename:
987    if (isStartOfObjCClassMessageMissingOpenBracket()) {
988      ParsedType Type = getTypeAnnotation(Tok);
989
990      // Fake up a Declarator to use with ActOnTypeName.
991      DeclSpec DS(AttrFactory);
992      DS.SetRangeStart(Tok.getLocation());
993      DS.SetRangeEnd(Tok.getLastLoc());
994
995      const char *PrevSpec = 0;
996      unsigned DiagID;
997      DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
998                         PrevSpec, DiagID, Type);
999
1000      Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1001      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1002      if (Ty.isInvalid())
1003        break;
1004
1005      ConsumeToken();
1006      Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1007                                           Ty.get(), 0);
1008      break;
1009    }
1010    // Fall through
1011
1012  case tok::annot_decltype:
1013  case tok::kw_char:
1014  case tok::kw_wchar_t:
1015  case tok::kw_char16_t:
1016  case tok::kw_char32_t:
1017  case tok::kw_bool:
1018  case tok::kw_short:
1019  case tok::kw_int:
1020  case tok::kw_long:
1021  case tok::kw___int64:
1022  case tok::kw___int128:
1023  case tok::kw_signed:
1024  case tok::kw_unsigned:
1025  case tok::kw_half:
1026  case tok::kw_float:
1027  case tok::kw_double:
1028  case tok::kw_void:
1029  case tok::kw_typename:
1030  case tok::kw_typeof:
1031  case tok::kw___vector:
1032  case tok::kw_image1d_t:
1033  case tok::kw_image1d_array_t:
1034  case tok::kw_image1d_buffer_t:
1035  case tok::kw_image2d_t:
1036  case tok::kw_image2d_array_t:
1037  case tok::kw_image3d_t:
1038  case tok::kw_sampler_t:
1039  case tok::kw_event_t: {
1040    if (!getLangOpts().CPlusPlus) {
1041      Diag(Tok, diag::err_expected_expression);
1042      return ExprError();
1043    }
1044
1045    if (SavedKind == tok::kw_typename) {
1046      // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1047      //                     typename-specifier braced-init-list
1048      if (TryAnnotateTypeOrScopeToken())
1049        return ExprError();
1050
1051      if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1052        // We are trying to parse a simple-type-specifier but might not get such
1053        // a token after error recovery.
1054        return ExprError();
1055    }
1056
1057    // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1058    //                     simple-type-specifier braced-init-list
1059    //
1060    DeclSpec DS(AttrFactory);
1061
1062    ParseCXXSimpleTypeSpecifier(DS);
1063    if (Tok.isNot(tok::l_paren) &&
1064        (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1065      return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1066                         << DS.getSourceRange());
1067
1068    if (Tok.is(tok::l_brace))
1069      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1070
1071    Res = ParseCXXTypeConstructExpression(DS);
1072    break;
1073  }
1074
1075  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1076    // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1077    // (We can end up in this situation after tentative parsing.)
1078    if (TryAnnotateTypeOrScopeToken())
1079      return ExprError();
1080    if (!Tok.is(tok::annot_cxxscope))
1081      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1082                                 NotCastExpr, isTypeCast);
1083
1084    Token Next = NextToken();
1085    if (Next.is(tok::annot_template_id)) {
1086      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1087      if (TemplateId->Kind == TNK_Type_template) {
1088        // We have a qualified template-id that we know refers to a
1089        // type, translate it into a type and continue parsing as a
1090        // cast expression.
1091        CXXScopeSpec SS;
1092        ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1093                                       /*EnteringContext=*/false);
1094        AnnotateTemplateIdTokenAsType();
1095        return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1096                                   NotCastExpr, isTypeCast);
1097      }
1098    }
1099
1100    // Parse as an id-expression.
1101    Res = ParseCXXIdExpression(isAddressOfOperand);
1102    break;
1103  }
1104
1105  case tok::annot_template_id: { // [C++]          template-id
1106    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1107    if (TemplateId->Kind == TNK_Type_template) {
1108      // We have a template-id that we know refers to a type,
1109      // translate it into a type and continue parsing as a cast
1110      // expression.
1111      AnnotateTemplateIdTokenAsType();
1112      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1113                                 NotCastExpr, isTypeCast);
1114    }
1115
1116    // Fall through to treat the template-id as an id-expression.
1117  }
1118
1119  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1120    Res = ParseCXXIdExpression(isAddressOfOperand);
1121    break;
1122
1123  case tok::coloncolon: {
1124    // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1125    // annotates the token, tail recurse.
1126    if (TryAnnotateTypeOrScopeToken())
1127      return ExprError();
1128    if (!Tok.is(tok::coloncolon))
1129      return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1130
1131    // ::new -> [C++] new-expression
1132    // ::delete -> [C++] delete-expression
1133    SourceLocation CCLoc = ConsumeToken();
1134    if (Tok.is(tok::kw_new))
1135      return ParseCXXNewExpression(true, CCLoc);
1136    if (Tok.is(tok::kw_delete))
1137      return ParseCXXDeleteExpression(true, CCLoc);
1138
1139    // This is not a type name or scope specifier, it is an invalid expression.
1140    Diag(CCLoc, diag::err_expected_expression);
1141    return ExprError();
1142  }
1143
1144  case tok::kw_new: // [C++] new-expression
1145    return ParseCXXNewExpression(false, Tok.getLocation());
1146
1147  case tok::kw_delete: // [C++] delete-expression
1148    return ParseCXXDeleteExpression(false, Tok.getLocation());
1149
1150  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1151    Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1152    SourceLocation KeyLoc = ConsumeToken();
1153    BalancedDelimiterTracker T(*this, tok::l_paren);
1154
1155    if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1156      return ExprError();
1157    // C++11 [expr.unary.noexcept]p1:
1158    //   The noexcept operator determines whether the evaluation of its operand,
1159    //   which is an unevaluated operand, can throw an exception.
