gencode.c revision 241231
1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 *
22 * $FreeBSD: head/contrib/libpcap/gencode.c 241231 2012-10-05 18:42:50Z delphij $
23 */
24#ifndef lint
25static const char rcsid[] _U_ =
26    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
27#endif
28
29#ifdef HAVE_CONFIG_H
30#include "config.h"
31#endif
32
33#ifdef WIN32
34#include <pcap-stdinc.h>
35#else /* WIN32 */
36#if HAVE_INTTYPES_H
37#include <inttypes.h>
38#elif HAVE_STDINT_H
39#include <stdint.h>
40#endif
41#ifdef HAVE_SYS_BITYPES_H
42#include <sys/bitypes.h>
43#endif
44#include <sys/types.h>
45#include <sys/socket.h>
46#endif /* WIN32 */
47
48/*
49 * XXX - why was this included even on UNIX?
50 */
51#ifdef __MINGW32__
52#include "ip6_misc.h"
53#endif
54
55#ifndef WIN32
56
57#ifdef __NetBSD__
58#include <sys/param.h>
59#endif
60
61#include <netinet/in.h>
62#include <arpa/inet.h>
63
64#endif /* WIN32 */
65
66#include <stdlib.h>
67#include <string.h>
68#include <memory.h>
69#include <setjmp.h>
70#include <stdarg.h>
71
72#ifdef MSDOS
73#include "pcap-dos.h"
74#endif
75
76#include "pcap-int.h"
77
78#include "ethertype.h"
79#include "nlpid.h"
80#include "llc.h"
81#include "gencode.h"
82#include "ieee80211.h"
83#include "atmuni31.h"
84#include "sunatmpos.h"
85#include "ppp.h"
86#include "pcap/sll.h"
87#include "pcap/ipnet.h"
88#include "arcnet.h"
89#if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
90#include <linux/types.h>
91#include <linux/if_packet.h>
92#include <linux/filter.h>
93#endif
94#ifdef HAVE_NET_PFVAR_H
95#include <sys/socket.h>
96#include <net/if.h>
97#include <net/pfvar.h>
98#include <net/if_pflog.h>
99#endif
100#ifndef offsetof
101#define offsetof(s, e) ((size_t)&((s *)0)->e)
102#endif
103#ifdef INET6
104#ifndef WIN32
105#include <netdb.h>	/* for "struct addrinfo" */
106#endif /* WIN32 */
107#endif /*INET6*/
108#include <pcap/namedb.h>
109
110#define ETHERMTU	1500
111
112#ifndef IPPROTO_SCTP
113#define IPPROTO_SCTP 132
114#endif
115
116#ifdef HAVE_OS_PROTO_H
117#include "os-proto.h"
118#endif
119
120#define JMP(c) ((c)|BPF_JMP|BPF_K)
121
122/* Locals */
123static jmp_buf top_ctx;
124static pcap_t *bpf_pcap;
125
126/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
127#ifdef WIN32
128static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
129#else
130static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
131#endif
132
133/* XXX */
134#ifdef PCAP_FDDIPAD
135static int	pcap_fddipad;
136#endif
137
138/* VARARGS */
139void
140bpf_error(const char *fmt, ...)
141{
142	va_list ap;
143
144	va_start(ap, fmt);
145	if (bpf_pcap != NULL)
146		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
147		    fmt, ap);
148	va_end(ap);
149	longjmp(top_ctx, 1);
150	/* NOTREACHED */
151}
152
153static void init_linktype(pcap_t *);
154
155static void init_regs(void);
156static int alloc_reg(void);
157static void free_reg(int);
158
159static struct block *root;
160
161/*
162 * Value passed to gen_load_a() to indicate what the offset argument
163 * is relative to.
164 */
165enum e_offrel {
166	OR_PACKET,	/* relative to the beginning of the packet */
167	OR_LINK,	/* relative to the beginning of the link-layer header */
168	OR_MACPL,	/* relative to the end of the MAC-layer header */
169	OR_NET,		/* relative to the network-layer header */
170	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
171	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
172	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
173};
174
175#ifdef INET6
176/*
177 * As errors are handled by a longjmp, anything allocated must be freed
178 * in the longjmp handler, so it must be reachable from that handler.
179 * One thing that's allocated is the result of pcap_nametoaddrinfo();
180 * it must be freed with freeaddrinfo().  This variable points to any
181 * addrinfo structure that would need to be freed.
182 */
183static struct addrinfo *ai;
184#endif
185
186/*
187 * We divy out chunks of memory rather than call malloc each time so
188 * we don't have to worry about leaking memory.  It's probably
189 * not a big deal if all this memory was wasted but if this ever
190 * goes into a library that would probably not be a good idea.
191 *
192 * XXX - this *is* in a library....
193 */
194#define NCHUNKS 16
195#define CHUNK0SIZE 1024
196struct chunk {
197	u_int n_left;
198	void *m;
199};
200
201static struct chunk chunks[NCHUNKS];
202static int cur_chunk;
203
204static void *newchunk(u_int);
205static void freechunks(void);
206static inline struct block *new_block(int);
207static inline struct slist *new_stmt(int);
208static struct block *gen_retblk(int);
209static inline void syntax(void);
210
211static void backpatch(struct block *, struct block *);
212static void merge(struct block *, struct block *);
213static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
214static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
215static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
216static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
217static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
218static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
219    bpf_u_int32);
220static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
221static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
222    bpf_u_int32, bpf_u_int32, int, bpf_int32);
223static struct slist *gen_load_llrel(u_int, u_int);
224static struct slist *gen_load_macplrel(u_int, u_int);
225static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
226static struct slist *gen_loadx_iphdrlen(void);
227static struct block *gen_uncond(int);
228static inline struct block *gen_true(void);
229static inline struct block *gen_false(void);
230static struct block *gen_ether_linktype(int);
231static struct block *gen_ipnet_linktype(int);
232static struct block *gen_linux_sll_linktype(int);
233static struct slist *gen_load_prism_llprefixlen(void);
234static struct slist *gen_load_avs_llprefixlen(void);
235static struct slist *gen_load_radiotap_llprefixlen(void);
236static struct slist *gen_load_ppi_llprefixlen(void);
237static void insert_compute_vloffsets(struct block *);
238static struct slist *gen_llprefixlen(void);
239static struct slist *gen_off_macpl(void);
240static int ethertype_to_ppptype(int);
241static struct block *gen_linktype(int);
242static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
243static struct block *gen_llc_linktype(int);
244static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
245#ifdef INET6
246static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
247#endif
248static struct block *gen_ahostop(const u_char *, int);
249static struct block *gen_ehostop(const u_char *, int);
250static struct block *gen_fhostop(const u_char *, int);
251static struct block *gen_thostop(const u_char *, int);
252static struct block *gen_wlanhostop(const u_char *, int);
253static struct block *gen_ipfchostop(const u_char *, int);
254static struct block *gen_dnhostop(bpf_u_int32, int);
255static struct block *gen_mpls_linktype(int);
256static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
257#ifdef INET6
258static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
259#endif
260#ifndef INET6
261static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
262#endif
263static struct block *gen_ipfrag(void);
264static struct block *gen_portatom(int, bpf_int32);
265static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
266#ifdef INET6
267static struct block *gen_portatom6(int, bpf_int32);
268static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
269#endif
270struct block *gen_portop(int, int, int);
271static struct block *gen_port(int, int, int);
272struct block *gen_portrangeop(int, int, int, int);
273static struct block *gen_portrange(int, int, int, int);
274#ifdef INET6
275struct block *gen_portop6(int, int, int);
276static struct block *gen_port6(int, int, int);
277struct block *gen_portrangeop6(int, int, int, int);
278static struct block *gen_portrange6(int, int, int, int);
279#endif
280static int lookup_proto(const char *, int);
281static struct block *gen_protochain(int, int, int);
282static struct block *gen_proto(int, int, int);
283static struct slist *xfer_to_x(struct arth *);
284static struct slist *xfer_to_a(struct arth *);
285static struct block *gen_mac_multicast(int);
286static struct block *gen_len(int, int);
287static struct block *gen_check_802_11_data_frame(void);
288
289static struct block *gen_ppi_dlt_check(void);
290static struct block *gen_msg_abbrev(int type);
291
292static void *
293newchunk(n)
294	u_int n;
295{
296	struct chunk *cp;
297	int k;
298	size_t size;
299
300#ifndef __NetBSD__
301	/* XXX Round up to nearest long. */
302	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
303#else
304	/* XXX Round up to structure boundary. */
305	n = ALIGN(n);
306#endif
307
308	cp = &chunks[cur_chunk];
309	if (n > cp->n_left) {
310		++cp, k = ++cur_chunk;
311		if (k >= NCHUNKS)
312			bpf_error("out of memory");
313		size = CHUNK0SIZE << k;
314		cp->m = (void *)malloc(size);
315		if (cp->m == NULL)
316			bpf_error("out of memory");
317		memset((char *)cp->m, 0, size);
318		cp->n_left = size;
319		if (n > size)
320			bpf_error("out of memory");
321	}
322	cp->n_left -= n;
323	return (void *)((char *)cp->m + cp->n_left);
324}
325
326static void
327freechunks()
328{
329	int i;
330
331	cur_chunk = 0;
332	for (i = 0; i < NCHUNKS; ++i)
333		if (chunks[i].m != NULL) {
334			free(chunks[i].m);
335			chunks[i].m = NULL;
336		}
337}
338
339/*
340 * A strdup whose allocations are freed after code generation is over.
341 */
342char *
343sdup(s)
344	register const char *s;
345{
346	int n = strlen(s) + 1;
347	char *cp = newchunk(n);
348
349	strlcpy(cp, s, n);
350	return (cp);
351}
352
353static inline struct block *
354new_block(code)
355	int code;
356{
357	struct block *p;
358
359	p = (struct block *)newchunk(sizeof(*p));
360	p->s.code = code;
361	p->head = p;
362
363	return p;
364}
365
366static inline struct slist *
367new_stmt(code)
368	int code;
369{
370	struct slist *p;
371
372	p = (struct slist *)newchunk(sizeof(*p));
373	p->s.code = code;
374
375	return p;
376}
377
378static struct block *
379gen_retblk(v)
380	int v;
381{
382	struct block *b = new_block(BPF_RET|BPF_K);
383
384	b->s.k = v;
385	return b;
386}
387
388static inline void
389syntax()
390{
391	bpf_error("syntax error in filter expression");
392}
393
394static bpf_u_int32 netmask;
395static int snaplen;
396int no_optimize;
397#ifdef WIN32
398static int
399pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
400	     const char *buf, int optimize, bpf_u_int32 mask);
401
402int
403pcap_compile(pcap_t *p, struct bpf_program *program,
404	     const char *buf, int optimize, bpf_u_int32 mask)
405{
406	int result;
407
408	EnterCriticalSection(&g_PcapCompileCriticalSection);
409
410	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
411
412	LeaveCriticalSection(&g_PcapCompileCriticalSection);
413
414	return result;
415}
416
417static int
418pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
419	     const char *buf, int optimize, bpf_u_int32 mask)
420#else /* WIN32 */
421int
422pcap_compile(pcap_t *p, struct bpf_program *program,
423	     const char *buf, int optimize, bpf_u_int32 mask)
424#endif /* WIN32 */
425{
426	extern int n_errors;
427	const char * volatile xbuf = buf;
428	u_int len;
429
430	no_optimize = 0;
431	n_errors = 0;
432	root = NULL;
433	bpf_pcap = p;
434	init_regs();
435	if (setjmp(top_ctx)) {
436#ifdef INET6
437		if (ai != NULL) {
438			freeaddrinfo(ai);
439			ai = NULL;
440		}
441#endif
442		lex_cleanup();
443		freechunks();
444		return (-1);
445	}
446
447	netmask = mask;
448
449	snaplen = pcap_snapshot(p);
450	if (snaplen == 0) {
451		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
452			 "snaplen of 0 rejects all packets");
453		return -1;
454	}
455
456	lex_init(xbuf ? xbuf : "");
457	init_linktype(p);
458	(void)pcap_parse();
459
460	if (n_errors)
461		syntax();
462
463	if (root == NULL)
464		root = gen_retblk(snaplen);
465
466	if (optimize && !no_optimize) {
467		bpf_optimize(&root);
468		if (root == NULL ||
469		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
470			bpf_error("expression rejects all packets");
471	}
472	program->bf_insns = icode_to_fcode(root, &len);
473	program->bf_len = len;
474
475	lex_cleanup();
476	freechunks();
477	return (0);
478}
479
480/*
481 * entry point for using the compiler with no pcap open
482 * pass in all the stuff that is needed explicitly instead.
483 */
484int
485pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
486		    struct bpf_program *program,
487	     const char *buf, int optimize, bpf_u_int32 mask)
488{
489	pcap_t *p;
490	int ret;
491
492	p = pcap_open_dead(linktype_arg, snaplen_arg);
493	if (p == NULL)
494		return (-1);
495	ret = pcap_compile(p, program, buf, optimize, mask);
496	pcap_close(p);
497	return (ret);
498}
499
500/*
501 * Clean up a "struct bpf_program" by freeing all the memory allocated
502 * in it.
503 */
504void
505pcap_freecode(struct bpf_program *program)
506{
507	program->bf_len = 0;
508	if (program->bf_insns != NULL) {
509		free((char *)program->bf_insns);
510		program->bf_insns = NULL;
511	}
512}
513
514/*
515 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
516 * which of the jt and jf fields has been resolved and which is a pointer
517 * back to another unresolved block (or nil).  At least one of the fields
518 * in each block is already resolved.
519 */
520static void
521backpatch(list, target)
522	struct block *list, *target;
523{
524	struct block *next;
525
526	while (list) {
527		if (!list->sense) {
528			next = JT(list);
529			JT(list) = target;
530		} else {
531			next = JF(list);
532			JF(list) = target;
533		}
534		list = next;
535	}
536}
537
538/*
539 * Merge the lists in b0 and b1, using the 'sense' field to indicate
540 * which of jt and jf is the link.
541 */
542static void
543merge(b0, b1)
544	struct block *b0, *b1;
545{
546	register struct block **p = &b0;
547
548	/* Find end of list. */
549	while (*p)
550		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
551
552	/* Concatenate the lists. */
553	*p = b1;
554}
555
556void
557finish_parse(p)
558	struct block *p;
559{
560	struct block *ppi_dlt_check;
561
562	/*
563	 * Insert before the statements of the first (root) block any
564	 * statements needed to load the lengths of any variable-length
565	 * headers into registers.
566	 *
567	 * XXX - a fancier strategy would be to insert those before the
568	 * statements of all blocks that use those lengths and that
569	 * have no predecessors that use them, so that we only compute
570	 * the lengths if we need them.  There might be even better
571	 * approaches than that.
572	 *
573	 * However, those strategies would be more complicated, and
574	 * as we don't generate code to compute a length if the
575	 * program has no tests that use the length, and as most
576	 * tests will probably use those lengths, we would just
577	 * postpone computing the lengths so that it's not done
578	 * for tests that fail early, and it's not clear that's
579	 * worth the effort.
580	 */
581	insert_compute_vloffsets(p->head);
582
583	/*
584	 * For DLT_PPI captures, generate a check of the per-packet
585	 * DLT value to make sure it's DLT_IEEE802_11.
586	 */
587	ppi_dlt_check = gen_ppi_dlt_check();
588	if (ppi_dlt_check != NULL)
589		gen_and(ppi_dlt_check, p);
590
591	backpatch(p, gen_retblk(snaplen));
592	p->sense = !p->sense;
593	backpatch(p, gen_retblk(0));
594	root = p->head;
595}
596
597void
598gen_and(b0, b1)
599	struct block *b0, *b1;
600{
601	backpatch(b0, b1->head);
602	b0->sense = !b0->sense;
603	b1->sense = !b1->sense;
604	merge(b1, b0);
605	b1->sense = !b1->sense;
606	b1->head = b0->head;
607}
608
609void
610gen_or(b0, b1)
611	struct block *b0, *b1;
612{
613	b0->sense = !b0->sense;
614	backpatch(b0, b1->head);
615	b0->sense = !b0->sense;
616	merge(b1, b0);
617	b1->head = b0->head;
618}
619
620void
621gen_not(b)
622	struct block *b;
623{
624	b->sense = !b->sense;
625}
626
627static struct block *
628gen_cmp(offrel, offset, size, v)
629	enum e_offrel offrel;
630	u_int offset, size;
631	bpf_int32 v;
632{
633	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
634}
635
636static struct block *
637gen_cmp_gt(offrel, offset, size, v)
638	enum e_offrel offrel;
639	u_int offset, size;
640	bpf_int32 v;
641{
642	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
643}
644
645static struct block *
646gen_cmp_ge(offrel, offset, size, v)
647	enum e_offrel offrel;
648	u_int offset, size;
649	bpf_int32 v;
650{
651	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
652}
653
654static struct block *
655gen_cmp_lt(offrel, offset, size, v)
656	enum e_offrel offrel;
657	u_int offset, size;
658	bpf_int32 v;
659{
660	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
661}
662
663static struct block *
664gen_cmp_le(offrel, offset, size, v)
665	enum e_offrel offrel;
666	u_int offset, size;
667	bpf_int32 v;
668{
669	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
670}
671
672static struct block *
673gen_mcmp(offrel, offset, size, v, mask)
674	enum e_offrel offrel;
675	u_int offset, size;
676	bpf_int32 v;
677	bpf_u_int32 mask;
678{
679	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
680}
681
682static struct block *
683gen_bcmp(offrel, offset, size, v)
684	enum e_offrel offrel;
685	register u_int offset, size;
686	register const u_char *v;
687{
688	register struct block *b, *tmp;
689
690	b = NULL;
691	while (size >= 4) {
692		register const u_char *p = &v[size - 4];
693		bpf_int32 w = ((bpf_int32)p[0] << 24) |
694		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
695
696		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
697		if (b != NULL)
698			gen_and(b, tmp);
699		b = tmp;
700		size -= 4;
701	}
702	while (size >= 2) {
703		register const u_char *p = &v[size - 2];
704		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
705
706		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
707		if (b != NULL)
708			gen_and(b, tmp);
709		b = tmp;
710		size -= 2;
711	}
712	if (size > 0) {
713		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
714		if (b != NULL)
715			gen_and(b, tmp);
716		b = tmp;
717	}
718	return b;
719}
720
721/*
722 * AND the field of size "size" at offset "offset" relative to the header
723 * specified by "offrel" with "mask", and compare it with the value "v"
724 * with the test specified by "jtype"; if "reverse" is true, the test
725 * should test the opposite of "jtype".
726 */
727static struct block *
728gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
729	enum e_offrel offrel;
730	bpf_int32 v;
731	bpf_u_int32 offset, size, mask, jtype;
732	int reverse;
733{
734	struct slist *s, *s2;
735	struct block *b;
736
737	s = gen_load_a(offrel, offset, size);
738
739	if (mask != 0xffffffff) {
740		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
741		s2->s.k = mask;
742		sappend(s, s2);
743	}
744
745	b = new_block(JMP(jtype));
746	b->stmts = s;
747	b->s.k = v;
748	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
749		gen_not(b);
750	return b;
751}
752
753/*
754 * Various code constructs need to know the layout of the data link
755 * layer.  These variables give the necessary offsets from the beginning
756 * of the packet data.
757 */
758
759/*
760 * This is the offset of the beginning of the link-layer header from
761 * the beginning of the raw packet data.
762 *
763 * It's usually 0, except for 802.11 with a fixed-length radio header.
764 * (For 802.11 with a variable-length radio header, we have to generate
765 * code to compute that offset; off_ll is 0 in that case.)
766 */
767static u_int off_ll;
768
769/*
770 * If there's a variable-length header preceding the link-layer header,
771 * "reg_off_ll" is the register number for a register containing the
772 * length of that header, and therefore the offset of the link-layer
773 * header from the beginning of the raw packet data.  Otherwise,
774 * "reg_off_ll" is -1.
775 */
776static int reg_off_ll;
777
778/*
779 * This is the offset of the beginning of the MAC-layer header from
780 * the beginning of the link-layer header.
781 * It's usually 0, except for ATM LANE, where it's the offset, relative
782 * to the beginning of the raw packet data, of the Ethernet header, and
783 * for Ethernet with various additional information.
784 */
785static u_int off_mac;
786
787/*
788 * This is the offset of the beginning of the MAC-layer payload,
789 * from the beginning of the raw packet data.
790 *
791 * I.e., it's the sum of the length of the link-layer header (without,
792 * for example, any 802.2 LLC header, so it's the MAC-layer
793 * portion of that header), plus any prefix preceding the
794 * link-layer header.
795 */
796static u_int off_macpl;
797
798/*
799 * This is 1 if the offset of the beginning of the MAC-layer payload
800 * from the beginning of the link-layer header is variable-length.
801 */
802static int off_macpl_is_variable;
803
804/*
805 * If the link layer has variable_length headers, "reg_off_macpl"
806 * is the register number for a register containing the length of the
807 * link-layer header plus the length of any variable-length header
808 * preceding the link-layer header.  Otherwise, "reg_off_macpl"
809 * is -1.
810 */
811static int reg_off_macpl;
812
813/*
814 * "off_linktype" is the offset to information in the link-layer header
815 * giving the packet type.  This offset is relative to the beginning
816 * of the link-layer header (i.e., it doesn't include off_ll).
817 *
818 * For Ethernet, it's the offset of the Ethernet type field.
819 *
820 * For link-layer types that always use 802.2 headers, it's the
821 * offset of the LLC header.
822 *
823 * For PPP, it's the offset of the PPP type field.
824 *
825 * For Cisco HDLC, it's the offset of the CHDLC type field.
826 *
827 * For BSD loopback, it's the offset of the AF_ value.
828 *
829 * For Linux cooked sockets, it's the offset of the type field.
830 *
831 * It's set to -1 for no encapsulation, in which case, IP is assumed.
832 */
833static u_int off_linktype;
834
835/*
836 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
837 * checks to check the PPP header, assumed to follow a LAN-style link-
838 * layer header and a PPPoE session header.
839 */
840static int is_pppoes = 0;
841
842/*
843 * TRUE if the link layer includes an ATM pseudo-header.
844 */
845static int is_atm = 0;
846
847/*
848 * TRUE if "lane" appeared in the filter; it causes us to generate
849 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
850 */
851static int is_lane = 0;
852
853/*
854 * These are offsets for the ATM pseudo-header.
855 */
856static u_int off_vpi;
857static u_int off_vci;
858static u_int off_proto;
859
860/*
861 * These are offsets for the MTP2 fields.
862 */
863static u_int off_li;
864
865/*
866 * These are offsets for the MTP3 fields.
867 */
868static u_int off_sio;
869static u_int off_opc;
870static u_int off_dpc;
871static u_int off_sls;
872
873/*
874 * This is the offset of the first byte after the ATM pseudo_header,
875 * or -1 if there is no ATM pseudo-header.
876 */
877static u_int off_payload;
878
879/*
880 * These are offsets to the beginning of the network-layer header.
881 * They are relative to the beginning of the MAC-layer payload (i.e.,
882 * they don't include off_ll or off_macpl).
883 *
884 * If the link layer never uses 802.2 LLC:
885 *
886 *	"off_nl" and "off_nl_nosnap" are the same.
887 *
888 * If the link layer always uses 802.2 LLC:
889 *
890 *	"off_nl" is the offset if there's a SNAP header following
891 *	the 802.2 header;
892 *
893 *	"off_nl_nosnap" is the offset if there's no SNAP header.
894 *
895 * If the link layer is Ethernet:
896 *
897 *	"off_nl" is the offset if the packet is an Ethernet II packet
898 *	(we assume no 802.3+802.2+SNAP);
899 *
900 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
901 *	with an 802.2 header following it.
902 */
903static u_int off_nl;
904static u_int off_nl_nosnap;
905
906static int linktype;
907
908static void
909init_linktype(p)
910	pcap_t *p;
911{
912	linktype = pcap_datalink(p);
913#ifdef PCAP_FDDIPAD
914	pcap_fddipad = p->fddipad;
915#endif
916
917	/*
918	 * Assume it's not raw ATM with a pseudo-header, for now.
919	 */
920	off_mac = 0;
921	is_atm = 0;
922	is_lane = 0;
923	off_vpi = -1;
924	off_vci = -1;
925	off_proto = -1;
926	off_payload = -1;
927
928	/*
929	 * And that we're not doing PPPoE.
930	 */
931	is_pppoes = 0;
932
933	/*
934	 * And assume we're not doing SS7.
935	 */
936	off_li = -1;
937	off_sio = -1;
938	off_opc = -1;
939	off_dpc = -1;
940	off_sls = -1;
941
942	/*
943	 * Also assume it's not 802.11.
944	 */
945	off_ll = 0;
946	off_macpl = 0;
947	off_macpl_is_variable = 0;
948
949	orig_linktype = -1;
950	orig_nl = -1;
951        label_stack_depth = 0;
952
953	reg_off_ll = -1;
954	reg_off_macpl = -1;
955
956	switch (linktype) {
957
958	case DLT_ARCNET:
959		off_linktype = 2;
960		off_macpl = 6;
961		off_nl = 0;		/* XXX in reality, variable! */
962		off_nl_nosnap = 0;	/* no 802.2 LLC */
963		return;
964
965	case DLT_ARCNET_LINUX:
966		off_linktype = 4;
967		off_macpl = 8;
968		off_nl = 0;		/* XXX in reality, variable! */
969		off_nl_nosnap = 0;	/* no 802.2 LLC */
970		return;
971
972	case DLT_EN10MB:
973		off_linktype = 12;
974		off_macpl = 14;		/* Ethernet header length */
975		off_nl = 0;		/* Ethernet II */
976		off_nl_nosnap = 3;	/* 802.3+802.2 */
977		return;
978
979	case DLT_SLIP:
980		/*
981		 * SLIP doesn't have a link level type.  The 16 byte
982		 * header is hacked into our SLIP driver.
983		 */
984		off_linktype = -1;
985		off_macpl = 16;
986		off_nl = 0;
987		off_nl_nosnap = 0;	/* no 802.2 LLC */
988		return;
989
990	case DLT_SLIP_BSDOS:
991		/* XXX this may be the same as the DLT_PPP_BSDOS case */
992		off_linktype = -1;
993		/* XXX end */
994		off_macpl = 24;
995		off_nl = 0;
996		off_nl_nosnap = 0;	/* no 802.2 LLC */
997		return;
998
999	case DLT_NULL:
1000	case DLT_LOOP:
1001		off_linktype = 0;
1002		off_macpl = 4;
1003		off_nl = 0;
1004		off_nl_nosnap = 0;	/* no 802.2 LLC */
1005		return;
1006
1007	case DLT_ENC:
1008		off_linktype = 0;
1009		off_macpl = 12;
1010		off_nl = 0;
1011		off_nl_nosnap = 0;	/* no 802.2 LLC */
1012		return;
1013
1014	case DLT_PPP:
1015	case DLT_PPP_PPPD:
1016	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1017	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1018		off_linktype = 2;
1019		off_macpl = 4;
1020		off_nl = 0;
1021		off_nl_nosnap = 0;	/* no 802.2 LLC */
1022		return;
1023
1024	case DLT_PPP_ETHER:
1025		/*
1026		 * This does no include the Ethernet header, and
1027		 * only covers session state.
1028		 */
1029		off_linktype = 6;
1030		off_macpl = 8;
1031		off_nl = 0;
1032		off_nl_nosnap = 0;	/* no 802.2 LLC */
1033		return;
1034
1035	case DLT_PPP_BSDOS:
1036		off_linktype = 5;
1037		off_macpl = 24;
1038		off_nl = 0;
1039		off_nl_nosnap = 0;	/* no 802.2 LLC */
1040		return;
1041
1042	case DLT_FDDI:
1043		/*
1044		 * FDDI doesn't really have a link-level type field.
1045		 * We set "off_linktype" to the offset of the LLC header.
1046		 *
1047		 * To check for Ethernet types, we assume that SSAP = SNAP
1048		 * is being used and pick out the encapsulated Ethernet type.
1049		 * XXX - should we generate code to check for SNAP?
1050		 */
1051		off_linktype = 13;
1052#ifdef PCAP_FDDIPAD
1053		off_linktype += pcap_fddipad;
1054#endif
1055		off_macpl = 13;		/* FDDI MAC header length */
1056#ifdef PCAP_FDDIPAD
1057		off_macpl += pcap_fddipad;
1058#endif
1059		off_nl = 8;		/* 802.2+SNAP */
1060		off_nl_nosnap = 3;	/* 802.2 */
1061		return;
1062
1063	case DLT_IEEE802:
1064		/*
1065		 * Token Ring doesn't really have a link-level type field.
1066		 * We set "off_linktype" to the offset of the LLC header.
1067		 *
1068		 * To check for Ethernet types, we assume that SSAP = SNAP
1069		 * is being used and pick out the encapsulated Ethernet type.
1070		 * XXX - should we generate code to check for SNAP?
1071		 *
1072		 * XXX - the header is actually variable-length.
1073		 * Some various Linux patched versions gave 38
1074		 * as "off_linktype" and 40 as "off_nl"; however,
1075		 * if a token ring packet has *no* routing
1076		 * information, i.e. is not source-routed, the correct
1077		 * values are 20 and 22, as they are in the vanilla code.
1078		 *
1079		 * A packet is source-routed iff the uppermost bit
1080		 * of the first byte of the source address, at an
1081		 * offset of 8, has the uppermost bit set.  If the
1082		 * packet is source-routed, the total number of bytes
1083		 * of routing information is 2 plus bits 0x1F00 of
1084		 * the 16-bit value at an offset of 14 (shifted right
1085		 * 8 - figure out which byte that is).
1086		 */
1087		off_linktype = 14;
1088		off_macpl = 14;		/* Token Ring MAC header length */
1089		off_nl = 8;		/* 802.2+SNAP */
1090		off_nl_nosnap = 3;	/* 802.2 */
1091		return;
1092
1093	case DLT_IEEE802_11:
1094	case DLT_PRISM_HEADER:
1095	case DLT_IEEE802_11_RADIO_AVS:
1096	case DLT_IEEE802_11_RADIO:
1097		/*
1098		 * 802.11 doesn't really have a link-level type field.
1099		 * We set "off_linktype" to the offset of the LLC header.
1100		 *
1101		 * To check for Ethernet types, we assume that SSAP = SNAP
1102		 * is being used and pick out the encapsulated Ethernet type.
1103		 * XXX - should we generate code to check for SNAP?
1104		 *
1105		 * We also handle variable-length radio headers here.
1106		 * The Prism header is in theory variable-length, but in
1107		 * practice it's always 144 bytes long.  However, some
1108		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1109		 * sometimes or always supply an AVS header, so we
1110		 * have to check whether the radio header is a Prism
1111		 * header or an AVS header, so, in practice, it's
1112		 * variable-length.
1113		 */
1114		off_linktype = 24;
1115		off_macpl = 0;		/* link-layer header is variable-length */
1116		off_macpl_is_variable = 1;
1117		off_nl = 8;		/* 802.2+SNAP */
1118		off_nl_nosnap = 3;	/* 802.2 */
1119		return;
1120
1121	case DLT_PPI:
1122		/*
1123		 * At the moment we treat PPI the same way that we treat
1124		 * normal Radiotap encoded packets. The difference is in
1125		 * the function that generates the code at the beginning
1126		 * to compute the header length.  Since this code generator
1127		 * of PPI supports bare 802.11 encapsulation only (i.e.
1128		 * the encapsulated DLT should be DLT_IEEE802_11) we
1129		 * generate code to check for this too.
1130		 */
1131		off_linktype = 24;
1132		off_macpl = 0;		/* link-layer header is variable-length */
1133		off_macpl_is_variable = 1;
1134		off_nl = 8;		/* 802.2+SNAP */
1135		off_nl_nosnap = 3;	/* 802.2 */
1136		return;
1137
1138	case DLT_ATM_RFC1483:
1139	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1140		/*
1141		 * assume routed, non-ISO PDUs
1142		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1143		 *
1144		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1145		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1146		 * latter would presumably be treated the way PPPoE
1147		 * should be, so you can do "pppoe and udp port 2049"
1148		 * or "pppoa and tcp port 80" and have it check for
1149		 * PPPo{A,E} and a PPP protocol of IP and....
1150		 */
1151		off_linktype = 0;
1152		off_macpl = 0;		/* packet begins with LLC header */
1153		off_nl = 8;		/* 802.2+SNAP */
1154		off_nl_nosnap = 3;	/* 802.2 */
1155		return;
1156
1157	case DLT_SUNATM:
1158		/*
1159		 * Full Frontal ATM; you get AALn PDUs with an ATM
1160		 * pseudo-header.
1161		 */
1162		is_atm = 1;
1163		off_vpi = SUNATM_VPI_POS;
1164		off_vci = SUNATM_VCI_POS;
1165		off_proto = PROTO_POS;
1166		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1167		off_payload = SUNATM_PKT_BEGIN_POS;
1168		off_linktype = off_payload;
1169		off_macpl = off_payload;	/* if LLC-encapsulated */
1170		off_nl = 8;		/* 802.2+SNAP */
1171		off_nl_nosnap = 3;	/* 802.2 */
1172		return;
1173
1174	case DLT_RAW:
1175	case DLT_IPV4:
1176	case DLT_IPV6:
1177		off_linktype = -1;
1178		off_macpl = 0;
1179		off_nl = 0;
1180		off_nl_nosnap = 0;	/* no 802.2 LLC */
1181		return;
1182
1183	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1184		off_linktype = 14;
1185		off_macpl = 16;
1186		off_nl = 0;
1187		off_nl_nosnap = 0;	/* no 802.2 LLC */
1188		return;
1189
1190	case DLT_LTALK:
1191		/*
1192		 * LocalTalk does have a 1-byte type field in the LLAP header,
1193		 * but really it just indicates whether there is a "short" or
1194		 * "long" DDP packet following.
1195		 */
1196		off_linktype = -1;
1197		off_macpl = 0;
1198		off_nl = 0;
1199		off_nl_nosnap = 0;	/* no 802.2 LLC */
1200		return;
1201
1202	case DLT_IP_OVER_FC:
1203		/*
1204		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1205		 * link-level type field.  We set "off_linktype" to the
1206		 * offset of the LLC header.
1207		 *
1208		 * To check for Ethernet types, we assume that SSAP = SNAP
1209		 * is being used and pick out the encapsulated Ethernet type.
1210		 * XXX - should we generate code to check for SNAP? RFC
1211		 * 2625 says SNAP should be used.
1212		 */
1213		off_linktype = 16;
1214		off_macpl = 16;
1215		off_nl = 8;		/* 802.2+SNAP */
1216		off_nl_nosnap = 3;	/* 802.2 */
1217		return;
1218
1219	case DLT_FRELAY:
1220		/*
1221		 * XXX - we should set this to handle SNAP-encapsulated
1222		 * frames (NLPID of 0x80).