1160    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1161    ExprResult Result = ParseExpression();
1162
1163    T.consumeClose();
1164
1165    if (!Result.isInvalid())
1166      Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1167                                         Result.take(), T.getCloseLocation());
1168    return Result;
1169  }
1170
1171  case tok::kw___is_abstract: // [GNU] unary-type-trait
1172  case tok::kw___is_class:
1173  case tok::kw___is_empty:
1174  case tok::kw___is_enum:
1175  case tok::kw___is_interface_class:
1176  case tok::kw___is_literal:
1177  case tok::kw___is_arithmetic:
1178  case tok::kw___is_integral:
1179  case tok::kw___is_floating_point:
1180  case tok::kw___is_complete_type:
1181  case tok::kw___is_void:
1182  case tok::kw___is_array:
1183  case tok::kw___is_function:
1184  case tok::kw___is_reference:
1185  case tok::kw___is_lvalue_reference:
1186  case tok::kw___is_rvalue_reference:
1187  case tok::kw___is_fundamental:
1188  case tok::kw___is_object:
1189  case tok::kw___is_scalar:
1190  case tok::kw___is_compound:
1191  case tok::kw___is_pointer:
1192  case tok::kw___is_member_object_pointer:
1193  case tok::kw___is_member_function_pointer:
1194  case tok::kw___is_member_pointer:
1195  case tok::kw___is_const:
1196  case tok::kw___is_volatile:
1197  case tok::kw___is_standard_layout:
1198  case tok::kw___is_signed:
1199  case tok::kw___is_unsigned:
1200  case tok::kw___is_literal_type:
1201  case tok::kw___is_pod:
1202  case tok::kw___is_polymorphic:
1203  case tok::kw___is_trivial:
1204  case tok::kw___is_trivially_copyable:
1205  case tok::kw___is_union:
1206  case tok::kw___is_final:
1207  case tok::kw___is_sealed:
1208  case tok::kw___has_trivial_constructor:
1209  case tok::kw___has_trivial_move_constructor:
1210  case tok::kw___has_trivial_copy:
1211  case tok::kw___has_trivial_assign:
1212  case tok::kw___has_trivial_move_assign:
1213  case tok::kw___has_trivial_destructor:
1214  case tok::kw___has_nothrow_assign:
1215  case tok::kw___has_nothrow_move_assign:
1216  case tok::kw___has_nothrow_copy:
1217  case tok::kw___has_nothrow_constructor:
1218  case tok::kw___has_virtual_destructor:
1219    return ParseUnaryTypeTrait();
1220
1221  case tok::kw___builtin_types_compatible_p:
1222  case tok::kw___is_base_of:
1223  case tok::kw___is_same:
1224  case tok::kw___is_convertible:
1225  case tok::kw___is_convertible_to:
1226  case tok::kw___is_trivially_assignable:
1227    return ParseBinaryTypeTrait();
1228
1229  case tok::kw___is_trivially_constructible:
1230    return ParseTypeTrait();
1231
1232  case tok::kw___array_rank:
1233  case tok::kw___array_extent:
1234    return ParseArrayTypeTrait();
1235
1236  case tok::kw___is_lvalue_expr:
1237  case tok::kw___is_rvalue_expr:
1238    return ParseExpressionTrait();
1239
1240  case tok::at: {
1241    SourceLocation AtLoc = ConsumeToken();
1242    return ParseObjCAtExpression(AtLoc);
1243  }
1244  case tok::caret:
1245    Res = ParseBlockLiteralExpression();
1246    break;
1247  case tok::code_completion: {
1248    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1249    cutOffParsing();
1250    return ExprError();
1251  }
1252  case tok::l_square:
1253    if (getLangOpts().CPlusPlus11) {
1254      if (getLangOpts().ObjC1) {
1255        // C++11 lambda expressions and Objective-C message sends both start with a
1256        // square bracket.  There are three possibilities here:
1257        // we have a valid lambda expression, we have an invalid lambda
1258        // expression, or we have something that doesn't appear to be a lambda.
1259        // If we're in the last case, we fall back to ParseObjCMessageExpression.
1260        Res = TryParseLambdaExpression();
1261        if (!Res.isInvalid() && !Res.get())
1262          Res = ParseObjCMessageExpression();
1263        break;
1264      }
1265      Res = ParseLambdaExpression();
1266      break;
1267    }
1268    if (getLangOpts().ObjC1) {
1269      Res = ParseObjCMessageExpression();
1270      break;
1271    }
1272    // FALL THROUGH.
1273  default:
1274    NotCastExpr = true;
1275    return ExprError();
1276  }
1277
1278  // These can be followed by postfix-expr pieces.
1279  return ParsePostfixExpressionSuffix(Res);
1280}
1281
1282/// \brief Once the leading part of a postfix-expression is parsed, this
1283/// method parses any suffixes that apply.
1284///
1285/// \verbatim
1286///       postfix-expression: [C99 6.5.2]
1287///         primary-expression
1288///         postfix-expression '[' expression ']'
1289///         postfix-expression '[' braced-init-list ']'
1290///         postfix-expression '(' argument-expression-list[opt] ')'
1291///         postfix-expression '.' identifier
1292///         postfix-expression '->' identifier
1293///         postfix-expression '++'
1294///         postfix-expression '--'
1295///         '(' type-name ')' '{' initializer-list '}'
1296///         '(' type-name ')' '{' initializer-list ',' '}'
1297///
1298///       argument-expression-list: [C99 6.5.2]
1299///         argument-expression ...[opt]
1300///         argument-expression-list ',' assignment-expression ...[opt]
1301/// \endverbatim
1302ExprResult
1303Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1304  // Now that the primary-expression piece of the postfix-expression has been
1305  // parsed, see if there are any postfix-expression pieces here.
1306  SourceLocation Loc;
1307  while (1) {
1308    switch (Tok.getKind()) {
1309    case tok::code_completion:
1310      if (InMessageExpression)
1311        return LHS;
1312
1313      Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1314      cutOffParsing();
1315      return ExprError();
1316
1317    case tok::identifier:
1318      // If we see identifier: after an expression, and we're not already in a
1319      // message send, then this is probably a message send with a missing
1320      // opening bracket '['.
1321      if (getLangOpts().ObjC1 && !InMessageExpression &&
1322          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1323        LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1324                                             ParsedType(), LHS.get());
1325        break;
1326      }
1327
1328      // Fall through; this isn't a message send.
1329
1330    default:  // Not a postfix-expression suffix.
1331      return LHS;
1332    case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1333      // If we have a array postfix expression that starts on a new line and
1334      // Objective-C is enabled, it is highly likely that the user forgot a
1335      // semicolon after the base expression and that the array postfix-expr is
1336      // actually another message send.  In this case, do some look-ahead to see
1337      // if the contents of the square brackets are obviously not a valid
1338      // expression and recover by pretending there is no suffix.
1339      if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1340          isSimpleObjCMessageExpression())
1341        return LHS;
1342
1343      // Reject array indices starting with a lambda-expression. '[[' is
1344      // reserved for attributes.
1345      if (CheckProhibitedCXX11Attribute())
1346        return ExprError();
1347
1348      BalancedDelimiterTracker T(*this, tok::l_square);
1349      T.consumeOpen();
1350      Loc = T.getOpenLocation();
1351      ExprResult Idx;
1352      if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1353        Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1354        Idx = ParseBraceInitializer();
1355      } else
1356        Idx = ParseExpression();
1357
1358      SourceLocation RLoc = Tok.getLocation();
1359
1360      if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1361        LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.take(), Loc,
1362                                              Idx.take(), RLoc);
1363      } else
1364        LHS = ExprError();
1365
1366      // Match the ']'.