1223		 */
1224		off_linktype = -1;
1225		off_macpl = 0;
1226		off_nl = 0;
1227		off_nl_nosnap = 0;	/* no 802.2 LLC */
1228		return;
1229
1230                /*
1231                 * the only BPF-interesting FRF.16 frames are non-control frames;
1232                 * Frame Relay has a variable length link-layer
1233                 * so lets start with offset 4 for now and increments later on (FIXME);
1234                 */
1235	case DLT_MFR:
1236		off_linktype = -1;
1237		off_macpl = 0;
1238		off_nl = 4;
1239		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1240		return;
1241
1242	case DLT_APPLE_IP_OVER_IEEE1394:
1243		off_linktype = 16;
1244		off_macpl = 18;
1245		off_nl = 0;
1246		off_nl_nosnap = 0;	/* no 802.2 LLC */
1247		return;
1248
1249	case DLT_SYMANTEC_FIREWALL:
1250		off_linktype = 6;
1251		off_macpl = 44;
1252		off_nl = 0;		/* Ethernet II */
1253		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1254		return;
1255
1256#ifdef HAVE_NET_PFVAR_H
1257	case DLT_PFLOG:
1258		off_linktype = 0;
1259		off_macpl = PFLOG_HDRLEN;
1260		off_nl = 0;
1261		off_nl_nosnap = 0;	/* no 802.2 LLC */
1262		return;
1263#endif
1264
1265        case DLT_JUNIPER_MFR:
1266        case DLT_JUNIPER_MLFR:
1267        case DLT_JUNIPER_MLPPP:
1268        case DLT_JUNIPER_PPP:
1269        case DLT_JUNIPER_CHDLC:
1270        case DLT_JUNIPER_FRELAY:
1271                off_linktype = 4;
1272		off_macpl = 4;
1273		off_nl = 0;
1274		off_nl_nosnap = -1;	/* no 802.2 LLC */
1275                return;
1276
1277	case DLT_JUNIPER_ATM1:
1278		off_linktype = 4;	/* in reality variable between 4-8 */
1279		off_macpl = 4;	/* in reality variable between 4-8 */
1280		off_nl = 0;
1281		off_nl_nosnap = 10;
1282		return;
1283
1284	case DLT_JUNIPER_ATM2:
1285		off_linktype = 8;	/* in reality variable between 8-12 */
1286		off_macpl = 8;	/* in reality variable between 8-12 */
1287		off_nl = 0;
1288		off_nl_nosnap = 10;
1289		return;
1290
1291		/* frames captured on a Juniper PPPoE service PIC
1292		 * contain raw ethernet frames */
1293	case DLT_JUNIPER_PPPOE:
1294        case DLT_JUNIPER_ETHER:
1295        	off_macpl = 14;
1296		off_linktype = 16;
1297		off_nl = 18;		/* Ethernet II */
1298		off_nl_nosnap = 21;	/* 802.3+802.2 */
1299		return;
1300
1301	case DLT_JUNIPER_PPPOE_ATM:
1302		off_linktype = 4;
1303		off_macpl = 6;
1304		off_nl = 0;
1305		off_nl_nosnap = -1;	/* no 802.2 LLC */
1306		return;
1307
1308	case DLT_JUNIPER_GGSN:
1309		off_linktype = 6;
1310		off_macpl = 12;
1311		off_nl = 0;
1312		off_nl_nosnap = -1;	/* no 802.2 LLC */
1313		return;
1314
1315	case DLT_JUNIPER_ES:
1316		off_linktype = 6;
1317		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1318		off_nl = -1;		/* not really a network layer but raw IP addresses */
1319		off_nl_nosnap = -1;	/* no 802.2 LLC */
1320		return;
1321
1322	case DLT_JUNIPER_MONITOR:
1323		off_linktype = 12;
1324		off_macpl = 12;
1325		off_nl = 0;		/* raw IP/IP6 header */
1326		off_nl_nosnap = -1;	/* no 802.2 LLC */
1327		return;
1328
1329	case DLT_JUNIPER_SERVICES:
1330		off_linktype = 12;
1331		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1332		off_nl = -1;		/* L3 proto location dep. on cookie type */
1333		off_nl_nosnap = -1;	/* no 802.2 LLC */
1334		return;
1335
1336	case DLT_JUNIPER_VP:
1337		off_linktype = 18;
1338		off_macpl = -1;
1339		off_nl = -1;
1340		off_nl_nosnap = -1;
1341		return;
1342
1343	case DLT_JUNIPER_ST:
1344		off_linktype = 18;
1345		off_macpl = -1;
1346		off_nl = -1;
1347		off_nl_nosnap = -1;
1348		return;
1349
1350	case DLT_JUNIPER_ISM:
1351		off_linktype = 8;
1352		off_macpl = -1;
1353		off_nl = -1;
1354		off_nl_nosnap = -1;
1355		return;
1356
1357	case DLT_JUNIPER_VS:
1358	case DLT_JUNIPER_SRX_E2E:
1359	case DLT_JUNIPER_FIBRECHANNEL:
1360	case DLT_JUNIPER_ATM_CEMIC:
1361		off_linktype = 8;
1362		off_macpl = -1;
1363		off_nl = -1;
1364		off_nl_nosnap = -1;
1365		return;
1366
1367	case DLT_MTP2:
1368		off_li = 2;
1369		off_sio = 3;
1370		off_opc = 4;
1371		off_dpc = 4;
1372		off_sls = 7;
1373		off_linktype = -1;
1374		off_macpl = -1;
1375		off_nl = -1;
1376		off_nl_nosnap = -1;
1377		return;
1378
1379	case DLT_MTP2_WITH_PHDR:
1380		off_li = 6;
1381		off_sio = 7;
1382		off_opc = 8;
1383		off_dpc = 8;
1384		off_sls = 11;
1385		off_linktype = -1;
1386		off_macpl = -1;
1387		off_nl = -1;
1388		off_nl_nosnap = -1;
1389		return;
1390
1391	case DLT_ERF:
1392		off_li = 22;
1393		off_sio = 23;
1394		off_opc = 24;
1395		off_dpc = 24;
1396		off_sls = 27;
1397		off_linktype = -1;
1398		off_macpl = -1;
1399		off_nl = -1;
1400		off_nl_nosnap = -1;
1401		return;
1402
1403	case DLT_PFSYNC:
1404		off_linktype = -1;
1405		off_macpl = 4;
1406		off_nl = 0;
1407		off_nl_nosnap = 0;
1408		return;
1409
1410	case DLT_AX25_KISS:
1411		/*
1412		 * Currently, only raw "link[N:M]" filtering is supported.
1413		 */
1414		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1415		off_macpl = -1;
1416		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1417		off_nl_nosnap = -1;	/* no 802.2 LLC */
1418		off_mac = 1;		/* step over the kiss length byte */
1419		return;
1420
1421	case DLT_IPNET:
1422		off_linktype = 1;
1423		off_macpl = 24;		/* ipnet header length */
1424		off_nl = 0;
1425		off_nl_nosnap = -1;
1426		return;
1427
1428	case DLT_NETANALYZER:
1429		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1430		off_linktype = 16;	/* includes 4-byte pseudo-header */
1431		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1432		off_nl = 0;		/* Ethernet II */
1433		off_nl_nosnap = 3;	/* 802.3+802.2 */
1434		return;
1435
1436	case DLT_NETANALYZER_TRANSPARENT:
1437		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1438		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1439		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1440		off_nl = 0;		/* Ethernet II */
1441		off_nl_nosnap = 3;	/* 802.3+802.2 */
1442		return;
1443
1444	default:
1445		/*
1446		 * For values in the range in which we've assigned new
1447		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1448		 */
1449		if (linktype >= DLT_MATCHING_MIN &&
1450		    linktype <= DLT_MATCHING_MAX) {
1451			off_linktype = -1;
1452			off_macpl = -1;
1453			off_nl = -1;
1454			off_nl_nosnap = -1;
1455			return;
1456		}
1457
1458	}
1459	bpf_error("unknown data link type %d", linktype);
1460	/* NOTREACHED */
1461}
1462
1463/*
1464 * Load a value relative to the beginning of the link-layer header.
1465 * The link-layer header doesn't necessarily begin at the beginning
1466 * of the packet data; there might be a variable-length prefix containing
1467 * radio information.
1468 */
1469static struct slist *
1470gen_load_llrel(offset, size)
1471	u_int offset, size;
1472{
1473	struct slist *s, *s2;
1474
1475	s = gen_llprefixlen();
1476
1477	/*
1478	 * If "s" is non-null, it has code to arrange that the X register
1479	 * contains the length of the prefix preceding the link-layer
1480	 * header.
1481	 *
1482	 * Otherwise, the length of the prefix preceding the link-layer
1483	 * header is "off_ll".
1484	 */
1485	if (s != NULL) {
1486		/*
1487		 * There's a variable-length prefix preceding the
1488		 * link-layer header.  "s" points to a list of statements
1489		 * that put the length of that prefix into the X register.
1490		 * do an indirect load, to use the X register as an offset.
1491		 */
1492		s2 = new_stmt(BPF_LD|BPF_IND|size);
1493		s2->s.k = offset;
1494		sappend(s, s2);
1495	} else {
1496		/*
1497		 * There is no variable-length header preceding the
1498		 * link-layer header; add in off_ll, which, if there's
1499		 * a fixed-length header preceding the link-layer header,
1500		 * is the length of that header.
1501		 */
1502		s = new_stmt(BPF_LD|BPF_ABS|size);
1503		s->s.k = offset + off_ll;
1504	}
1505	return s;
1506}
1507
1508/*
1509 * Load a value relative to the beginning of the MAC-layer payload.
1510 */
1511static struct slist *
1512gen_load_macplrel(offset, size)
1513	u_int offset, size;
1514{
1515	struct slist *s, *s2;
1516
1517	s = gen_off_macpl();
1518
1519	/*
1520	 * If s is non-null, the offset of the MAC-layer payload is
1521	 * variable, and s points to a list of instructions that
1522	 * arrange that the X register contains that offset.
1523	 *
1524	 * Otherwise, the offset of the MAC-layer payload is constant,
1525	 * and is in off_macpl.
1526	 */
1527	if (s != NULL) {
1528		/*
1529		 * The offset of the MAC-layer payload is in the X
1530		 * register.  Do an indirect load, to use the X register
1531		 * as an offset.
1532		 */
1533		s2 = new_stmt(BPF_LD|BPF_IND|size);
1534		s2->s.k = offset;
1535		sappend(s, s2);
1536	} else {
1537		/*
1538		 * The offset of the MAC-layer payload is constant,
1539		 * and is in off_macpl; load the value at that offset
1540		 * plus the specified offset.
1541		 */
1542		s = new_stmt(BPF_LD|BPF_ABS|size);
1543		s->s.k = off_macpl + offset;
1544	}
1545	return s;
1546}
1547
1548/*
1549 * Load a value relative to the beginning of the specified header.
1550 */
1551static struct slist *
1552gen_load_a(offrel, offset, size)
1553	enum e_offrel offrel;
1554	u_int offset, size;
1555{
1556	struct slist *s, *s2;
1557
1558	switch (offrel) {
1559
1560	case OR_PACKET:
1561                s = new_stmt(BPF_LD|BPF_ABS|size);
1562                s->s.k = offset;
1563		break;
1564
1565	case OR_LINK:
1566		s = gen_load_llrel(offset, size);
1567		break;
1568
1569	case OR_MACPL:
1570		s = gen_load_macplrel(offset, size);
1571		break;
1572
1573	case OR_NET:
1574		s = gen_load_macplrel(off_nl + offset, size);
1575		break;
1576
1577	case OR_NET_NOSNAP:
1578		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1579		break;
1580
1581	case OR_TRAN_IPV4:
1582		/*
1583		 * Load the X register with the length of the IPv4 header
1584		 * (plus the offset of the link-layer header, if it's
1585		 * preceded by a variable-length header such as a radio
1586		 * header), in bytes.
1587		 */
1588		s = gen_loadx_iphdrlen();
1589
1590		/*
1591		 * Load the item at {offset of the MAC-layer payload} +
1592		 * {offset, relative to the start of the MAC-layer
1593		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1594		 * {specified offset}.
1595		 *
1596		 * (If the offset of the MAC-layer payload is variable,
1597		 * it's included in the value in the X register, and
1598		 * off_macpl is 0.)
1599		 */
1600		s2 = new_stmt(BPF_LD|BPF_IND|size);
1601		s2->s.k = off_macpl + off_nl + offset;
1602		sappend(s, s2);
1603		break;
1604
1605	case OR_TRAN_IPV6:
1606		s = gen_load_macplrel(off_nl + 40 + offset, size);
1607		break;
1608
1609	default:
1610		abort();
1611		return NULL;
1612	}
1613	return s;
1614}
1615
1616/*
1617 * Generate code to load into the X register the sum of the length of
1618 * the IPv4 header and any variable-length header preceding the link-layer
1619 * header.
1620 */
1621static struct slist *
1622gen_loadx_iphdrlen()
1623{
1624	struct slist *s, *s2;
1625
1626	s = gen_off_macpl();
1627	if (s != NULL) {
1628		/*
1629		 * There's a variable-length prefix preceding the
1630		 * link-layer header, or the link-layer header is itself
1631		 * variable-length.  "s" points to a list of statements
1632		 * that put the offset of the MAC-layer payload into
1633		 * the X register.
1634		 *
1635		 * The 4*([k]&0xf) addressing mode can't be used, as we
1636		 * don't have a constant offset, so we have to load the
1637		 * value in question into the A register and add to it
1638		 * the value from the X register.
1639		 */
1640		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1641		s2->s.k = off_nl;
1642		sappend(s, s2);
1643		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1644		s2->s.k = 0xf;
1645		sappend(s, s2);
1646		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1647		s2->s.k = 2;
1648		sappend(s, s2);
1649
1650		/*
1651		 * The A register now contains the length of the
1652		 * IP header.  We need to add to it the offset of
1653		 * the MAC-layer payload, which is still in the X
1654		 * register, and move the result into the X register.
1655		 */
1656		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1657		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1658	} else {
1659		/*
1660		 * There is no variable-length header preceding the
1661		 * link-layer header, and the link-layer header is
1662		 * fixed-length; load the length of the IPv4 header,
1663		 * which is at an offset of off_nl from the beginning
1664		 * of the MAC-layer payload, and thus at an offset
1665		 * of off_mac_pl + off_nl from the beginning of the
1666		 * raw packet data.
1667		 */
1668		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1669		s->s.k = off_macpl + off_nl;
1670	}
1671	return s;
1672}
1673
1674static struct block *
1675gen_uncond(rsense)
1676	int rsense;
1677{
1678	struct block *b;
1679	struct slist *s;
1680
1681	s = new_stmt(BPF_LD|BPF_IMM);
1682	s->s.k = !rsense;
1683	b = new_block(JMP(BPF_JEQ));
1684	b->stmts = s;
1685
1686	return b;
1687}
1688
1689static inline struct block *
1690gen_true()
1691{
1692	return gen_uncond(1);
1693}
1694
1695static inline struct block *
1696gen_false()
1697{
1698	return gen_uncond(0);
1699}
1700
1701/*
1702 * Byte-swap a 32-bit number.
1703 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1704 * big-endian platforms.)
1705 */
1706#define	SWAPLONG(y) \
1707((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1708
1709/*
1710 * Generate code to match a particular packet type.
1711 *
1712 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1713 * value, if <= ETHERMTU.  We use that to determine whether to
1714 * match the type/length field or to check the type/length field for
1715 * a value <= ETHERMTU to see whether it's a type field and then do
1716 * the appropriate test.
1717 */
1718static struct block *
1719gen_ether_linktype(proto)
1720	register int proto;
1721{
1722	struct block *b0, *b1;
1723
1724	switch (proto) {
1725
1726	case LLCSAP_ISONS:
1727	case LLCSAP_IP:
1728	case LLCSAP_NETBEUI:
1729		/*
1730		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1731		 * so we check the DSAP and SSAP.
1732		 *
1733		 * LLCSAP_IP checks for IP-over-802.2, rather
1734		 * than IP-over-Ethernet or IP-over-SNAP.
1735		 *
1736		 * XXX - should we check both the DSAP and the
1737		 * SSAP, like this, or should we check just the
1738		 * DSAP, as we do for other types <= ETHERMTU
1739		 * (i.e., other SAP values)?
1740		 */
1741		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1742		gen_not(b0);
1743		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1744			     ((proto << 8) | proto));
1745		gen_and(b0, b1);
1746		return b1;
1747
1748	case LLCSAP_IPX:
1749		/*
1750		 * Check for;
1751		 *
1752		 *	Ethernet_II frames, which are Ethernet
1753		 *	frames with a frame type of ETHERTYPE_IPX;
1754		 *
1755		 *	Ethernet_802.3 frames, which are 802.3
1756		 *	frames (i.e., the type/length field is
1757		 *	a length field, <= ETHERMTU, rather than
1758		 *	a type field) with the first two bytes
1759		 *	after the Ethernet/802.3 header being
1760		 *	0xFFFF;
1761		 *
1762		 *	Ethernet_802.2 frames, which are 802.3
1763		 *	frames with an 802.2 LLC header and
1764		 *	with the IPX LSAP as the DSAP in the LLC
1765		 *	header;
1766		 *
1767		 *	Ethernet_SNAP frames, which are 802.3
1768		 *	frames with an LLC header and a SNAP
1769		 *	header and with an OUI of 0x000000
1770		 *	(encapsulated Ethernet) and a protocol
1771		 *	ID of ETHERTYPE_IPX in the SNAP header.
1772		 *
1773		 * XXX - should we generate the same code both
1774		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1775		 */
1776
1777		/*
1778		 * This generates code to check both for the
1779		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1780		 */
1781		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1782		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1783		gen_or(b0, b1);
1784
1785		/*
1786		 * Now we add code to check for SNAP frames with
1787		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1788		 */
1789		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1790		gen_or(b0, b1);
1791
1792		/*
1793		 * Now we generate code to check for 802.3
1794		 * frames in general.
1795		 */
1796		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1797		gen_not(b0);
1798
1799		/*
1800		 * Now add the check for 802.3 frames before the
1801		 * check for Ethernet_802.2 and Ethernet_802.3,
1802		 * as those checks should only be done on 802.3
1803		 * frames, not on Ethernet frames.
1804		 */
1805		gen_and(b0, b1);
1806
1807		/*
1808		 * Now add the check for Ethernet_II frames, and
1809		 * do that before checking for the other frame
1810		 * types.
1811		 */
1812		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1813		    (bpf_int32)ETHERTYPE_IPX);
1814		gen_or(b0, b1);
1815		return b1;
1816
1817	case ETHERTYPE_ATALK:
1818	case ETHERTYPE_AARP:
1819		/*
1820		 * EtherTalk (AppleTalk protocols on Ethernet link
1821		 * layer) may use 802.2 encapsulation.
1822		 */
1823
1824		/*
1825		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1826		 * we check for an Ethernet type field less than
1827		 * 1500, which means it's an 802.3 length field.
1828		 */
1829		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1830		gen_not(b0);
1831
1832		/*
1833		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1834		 * SNAP packets with an organization code of
1835		 * 0x080007 (Apple, for Appletalk) and a protocol
1836		 * type of ETHERTYPE_ATALK (Appletalk).
1837		 *
1838		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1839		 * SNAP packets with an organization code of
1840		 * 0x000000 (encapsulated Ethernet) and a protocol
1841		 * type of ETHERTYPE_AARP (Appletalk ARP).
1842		 */
1843		if (proto == ETHERTYPE_ATALK)
1844			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1845		else	/* proto == ETHERTYPE_AARP */
1846			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1847		gen_and(b0, b1);
1848
1849		/*
1850		 * Check for Ethernet encapsulation (Ethertalk
1851		 * phase 1?); we just check for the Ethernet
1852		 * protocol type.
1853		 */
1854		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1855
1856		gen_or(b0, b1);
1857		return b1;
1858
1859	default:
1860		if (proto <= ETHERMTU) {
1861			/*
1862			 * This is an LLC SAP value, so the frames
1863			 * that match would be 802.2 frames.