1367      T.consumeClose();
1368      break;
1369    }
1370
1371    case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1372    case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1373                               //   '(' argument-expression-list[opt] ')'
1374      tok::TokenKind OpKind = Tok.getKind();
1375      InMessageExpressionRAIIObject InMessage(*this, false);
1376
1377      Expr *ExecConfig = 0;
1378
1379      BalancedDelimiterTracker PT(*this, tok::l_paren);
1380
1381      if (OpKind == tok::lesslessless) {
1382        ExprVector ExecConfigExprs;
1383        CommaLocsTy ExecConfigCommaLocs;
1384        SourceLocation OpenLoc = ConsumeToken();
1385
1386        if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1387          LHS = ExprError();
1388        }
1389
1390        SourceLocation CloseLoc = Tok.getLocation();
1391        if (Tok.is(tok::greatergreatergreater)) {
1392          ConsumeToken();
1393        } else if (LHS.isInvalid()) {
1394          SkipUntil(tok::greatergreatergreater, StopAtSemi);
1395        } else {
1396          // There was an error closing the brackets
1397          Diag(Tok, diag::err_expected_ggg);
1398          Diag(OpenLoc, diag::note_matching) << "<<<";
1399          SkipUntil(tok::greatergreatergreater, StopAtSemi);
1400          LHS = ExprError();
1401        }
1402
1403        if (!LHS.isInvalid()) {
1404          if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen, ""))
1405            LHS = ExprError();
1406          else
1407            Loc = PrevTokLocation;
1408        }
1409
1410        if (!LHS.isInvalid()) {
1411          ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1412                                    OpenLoc,
1413                                    ExecConfigExprs,
1414                                    CloseLoc);
1415          if (ECResult.isInvalid())
1416            LHS = ExprError();
1417          else
1418            ExecConfig = ECResult.get();
1419        }
1420      } else {
1421        PT.consumeOpen();
1422        Loc = PT.getOpenLocation();
1423      }
1424
1425      ExprVector ArgExprs;
1426      CommaLocsTy CommaLocs;
1427
1428      if (Tok.is(tok::code_completion)) {
1429        Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1430        cutOffParsing();
1431        return ExprError();
1432      }
1433
1434      if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1435        if (Tok.isNot(tok::r_paren)) {
1436          if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1437                                  LHS.get())) {
1438            LHS = ExprError();
1439          }
1440        }
1441      }
1442
1443      // Match the ')'.
1444      if (LHS.isInvalid()) {
1445        SkipUntil(tok::r_paren, StopAtSemi);
1446      } else if (Tok.isNot(tok::r_paren)) {
1447        PT.consumeClose();
1448        LHS = ExprError();
1449      } else {
1450        assert((ArgExprs.size() == 0 ||
1451                ArgExprs.size()-1 == CommaLocs.size())&&
1452               "Unexpected number of commas!");
1453        LHS = Actions.ActOnCallExpr(getCurScope(), LHS.take(), Loc,
1454                                    ArgExprs, Tok.getLocation(),
1455                                    ExecConfig);
1456        PT.consumeClose();
1457      }
1458
1459      break;
1460    }
1461    case tok::arrow:
1462    case tok::period: {
1463      // postfix-expression: p-e '->' template[opt] id-expression
1464      // postfix-expression: p-e '.' template[opt] id-expression
1465      tok::TokenKind OpKind = Tok.getKind();
1466      SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1467
1468      CXXScopeSpec SS;
1469      ParsedType ObjectType;
1470      bool MayBePseudoDestructor = false;
1471      if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1472        Expr *Base = LHS.take();
1473        const Type* BaseType = Base->getType().getTypePtrOrNull();
1474        if (BaseType && Tok.is(tok::l_paren) &&
1475            (BaseType->isFunctionType() ||
1476             BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1477          Diag(OpLoc, diag::err_function_is_not_record)
1478            << (OpKind == tok::arrow) << Base->getSourceRange()
1479            << FixItHint::CreateRemoval(OpLoc);
1480          return ParsePostfixExpressionSuffix(Base);
1481        }
1482
1483        LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1484                                                   OpLoc, OpKind, ObjectType,
1485                                                   MayBePseudoDestructor);
1486        if (LHS.isInvalid())
1487          break;
1488
1489        ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1490                                       /*EnteringContext=*/false,
1491                                       &MayBePseudoDestructor);
1492        if (SS.isNotEmpty())
1493          ObjectType = ParsedType();
1494      }
1495
1496      if (Tok.is(tok::code_completion)) {
1497        // Code completion for a member access expression.
1498        Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1499                                                OpLoc, OpKind == tok::arrow);
1500
1501        cutOffParsing();
1502        return ExprError();
1503      }
1504
1505      if (MayBePseudoDestructor && !LHS.isInvalid()) {
1506        LHS = ParseCXXPseudoDestructor(LHS.take(), OpLoc, OpKind, SS,
1507                                       ObjectType);
1508        break;
1509      }
1510
1511      // Either the action has told is that this cannot be a
1512      // pseudo-destructor expression (based on the type of base
1513      // expression), or we didn't see a '~' in the right place. We
1514      // can still parse a destructor name here, but in that case it
1515      // names a real destructor.
1516      // Allow explicit constructor calls in Microsoft mode.
1517      // FIXME: Add support for explicit call of template constructor.
1518      SourceLocation TemplateKWLoc;
1519      UnqualifiedId Name;
1520      if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1521        // Objective-C++:
1522        //   After a '.' in a member access expression, treat the keyword
1523        //   'class' as if it were an identifier.
1524        //
1525        // This hack allows property access to the 'class' method because it is
1526        // such a common method name. For other C++ keywords that are
1527        // Objective-C method names, one must use the message send syntax.
1528        IdentifierInfo *Id = Tok.getIdentifierInfo();
1529        SourceLocation Loc = ConsumeToken();
1530        Name.setIdentifier(Id, Loc);
1531      } else if (ParseUnqualifiedId(SS,
1532                                    /*EnteringContext=*/false,
1533                                    /*AllowDestructorName=*/true,
1534                                    /*AllowConstructorName=*/
1535                                      getLangOpts().MicrosoftExt,
1536                                    ObjectType, TemplateKWLoc, Name))
1537        LHS = ExprError();
1538
1539      if (!LHS.isInvalid())
1540        LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.take(), OpLoc,
1541                                            OpKind, SS, TemplateKWLoc, Name,
1542                                 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl : 0,
1543                                            Tok.is(tok::l_paren));
1544      break;
1545    }
1546    case tok::plusplus:    // postfix-expression: postfix-expression '++'
1547    case tok::minusminus:  // postfix-expression: postfix-expression '--'
1548      if (!LHS.isInvalid()) {
1549        LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1550                                          Tok.getKind(), LHS.take());
1551      }
1552      ConsumeToken();
1553      break;
1554    }
1555  }
1556}
1557
1558/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1559/// vec_step and we are at the start of an expression or a parenthesized
1560/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1561/// expression (isCastExpr == false) or the type (isCastExpr == true).
1562///
1563/// \verbatim
1564///       unary-expression:  [C99 6.5.3]
1565///         'sizeof' unary-expression
1566///         'sizeof' '(' type-name ')'
1567/// [GNU]   '__alignof' unary-expression
1568/// [GNU]   '__alignof' '(' type-name ')'
1569/// [C11]   '_Alignof' '(' type-name ')'
1570/// [C++0x] 'alignof' '(' type-id ')'
1571///
1572/// [GNU]   typeof-specifier:
1573///           typeof ( expressions )
1574///           typeof ( type-name )
1575/// [GNU/C++] typeof unary-expression
1576///
1577/// [OpenCL 1.1 6.11.12] vec_step built-in function:
1578///           vec_step ( expressions )
1579///           vec_step ( type-name )
1580/// \endverbatim
1581ExprResult
1582Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1583                                           bool &isCastExpr,
1584                                           ParsedType &CastTy,
1585                                           SourceRange &CastRange) {
1586
1587  assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1588          OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1589          OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
1590          "Not a typeof/sizeof/alignof/vec_step expression!");
1591
1592  ExprResult Operand;
1593
1594  // If the operand doesn't start with an '(', it must be an expression.