1864			 * Check that the frame is an 802.2 frame
1865			 * (i.e., that the length/type field is
1866			 * a length field, <= ETHERMTU) and
1867			 * then check the DSAP.
1868			 */
1869			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1870			gen_not(b0);
1871			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1872			    (bpf_int32)proto);
1873			gen_and(b0, b1);
1874			return b1;
1875		} else {
1876			/*
1877			 * This is an Ethernet type, so compare
1878			 * the length/type field with it (if
1879			 * the frame is an 802.2 frame, the length
1880			 * field will be <= ETHERMTU, and, as
1881			 * "proto" is > ETHERMTU, this test
1882			 * will fail and the frame won't match,
1883			 * which is what we want).
1884			 */
1885			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1886			    (bpf_int32)proto);
1887		}
1888	}
1889}
1890
1891/*
1892 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1893 * or IPv6 then we have an error.
1894 */
1895static struct block *
1896gen_ipnet_linktype(proto)
1897	register int proto;
1898{
1899	switch (proto) {
1900
1901	case ETHERTYPE_IP:
1902		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1903		    (bpf_int32)IPH_AF_INET);
1904		/* NOTREACHED */
1905
1906	case ETHERTYPE_IPV6:
1907		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1908		    (bpf_int32)IPH_AF_INET6);
1909		/* NOTREACHED */
1910
1911	default:
1912		break;
1913	}
1914
1915	return gen_false();
1916}
1917
1918/*
1919 * Generate code to match a particular packet type.
1920 *
1921 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1922 * value, if <= ETHERMTU.  We use that to determine whether to
1923 * match the type field or to check the type field for the special
1924 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1925 */
1926static struct block *
1927gen_linux_sll_linktype(proto)
1928	register int proto;
1929{
1930	struct block *b0, *b1;
1931
1932	switch (proto) {
1933
1934	case LLCSAP_ISONS:
1935	case LLCSAP_IP:
1936	case LLCSAP_NETBEUI:
1937		/*
1938		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1939		 * so we check the DSAP and SSAP.
1940		 *
1941		 * LLCSAP_IP checks for IP-over-802.2, rather
1942		 * than IP-over-Ethernet or IP-over-SNAP.
1943		 *
1944		 * XXX - should we check both the DSAP and the
1945		 * SSAP, like this, or should we check just the
1946		 * DSAP, as we do for other types <= ETHERMTU
1947		 * (i.e., other SAP values)?
1948		 */
1949		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1950		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1951			     ((proto << 8) | proto));
1952		gen_and(b0, b1);
1953		return b1;
1954
1955	case LLCSAP_IPX:
1956		/*
1957		 *	Ethernet_II frames, which are Ethernet
1958		 *	frames with a frame type of ETHERTYPE_IPX;
1959		 *
1960		 *	Ethernet_802.3 frames, which have a frame
1961		 *	type of LINUX_SLL_P_802_3;
1962		 *
1963		 *	Ethernet_802.2 frames, which are 802.3
1964		 *	frames with an 802.2 LLC header (i.e, have
1965		 *	a frame type of LINUX_SLL_P_802_2) and
1966		 *	with the IPX LSAP as the DSAP in the LLC
1967		 *	header;
1968		 *
1969		 *	Ethernet_SNAP frames, which are 802.3
1970		 *	frames with an LLC header and a SNAP
1971		 *	header and with an OUI of 0x000000
1972		 *	(encapsulated Ethernet) and a protocol
1973		 *	ID of ETHERTYPE_IPX in the SNAP header.
1974		 *
1975		 * First, do the checks on LINUX_SLL_P_802_2
1976		 * frames; generate the check for either
1977		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1978		 * then put a check for LINUX_SLL_P_802_2 frames
1979		 * before it.
1980		 */
1981		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1982		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1983		gen_or(b0, b1);
1984		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1985		gen_and(b0, b1);
1986
1987		/*
1988		 * Now check for 802.3 frames and OR that with
1989		 * the previous test.
1990		 */
1991		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1992		gen_or(b0, b1);
1993
1994		/*
1995		 * Now add the check for Ethernet_II frames, and
1996		 * do that before checking for the other frame
1997		 * types.
1998		 */
1999		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2000		    (bpf_int32)ETHERTYPE_IPX);
2001		gen_or(b0, b1);
2002		return b1;
2003
2004	case ETHERTYPE_ATALK:
2005	case ETHERTYPE_AARP:
2006		/*
2007		 * EtherTalk (AppleTalk protocols on Ethernet link
2008		 * layer) may use 802.2 encapsulation.
2009		 */
2010
2011		/*
2012		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2013		 * we check for the 802.2 protocol type in the
2014		 * "Ethernet type" field.
2015		 */
2016		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2017
2018		/*
2019		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2020		 * SNAP packets with an organization code of
2021		 * 0x080007 (Apple, for Appletalk) and a protocol
2022		 * type of ETHERTYPE_ATALK (Appletalk).
2023		 *
2024		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2025		 * SNAP packets with an organization code of
2026		 * 0x000000 (encapsulated Ethernet) and a protocol
2027		 * type of ETHERTYPE_AARP (Appletalk ARP).
2028		 */
2029		if (proto == ETHERTYPE_ATALK)
2030			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2031		else	/* proto == ETHERTYPE_AARP */
2032			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2033		gen_and(b0, b1);
2034
2035		/*
2036		 * Check for Ethernet encapsulation (Ethertalk
2037		 * phase 1?); we just check for the Ethernet
2038		 * protocol type.
2039		 */
2040		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2041
2042		gen_or(b0, b1);
2043		return b1;
2044
2045	default:
2046		if (proto <= ETHERMTU) {
2047			/*
2048			 * This is an LLC SAP value, so the frames
2049			 * that match would be 802.2 frames.
2050			 * Check for the 802.2 protocol type
2051			 * in the "Ethernet type" field, and
2052			 * then check the DSAP.
2053			 */
2054			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2055			    LINUX_SLL_P_802_2);
2056			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2057			     (bpf_int32)proto);
2058			gen_and(b0, b1);
2059			return b1;
2060		} else {
2061			/*
2062			 * This is an Ethernet type, so compare
2063			 * the length/type field with it (if
2064			 * the frame is an 802.2 frame, the length
2065			 * field will be <= ETHERMTU, and, as
2066			 * "proto" is > ETHERMTU, this test
2067			 * will fail and the frame won't match,
2068			 * which is what we want).
2069			 */
2070			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2071			    (bpf_int32)proto);
2072		}
2073	}
2074}
2075
2076static struct slist *
2077gen_load_prism_llprefixlen()
2078{
2079	struct slist *s1, *s2;
2080	struct slist *sjeq_avs_cookie;
2081	struct slist *sjcommon;
2082
2083	/*
2084	 * This code is not compatible with the optimizer, as
2085	 * we are generating jmp instructions within a normal
2086	 * slist of instructions
2087	 */
2088	no_optimize = 1;
2089
2090	/*
2091	 * Generate code to load the length of the radio header into
2092	 * the register assigned to hold that length, if one has been
2093	 * assigned.  (If one hasn't been assigned, no code we've
2094	 * generated uses that prefix, so we don't need to generate any
2095	 * code to load it.)
2096	 *
2097	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2098	 * or always use the AVS header rather than the Prism header.
2099	 * We load a 4-byte big-endian value at the beginning of the
2100	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2101	 * it's equal to 0x80211000.  If so, that indicates that it's
2102	 * an AVS header (the masked-out bits are the version number).
2103	 * Otherwise, it's a Prism header.
2104	 *
2105	 * XXX - the Prism header is also, in theory, variable-length,
2106	 * but no known software generates headers that aren't 144
2107	 * bytes long.
2108	 */
2109	if (reg_off_ll != -1) {
2110		/*
2111		 * Load the cookie.
2112		 */
2113		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2114		s1->s.k = 0;
2115
2116		/*
2117		 * AND it with 0xFFFFF000.
2118		 */
2119		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2120		s2->s.k = 0xFFFFF000;
2121		sappend(s1, s2);
2122
2123		/*
2124		 * Compare with 0x80211000.
2125		 */
2126		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2127		sjeq_avs_cookie->s.k = 0x80211000;
2128		sappend(s1, sjeq_avs_cookie);
2129
2130		/*
2131		 * If it's AVS:
2132		 *
2133		 * The 4 bytes at an offset of 4 from the beginning of
2134		 * the AVS header are the length of the AVS header.
2135		 * That field is big-endian.
2136		 */
2137		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2138		s2->s.k = 4;
2139		sappend(s1, s2);
2140		sjeq_avs_cookie->s.jt = s2;
2141
2142		/*
2143		 * Now jump to the code to allocate a register
2144		 * into which to save the header length and
2145		 * store the length there.  (The "jump always"
2146		 * instruction needs to have the k field set;
2147		 * it's added to the PC, so, as we're jumping
2148		 * over a single instruction, it should be 1.)
2149		 */
2150		sjcommon = new_stmt(JMP(BPF_JA));
2151		sjcommon->s.k = 1;
2152		sappend(s1, sjcommon);
2153
2154		/*
2155		 * Now for the code that handles the Prism header.
2156		 * Just load the length of the Prism header (144)
2157		 * into the A register.  Have the test for an AVS
2158		 * header branch here if we don't have an AVS header.
2159		 */
2160		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2161		s2->s.k = 144;
2162		sappend(s1, s2);
2163		sjeq_avs_cookie->s.jf = s2;
2164
2165		/*
2166		 * Now allocate a register to hold that value and store
2167		 * it.  The code for the AVS header will jump here after
2168		 * loading the length of the AVS header.
2169		 */
2170		s2 = new_stmt(BPF_ST);
2171		s2->s.k = reg_off_ll;
2172		sappend(s1, s2);
2173		sjcommon->s.jf = s2;
2174
2175		/*
2176		 * Now move it into the X register.
2177		 */
2178		s2 = new_stmt(BPF_MISC|BPF_TAX);
2179		sappend(s1, s2);
2180
2181		return (s1);
2182	} else
2183		return (NULL);
2184}
2185
2186static struct slist *
2187gen_load_avs_llprefixlen()
2188{
2189	struct slist *s1, *s2;
2190
2191	/*
2192	 * Generate code to load the length of the AVS header into
2193	 * the register assigned to hold that length, if one has been
2194	 * assigned.  (If one hasn't been assigned, no code we've
2195	 * generated uses that prefix, so we don't need to generate any
2196	 * code to load it.)
2197	 */
2198	if (reg_off_ll != -1) {
2199		/*
2200		 * The 4 bytes at an offset of 4 from the beginning of
2201		 * the AVS header are the length of the AVS header.
2202		 * That field is big-endian.
2203		 */
2204		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2205		s1->s.k = 4;
2206
2207		/*
2208		 * Now allocate a register to hold that value and store
2209		 * it.
2210		 */
2211		s2 = new_stmt(BPF_ST);
2212		s2->s.k = reg_off_ll;
2213		sappend(s1, s2);
2214
2215		/*
2216		 * Now move it into the X register.
2217		 */
2218		s2 = new_stmt(BPF_MISC|BPF_TAX);
2219		sappend(s1, s2);
2220
2221		return (s1);
2222	} else
2223		return (NULL);
2224}
2225
2226static struct slist *
2227gen_load_radiotap_llprefixlen()
2228{
2229	struct slist *s1, *s2;
2230
2231	/*
2232	 * Generate code to load the length of the radiotap header into
2233	 * the register assigned to hold that length, if one has been
2234	 * assigned.  (If one hasn't been assigned, no code we've
2235	 * generated uses that prefix, so we don't need to generate any
2236	 * code to load it.)
2237	 */
2238	if (reg_off_ll != -1) {
2239		/*
2240		 * The 2 bytes at offsets of 2 and 3 from the beginning
2241		 * of the radiotap header are the length of the radiotap
2242		 * header; unfortunately, it's little-endian, so we have
2243		 * to load it a byte at a time and construct the value.
2244		 */
2245
2246		/*
2247		 * Load the high-order byte, at an offset of 3, shift it
2248		 * left a byte, and put the result in the X register.
2249		 */
2250		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2251		s1->s.k = 3;
2252		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2253		sappend(s1, s2);
2254		s2->s.k = 8;
2255		s2 = new_stmt(BPF_MISC|BPF_TAX);
2256		sappend(s1, s2);
2257
2258		/*
2259		 * Load the next byte, at an offset of 2, and OR the
2260		 * value from the X register into it.
2261		 */
2262		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2263		sappend(s1, s2);
2264		s2->s.k = 2;
2265		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2266		sappend(s1, s2);
2267
2268		/*
2269		 * Now allocate a register to hold that value and store
2270		 * it.
2271		 */
2272		s2 = new_stmt(BPF_ST);
2273		s2->s.k = reg_off_ll;
2274		sappend(s1, s2);
2275
2276		/*
2277		 * Now move it into the X register.
2278		 */
2279		s2 = new_stmt(BPF_MISC|BPF_TAX);
2280		sappend(s1, s2);
2281
2282		return (s1);
2283	} else
2284		return (NULL);
2285}
2286
2287/*
2288 * At the moment we treat PPI as normal Radiotap encoded
2289 * packets. The difference is in the function that generates
2290 * the code at the beginning to compute the header length.
2291 * Since this code generator of PPI supports bare 802.11
2292 * encapsulation only (i.e. the encapsulated DLT should be
2293 * DLT_IEEE802_11) we generate code to check for this too;
2294 * that's done in finish_parse().
2295 */
2296static struct slist *
2297gen_load_ppi_llprefixlen()
2298{
2299	struct slist *s1, *s2;
2300
2301	/*
2302	 * Generate code to load the length of the radiotap header
2303	 * into the register assigned to hold that length, if one has
2304	 * been assigned.
2305	 */
2306	if (reg_off_ll != -1) {
2307		/*
2308		 * The 2 bytes at offsets of 2 and 3 from the beginning
2309		 * of the radiotap header are the length of the radiotap
2310		 * header; unfortunately, it's little-endian, so we have
2311		 * to load it a byte at a time and construct the value.
2312		 */
2313
2314		/*
2315		 * Load the high-order byte, at an offset of 3, shift it
2316		 * left a byte, and put the result in the X register.
2317		 */
2318		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2319		s1->s.k = 3;
2320		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2321		sappend(s1, s2);
2322		s2->s.k = 8;
2323		s2 = new_stmt(BPF_MISC|BPF_TAX);
2324		sappend(s1, s2);
2325
2326		/*
2327		 * Load the next byte, at an offset of 2, and OR the
2328		 * value from the X register into it.
2329		 */
2330		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2331		sappend(s1, s2);
2332		s2->s.k = 2;
2333		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2334		sappend(s1, s2);
2335
2336		/*
2337		 * Now allocate a register to hold that value and store
2338		 * it.
2339		 */
2340		s2 = new_stmt(BPF_ST);
2341		s2->s.k = reg_off_ll;
2342		sappend(s1, s2);
2343
2344		/*
2345		 * Now move it into the X register.
2346		 */
2347		s2 = new_stmt(BPF_MISC|BPF_TAX);
2348		sappend(s1, s2);
2349
2350		return (s1);
2351	} else
2352		return (NULL);
2353}
2354
2355/*
2356 * Load a value relative to the beginning of the link-layer header after the 802.11
2357 * header, i.e. LLC_SNAP.
2358 * The link-layer header doesn't necessarily begin at the beginning
2359 * of the packet data; there might be a variable-length prefix containing
2360 * radio information.
2361 */
2362static struct slist *
2363gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2364{
2365	struct slist *s2;
2366	struct slist *sjset_data_frame_1;
2367	struct slist *sjset_data_frame_2;
2368	struct slist *sjset_qos;
2369	struct slist *sjset_radiotap_flags;
2370	struct slist *sjset_radiotap_tsft;
2371	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2372	struct slist *s_roundup;
2373
2374	if (reg_off_macpl == -1) {
2375		/*
2376		 * No register has been assigned to the offset of
2377		 * the MAC-layer payload, which means nobody needs
2378		 * it; don't bother computing it - just return
2379		 * what we already have.
2380		 */
2381		return (s);
2382	}
2383
2384	/*
2385	 * This code is not compatible with the optimizer, as
2386	 * we are generating jmp instructions within a normal
2387	 * slist of instructions
2388	 */
2389	no_optimize = 1;
2390
2391	/*
2392	 * If "s" is non-null, it has code to arrange that the X register
2393	 * contains the length of the prefix preceding the link-layer
2394	 * header.
2395	 *
2396	 * Otherwise, the length of the prefix preceding the link-layer
2397	 * header is "off_ll".
2398	 */
2399	if (s == NULL) {
2400		/*
2401		 * There is no variable-length header preceding the
2402		 * link-layer header.
2403		 *
2404		 * Load the length of the fixed-length prefix preceding
2405		 * the link-layer header (if any) into the X register,
2406		 * and store it in the reg_off_macpl register.
2407		 * That length is off_ll.
2408		 */
2409		s = new_stmt(BPF_LDX|BPF_IMM);
2410		s->s.k = off_ll;
2411	}
2412
2413	/*
2414	 * The X register contains the offset of the beginning of the
2415	 * link-layer header; add 24, which is the minimum length
2416	 * of the MAC header for a data frame, to that, and store it
2417	 * in reg_off_macpl, and then load the Frame Control field,
2418	 * which is at the offset in the X register, with an indexed load.
2419	 */
2420	s2 = new_stmt(BPF_MISC|BPF_TXA);
2421	sappend(s, s2);
2422	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2423	s2->s.k = 24;
2424	sappend(s, s2);
2425	s2 = new_stmt(BPF_ST);
2426	s2->s.k = reg_off_macpl;
2427	sappend(s, s2);
2428
2429	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2430	s2->s.k = 0;
2431	sappend(s, s2);
2432
2433	/*
2434	 * Check the Frame Control field to see if this is a data frame;
2435	 * a data frame has the 0x08 bit (b3) in that field set and the
2436	 * 0x04 bit (b2) clear.
2437	 */
2438	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2439	sjset_data_frame_1->s.k = 0x08;
2440	sappend(s, sjset_data_frame_1);
2441
2442	/*
2443	 * If b3 is set, test b2, otherwise go to the first statement of
2444	 * the rest of the program.
2445	 */
2446	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2447	sjset_data_frame_2->s.k = 0x04;
2448	sappend(s, sjset_data_frame_2);
2449	sjset_data_frame_1->s.jf = snext;
2450
2451	/*
2452	 * If b2 is not set, this is a data frame; test the QoS bit.
2453	 * Otherwise, go to the first statement of the rest of the
2454	 * program.
2455	 */
2456	sjset_data_frame_2->s.jt = snext;
2457	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2458	sjset_qos->s.k = 0x80;	/* QoS bit */
2459	sappend(s, sjset_qos);
2460
2461	/*
2462	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2463	 * field.
2464	 * Otherwise, go to the first statement of the rest of the
2465	 * program.
2466	 */
2467	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2468	s2->s.k = reg_off_macpl;
2469	sappend(s, s2);
2470	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2471	s2->s.k = 2;
2472	sappend(s, s2);
2473	s2 = new_stmt(BPF_ST);
2474	s2->s.k = reg_off_macpl;
2475	sappend(s, s2);
2476
2477	/*
2478	 * If we have a radiotap header, look at it to see whether
2479	 * there's Atheros padding between the MAC-layer header
2480	 * and the payload.
2481	 *
2482	 * Note: all of the fields in the radiotap header are
2483	 * little-endian, so we byte-swap all of the values
2484	 * we test against, as they will be loaded as big-endian
2485	 * values.
2486	 */
2487	if (linktype == DLT_IEEE802_11_RADIO) {
2488		/*
2489		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2490		 * in the presence flag?
2491		 */
2492		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2493		s2->s.k = 4;
2494		sappend(s, s2);
2495
2496		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2497		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2498		sappend(s, sjset_radiotap_flags);
2499
2500		/*
2501		 * If not, skip all of this.
2502		 */
2503		sjset_radiotap_flags->s.jf = snext;
2504
2505		/*
2506		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2507		 */
2508		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2509		    new_stmt(JMP(BPF_JSET));
2510		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2511		sappend(s, sjset_radiotap_tsft);
2512
2513		/*
2514		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2515		 * at an offset of 16 from the beginning of the raw packet
2516		 * data (8 bytes for the radiotap header and 8 bytes for
2517		 * the TSFT field).
2518		 *
2519		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2520		 * is set.
2521		 */
2522		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2523		s2->s.k = 16;
2524		sappend(s, s2);
2525
2526		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2527		sjset_tsft_datapad->s.k = 0x20;
2528		sappend(s, sjset_tsft_datapad);
2529
2530		/*
2531		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2532		 * at an offset of 8 from the beginning of the raw packet
2533		 * data (8 bytes for the radiotap header).
2534		 *
2535		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2536		 * is set.
2537		 */
2538		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2539		s2->s.k = 8;
2540		sappend(s, s2);
2541
2542		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2543		sjset_notsft_datapad->s.k = 0x20;
2544		sappend(s, sjset_notsft_datapad);
2545
2546		/*
2547		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2548		 * set, round the length of the 802.11 header to
2549		 * a multiple of 4.  Do that by adding 3 and then
2550		 * dividing by and multiplying by 4, which we do by
2551		 * ANDing with ~3.
2552		 */
2553		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2554		s_roundup->s.k = reg_off_macpl;
2555		sappend(s, s_roundup);
2556		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2557		s2->s.k = 3;
2558		sappend(s, s2);
2559		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2560		s2->s.k = ~3;
2561		sappend(s, s2);
2562		s2 = new_stmt(BPF_ST);
2563		s2->s.k = reg_off_macpl;
2564		sappend(s, s2);
2565
2566		sjset_tsft_datapad->s.jt = s_roundup;
2567		sjset_tsft_datapad->s.jf = snext;
2568		sjset_notsft_datapad->s.jt = s_roundup;
2569		sjset_notsft_datapad->s.jf = snext;
2570	} else
2571		sjset_qos->s.jf = snext;
2572
2573	return s;
2574}
2575
2576static void
2577insert_compute_vloffsets(b)
2578	struct block *b;
2579{
2580	struct slist *s;
2581
2582	/*
2583	 * For link-layer types that have a variable-length header
2584	 * preceding the link-layer header, generate code to load
2585	 * the offset of the link-layer header into the register
2586	 * assigned to that offset, if any.
2587	 */
2588	switch (linktype) {
2589
2590	case DLT_PRISM_HEADER:
2591		s = gen_load_prism_llprefixlen();
2592		break;
2593
2594	case DLT_IEEE802_11_RADIO_AVS:
2595		s = gen_load_avs_llprefixlen();
2596		break;
2597
2598	case DLT_IEEE802_11_RADIO:
2599		s = gen_load_radiotap_llprefixlen();
2600		break;
2601
2602	case DLT_PPI:
2603		s = gen_load_ppi_llprefixlen();
2604		break;
2605
2606	default:
2607		s = NULL;
2608		break;
2609	}
2610
2611	/*
2612	 * For link-layer types that have a variable-length link-layer
2613	 * header, generate code to load the offset of the MAC-layer
2614	 * payload into the register assigned to that offset, if any.
2615	 */
2616	switch (linktype) {
2617
2618	case DLT_IEEE802_11:
2619	case DLT_PRISM_HEADER:
2620	case DLT_IEEE802_11_RADIO_AVS:
2621	case DLT_IEEE802_11_RADIO:
2622	case DLT_PPI:
2623		s = gen_load_802_11_header_len(s, b->stmts);
2624		break;
2625	}
2626
2627	/*
2628	 * If we have any offset-loading code, append all the
2629	 * existing statements in the block to those statements,
2630	 * and make the resulting list the list of statements
2631	 * for the block.
2632	 */
2633	if (s != NULL) {
2634		sappend(s, b->stmts);
2635		b->stmts = s;
2636	}
2637}
2638
2639static struct block *
2640gen_ppi_dlt_check(void)
2641{
2642	struct slist *s_load_dlt;
2643	struct block *b;
2644
2645	if (linktype == DLT_PPI)
2646	{
2647		/* Create the statements that check for the DLT
2648		 */
2649		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2650		s_load_dlt->s.k = 4;
2651
2652		b = new_block(JMP(BPF_JEQ));
2653
2654		b->stmts = s_load_dlt;
2655		b->s.k = SWAPLONG(DLT_IEEE802_11);
2656	}
2657	else
2658	{
2659		b = NULL;
2660	}
2661
2662	return b;
2663}
2664
2665static struct slist *
2666gen_prism_llprefixlen(void)
2667{
2668	struct slist *s;
2669
2670	if (reg_off_ll == -1) {
2671		/*
2672		 * We haven't yet assigned a register for the length
2673		 * of the radio header; allocate one.
2674		 */
2675		reg_off_ll = alloc_reg();
2676	}
2677
2678	/*
2679	 * Load the register containing the radio length
2680	 * into the X register.
2681	 */
2682	s = new_stmt(BPF_LDX|BPF_MEM);
2683	s->s.k = reg_off_ll;
2684	return s;
2685}
2686
2687static struct slist *
2688gen_avs_llprefixlen(void)
2689{
2690	struct slist *s;
2691
2692	if (reg_off_ll == -1) {
2693		/*
2694		 * We haven't yet assigned a register for the length
2695		 * of the AVS header; allocate one.
2696		 */
2697		reg_off_ll = alloc_reg();
2698	}
2699
2700	/*
2701	 * Load the register containing the AVS length
2702	 * into the X register.
2703	 */
2704	s = new_stmt(BPF_LDX|BPF_MEM);
2705	s->s.k = reg_off_ll;
2706	return s;
2707}
2708
2709static struct slist *
2710gen_radiotap_llprefixlen(void)
2711{
2712	struct slist *s;
2713
2714	if (reg_off_ll == -1) {
2715		/*
2716		 * We haven't yet assigned a register for the length
2717		 * of the radiotap header; allocate one.
2718		 */
2719		reg_off_ll = alloc_reg();
2720	}
2721
2722	/*
2723	 * Load the register containing the radiotap length
2724	 * into the X register.
2725	 */
2726	s = new_stmt(BPF_LDX|BPF_MEM);
2727	s->s.k = reg_off_ll;
2728	return s;
2729}
2730
2731/*
2732 * At the moment we treat PPI as normal Radiotap encoded
2733 * packets. The difference is in the function that generates
2734 * the code at the beginning to compute the header length.
2735 * Since this code generator of PPI supports bare 802.11
2736 * encapsulation only (i.e. the encapsulated DLT should be
2737 * DLT_IEEE802_11) we generate code to check for this too.
2738 */
2739static struct slist *
2740gen_ppi_llprefixlen(void)
2741{
2742	struct slist *s;
2743
2744	if (reg_off_ll == -1) {
2745		/*
2746		 * We haven't yet assigned a register for the length
2747		 * of the radiotap header; allocate one.
2748		 */
2749		reg_off_ll = alloc_reg();
2750	}
2751
2752	/*
2753	 * Load the register containing the PPI length
2754	 * into the X register.
2755	 */
2756	s = new_stmt(BPF_LDX|BPF_MEM);
2757	s->s.k = reg_off_ll;
2758	return s;
2759}
2760
2761/*
2762 * Generate code to compute the link-layer header length, if necessary,
2763 * putting it into the X register, and to return either a pointer to a
2764 * "struct slist" for the list of statements in that code, or NULL if
2765 * no code is necessary.
2766 */
2767static struct slist *
2768gen_llprefixlen(void)
2769{
2770	switch (linktype) {
2771
2772	case DLT_PRISM_HEADER:
2773		return gen_prism_llprefixlen();
2774
2775	case DLT_IEEE802_11_RADIO_AVS:
2776		return gen_avs_llprefixlen();
2777
2778	case DLT_IEEE802_11_RADIO:
2779		return gen_radiotap_llprefixlen();
2780
2781	case DLT_PPI:
2782		return gen_ppi_llprefixlen();
2783
2784	default:
2785		return NULL;
2786	}
2787}
2788
2789/*
2790 * Generate code to load the register containing the offset of the
2791 * MAC-layer payload into the X register; if no register for that offset
2792 * has been allocated, allocate it first.
2793 */
2794static struct slist *
2795gen_off_macpl(void)
2796{
2797	struct slist *s;
2798
2799	if (off_macpl_is_variable) {
2800		if (reg_off_macpl == -1) {
2801			/*
2802			 * We haven't yet assigned a register for the offset
2803			 * of the MAC-layer payload; allocate one.
2804			 */
2805			reg_off_macpl = alloc_reg();
2806		}
2807
2808		/*
2809		 * Load the register containing the offset of the MAC-layer
2810		 * payload into the X register.
2811		 */
2812		s = new_stmt(BPF_LDX|BPF_MEM);
2813		s->s.k = reg_off_macpl;
2814		return s;
2815	} else {
2816		/*
2817		 * That offset isn't variable, so we don't need to
2818		 * generate any code.
2819		 */
2820		return NULL;
2821	}
2822}
2823
2824/*
2825 * Map an Ethernet type to the equivalent PPP type.
2826 */
2827static int
2828ethertype_to_ppptype(proto)
2829	int proto;
2830{
2831	switch (proto) {
2832
2833	case ETHERTYPE_IP:
2834		proto = PPP_IP;
2835		break;
2836
2837#ifdef INET6
2838	case ETHERTYPE_IPV6:
2839		proto = PPP_IPV6;
2840		break;
2841#endif
2842
2843	case ETHERTYPE_DN:
2844		proto = PPP_DECNET;
2845		break;
2846
2847	case ETHERTYPE_ATALK:
2848		proto = PPP_APPLE;
2849		break;
2850
2851	case ETHERTYPE_NS:
2852		proto = PPP_NS;
2853		break;
2854
2855	case LLCSAP_ISONS:
2856		proto = PPP_OSI;
2857		break;
2858
2859	case LLCSAP_8021D:
2860		/*
2861		 * I'm assuming the "Bridging PDU"s that go
2862		 * over PPP are Spanning Tree Protocol
2863		 * Bridging PDUs.
2864		 */
2865		proto = PPP_BRPDU;
2866		break;
2867
2868	case LLCSAP_IPX:
2869		proto = PPP_IPX;
2870		break;
2871	}
2872	return (proto);
2873}
2874
2875/*
2876 * Generate code to match a particular packet type by matching the
2877 * link-layer type field or fields in the 802.2 LLC header.
2878 *
2879 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2880 * value, if <= ETHERMTU.
2881 */
2882static struct block *
2883gen_linktype(proto)
2884	register int proto;
2885{
2886	struct block *b0, *b1, *b2;
2887
2888	/* are we checking MPLS-encapsulated packets? */
2889	if (label_stack_depth > 0) {
2890		switch (proto) {
2891		case ETHERTYPE_IP:
2892		case PPP_IP:
2893			/* FIXME add other L3 proto IDs */
2894			return gen_mpls_linktype(Q_IP);
2895
2896		case ETHERTYPE_IPV6:
2897		case PPP_IPV6:
2898			/* FIXME add other L3 proto IDs */
2899			return gen_mpls_linktype(Q_IPV6);
2900
2901		default:
2902			bpf_error("unsupported protocol over mpls");
2903			/* NOTREACHED */
2904		}
2905	}
2906
2907	/*
2908	 * Are we testing PPPoE packets?
2909	 */
2910	if (is_pppoes) {
2911		/*
2912		 * The PPPoE session header is part of the
2913		 * MAC-layer payload, so all references
2914		 * should be relative to the beginning of
2915		 * that payload.
2916		 */
2917
2918		/*
2919		 * We use Ethernet protocol types inside libpcap;
2920		 * map them to the corresponding PPP protocol types.
2921		 */
2922		proto = ethertype_to_ppptype(proto);
2923		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2924	}
2925
2926	switch (linktype) {
2927
2928	case DLT_EN10MB:
2929	case DLT_NETANALYZER:
2930	case DLT_NETANALYZER_TRANSPARENT:
2931		return gen_ether_linktype(proto);
2932		/*NOTREACHED*/
2933		break;
2934
2935	case DLT_C_HDLC:
2936		switch (proto) {
2937
2938		case LLCSAP_ISONS:
2939			proto = (proto << 8 | LLCSAP_ISONS);
2940			/* fall through */
2941
2942		default:
2943			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2944			    (bpf_int32)proto);
2945			/*NOTREACHED*/
2946			break;
2947		}
2948		break;
2949
2950	case DLT_IEEE802_11:
2951	case DLT_PRISM_HEADER:
2952	case DLT_IEEE802_11_RADIO_AVS:
2953	case DLT_IEEE802_11_RADIO:
2954	case DLT_PPI:
2955		/*
2956		 * Check that we have a data frame.
2957		 */
2958		b0 = gen_check_802_11_data_frame();
2959
2960		/*
2961		 * Now check for the specified link-layer type.
2962		 */
2963		b1 = gen_llc_linktype(proto);
2964		gen_and(b0, b1);
2965		return b1;
2966		/*NOTREACHED*/
2967		break;
2968
2969	case DLT_FDDI:
2970		/*
2971		 * XXX - check for asynchronous frames, as per RFC 1103.
2972		 */
2973		return gen_llc_linktype(proto);
2974		/*NOTREACHED*/
2975		break;
2976
2977	case DLT_IEEE802:
2978		/*
2979		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2980		 */
2981		return gen_llc_linktype(proto);
2982		/*NOTREACHED*/
2983		break;
2984
2985	case DLT_ATM_RFC1483:
2986	case DLT_ATM_CLIP:
2987	case DLT_IP_OVER_FC:
2988		return gen_llc_linktype(proto);
2989		/*NOTREACHED*/
2990		break;
2991
2992	case DLT_SUNATM:
2993		/*
2994		 * If "is_lane" is set, check for a LANE-encapsulated
2995		 * version of this protocol, otherwise check for an
2996		 * LLC-encapsulated version of this protocol.
2997		 *
2998		 * We assume LANE means Ethernet, not Token Ring.
2999		 */
3000		if (is_lane) {
3001			/*
3002			 * Check that the packet doesn't begin with an
3003			 * LE Control marker.  (We've already generated
3004			 * a test for LANE.)
3005			 */
3006			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3007			    0xFF00);
3008			gen_not(b0);
3009
3010			/*
3011			 * Now generate an Ethernet test.
3012			 */
3013			b1 = gen_ether_linktype(proto);
3014			gen_and(b0, b1);
3015			return b1;
3016		} else {
3017			/*
3018			 * Check for LLC encapsulation and then check the
3019			 * protocol.
3020			 */
3021			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3022			b1 = gen_llc_linktype(proto);
3023			gen_and(b0, b1);
3024			return b1;
3025		}
3026		/*NOTREACHED*/
3027		break;
3028
3029	case DLT_LINUX_SLL:
3030		return gen_linux_sll_linktype(proto);
3031		/*NOTREACHED*/
3032		break;
3033
3034	case DLT_SLIP:
3035	case DLT_SLIP_BSDOS:
3036	case DLT_RAW:
3037		/*
3038		 * These types don't provide any type field; packets
3039		 * are always IPv4 or IPv6.
3040		 *
3041		 * XXX - for IPv4, check for a version number of 4, and,
3042		 * for IPv6, check for a version number of 6?
3043		 */
3044		switch (proto) {
3045
3046		case ETHERTYPE_IP:
3047			/* Check for a version number of 4. */
3048			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3049#ifdef INET6
3050		case ETHERTYPE_IPV6:
3051			/* Check for a version number of 6. */
3052			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3053#endif
3054
3055		default:
3056			return gen_false();		/* always false */
3057		}
3058		/*NOTREACHED*/
3059		break;
3060
3061	case DLT_IPV4:
3062		/*
3063		 * Raw IPv4, so no type field.
3064		 */
3065		if (proto == ETHERTYPE_IP)
3066			return gen_true();		/* always true */
3067
3068		/* Checking for something other than IPv4; always false */
3069		return gen_false();
3070		/*NOTREACHED*/
3071		break;
3072
3073	case DLT_IPV6:
3074		/*
3075		 * Raw IPv6, so no type field.
3076		 */
3077#ifdef INET6
3078		if (proto == ETHERTYPE_IPV6)
3079			return gen_true();		/* always true */
3080#endif
3081
3082		/* Checking for something other than IPv6; always false */
3083		return gen_false();
3084		/*NOTREACHED*/
3085		break;
3086
3087	case DLT_PPP:
3088	case DLT_PPP_PPPD:
3089	case DLT_PPP_SERIAL:
3090	case DLT_PPP_ETHER:
3091		/*
3092		 * We use Ethernet protocol types inside libpcap;
3093		 * map them to the corresponding PPP protocol types.