1595  if (Tok.isNot(tok::l_paren)) {
1596    // If construct allows a form without parenthesis, user may forget to put
1597    // pathenthesis around type name.
1598    if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
1599        OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1600      bool isAmbiguousTypeId;
1601      if (isTypeIdInParens(isAmbiguousTypeId)) {
1602        DeclSpec DS(AttrFactory);
1603        ParseSpecifierQualifierList(DS);
1604        Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1605        ParseDeclarator(DeclaratorInfo);
1606
1607        SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1608        SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1609        Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1610          << OpTok.getName()
1611          << FixItHint::CreateInsertion(LParenLoc, "(")
1612          << FixItHint::CreateInsertion(RParenLoc, ")");
1613        isCastExpr = true;
1614        return ExprEmpty();
1615      }
1616    }
1617
1618    isCastExpr = false;
1619    if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1620      Diag(Tok,diag::err_expected_lparen_after_id) << OpTok.getIdentifierInfo();
1621      return ExprError();
1622    }
1623
1624    Operand = ParseCastExpression(true/*isUnaryExpression*/);
1625  } else {
1626    // If it starts with a '(', we know that it is either a parenthesized
1627    // type-name, or it is a unary-expression that starts with a compound
1628    // literal, or starts with a primary-expression that is a parenthesized
1629    // expression.
1630    ParenParseOption ExprType = CastExpr;
1631    SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1632
1633    Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1634                                   false, CastTy, RParenLoc);
1635    CastRange = SourceRange(LParenLoc, RParenLoc);
1636
1637    // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1638    // a type.
1639    if (ExprType == CastExpr) {
1640      isCastExpr = true;
1641      return ExprEmpty();
1642    }
1643
1644    if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1645      // GNU typeof in C requires the expression to be parenthesized. Not so for
1646      // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1647      // the start of a unary-expression, but doesn't include any postfix
1648      // pieces. Parse these now if present.
1649      if (!Operand.isInvalid())
1650        Operand = ParsePostfixExpressionSuffix(Operand.get());
1651    }
1652  }
1653
1654  // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1655  isCastExpr = false;
1656  return Operand;
1657}
1658
1659
1660/// \brief Parse a sizeof or alignof expression.
1661///
1662/// \verbatim
1663///       unary-expression:  [C99 6.5.3]
1664///         'sizeof' unary-expression
1665///         'sizeof' '(' type-name ')'
1666/// [C++11] 'sizeof' '...' '(' identifier ')'
1667/// [GNU]   '__alignof' unary-expression
1668/// [GNU]   '__alignof' '(' type-name ')'
1669/// [C11]   '_Alignof' '(' type-name ')'
1670/// [C++11] 'alignof' '(' type-id ')'
1671/// \endverbatim
1672ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1673  assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1674          Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1675          Tok.is(tok::kw_vec_step)) &&
1676         "Not a sizeof/alignof/vec_step expression!");
1677  Token OpTok = Tok;
1678  ConsumeToken();
1679
1680  // [C++11] 'sizeof' '...' '(' identifier ')'
1681  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1682    SourceLocation EllipsisLoc = ConsumeToken();
1683    SourceLocation LParenLoc, RParenLoc;
1684    IdentifierInfo *Name = 0;
1685    SourceLocation NameLoc;
1686    if (Tok.is(tok::l_paren)) {
1687      BalancedDelimiterTracker T(*this, tok::l_paren);
1688      T.consumeOpen();
1689      LParenLoc = T.getOpenLocation();
1690      if (Tok.is(tok::identifier)) {
1691        Name = Tok.getIdentifierInfo();
1692        NameLoc = ConsumeToken();
1693        T.consumeClose();
1694        RParenLoc = T.getCloseLocation();
1695        if (RParenLoc.isInvalid())
1696          RParenLoc = PP.getLocForEndOfToken(NameLoc);
1697      } else {
1698        Diag(Tok, diag::err_expected_parameter_pack);
1699        SkipUntil(tok::r_paren, StopAtSemi);
1700      }
1701    } else if (Tok.is(tok::identifier)) {
1702      Name = Tok.getIdentifierInfo();
1703      NameLoc = ConsumeToken();
1704      LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1705      RParenLoc = PP.getLocForEndOfToken(NameLoc);
1706      Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1707        << Name
1708        << FixItHint::CreateInsertion(LParenLoc, "(")
1709        << FixItHint::CreateInsertion(RParenLoc, ")");
1710    } else {
1711      Diag(Tok, diag::err_sizeof_parameter_pack);
1712    }
1713
1714    if (!Name)
1715      return ExprError();
1716
1717    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1718                                                 Sema::ReuseLambdaContextDecl);
1719
1720    return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1721                                                OpTok.getLocation(),
1722                                                *Name, NameLoc,
1723                                                RParenLoc);
1724  }
1725
1726  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1727    Diag(OpTok, diag::warn_cxx98_compat_alignof);
1728
1729  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1730                                               Sema::ReuseLambdaContextDecl);
1731
1732  bool isCastExpr;
1733  ParsedType CastTy;
1734  SourceRange CastRange;
1735  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1736                                                          isCastExpr,
1737                                                          CastTy,
1738                                                          CastRange);
1739
1740  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1741  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1742      OpTok.is(tok::kw__Alignof))
1743    ExprKind = UETT_AlignOf;
1744  else if (OpTok.is(tok::kw_vec_step))
1745    ExprKind = UETT_VecStep;
1746
1747  if (isCastExpr)
1748    return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1749                                                 ExprKind,
1750                                                 /*isType=*/true,
1751                                                 CastTy.getAsOpaquePtr(),
1752                                                 CastRange);
1753
1754  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1755    Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1756
1757  // If we get here, the operand to the sizeof/alignof was an expresion.
1758  if (!Operand.isInvalid())
1759    Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1760                                                    ExprKind,
1761                                                    /*isType=*/false,
1762                                                    Operand.release(),
1763                                                    CastRange);
1764  return Operand;
1765}
1766
1767/// ParseBuiltinPrimaryExpression
1768///
1769/// \verbatim
1770///       primary-expression: [C99 6.5.1]
1771/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1772/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1773/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1774///                                     assign-expr ')'
1775/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1776/// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1777///
1778/// [GNU] offsetof-member-designator:
1779/// [GNU]   identifier
1780/// [GNU]   offsetof-member-designator '.' identifier
1781/// [GNU]   offsetof-member-designator '[' expression ']'
1782/// \endverbatim
1783ExprResult Parser::ParseBuiltinPrimaryExpression() {
1784  ExprResult Res;
1785  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1786
1787  tok::TokenKind T = Tok.getKind();
1788  SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1789
1790  // All of these start with an open paren.
1791  if (Tok.isNot(tok::l_paren))
1792    return ExprError(Diag(Tok, diag::err_expected_lparen_after_id)
1793                       << BuiltinII);
1794
1795  BalancedDelimiterTracker PT(*this, tok::l_paren);
1796  PT.consumeOpen();
1797
1798  // TODO: Build AST.
1799
1800  switch (T) {
1801  default: llvm_unreachable("Not a builtin primary expression!");
1802  case tok::kw___builtin_va_arg: {
1803    ExprResult Expr(ParseAssignmentExpression());
1804
1805    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1806      Expr = ExprError();
1807
1808    TypeResult Ty = ParseTypeName();
1809
1810    if (Tok.isNot(tok::r_paren)) {
1811      Diag(Tok, diag::err_expected_rparen);
1812      Expr = ExprError();
1813    }
1814
1815    if (Expr.isInvalid() || Ty.isInvalid())
1816      Res = ExprError();
1817    else
1818      Res = Actions.ActOnVAArg(StartLoc, Expr.take(), Ty.get(), ConsumeParen());
1819    break;
1820  }
1821  case tok::kw___builtin_offsetof: {
1822    SourceLocation TypeLoc = Tok.getLocation();
1823    TypeResult Ty = ParseTypeName();
1824    if (Ty.isInvalid()) {
1825      SkipUntil(tok::r_paren, StopAtSemi);
1826      return ExprError();
1827    }
1828
1829    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1830      return ExprError();
1831
1832    // We must have at least one identifier here.
1833    if (Tok.isNot(tok::identifier)) {
1834      Diag(Tok, diag::err_expected_ident);
1835      SkipUntil(tok::r_paren, StopAtSemi);
1836      return ExprError();
1837    }
1838
1839    // Keep track of the various subcomponents we see.
1840    SmallVector<Sema::OffsetOfComponent, 4> Comps;
1841
1842    Comps.push_back(Sema::OffsetOfComponent());
1843    Comps.back().isBrackets = false;
1844    Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1845    Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1846
1847    // FIXME: This loop leaks the index expressions on error.
1848    while (1) {
1849      if (Tok.is(tok::period)) {
1850        // offsetof-member-designator: offsetof-member-designator '.' identifier
1851        Comps.push_back(Sema::OffsetOfComponent());
1852        Comps.back().isBrackets = false;
1853        Comps.back().LocStart = ConsumeToken();
1854
1855        if (Tok.isNot(tok::identifier)) {
1856          Diag(Tok, diag::err_expected_ident);
1857          SkipUntil(tok::r_paren, StopAtSemi);
1858          return ExprError();
1859        }
1860        Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1861        Comps.back().LocEnd = ConsumeToken();
1862
1863      } else if (Tok.is(tok::l_square)) {
1864        if (CheckProhibitedCXX11Attribute())
1865          return ExprError();
1866
1867        // offsetof-member-designator: offsetof-member-design '[' expression ']'
1868        Comps.push_back(Sema::OffsetOfComponent());
1869        Comps.back().isBrackets = true;
1870        BalancedDelimiterTracker ST(*this, tok::l_square);
1871        ST.consumeOpen();
1872        Comps.back().LocStart = ST.getOpenLocation();
1873        Res = ParseExpression();
1874        if (Res.isInvalid()) {
1875          SkipUntil(tok::r_paren, StopAtSemi);
1876          return Res;
1877        }
1878        Comps.back().U.E = Res.release();
1879
1880        ST.consumeClose();
1881        Comps.back().LocEnd = ST.getCloseLocation();
1882      } else {
1883        if (Tok.isNot(tok::r_paren)) {
1884          PT.consumeClose();
1885          Res = ExprError();
1886        } else if (Ty.isInvalid()) {
1887          Res = ExprError();
1888        } else {
1889          PT.consumeClose();
1890          Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1891                                             Ty.get(), &Comps[0], Comps.size(),
1892                                             PT.getCloseLocation());
1893        }
1894        break;
1895      }
1896    }
1897    break;
1898  }
1899  case tok::kw___builtin_choose_expr: {
1900    ExprResult Cond(ParseAssignmentExpression());
1901    if (Cond.isInvalid()) {
1902      SkipUntil(tok::r_paren, StopAtSemi);
1903      return Cond;
1904    }
1905    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1906      return ExprError();
1907
1908    ExprResult Expr1(ParseAssignmentExpression());
1909    if (Expr1.isInvalid()) {
1910      SkipUntil(tok::r_paren, StopAtSemi);
1911      return Expr1;
1912    }
1913    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1914      return ExprError();
1915
1916    ExprResult Expr2(ParseAssignmentExpression());
1917    if (Expr2.isInvalid()) {
1918      SkipUntil(tok::r_paren, StopAtSemi);
1919      return Expr2;
1920    }
1921    if (Tok.isNot(tok::r_paren)) {
1922      Diag(Tok, diag::err_expected_rparen);
1923      return ExprError();
1924    }
1925    Res = Actions.ActOnChooseExpr(StartLoc, Cond.take(), Expr1.take(),
1926                                  Expr2.take(), ConsumeParen());
1927    break;
1928  }
1929  case tok::kw___builtin_astype: {
1930    // The first argument is an expression to be converted, followed by a comma.
1931    ExprResult Expr(ParseAssignmentExpression());
1932    if (Expr.isInvalid()) {
1933      SkipUntil(tok::r_paren, StopAtSemi);
1934      return ExprError();
1935    }
1936
1937    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1938                         tok::r_paren))
1939      return ExprError();
1940
1941    // Second argument is the type to bitcast to.
1942    TypeResult DestTy = ParseTypeName();
1943    if (DestTy.isInvalid())
1944      return ExprError();
1945
1946    // Attempt to consume the r-paren.
1947    if (Tok.isNot(tok::r_paren)) {
1948      Diag(Tok, diag::err_expected_rparen);
1949      SkipUntil(tok::r_paren, StopAtSemi);
1950      return ExprError();
1951    }
1952
1953    Res = Actions.ActOnAsTypeExpr(Expr.take(), DestTy.get(), StartLoc,
1954                                  ConsumeParen());
1955    break;
1956  }
1957  case tok::kw___builtin_convertvector: {
1958    // The first argument is an expression to be converted, followed by a comma.
1959    ExprResult Expr(ParseAssignmentExpression());
1960    if (Expr.isInvalid()) {
1961      SkipUntil(tok::r_paren, StopAtSemi);
1962      return ExprError();
1963    }
1964
1965    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1966                         tok::r_paren))
1967      return ExprError();
1968
1969    // Second argument is the type to bitcast to.
1970    TypeResult DestTy = ParseTypeName();
1971    if (DestTy.isInvalid())
1972      return ExprError();
1973
1974    // Attempt to consume the r-paren.
1975    if (Tok.isNot(tok::r_paren)) {
1976      Diag(Tok, diag::err_expected_rparen);
1977      SkipUntil(tok::r_paren, StopAtSemi);
1978      return ExprError();
1979    }
1980
1981    Res = Actions.ActOnConvertVectorExpr(Expr.take(), DestTy.get(), StartLoc,
1982                                         ConsumeParen());
1983    break;
1984  }
1985  }
1986
1987  if (Res.isInvalid())
1988    return ExprError();
1989
1990  // These can be followed by postfix-expr pieces because they are
1991  // primary-expressions.
1992  return ParsePostfixExpressionSuffix(Res.take());
1993}
1994
1995/// ParseParenExpression - This parses the unit that starts with a '(' token,
1996/// based on what is allowed by ExprType.  The actual thing parsed is returned
1997/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1998/// not the parsed cast-expression.