3094		 */
3095		proto = ethertype_to_ppptype(proto);
3096		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3097		/*NOTREACHED*/
3098		break;
3099
3100	case DLT_PPP_BSDOS:
3101		/*
3102		 * We use Ethernet protocol types inside libpcap;
3103		 * map them to the corresponding PPP protocol types.
3104		 */
3105		switch (proto) {
3106
3107		case ETHERTYPE_IP:
3108			/*
3109			 * Also check for Van Jacobson-compressed IP.
3110			 * XXX - do this for other forms of PPP?
3111			 */
3112			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3113			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3114			gen_or(b0, b1);
3115			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3116			gen_or(b1, b0);
3117			return b0;
3118
3119		default:
3120			proto = ethertype_to_ppptype(proto);
3121			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3122				(bpf_int32)proto);
3123		}
3124		/*NOTREACHED*/
3125		break;
3126
3127	case DLT_NULL:
3128	case DLT_LOOP:
3129	case DLT_ENC:
3130		/*
3131		 * For DLT_NULL, the link-layer header is a 32-bit
3132		 * word containing an AF_ value in *host* byte order,
3133		 * and for DLT_ENC, the link-layer header begins
3134		 * with a 32-bit work containing an AF_ value in
3135		 * host byte order.
3136		 *
3137		 * In addition, if we're reading a saved capture file,
3138		 * the host byte order in the capture may not be the
3139		 * same as the host byte order on this machine.
3140		 *
3141		 * For DLT_LOOP, the link-layer header is a 32-bit
3142		 * word containing an AF_ value in *network* byte order.
3143		 *
3144		 * XXX - AF_ values may, unfortunately, be platform-
3145		 * dependent; for example, FreeBSD's AF_INET6 is 24
3146		 * whilst NetBSD's and OpenBSD's is 26.
3147		 *
3148		 * This means that, when reading a capture file, just
3149		 * checking for our AF_INET6 value won't work if the
3150		 * capture file came from another OS.
3151		 */
3152		switch (proto) {
3153
3154		case ETHERTYPE_IP:
3155			proto = AF_INET;
3156			break;
3157
3158#ifdef INET6
3159		case ETHERTYPE_IPV6:
3160			proto = AF_INET6;
3161			break;
3162#endif
3163
3164		default:
3165			/*
3166			 * Not a type on which we support filtering.
3167			 * XXX - support those that have AF_ values
3168			 * #defined on this platform, at least?
3169			 */
3170			return gen_false();
3171		}
3172
3173		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3174			/*
3175			 * The AF_ value is in host byte order, but
3176			 * the BPF interpreter will convert it to
3177			 * network byte order.
3178			 *
3179			 * If this is a save file, and it's from a
3180			 * machine with the opposite byte order to
3181			 * ours, we byte-swap the AF_ value.
3182			 *
3183			 * Then we run it through "htonl()", and
3184			 * generate code to compare against the result.
3185			 */
3186			if (bpf_pcap->sf.rfile != NULL &&
3187			    bpf_pcap->sf.swapped)
3188				proto = SWAPLONG(proto);
3189			proto = htonl(proto);
3190		}
3191		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3192
3193#ifdef HAVE_NET_PFVAR_H
3194	case DLT_PFLOG:
3195		/*
3196		 * af field is host byte order in contrast to the rest of
3197		 * the packet.
3198		 */
3199		if (proto == ETHERTYPE_IP)
3200			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3201			    BPF_B, (bpf_int32)AF_INET));
3202#ifdef INET6
3203		else if (proto == ETHERTYPE_IPV6)
3204			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3205			    BPF_B, (bpf_int32)AF_INET6));
3206#endif /* INET6 */
3207		else
3208			return gen_false();
3209		/*NOTREACHED*/
3210		break;
3211#endif /* HAVE_NET_PFVAR_H */
3212
3213	case DLT_ARCNET:
3214	case DLT_ARCNET_LINUX:
3215		/*
3216		 * XXX should we check for first fragment if the protocol
3217		 * uses PHDS?
3218		 */
3219		switch (proto) {
3220
3221		default:
3222			return gen_false();
3223
3224#ifdef INET6
3225		case ETHERTYPE_IPV6:
3226			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3227				(bpf_int32)ARCTYPE_INET6));
3228#endif /* INET6 */
3229
3230		case ETHERTYPE_IP:
3231			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3232				     (bpf_int32)ARCTYPE_IP);
3233			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3234				     (bpf_int32)ARCTYPE_IP_OLD);
3235			gen_or(b0, b1);
3236			return (b1);
3237
3238		case ETHERTYPE_ARP:
3239			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240				     (bpf_int32)ARCTYPE_ARP);
3241			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3242				     (bpf_int32)ARCTYPE_ARP_OLD);
3243			gen_or(b0, b1);
3244			return (b1);
3245
3246		case ETHERTYPE_REVARP:
3247			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3248					(bpf_int32)ARCTYPE_REVARP));
3249
3250		case ETHERTYPE_ATALK:
3251			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3252					(bpf_int32)ARCTYPE_ATALK));
3253		}
3254		/*NOTREACHED*/
3255		break;
3256
3257	case DLT_LTALK:
3258		switch (proto) {
3259		case ETHERTYPE_ATALK:
3260			return gen_true();
3261		default:
3262			return gen_false();
3263		}
3264		/*NOTREACHED*/
3265		break;
3266
3267	case DLT_FRELAY:
3268		/*
3269		 * XXX - assumes a 2-byte Frame Relay header with
3270		 * DLCI and flags.  What if the address is longer?
3271		 */
3272		switch (proto) {
3273
3274		case ETHERTYPE_IP:
3275			/*
3276			 * Check for the special NLPID for IP.
3277			 */
3278			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3279
3280#ifdef INET6
3281		case ETHERTYPE_IPV6:
3282			/*
3283			 * Check for the special NLPID for IPv6.
3284			 */
3285			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3286#endif
3287
3288		case LLCSAP_ISONS:
3289			/*
3290			 * Check for several OSI protocols.
3291			 *
3292			 * Frame Relay packets typically have an OSI
3293			 * NLPID at the beginning; we check for each
3294			 * of them.
3295			 *
3296			 * What we check for is the NLPID and a frame
3297			 * control field of UI, i.e. 0x03 followed
3298			 * by the NLPID.
3299			 */
3300			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3301			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3302			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3303			gen_or(b1, b2);
3304			gen_or(b0, b2);
3305			return b2;
3306
3307		default:
3308			return gen_false();
3309		}
3310		/*NOTREACHED*/
3311		break;
3312
3313	case DLT_MFR:
3314		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3315
3316        case DLT_JUNIPER_MFR:
3317        case DLT_JUNIPER_MLFR:
3318        case DLT_JUNIPER_MLPPP:
3319	case DLT_JUNIPER_ATM1:
3320	case DLT_JUNIPER_ATM2:
3321	case DLT_JUNIPER_PPPOE:
3322	case DLT_JUNIPER_PPPOE_ATM:
3323        case DLT_JUNIPER_GGSN:
3324        case DLT_JUNIPER_ES:
3325        case DLT_JUNIPER_MONITOR:
3326        case DLT_JUNIPER_SERVICES:
3327        case DLT_JUNIPER_ETHER:
3328        case DLT_JUNIPER_PPP:
3329        case DLT_JUNIPER_FRELAY:
3330        case DLT_JUNIPER_CHDLC:
3331        case DLT_JUNIPER_VP:
3332        case DLT_JUNIPER_ST:
3333        case DLT_JUNIPER_ISM:
3334        case DLT_JUNIPER_VS:
3335        case DLT_JUNIPER_SRX_E2E:
3336        case DLT_JUNIPER_FIBRECHANNEL:
3337	case DLT_JUNIPER_ATM_CEMIC:
3338
3339		/* just lets verify the magic number for now -
3340		 * on ATM we may have up to 6 different encapsulations on the wire
3341		 * and need a lot of heuristics to figure out that the payload
3342		 * might be;
3343		 *
3344		 * FIXME encapsulation specific BPF_ filters
3345		 */
3346		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3347
3348	case DLT_IPNET:
3349		return gen_ipnet_linktype(proto);
3350
3351	case DLT_LINUX_IRDA:
3352		bpf_error("IrDA link-layer type filtering not implemented");
3353
3354	case DLT_DOCSIS:
3355		bpf_error("DOCSIS link-layer type filtering not implemented");
3356
3357	case DLT_MTP2:
3358	case DLT_MTP2_WITH_PHDR:
3359		bpf_error("MTP2 link-layer type filtering not implemented");
3360
3361	case DLT_ERF:
3362		bpf_error("ERF link-layer type filtering not implemented");
3363
3364	case DLT_PFSYNC:
3365		bpf_error("PFSYNC link-layer type filtering not implemented");
3366
3367	case DLT_LINUX_LAPD:
3368		bpf_error("LAPD link-layer type filtering not implemented");
3369
3370	case DLT_USB:
3371	case DLT_USB_LINUX:
3372	case DLT_USB_LINUX_MMAPPED:
3373		bpf_error("USB link-layer type filtering not implemented");
3374
3375	case DLT_BLUETOOTH_HCI_H4:
3376	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3377		bpf_error("Bluetooth link-layer type filtering not implemented");
3378
3379	case DLT_CAN20B:
3380	case DLT_CAN_SOCKETCAN:
3381		bpf_error("CAN link-layer type filtering not implemented");
3382
3383	case DLT_IEEE802_15_4:
3384	case DLT_IEEE802_15_4_LINUX:
3385	case DLT_IEEE802_15_4_NONASK_PHY:
3386	case DLT_IEEE802_15_4_NOFCS:
3387		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3388
3389	case DLT_IEEE802_16_MAC_CPS_RADIO:
3390		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3391
3392	case DLT_SITA:
3393		bpf_error("SITA link-layer type filtering not implemented");
3394
3395	case DLT_RAIF1:
3396		bpf_error("RAIF1 link-layer type filtering not implemented");
3397
3398	case DLT_IPMB:
3399		bpf_error("IPMB link-layer type filtering not implemented");
3400
3401	case DLT_AX25_KISS:
3402		bpf_error("AX.25 link-layer type filtering not implemented");
3403	}
3404
3405	/*
3406	 * All the types that have no encapsulation should either be
3407	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3408	 * all packets are IP packets, or should be handled in some
3409	 * special case, if none of them are (if some are and some
3410	 * aren't, the lack of encapsulation is a problem, as we'd
3411	 * have to find some other way of determining the packet type).
3412	 *
3413	 * Therefore, if "off_linktype" is -1, there's an error.
3414	 */
3415	if (off_linktype == (u_int)-1)
3416		abort();
3417
3418	/*
3419	 * Any type not handled above should always have an Ethernet
3420	 * type at an offset of "off_linktype".
3421	 */
3422	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3423}
3424
3425/*
3426 * Check for an LLC SNAP packet with a given organization code and
3427 * protocol type; we check the entire contents of the 802.2 LLC and
3428 * snap headers, checking for DSAP and SSAP of SNAP and a control
3429 * field of 0x03 in the LLC header, and for the specified organization
3430 * code and protocol type in the SNAP header.
3431 */
3432static struct block *
3433gen_snap(orgcode, ptype)
3434	bpf_u_int32 orgcode;
3435	bpf_u_int32 ptype;
3436{
3437	u_char snapblock[8];
3438
3439	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3440	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3441	snapblock[2] = 0x03;		/* control = UI */
3442	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3443	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3444	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3445	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3446	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3447	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3448}
3449
3450/*
3451 * Generate code to match a particular packet type, for link-layer types
3452 * using 802.2 LLC headers.
3453 *
3454 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3455 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3456 *
3457 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3458 * value, if <= ETHERMTU.  We use that to determine whether to
3459 * match the DSAP or both DSAP and LSAP or to check the OUI and
3460 * protocol ID in a SNAP header.
3461 */
3462static struct block *
3463gen_llc_linktype(proto)
3464	int proto;
3465{
3466	/*
3467	 * XXX - handle token-ring variable-length header.
3468	 */
3469	switch (proto) {
3470
3471	case LLCSAP_IP:
3472	case LLCSAP_ISONS:
3473	case LLCSAP_NETBEUI:
3474		/*
3475		 * XXX - should we check both the DSAP and the
3476		 * SSAP, like this, or should we check just the
3477		 * DSAP, as we do for other types <= ETHERMTU
3478		 * (i.e., other SAP values)?
3479		 */
3480		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3481			     ((proto << 8) | proto));
3482
3483	case LLCSAP_IPX:
3484		/*
3485		 * XXX - are there ever SNAP frames for IPX on
3486		 * non-Ethernet 802.x networks?
3487		 */
3488		return gen_cmp(OR_MACPL, 0, BPF_B,
3489		    (bpf_int32)LLCSAP_IPX);
3490
3491	case ETHERTYPE_ATALK:
3492		/*
3493		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3494		 * SNAP packets with an organization code of
3495		 * 0x080007 (Apple, for Appletalk) and a protocol
3496		 * type of ETHERTYPE_ATALK (Appletalk).
3497		 *
3498		 * XXX - check for an organization code of
3499		 * encapsulated Ethernet as well?
3500		 */
3501		return gen_snap(0x080007, ETHERTYPE_ATALK);
3502
3503	default:
3504		/*
3505		 * XXX - we don't have to check for IPX 802.3
3506		 * here, but should we check for the IPX Ethertype?
3507		 */
3508		if (proto <= ETHERMTU) {
3509			/*
3510			 * This is an LLC SAP value, so check
3511			 * the DSAP.
3512			 */
3513			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3514		} else {
3515			/*
3516			 * This is an Ethernet type; we assume that it's
3517			 * unlikely that it'll appear in the right place
3518			 * at random, and therefore check only the
3519			 * location that would hold the Ethernet type
3520			 * in a SNAP frame with an organization code of
3521			 * 0x000000 (encapsulated Ethernet).
3522			 *
3523			 * XXX - if we were to check for the SNAP DSAP and
3524			 * LSAP, as per XXX, and were also to check for an
3525			 * organization code of 0x000000 (encapsulated
3526			 * Ethernet), we'd do
3527			 *
3528			 *	return gen_snap(0x000000, proto);
3529			 *
3530			 * here; for now, we don't, as per the above.
3531			 * I don't know whether it's worth the extra CPU
3532			 * time to do the right check or not.
3533			 */
3534			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3535		}
3536	}
3537}
3538
3539static struct block *
3540gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3541	bpf_u_int32 addr;
3542	bpf_u_int32 mask;
3543	int dir, proto;
3544	u_int src_off, dst_off;
3545{
3546	struct block *b0, *b1;
3547	u_int offset;
3548
3549	switch (dir) {
3550
3551	case Q_SRC:
3552		offset = src_off;
3553		break;
3554
3555	case Q_DST:
3556		offset = dst_off;
3557		break;
3558
3559	case Q_AND:
3560		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3561		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3562		gen_and(b0, b1);
3563		return b1;
3564
3565	case Q_OR:
3566	case Q_DEFAULT:
3567		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3568		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3569		gen_or(b0, b1);
3570		return b1;
3571
3572	default:
3573		abort();
3574	}
3575	b0 = gen_linktype(proto);
3576	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3577	gen_and(b0, b1);
3578	return b1;
3579}
3580
3581#ifdef INET6
3582static struct block *
3583gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3584	struct in6_addr *addr;
3585	struct in6_addr *mask;
3586	int dir, proto;
3587	u_int src_off, dst_off;
3588{
3589	struct block *b0, *b1;
3590	u_int offset;
3591	u_int32_t *a, *m;
3592
3593	switch (dir) {
3594
3595	case Q_SRC:
3596		offset = src_off;
3597		break;
3598
3599	case Q_DST:
3600		offset = dst_off;
3601		break;
3602
3603	case Q_AND:
3604		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3605		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3606		gen_and(b0, b1);
3607		return b1;
3608
3609	case Q_OR:
3610	case Q_DEFAULT:
3611		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3612		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3613		gen_or(b0, b1);
3614		return b1;
3615
3616	default:
3617		abort();
3618	}
3619	/* this order is important */
3620	a = (u_int32_t *)addr;
3621	m = (u_int32_t *)mask;
3622	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3623	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3624	gen_and(b0, b1);
3625	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3626	gen_and(b0, b1);
3627	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3628	gen_and(b0, b1);
3629	b0 = gen_linktype(proto);
3630	gen_and(b0, b1);
3631	return b1;
3632}
3633#endif /*INET6*/
3634
3635static struct block *
3636gen_ehostop(eaddr, dir)
3637	register const u_char *eaddr;
3638	register int dir;
3639{
3640	register struct block *b0, *b1;
3641
3642	switch (dir) {
3643	case Q_SRC:
3644		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3645
3646	case Q_DST:
3647		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3648
3649	case Q_AND:
3650		b0 = gen_ehostop(eaddr, Q_SRC);
3651		b1 = gen_ehostop(eaddr, Q_DST);
3652		gen_and(b0, b1);
3653		return b1;
3654
3655	case Q_DEFAULT:
3656	case Q_OR:
3657		b0 = gen_ehostop(eaddr, Q_SRC);
3658		b1 = gen_ehostop(eaddr, Q_DST);
3659		gen_or(b0, b1);
3660		return b1;
3661
3662	case Q_ADDR1:
3663		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3664		break;
3665
3666	case Q_ADDR2:
3667		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3668		break;
3669
3670	case Q_ADDR3:
3671		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3672		break;
3673
3674	case Q_ADDR4:
3675		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3676		break;
3677
3678	case Q_RA:
3679		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3680		break;
3681
3682	case Q_TA:
3683		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3684		break;
3685	}
3686	abort();
3687	/* NOTREACHED */
3688}
3689
3690/*
3691 * Like gen_ehostop, but for DLT_FDDI
3692 */
3693static struct block *
3694gen_fhostop(eaddr, dir)
3695	register const u_char *eaddr;
3696	register int dir;
3697{
3698	struct block *b0, *b1;
3699
3700	switch (dir) {
3701	case Q_SRC:
3702#ifdef PCAP_FDDIPAD
3703		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3704#else
3705		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3706#endif
3707
3708	case Q_DST:
3709#ifdef PCAP_FDDIPAD
3710		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3711#else
3712		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3713#endif
3714
3715	case Q_AND:
3716		b0 = gen_fhostop(eaddr, Q_SRC);
3717		b1 = gen_fhostop(eaddr, Q_DST);
3718		gen_and(b0, b1);
3719		return b1;
3720
3721	case Q_DEFAULT:
3722	case Q_OR:
3723		b0 = gen_fhostop(eaddr, Q_SRC);
3724		b1 = gen_fhostop(eaddr, Q_DST);
3725		gen_or(b0, b1);
3726		return b1;
3727
3728	case Q_ADDR1:
3729		bpf_error("'addr1' is only supported on 802.11");
3730		break;
3731
3732	case Q_ADDR2:
3733		bpf_error("'addr2' is only supported on 802.11");
3734		break;
3735
3736	case Q_ADDR3:
3737		bpf_error("'addr3' is only supported on 802.11");
3738		break;
3739
3740	case Q_ADDR4:
3741		bpf_error("'addr4' is only supported on 802.11");
3742		break;
3743
3744	case Q_RA:
3745		bpf_error("'ra' is only supported on 802.11");
3746		break;
3747
3748	case Q_TA:
3749		bpf_error("'ta' is only supported on 802.11");
3750		break;
3751	}
3752	abort();
3753	/* NOTREACHED */
3754}
3755
3756/*
3757 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3758 */
3759static struct block *
3760gen_thostop(eaddr, dir)
3761	register const u_char *eaddr;
3762	register int dir;
3763{
3764	register struct block *b0, *b1;
3765
3766	switch (dir) {
3767	case Q_SRC:
3768		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3769
3770	case Q_DST:
3771		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3772
3773	case Q_AND:
3774		b0 = gen_thostop(eaddr, Q_SRC);
3775		b1 = gen_thostop(eaddr, Q_DST);
3776		gen_and(b0, b1);
3777		return b1;
3778
3779	case Q_DEFAULT:
3780	case Q_OR:
3781		b0 = gen_thostop(eaddr, Q_SRC);
3782		b1 = gen_thostop(eaddr, Q_DST);
3783		gen_or(b0, b1);
3784		return b1;
3785
3786	case Q_ADDR1:
3787		bpf_error("'addr1' is only supported on 802.11");
3788		break;
3789
3790	case Q_ADDR2:
3791		bpf_error("'addr2' is only supported on 802.11");
3792		break;
3793
3794	case Q_ADDR3:
3795		bpf_error("'addr3' is only supported on 802.11");
3796		break;
3797
3798	case Q_ADDR4:
3799		bpf_error("'addr4' is only supported on 802.11");
3800		break;
3801
3802	case Q_RA:
3803		bpf_error("'ra' is only supported on 802.11");
3804		break;
3805
3806	case Q_TA:
3807		bpf_error("'ta' is only supported on 802.11");
3808		break;
3809	}
3810	abort();
3811	/* NOTREACHED */
3812}
3813
3814/*
3815 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3816 * various 802.11 + radio headers.