1999///
2000/// \verbatim
2001///       primary-expression: [C99 6.5.1]
2002///         '(' expression ')'
2003/// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2004///       postfix-expression: [C99 6.5.2]
2005///         '(' type-name ')' '{' initializer-list '}'
2006///         '(' type-name ')' '{' initializer-list ',' '}'
2007///       cast-expression: [C99 6.5.4]
2008///         '(' type-name ')' cast-expression
2009/// [ARC]   bridged-cast-expression
2010///
2011/// [ARC] bridged-cast-expression:
2012///         (__bridge type-name) cast-expression
2013///         (__bridge_transfer type-name) cast-expression
2014///         (__bridge_retained type-name) cast-expression
2015/// \endverbatim
2016ExprResult
2017Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2018                             bool isTypeCast, ParsedType &CastTy,
2019                             SourceLocation &RParenLoc) {
2020  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2021  BalancedDelimiterTracker T(*this, tok::l_paren);
2022  if (T.consumeOpen())
2023    return ExprError();
2024  SourceLocation OpenLoc = T.getOpenLocation();
2025
2026  ExprResult Result(true);
2027  bool isAmbiguousTypeId;
2028  CastTy = ParsedType();
2029
2030  if (Tok.is(tok::code_completion)) {
2031    Actions.CodeCompleteOrdinaryName(getCurScope(),
2032                 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2033                                            : Sema::PCC_Expression);
2034    cutOffParsing();
2035    return ExprError();
2036  }
2037
2038  // Diagnose use of bridge casts in non-arc mode.
2039  bool BridgeCast = (getLangOpts().ObjC2 &&
2040                     (Tok.is(tok::kw___bridge) ||
2041                      Tok.is(tok::kw___bridge_transfer) ||
2042                      Tok.is(tok::kw___bridge_retained) ||
2043                      Tok.is(tok::kw___bridge_retain)));
2044  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2045    if (Tok.isNot(tok::kw___bridge)) {
2046      StringRef BridgeCastName = Tok.getName();
2047      SourceLocation BridgeKeywordLoc = ConsumeToken();
2048      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2049        Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2050          << BridgeCastName
2051          << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2052    }
2053    else
2054      ConsumeToken(); // consume __bridge
2055    BridgeCast = false;
2056  }
2057
2058  // None of these cases should fall through with an invalid Result
2059  // unless they've already reported an error.
2060  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2061    Diag(Tok, diag::ext_gnu_statement_expr);
2062    Actions.ActOnStartStmtExpr();
2063
2064    StmtResult Stmt(ParseCompoundStatement(true));
2065    ExprType = CompoundStmt;
2066
2067    // If the substmt parsed correctly, build the AST node.
2068    if (!Stmt.isInvalid()) {
2069      Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.take(), Tok.getLocation());
2070    } else {
2071      Actions.ActOnStmtExprError();
2072    }
2073  } else if (ExprType >= CompoundLiteral && BridgeCast) {
2074    tok::TokenKind tokenKind = Tok.getKind();
2075    SourceLocation BridgeKeywordLoc = ConsumeToken();
2076
2077    // Parse an Objective-C ARC ownership cast expression.
2078    ObjCBridgeCastKind Kind;
2079    if (tokenKind == tok::kw___bridge)
2080      Kind = OBC_Bridge;
2081    else if (tokenKind == tok::kw___bridge_transfer)
2082      Kind = OBC_BridgeTransfer;
2083    else if (tokenKind == tok::kw___bridge_retained)
2084      Kind = OBC_BridgeRetained;
2085    else {
2086      // As a hopefully temporary workaround, allow __bridge_retain as
2087      // a synonym for __bridge_retained, but only in system headers.
2088      assert(tokenKind == tok::kw___bridge_retain);
2089      Kind = OBC_BridgeRetained;
2090      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2091        Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2092          << FixItHint::CreateReplacement(BridgeKeywordLoc,
2093                                          "__bridge_retained");
2094    }
2095
2096    TypeResult Ty = ParseTypeName();
2097    T.consumeClose();
2098    RParenLoc = T.getCloseLocation();
2099    ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2100
2101    if (Ty.isInvalid() || SubExpr.isInvalid())
2102      return ExprError();
2103
2104    return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2105                                        BridgeKeywordLoc, Ty.get(),
2106                                        RParenLoc, SubExpr.get());
2107  } else if (ExprType >= CompoundLiteral &&
2108             isTypeIdInParens(isAmbiguousTypeId)) {
2109
2110    // Otherwise, this is a compound literal expression or cast expression.
2111
2112    // In C++, if the type-id is ambiguous we disambiguate based on context.
2113    // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2114    // in which case we should treat it as type-id.
2115    // if stopIfCastExpr is false, we need to determine the context past the
2116    // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2117    if (isAmbiguousTypeId && !stopIfCastExpr) {
2118      ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T);
2119      RParenLoc = T.getCloseLocation();
2120      return res;
2121    }
2122
2123    // Parse the type declarator.
2124    DeclSpec DS(AttrFactory);
2125    ParseSpecifierQualifierList(DS);
2126    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2127    ParseDeclarator(DeclaratorInfo);
2128
2129    // If our type is followed by an identifier and either ':' or ']', then
2130    // this is probably an Objective-C message send where the leading '[' is
2131    // missing. Recover as if that were the case.
2132    if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2133        !InMessageExpression && getLangOpts().ObjC1 &&
2134        (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2135      TypeResult Ty;
2136      {
2137        InMessageExpressionRAIIObject InMessage(*this, false);
2138        Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2139      }
2140      Result = ParseObjCMessageExpressionBody(SourceLocation(),
2141                                              SourceLocation(),
2142                                              Ty.get(), 0);
2143    } else {
2144      // Match the ')'.
2145      T.consumeClose();
2146      RParenLoc = T.getCloseLocation();
2147      if (Tok.is(tok::l_brace)) {
2148        ExprType = CompoundLiteral;
2149        TypeResult Ty;
2150        {
2151          InMessageExpressionRAIIObject InMessage(*this, false);
2152          Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2153        }
2154        return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2155      }
2156
2157      if (ExprType == CastExpr) {
2158        // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2159
2160        if (DeclaratorInfo.isInvalidType())
2161          return ExprError();
2162
2163        // Note that this doesn't parse the subsequent cast-expression, it just
2164        // returns the parsed type to the callee.
2165        if (stopIfCastExpr) {
2166          TypeResult Ty;
2167          {
2168            InMessageExpressionRAIIObject InMessage(*this, false);
2169            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2170          }
2171          CastTy = Ty.get();
2172          return ExprResult();
2173        }
2174
2175        // Reject the cast of super idiom in ObjC.
2176        if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2177            Tok.getIdentifierInfo() == Ident_super &&
2178            getCurScope()->isInObjcMethodScope() &&
2179            GetLookAheadToken(1).isNot(tok::period)) {
2180          Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2181            << SourceRange(OpenLoc, RParenLoc);
2182          return ExprError();
2183        }
2184
2185        // Parse the cast-expression that follows it next.
2186        // TODO: For cast expression with CastTy.
2187        Result = ParseCastExpression(/*isUnaryExpression=*/false,
2188                                     /*isAddressOfOperand=*/false,
2189                                     /*isTypeCast=*/IsTypeCast);
2190        if (!Result.isInvalid()) {
2191          Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2192                                         DeclaratorInfo, CastTy,
2193                                         RParenLoc, Result.take());
2194        }
2195        return Result;
2196      }
2197
2198      Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2199      return ExprError();
2200    }
2201  } else if (isTypeCast) {
2202    // Parse the expression-list.
2203    InMessageExpressionRAIIObject InMessage(*this, false);
2204
2205    ExprVector ArgExprs;
2206    CommaLocsTy CommaLocs;
2207
2208    if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2209      ExprType = SimpleExpr;
2210      Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2211                                          ArgExprs);
2212    }
2213  } else {
2214    InMessageExpressionRAIIObject InMessage(*this, false);
2215
2216    Result = ParseExpression(MaybeTypeCast);
2217    ExprType = SimpleExpr;
2218
2219    // Don't build a paren expression unless we actually match a ')'.
2220    if (!Result.isInvalid() && Tok.is(tok::r_paren))
2221      Result = Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.take());
2222  }
2223
2224  // Match the ')'.
2225  if (Result.isInvalid()) {
2226    SkipUntil(tok::r_paren, StopAtSemi);
2227    return ExprError();
2228  }
2229
2230  T.consumeClose();
2231  RParenLoc = T.getCloseLocation();
2232  return Result;
2233}
2234
2235/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2236/// and we are at the left brace.
2237///
2238/// \verbatim
2239///       postfix-expression: [C99 6.5.2]
2240///         '(' type-name ')' '{' initializer-list '}'
2241///         '(' type-name ')' '{' initializer-list ',' '}'
2242/// \endverbatim
2243ExprResult
2244Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2245                                       SourceLocation LParenLoc,
2246                                       SourceLocation RParenLoc) {
2247  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2248  if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2249    Diag(LParenLoc, diag::ext_c99_compound_literal);
2250  ExprResult Result = ParseInitializer();
2251  if (!Result.isInvalid() && Ty)
2252    return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.take());
2253  return Result;
2254}
2255
2256/// ParseStringLiteralExpression - This handles the various token types that
2257/// form string literals, and also handles string concatenation [C99 5.1.1.2,
2258/// translation phase #6].
2259///
2260/// \verbatim
2261///       primary-expression: [C99 6.5.1]
2262///         string-literal
2263/// \verbatim
2264ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2265  assert(isTokenStringLiteral() && "Not a string literal!");
2266
2267  // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2268  // considered to be strings for concatenation purposes.
2269  SmallVector<Token, 4> StringToks;
2270
2271  do {
2272    StringToks.push_back(Tok);
2273    ConsumeStringToken();
2274  } while (isTokenStringLiteral());
2275
2276  // Pass the set of string tokens, ready for concatenation, to the actions.
2277  return Actions.ActOnStringLiteral(&StringToks[0], StringToks.size(),
2278                                   AllowUserDefinedLiteral ? getCurScope() : 0);
2279}
2280
2281/// ParseGenericSelectionExpression - Parse a C11 generic-selection
2282/// [C11 6.5.1.1].
2283///
2284/// \verbatim
2285///    generic-selection:
2286///           _Generic ( assignment-expression , generic-assoc-list )
2287///    generic-assoc-list:
2288///           generic-association
2289///           generic-assoc-list , generic-association
2290///    generic-association:
2291///           type-name : assignment-expression
2292///           default : assignment-expression
2293/// \endverbatim
2294ExprResult Parser::ParseGenericSelectionExpression() {
2295  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2296  SourceLocation KeyLoc = ConsumeToken();
2297
2298  if (!getLangOpts().C11)
2299    Diag(KeyLoc, diag::ext_c11_generic_selection);
2300
2301  BalancedDelimiterTracker T(*this, tok::l_paren);
2302  if (T.expectAndConsume(diag::err_expected_lparen))
2303    return ExprError();
2304
2305  ExprResult ControllingExpr;
2306  {
2307    // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2308    // not evaluated."
2309    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2310    ControllingExpr = ParseAssignmentExpression();
2311    if (ControllingExpr.isInvalid()) {
2312      SkipUntil(tok::r_paren, StopAtSemi);
2313      return ExprError();
2314    }
2315  }
2316
2317  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "")) {
2318    SkipUntil(tok::r_paren, StopAtSemi);
2319    return ExprError();
2320  }
2321
2322  SourceLocation DefaultLoc;
2323  TypeVector Types;
2324  ExprVector Exprs;
2325  while (1) {
2326    ParsedType Ty;
2327    if (Tok.is(tok::kw_default)) {
2328      // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2329      // generic association."
2330      if (!DefaultLoc.isInvalid()) {
2331        Diag(Tok, diag::err_duplicate_default_assoc);
2332        Diag(DefaultLoc, diag::note_previous_default_assoc);
2333        SkipUntil(tok::r_paren, StopAtSemi);
2334        return ExprError();
2335      }
2336      DefaultLoc = ConsumeToken();
2337      Ty = ParsedType();
2338    } else {
2339      ColonProtectionRAIIObject X(*this);
2340      TypeResult TR = ParseTypeName();
2341      if (TR.isInvalid()) {
2342        SkipUntil(tok::r_paren, StopAtSemi);
2343        return ExprError();
2344      }
2345      Ty = TR.release();
2346    }
2347    Types.push_back(Ty);
2348
2349    if (ExpectAndConsume(tok::colon, diag::err_expected_colon, "")) {
2350      SkipUntil(tok::r_paren, StopAtSemi);
2351      return ExprError();
2352    }
2353
2354    // FIXME: These expressions should be parsed in a potentially potentially
2355    // evaluated context.
2356    ExprResult ER(ParseAssignmentExpression());
2357    if (ER.isInvalid()) {
2358      SkipUntil(tok::r_paren, StopAtSemi);
2359      return ExprError();
2360    }
2361    Exprs.push_back(ER.release());
2362
2363    if (Tok.isNot(tok::comma))
2364      break;
2365    ConsumeToken();
2366  }
2367
2368  T.consumeClose();
2369  if (T.getCloseLocation().isInvalid())
2370    return ExprError();
2371
2372  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2373                                           T.getCloseLocation(),
2374                                           ControllingExpr.release(),
2375                                           Types, Exprs);
2376}
2377
2378/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2379///
2380/// \verbatim
2381///       argument-expression-list:
2382///         assignment-expression
2383///         argument-expression-list , assignment-expression
2384///
2385/// [C++] expression-list:
2386/// [C++]   assignment-expression
2387/// [C++]   expression-list , assignment-expression
2388///
2389/// [C++0x] expression-list:
2390/// [C++0x]   initializer-list
2391///
2392/// [C++0x] initializer-list
2393/// [C++0x]   initializer-clause ...[opt]
2394/// [C++0x]   initializer-list , initializer-clause ...[opt]
2395///
2396/// [C++0x] initializer-clause:
2397/// [C++0x]   assignment-expression
2398/// [C++0x]   braced-init-list
2399/// \endverbatim
2400bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2401                                 SmallVectorImpl<SourceLocation> &CommaLocs,
2402                                 void (Sema::*Completer)(Scope *S,
2403                                                         Expr *Data,
2404                                                         ArrayRef<Expr *> Args),
2405                                 Expr *Data) {
2406  while (1) {
2407    if (Tok.is(tok::code_completion)) {
2408      if (Completer)
2409        (Actions.*Completer)(getCurScope(), Data, Exprs);
2410      else
2411        Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2412      cutOffParsing();
2413      return true;
2414    }
2415
2416    ExprResult Expr;
2417    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2418      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2419      Expr = ParseBraceInitializer();
2420    } else
2421      Expr = ParseAssignmentExpression();
2422
2423    if (Tok.is(tok::ellipsis))
2424      Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2425    if (Expr.isInvalid())
2426      return true;
2427
2428    Exprs.push_back(Expr.release());
2429
2430    if (Tok.isNot(tok::comma))
2431      return false;
2432    // Move to the next argument, remember where the comma was.