3817 */
3818static struct block *
3819gen_wlanhostop(eaddr, dir)
3820	register const u_char *eaddr;
3821	register int dir;
3822{
3823	register struct block *b0, *b1, *b2;
3824	register struct slist *s;
3825
3826#ifdef ENABLE_WLAN_FILTERING_PATCH
3827	/*
3828	 * TODO GV 20070613
3829	 * We need to disable the optimizer because the optimizer is buggy
3830	 * and wipes out some LD instructions generated by the below
3831	 * code to validate the Frame Control bits
3832	 */
3833	no_optimize = 1;
3834#endif /* ENABLE_WLAN_FILTERING_PATCH */
3835
3836	switch (dir) {
3837	case Q_SRC:
3838		/*
3839		 * Oh, yuk.
3840		 *
3841		 *	For control frames, there is no SA.
3842		 *
3843		 *	For management frames, SA is at an
3844		 *	offset of 10 from the beginning of
3845		 *	the packet.
3846		 *
3847		 *	For data frames, SA is at an offset
3848		 *	of 10 from the beginning of the packet
3849		 *	if From DS is clear, at an offset of
3850		 *	16 from the beginning of the packet
3851		 *	if From DS is set and To DS is clear,
3852		 *	and an offset of 24 from the beginning
3853		 *	of the packet if From DS is set and To DS
3854		 *	is set.
3855		 */
3856
3857		/*
3858		 * Generate the tests to be done for data frames
3859		 * with From DS set.
3860		 *
3861		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3862		 */
3863		s = gen_load_a(OR_LINK, 1, BPF_B);
3864		b1 = new_block(JMP(BPF_JSET));
3865		b1->s.k = 0x01;	/* To DS */
3866		b1->stmts = s;
3867
3868		/*
3869		 * If To DS is set, the SA is at 24.
3870		 */
3871		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3872		gen_and(b1, b0);
3873
3874		/*
3875		 * Now, check for To DS not set, i.e. check
3876		 * "!(link[1] & 0x01)".
3877		 */
3878		s = gen_load_a(OR_LINK, 1, BPF_B);
3879		b2 = new_block(JMP(BPF_JSET));
3880		b2->s.k = 0x01;	/* To DS */
3881		b2->stmts = s;
3882		gen_not(b2);
3883
3884		/*
3885		 * If To DS is not set, the SA is at 16.
3886		 */
3887		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3888		gen_and(b2, b1);
3889
3890		/*
3891		 * Now OR together the last two checks.  That gives
3892		 * the complete set of checks for data frames with
3893		 * From DS set.
3894		 */
3895		gen_or(b1, b0);
3896
3897		/*
3898		 * Now check for From DS being set, and AND that with
3899		 * the ORed-together checks.
3900		 */
3901		s = gen_load_a(OR_LINK, 1, BPF_B);
3902		b1 = new_block(JMP(BPF_JSET));
3903		b1->s.k = 0x02;	/* From DS */
3904		b1->stmts = s;
3905		gen_and(b1, b0);
3906
3907		/*
3908		 * Now check for data frames with From DS not set.
3909		 */
3910		s = gen_load_a(OR_LINK, 1, BPF_B);
3911		b2 = new_block(JMP(BPF_JSET));
3912		b2->s.k = 0x02;	/* From DS */
3913		b2->stmts = s;
3914		gen_not(b2);
3915
3916		/*
3917		 * If From DS isn't set, the SA is at 10.
3918		 */
3919		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3920		gen_and(b2, b1);
3921
3922		/*
3923		 * Now OR together the checks for data frames with
3924		 * From DS not set and for data frames with From DS
3925		 * set; that gives the checks done for data frames.
3926		 */
3927		gen_or(b1, b0);
3928
3929		/*
3930		 * Now check for a data frame.
3931		 * I.e, check "link[0] & 0x08".
3932		 */
3933		s = gen_load_a(OR_LINK, 0, BPF_B);
3934		b1 = new_block(JMP(BPF_JSET));
3935		b1->s.k = 0x08;
3936		b1->stmts = s;
3937
3938		/*
3939		 * AND that with the checks done for data frames.
3940		 */
3941		gen_and(b1, b0);
3942
3943		/*
3944		 * If the high-order bit of the type value is 0, this
3945		 * is a management frame.
3946		 * I.e, check "!(link[0] & 0x08)".
3947		 */
3948		s = gen_load_a(OR_LINK, 0, BPF_B);
3949		b2 = new_block(JMP(BPF_JSET));
3950		b2->s.k = 0x08;
3951		b2->stmts = s;
3952		gen_not(b2);
3953
3954		/*
3955		 * For management frames, the SA is at 10.
3956		 */
3957		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3958		gen_and(b2, b1);
3959
3960		/*
3961		 * OR that with the checks done for data frames.
3962		 * That gives the checks done for management and
3963		 * data frames.
3964		 */
3965		gen_or(b1, b0);
3966
3967		/*
3968		 * If the low-order bit of the type value is 1,
3969		 * this is either a control frame or a frame
3970		 * with a reserved type, and thus not a
3971		 * frame with an SA.
3972		 *
3973		 * I.e., check "!(link[0] & 0x04)".
3974		 */
3975		s = gen_load_a(OR_LINK, 0, BPF_B);
3976		b1 = new_block(JMP(BPF_JSET));
3977		b1->s.k = 0x04;
3978		b1->stmts = s;
3979		gen_not(b1);
3980
3981		/*
3982		 * AND that with the checks for data and management
3983		 * frames.
3984		 */
3985		gen_and(b1, b0);
3986		return b0;
3987
3988	case Q_DST:
3989		/*
3990		 * Oh, yuk.
3991		 *
3992		 *	For control frames, there is no DA.
3993		 *
3994		 *	For management frames, DA is at an
3995		 *	offset of 4 from the beginning of
3996		 *	the packet.
3997		 *
3998		 *	For data frames, DA is at an offset
3999		 *	of 4 from the beginning of the packet
4000		 *	if To DS is clear and at an offset of
4001		 *	16 from the beginning of the packet
4002		 *	if To DS is set.
4003		 */
4004
4005		/*
4006		 * Generate the tests to be done for data frames.
4007		 *
4008		 * First, check for To DS set, i.e. "link[1] & 0x01".
4009		 */
4010		s = gen_load_a(OR_LINK, 1, BPF_B);
4011		b1 = new_block(JMP(BPF_JSET));
4012		b1->s.k = 0x01;	/* To DS */
4013		b1->stmts = s;
4014
4015		/*
4016		 * If To DS is set, the DA is at 16.
4017		 */
4018		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4019		gen_and(b1, b0);
4020
4021		/*
4022		 * Now, check for To DS not set, i.e. check
4023		 * "!(link[1] & 0x01)".
4024		 */
4025		s = gen_load_a(OR_LINK, 1, BPF_B);
4026		b2 = new_block(JMP(BPF_JSET));
4027		b2->s.k = 0x01;	/* To DS */
4028		b2->stmts = s;
4029		gen_not(b2);
4030
4031		/*
4032		 * If To DS is not set, the DA is at 4.
4033		 */
4034		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4035		gen_and(b2, b1);
4036
4037		/*
4038		 * Now OR together the last two checks.  That gives
4039		 * the complete set of checks for data frames.
4040		 */
4041		gen_or(b1, b0);
4042
4043		/*
4044		 * Now check for a data frame.
4045		 * I.e, check "link[0] & 0x08".
4046		 */
4047		s = gen_load_a(OR_LINK, 0, BPF_B);
4048		b1 = new_block(JMP(BPF_JSET));
4049		b1->s.k = 0x08;
4050		b1->stmts = s;
4051
4052		/*
4053		 * AND that with the checks done for data frames.
4054		 */
4055		gen_and(b1, b0);
4056
4057		/*
4058		 * If the high-order bit of the type value is 0, this
4059		 * is a management frame.
4060		 * I.e, check "!(link[0] & 0x08)".
4061		 */
4062		s = gen_load_a(OR_LINK, 0, BPF_B);
4063		b2 = new_block(JMP(BPF_JSET));
4064		b2->s.k = 0x08;
4065		b2->stmts = s;
4066		gen_not(b2);
4067
4068		/*
4069		 * For management frames, the DA is at 4.
4070		 */
4071		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4072		gen_and(b2, b1);
4073
4074		/*
4075		 * OR that with the checks done for data frames.
4076		 * That gives the checks done for management and
4077		 * data frames.
4078		 */
4079		gen_or(b1, b0);
4080
4081		/*
4082		 * If the low-order bit of the type value is 1,
4083		 * this is either a control frame or a frame
4084		 * with a reserved type, and thus not a
4085		 * frame with an SA.
4086		 *
4087		 * I.e., check "!(link[0] & 0x04)".
4088		 */
4089		s = gen_load_a(OR_LINK, 0, BPF_B);
4090		b1 = new_block(JMP(BPF_JSET));
4091		b1->s.k = 0x04;
4092		b1->stmts = s;
4093		gen_not(b1);
4094
4095		/*
4096		 * AND that with the checks for data and management
4097		 * frames.
4098		 */
4099		gen_and(b1, b0);
4100		return b0;
4101
4102	case Q_RA:
4103		/*
4104		 * Not present in management frames; addr1 in other
4105		 * frames.
4106		 */
4107
4108		/*
4109		 * If the high-order bit of the type value is 0, this
4110		 * is a management frame.
4111		 * I.e, check "(link[0] & 0x08)".
4112		 */
4113		s = gen_load_a(OR_LINK, 0, BPF_B);
4114		b1 = new_block(JMP(BPF_JSET));
4115		b1->s.k = 0x08;
4116		b1->stmts = s;
4117
4118		/*
4119		 * Check addr1.
4120		 */
4121		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4122
4123		/*
4124		 * AND that with the check of addr1.
4125		 */
4126		gen_and(b1, b0);
4127		return (b0);
4128
4129	case Q_TA:
4130		/*
4131		 * Not present in management frames; addr2, if present,
4132		 * in other frames.
4133		 */
4134
4135		/*
4136		 * Not present in CTS or ACK control frames.
4137		 */
4138		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4139			IEEE80211_FC0_TYPE_MASK);
4140		gen_not(b0);
4141		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4142			IEEE80211_FC0_SUBTYPE_MASK);
4143		gen_not(b1);
4144		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4145			IEEE80211_FC0_SUBTYPE_MASK);
4146		gen_not(b2);
4147		gen_and(b1, b2);
4148		gen_or(b0, b2);
4149
4150		/*
4151		 * If the high-order bit of the type value is 0, this
4152		 * is a management frame.
4153		 * I.e, check "(link[0] & 0x08)".
4154		 */
4155		s = gen_load_a(OR_LINK, 0, BPF_B);
4156		b1 = new_block(JMP(BPF_JSET));
4157		b1->s.k = 0x08;
4158		b1->stmts = s;
4159
4160		/*
4161		 * AND that with the check for frames other than
4162		 * CTS and ACK frames.
4163		 */
4164		gen_and(b1, b2);
4165
4166		/*
4167		 * Check addr2.
4168		 */
4169		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4170		gen_and(b2, b1);
4171		return b1;
4172
4173	/*
4174	 * XXX - add BSSID keyword?
4175	 */
4176	case Q_ADDR1:
4177		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4178
4179	case Q_ADDR2:
4180		/*
4181		 * Not present in CTS or ACK control frames.
4182		 */
4183		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4184			IEEE80211_FC0_TYPE_MASK);
4185		gen_not(b0);
4186		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4187			IEEE80211_FC0_SUBTYPE_MASK);
4188		gen_not(b1);
4189		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4190			IEEE80211_FC0_SUBTYPE_MASK);
4191		gen_not(b2);
4192		gen_and(b1, b2);
4193		gen_or(b0, b2);
4194		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4195		gen_and(b2, b1);
4196		return b1;
4197
4198	case Q_ADDR3:
4199		/*
4200		 * Not present in control frames.
4201		 */
4202		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4203			IEEE80211_FC0_TYPE_MASK);
4204		gen_not(b0);
4205		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4206		gen_and(b0, b1);
4207		return b1;
4208
4209	case Q_ADDR4:
4210		/*
4211		 * Present only if the direction mask has both "From DS"
4212		 * and "To DS" set.  Neither control frames nor management
4213		 * frames should have both of those set, so we don't
4214		 * check the frame type.
4215		 */
4216		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4217			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4218		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4219		gen_and(b0, b1);
4220		return b1;
4221
4222	case Q_AND:
4223		b0 = gen_wlanhostop(eaddr, Q_SRC);
4224		b1 = gen_wlanhostop(eaddr, Q_DST);
4225		gen_and(b0, b1);
4226		return b1;
4227
4228	case Q_DEFAULT:
4229	case Q_OR:
4230		b0 = gen_wlanhostop(eaddr, Q_SRC);
4231		b1 = gen_wlanhostop(eaddr, Q_DST);
4232		gen_or(b0, b1);
4233		return b1;
4234	}
4235	abort();
4236	/* NOTREACHED */
4237}
4238
4239/*
4240 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4241 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4242 * as the RFC states.)
4243 */
4244static struct block *
4245gen_ipfchostop(eaddr, dir)
4246	register const u_char *eaddr;
4247	register int dir;
4248{
4249	register struct block *b0, *b1;
4250
4251	switch (dir) {
4252	case Q_SRC:
4253		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4254
4255	case Q_DST:
4256		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4257
4258	case Q_AND:
4259		b0 = gen_ipfchostop(eaddr, Q_SRC);
4260		b1 = gen_ipfchostop(eaddr, Q_DST);
4261		gen_and(b0, b1);
4262		return b1;
4263
4264	case Q_DEFAULT:
4265	case Q_OR:
4266		b0 = gen_ipfchostop(eaddr, Q_SRC);
4267		b1 = gen_ipfchostop(eaddr, Q_DST);
4268		gen_or(b0, b1);
4269		return b1;
4270
4271	case Q_ADDR1:
4272		bpf_error("'addr1' is only supported on 802.11");
4273		break;
4274
4275	case Q_ADDR2:
4276		bpf_error("'addr2' is only supported on 802.11");
4277		break;
4278
4279	case Q_ADDR3:
4280		bpf_error("'addr3' is only supported on 802.11");
4281		break;
4282
4283	case Q_ADDR4:
4284		bpf_error("'addr4' is only supported on 802.11");
4285		break;
4286
4287	case Q_RA:
4288		bpf_error("'ra' is only supported on 802.11");
4289		break;
4290
4291	case Q_TA:
4292		bpf_error("'ta' is only supported on 802.11");
4293		break;
4294	}
4295	abort();
4296	/* NOTREACHED */
4297}
4298
4299/*
4300 * This is quite tricky because there may be pad bytes in front of the
4301 * DECNET header, and then there are two possible data packet formats that
4302 * carry both src and dst addresses, plus 5 packet types in a format that
4303 * carries only the src node, plus 2 types that use a different format and
4304 * also carry just the src node.
4305 *
4306 * Yuck.
4307 *
4308 * Instead of doing those all right, we just look for data packets with
4309 * 0 or 1 bytes of padding.  If you want to look at other packets, that
4310 * will require a lot more hacking.
4311 *
4312 * To add support for filtering on DECNET "areas" (network numbers)
4313 * one would want to add a "mask" argument to this routine.  That would
4314 * make the filter even more inefficient, although one could be clever
4315 * and not generate masking instructions if the mask is 0xFFFF.