2433    CommaLocs.push_back(ConsumeToken());
2434  }
2435}
2436
2437/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2438/// used for misc language extensions.
2439///
2440/// \verbatim
2441///       simple-expression-list:
2442///         assignment-expression
2443///         simple-expression-list , assignment-expression
2444/// \endverbatim
2445bool
2446Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2447                                  SmallVectorImpl<SourceLocation> &CommaLocs) {
2448  while (1) {
2449    ExprResult Expr = ParseAssignmentExpression();
2450    if (Expr.isInvalid())
2451      return true;
2452
2453    Exprs.push_back(Expr.release());
2454
2455    if (Tok.isNot(tok::comma))
2456      return false;
2457
2458    // Move to the next argument, remember where the comma was.
2459    CommaLocs.push_back(ConsumeToken());
2460  }
2461}
2462
2463/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2464///
2465/// \verbatim
2466/// [clang] block-id:
2467/// [clang]   specifier-qualifier-list block-declarator
2468/// \endverbatim
2469void Parser::ParseBlockId(SourceLocation CaretLoc) {
2470  if (Tok.is(tok::code_completion)) {
2471    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2472    return cutOffParsing();
2473  }
2474
2475  // Parse the specifier-qualifier-list piece.
2476  DeclSpec DS(AttrFactory);
2477  ParseSpecifierQualifierList(DS);
2478
2479  // Parse the block-declarator.
2480  Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2481  ParseDeclarator(DeclaratorInfo);
2482
2483  // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2484  DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2485
2486  MaybeParseGNUAttributes(DeclaratorInfo);
2487
2488  // Inform sema that we are starting a block.
2489  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2490}
2491
2492/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2493/// like ^(int x){ return x+1; }
2494///
2495/// \verbatim
2496///         block-literal:
2497/// [clang]   '^' block-args[opt] compound-statement
2498/// [clang]   '^' block-id compound-statement
2499/// [clang] block-args:
2500/// [clang]   '(' parameter-list ')'
2501/// \endverbatim
2502ExprResult Parser::ParseBlockLiteralExpression() {
2503  assert(Tok.is(tok::caret) && "block literal starts with ^");
2504  SourceLocation CaretLoc = ConsumeToken();
2505
2506  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2507                                "block literal parsing");
2508
2509  // Enter a scope to hold everything within the block.  This includes the
2510  // argument decls, decls within the compound expression, etc.  This also
2511  // allows determining whether a variable reference inside the block is
2512  // within or outside of the block.
2513  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2514                              Scope::DeclScope);
2515
2516  // Inform sema that we are starting a block.
2517  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2518
2519  // Parse the return type if present.
2520  DeclSpec DS(AttrFactory);
2521  Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2522  // FIXME: Since the return type isn't actually parsed, it can't be used to
2523  // fill ParamInfo with an initial valid range, so do it manually.
2524  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2525
2526  // If this block has arguments, parse them.  There is no ambiguity here with
2527  // the expression case, because the expression case requires a parameter list.
2528  if (Tok.is(tok::l_paren)) {
2529    ParseParenDeclarator(ParamInfo);
2530    // Parse the pieces after the identifier as if we had "int(...)".
2531    // SetIdentifier sets the source range end, but in this case we're past
2532    // that location.
2533    SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2534    ParamInfo.SetIdentifier(0, CaretLoc);
2535    ParamInfo.SetRangeEnd(Tmp);
2536    if (ParamInfo.isInvalidType()) {
2537      // If there was an error parsing the arguments, they may have
2538      // tried to use ^(x+y) which requires an argument list.  Just
2539      // skip the whole block literal.
2540      Actions.ActOnBlockError(CaretLoc, getCurScope());
2541      return ExprError();
2542    }
2543
2544    MaybeParseGNUAttributes(ParamInfo);
2545
2546    // Inform sema that we are starting a block.
2547    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2548  } else if (!Tok.is(tok::l_brace)) {
2549    ParseBlockId(CaretLoc);
2550  } else {
2551    // Otherwise, pretend we saw (void).
2552    ParsedAttributes attrs(AttrFactory);
2553    SourceLocation NoLoc;
2554    ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2555                                             /*IsAmbiguous=*/false,
2556                                             /*RParenLoc=*/NoLoc,
2557                                             /*ArgInfo=*/0,
2558                                             /*NumArgs=*/0,
2559                                             /*EllipsisLoc=*/NoLoc,
2560                                             /*RParenLoc=*/NoLoc,
2561                                             /*TypeQuals=*/0,
2562                                             /*RefQualifierIsLvalueRef=*/true,
2563                                             /*RefQualifierLoc=*/NoLoc,
2564                                             /*ConstQualifierLoc=*/NoLoc,
2565                                             /*VolatileQualifierLoc=*/NoLoc,
2566                                             /*MutableLoc=*/NoLoc,
2567                                             EST_None,
2568                                             /*ESpecLoc=*/NoLoc,
2569                                             /*Exceptions=*/0,
2570                                             /*ExceptionRanges=*/0,
2571                                             /*NumExceptions=*/0,
2572                                             /*NoexceptExpr=*/0,
2573                                             CaretLoc, CaretLoc,
2574                                             ParamInfo),
2575                          attrs, CaretLoc);
2576
2577    MaybeParseGNUAttributes(ParamInfo);
2578
2579    // Inform sema that we are starting a block.
2580    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2581  }
2582
2583
2584  ExprResult Result(true);
2585  if (!Tok.is(tok::l_brace)) {
2586    // Saw something like: ^expr
2587    Diag(Tok, diag::err_expected_expression);
2588    Actions.ActOnBlockError(CaretLoc, getCurScope());
2589    return ExprError();
2590  }
2591
2592  StmtResult Stmt(ParseCompoundStatementBody());
2593  BlockScope.Exit();
2594  if (!Stmt.isInvalid())
2595    Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.take(), getCurScope());
2596  else
2597    Actions.ActOnBlockError(CaretLoc, getCurScope());
2598  return Result;
2599}
2600
2601/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2602///
2603///         '__objc_yes'
2604///         '__objc_no'
2605ExprResult Parser::ParseObjCBoolLiteral() {
2606  tok::TokenKind Kind = Tok.getKind();
2607  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2608}
2609