4316 */
4317static struct block *
4318gen_dnhostop(addr, dir)
4319	bpf_u_int32 addr;
4320	int dir;
4321{
4322	struct block *b0, *b1, *b2, *tmp;
4323	u_int offset_lh;	/* offset if long header is received */
4324	u_int offset_sh;	/* offset if short header is received */
4325
4326	switch (dir) {
4327
4328	case Q_DST:
4329		offset_sh = 1;	/* follows flags */
4330		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4331		break;
4332
4333	case Q_SRC:
4334		offset_sh = 3;	/* follows flags, dstnode */
4335		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4336		break;
4337
4338	case Q_AND:
4339		/* Inefficient because we do our Calvinball dance twice */
4340		b0 = gen_dnhostop(addr, Q_SRC);
4341		b1 = gen_dnhostop(addr, Q_DST);
4342		gen_and(b0, b1);
4343		return b1;
4344
4345	case Q_OR:
4346	case Q_DEFAULT:
4347		/* Inefficient because we do our Calvinball dance twice */
4348		b0 = gen_dnhostop(addr, Q_SRC);
4349		b1 = gen_dnhostop(addr, Q_DST);
4350		gen_or(b0, b1);
4351		return b1;
4352
4353	case Q_ISO:
4354		bpf_error("ISO host filtering not implemented");
4355
4356	default:
4357		abort();
4358	}
4359	b0 = gen_linktype(ETHERTYPE_DN);
4360	/* Check for pad = 1, long header case */
4361	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4362	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4363	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4364	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4365	gen_and(tmp, b1);
4366	/* Check for pad = 0, long header case */
4367	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4368	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4369	gen_and(tmp, b2);
4370	gen_or(b2, b1);
4371	/* Check for pad = 1, short header case */
4372	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4373	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4374	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4375	gen_and(tmp, b2);
4376	gen_or(b2, b1);
4377	/* Check for pad = 0, short header case */
4378	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4379	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4380	gen_and(tmp, b2);
4381	gen_or(b2, b1);
4382
4383	/* Combine with test for linktype */
4384	gen_and(b0, b1);
4385	return b1;
4386}
4387
4388/*
4389 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4390 * test the bottom-of-stack bit, and then check the version number
4391 * field in the IP header.
4392 */
4393static struct block *
4394gen_mpls_linktype(proto)
4395	int proto;
4396{
4397	struct block *b0, *b1;
4398
4399        switch (proto) {
4400
4401        case Q_IP:
4402                /* match the bottom-of-stack bit */
4403                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4404                /* match the IPv4 version number */
4405                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4406                gen_and(b0, b1);
4407                return b1;
4408
4409       case Q_IPV6:
4410                /* match the bottom-of-stack bit */
4411                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4412                /* match the IPv4 version number */
4413                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4414                gen_and(b0, b1);
4415                return b1;
4416
4417       default:
4418                abort();
4419        }
4420}
4421
4422static struct block *
4423gen_host(addr, mask, proto, dir, type)
4424	bpf_u_int32 addr;
4425	bpf_u_int32 mask;
4426	int proto;
4427	int dir;
4428	int type;
4429{
4430	struct block *b0, *b1;
4431	const char *typestr;
4432
4433	if (type == Q_NET)
4434		typestr = "net";
4435	else
4436		typestr = "host";
4437
4438	switch (proto) {
4439
4440	case Q_DEFAULT:
4441		b0 = gen_host(addr, mask, Q_IP, dir, type);
4442		/*
4443		 * Only check for non-IPv4 addresses if we're not
4444		 * checking MPLS-encapsulated packets.
4445		 */
4446		if (label_stack_depth == 0) {
4447			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4448			gen_or(b0, b1);
4449			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4450			gen_or(b1, b0);
4451		}
4452		return b0;
4453
4454	case Q_IP:
4455		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4456
4457	case Q_RARP:
4458		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4459
4460	case Q_ARP:
4461		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4462
4463	case Q_TCP:
4464		bpf_error("'tcp' modifier applied to %s", typestr);
4465
4466	case Q_SCTP:
4467		bpf_error("'sctp' modifier applied to %s", typestr);
4468
4469	case Q_UDP:
4470		bpf_error("'udp' modifier applied to %s", typestr);
4471
4472	case Q_ICMP:
4473		bpf_error("'icmp' modifier applied to %s", typestr);
4474
4475	case Q_IGMP:
4476		bpf_error("'igmp' modifier applied to %s", typestr);
4477
4478	case Q_IGRP:
4479		bpf_error("'igrp' modifier applied to %s", typestr);
4480
4481	case Q_PIM:
4482		bpf_error("'pim' modifier applied to %s", typestr);
4483
4484	case Q_VRRP:
4485		bpf_error("'vrrp' modifier applied to %s", typestr);
4486
4487	case Q_CARP:
4488		bpf_error("'carp' modifier applied to %s", typestr);
4489
4490	case Q_ATALK:
4491		bpf_error("ATALK host filtering not implemented");
4492
4493	case Q_AARP:
4494		bpf_error("AARP host filtering not implemented");
4495
4496	case Q_DECNET:
4497		return gen_dnhostop(addr, dir);
4498
4499	case Q_SCA:
4500		bpf_error("SCA host filtering not implemented");
4501
4502	case Q_LAT:
4503		bpf_error("LAT host filtering not implemented");
4504
4505	case Q_MOPDL:
4506		bpf_error("MOPDL host filtering not implemented");
4507
4508	case Q_MOPRC:
4509		bpf_error("MOPRC host filtering not implemented");
4510
4511#ifdef INET6
4512	case Q_IPV6:
4513		bpf_error("'ip6' modifier applied to ip host");
4514
4515	case Q_ICMPV6:
4516		bpf_error("'icmp6' modifier applied to %s", typestr);
4517#endif /* INET6 */
4518
4519	case Q_AH:
4520		bpf_error("'ah' modifier applied to %s", typestr);
4521
4522	case Q_ESP:
4523		bpf_error("'esp' modifier applied to %s", typestr);
4524
4525	case Q_ISO:
4526		bpf_error("ISO host filtering not implemented");
4527
4528	case Q_ESIS:
4529		bpf_error("'esis' modifier applied to %s", typestr);
4530
4531	case Q_ISIS:
4532		bpf_error("'isis' modifier applied to %s", typestr);
4533
4534	case Q_CLNP:
4535		bpf_error("'clnp' modifier applied to %s", typestr);
4536
4537	case Q_STP:
4538		bpf_error("'stp' modifier applied to %s", typestr);
4539
4540	case Q_IPX:
4541		bpf_error("IPX host filtering not implemented");
4542
4543	case Q_NETBEUI:
4544		bpf_error("'netbeui' modifier applied to %s", typestr);
4545
4546	case Q_RADIO:
4547		bpf_error("'radio' modifier applied to %s", typestr);
4548
4549	default:
4550		abort();
4551	}
4552	/* NOTREACHED */
4553}
4554
4555#ifdef INET6
4556static struct block *
4557gen_host6(addr, mask, proto, dir, type)
4558	struct in6_addr *addr;
4559	struct in6_addr *mask;
4560	int proto;
4561	int dir;
4562	int type;
4563{
4564	const char *typestr;
4565
4566	if (type == Q_NET)
4567		typestr = "net";
4568	else
4569		typestr = "host";
4570
4571	switch (proto) {
4572
4573	case Q_DEFAULT:
4574		return gen_host6(addr, mask, Q_IPV6, dir, type);
4575
4576	case Q_IP:
4577		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4578
4579	case Q_RARP:
4580		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4581
4582	case Q_ARP:
4583		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4584
4585	case Q_SCTP:
4586		bpf_error("'sctp' modifier applied to %s", typestr);
4587
4588	case Q_TCP:
4589		bpf_error("'tcp' modifier applied to %s", typestr);
4590
4591	case Q_UDP:
4592		bpf_error("'udp' modifier applied to %s", typestr);
4593
4594	case Q_ICMP:
4595		bpf_error("'icmp' modifier applied to %s", typestr);
4596
4597	case Q_IGMP:
4598		bpf_error("'igmp' modifier applied to %s", typestr);
4599
4600	case Q_IGRP:
4601		bpf_error("'igrp' modifier applied to %s", typestr);
4602
4603	case Q_PIM:
4604		bpf_error("'pim' modifier applied to %s", typestr);
4605
4606	case Q_VRRP:
4607		bpf_error("'vrrp' modifier applied to %s", typestr);
4608
4609	case Q_CARP:
4610		bpf_error("'carp' modifier applied to %s", typestr);
4611
4612	case Q_ATALK:
4613		bpf_error("ATALK host filtering not implemented");
4614
4615	case Q_AARP:
4616		bpf_error("AARP host filtering not implemented");
4617
4618	case Q_DECNET:
4619		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4620
4621	case Q_SCA:
4622		bpf_error("SCA host filtering not implemented");
4623
4624	case Q_LAT:
4625		bpf_error("LAT host filtering not implemented");
4626
4627	case Q_MOPDL:
4628		bpf_error("MOPDL host filtering not implemented");
4629
4630	case Q_MOPRC:
4631		bpf_error("MOPRC host filtering not implemented");
4632
4633	case Q_IPV6:
4634		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4635
4636	case Q_ICMPV6:
4637		bpf_error("'icmp6' modifier applied to %s", typestr);
4638
4639	case Q_AH:
4640		bpf_error("'ah' modifier applied to %s", typestr);
4641
4642	case Q_ESP:
4643		bpf_error("'esp' modifier applied to %s", typestr);
4644
4645	case Q_ISO:
4646		bpf_error("ISO host filtering not implemented");
4647
4648	case Q_ESIS:
4649		bpf_error("'esis' modifier applied to %s", typestr);
4650
4651	case Q_ISIS:
4652		bpf_error("'isis' modifier applied to %s", typestr);
4653
4654	case Q_CLNP:
4655		bpf_error("'clnp' modifier applied to %s", typestr);
4656
4657	case Q_STP:
4658		bpf_error("'stp' modifier applied to %s", typestr);
4659
4660	case Q_IPX:
4661		bpf_error("IPX host filtering not implemented");
4662
4663	case Q_NETBEUI:
4664		bpf_error("'netbeui' modifier applied to %s", typestr);
4665
4666	case Q_RADIO:
4667		bpf_error("'radio' modifier applied to %s", typestr);
4668
4669	default:
4670		abort();
4671	}
4672	/* NOTREACHED */
4673}
4674#endif /*INET6*/
4675
4676#ifndef INET6
4677static struct block *
4678gen_gateway(eaddr, alist, proto, dir)
4679	const u_char *eaddr;
4680	bpf_u_int32 **alist;
4681	int proto;
4682	int dir;
4683{
4684	struct block *b0, *b1, *tmp;
4685
4686	if (dir != 0)
4687		bpf_error("direction applied to 'gateway'");
4688
4689	switch (proto) {
4690	case Q_DEFAULT:
4691	case Q_IP:
4692	case Q_ARP:
4693	case Q_RARP:
4694		switch (linktype) {
4695		case DLT_EN10MB:
4696		case DLT_NETANALYZER:
4697		case DLT_NETANALYZER_TRANSPARENT:
4698			b0 = gen_ehostop(eaddr, Q_OR);
4699			break;
4700		case DLT_FDDI:
4701			b0 = gen_fhostop(eaddr, Q_OR);
4702			break;
4703		case DLT_IEEE802:
4704			b0 = gen_thostop(eaddr, Q_OR);
4705			break;
4706		case DLT_IEEE802_11:
4707		case DLT_PRISM_HEADER:
4708		case DLT_IEEE802_11_RADIO_AVS:
4709		case DLT_IEEE802_11_RADIO:
4710		case DLT_PPI:
4711			b0 = gen_wlanhostop(eaddr, Q_OR);
4712			break;
4713		case DLT_SUNATM:
4714			if (!is_lane)
4715				bpf_error(
4716				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4717			/*
4718			 * Check that the packet doesn't begin with an
4719			 * LE Control marker.  (We've already generated
4720			 * a test for LANE.)
4721			 */
4722			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4723			    BPF_H, 0xFF00);
4724			gen_not(b1);
4725
4726			/*
4727			 * Now check the MAC address.
4728			 */
4729			b0 = gen_ehostop(eaddr, Q_OR);
4730			gen_and(b1, b0);
4731			break;
4732		case DLT_IP_OVER_FC:
4733			b0 = gen_ipfchostop(eaddr, Q_OR);
4734			break;
4735		default:
4736			bpf_error(
4737			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4738		}
4739		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4740		while (*alist) {
4741			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4742			    Q_HOST);
4743			gen_or(b1, tmp);
4744			b1 = tmp;
4745		}
4746		gen_not(b1);
4747		gen_and(b0, b1);
4748		return b1;
4749	}
4750	bpf_error("illegal modifier of 'gateway'");
4751	/* NOTREACHED */
4752}
4753#endif
4754
4755struct block *
4756gen_proto_abbrev(proto)
4757	int proto;
4758{
4759	struct block *b0;
4760	struct block *b1;
4761
4762	switch (proto) {
4763
4764	case Q_SCTP:
4765		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4766#ifdef INET6
4767		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4768		gen_or(b0, b1);
4769#endif
4770		break;
4771
4772	case Q_TCP:
4773		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4774#ifdef INET6
4775		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4776		gen_or(b0, b1);
4777#endif
4778		break;
4779
4780	case Q_UDP:
4781		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4782#ifdef INET6
4783		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4784		gen_or(b0, b1);
4785#endif
4786		break;
4787
4788	case Q_ICMP:
4789		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4790		break;
4791
4792#ifndef	IPPROTO_IGMP
4793#define	IPPROTO_IGMP	2
4794#endif
4795
4796	case Q_IGMP:
4797		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4798		break;
4799
4800#ifndef	IPPROTO_IGRP
4801#define	IPPROTO_IGRP	9
4802#endif
4803	case Q_IGRP:
4804		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4805		break;
4806
4807#ifndef IPPROTO_PIM
4808#define IPPROTO_PIM	103
4809#endif
4810
4811	case Q_PIM:
4812		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4813#ifdef INET6
4814		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4815		gen_or(b0, b1);
4816#endif
4817		break;
4818
4819#ifndef IPPROTO_VRRP
4820#define IPPROTO_VRRP	112
4821#endif
4822
4823	case Q_VRRP:
4824		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4825		break;
4826
4827#ifndef IPPROTO_CARP
4828#define IPPROTO_CARP	112
4829#endif
4830
4831	case Q_CARP:
4832		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4833		break;
4834
4835	case Q_IP:
4836		b1 =  gen_linktype(ETHERTYPE_IP);
4837		break;
4838
4839	case Q_ARP:
4840		b1 =  gen_linktype(ETHERTYPE_ARP);
4841		break;
4842
4843	case Q_RARP:
4844		b1 =  gen_linktype(ETHERTYPE_REVARP);
4845		break;
4846
4847	case Q_LINK:
4848		bpf_error("link layer applied in wrong context");
4849
4850	case Q_ATALK:
4851		b1 =  gen_linktype(ETHERTYPE_ATALK);
4852		break;
4853
4854	case Q_AARP:
4855		b1 =  gen_linktype(ETHERTYPE_AARP);
4856		break;
4857
4858	case Q_DECNET:
4859		b1 =  gen_linktype(ETHERTYPE_DN);
4860		break;
4861
4862	case Q_SCA:
4863		b1 =  gen_linktype(ETHERTYPE_SCA);
4864		break;
4865
4866	case Q_LAT:
4867		b1 =  gen_linktype(ETHERTYPE_LAT);
4868		break;
4869
4870	case Q_MOPDL:
4871		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4872		break;
4873
4874	case Q_MOPRC:
4875		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4876		break;
4877
4878#ifdef INET6
4879	case Q_IPV6:
4880		b1 = gen_linktype(ETHERTYPE_IPV6);
4881		break;
4882
4883#ifndef IPPROTO_ICMPV6
4884#define IPPROTO_ICMPV6	58
4885#endif
4886	case Q_ICMPV6:
4887		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4888		break;
4889#endif /* INET6 */
4890
4891#ifndef IPPROTO_AH
4892#define IPPROTO_AH	51
4893#endif
4894	case Q_AH:
4895		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4896#ifdef INET6
4897		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4898		gen_or(b0, b1);
4899#endif
4900		break;
4901
4902#ifndef IPPROTO_ESP
4903#define IPPROTO_ESP	50
4904#endif
4905	case Q_ESP:
4906		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4907#ifdef INET6
4908		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4909		gen_or(b0, b1);
4910#endif
4911		break;
4912
4913	case Q_ISO:
4914		b1 = gen_linktype(LLCSAP_ISONS);
4915		break;
4916
4917	case Q_ESIS:
4918		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4919		break;
4920
4921	case Q_ISIS:
4922		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4923		break;
4924
4925	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4926		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4927		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4928		gen_or(b0, b1);
4929		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4930		gen_or(b0, b1);
4931		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4932		gen_or(b0, b1);
4933		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4934		gen_or(b0, b1);
4935		break;
4936
4937	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4938		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4939		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4940		gen_or(b0, b1);
4941		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4942		gen_or(b0, b1);
4943		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4944		gen_or(b0, b1);
4945		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4946		gen_or(b0, b1);
4947		break;
4948
4949	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4950		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4951		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4952		gen_or(b0, b1);
4953		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4954		gen_or(b0, b1);
4955		break;
4956
4957	case Q_ISIS_LSP:
4958		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4959		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4960		gen_or(b0, b1);
4961		break;
4962
4963	case Q_ISIS_SNP:
4964		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4965		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4966		gen_or(b0, b1);
4967		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4968		gen_or(b0, b1);
4969		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4970		gen_or(b0, b1);
4971		break;
4972
4973	case Q_ISIS_CSNP:
4974		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4975		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4976		gen_or(b0, b1);
4977		break;
4978
4979	case Q_ISIS_PSNP:
4980		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4981		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4982		gen_or(b0, b1);
4983		break;
4984
4985	case Q_CLNP:
4986		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4987		break;
4988
4989	case Q_STP:
4990		b1 = gen_linktype(LLCSAP_8021D);
4991		break;
4992
4993	case Q_IPX:
4994		b1 = gen_linktype(LLCSAP_IPX);
4995		break;
4996
4997	case Q_NETBEUI:
4998		b1 = gen_linktype(LLCSAP_NETBEUI);
4999		break;
5000
5001	case Q_RADIO:
5002		bpf_error("'radio' is not a valid protocol type");
5003
5004	default:
5005		abort();
5006	}
5007	return b1;
5008}
5009
5010static struct block *
5011gen_ipfrag()
5012{
5013	struct slist *s;
5014	struct block *b;
5015
5016	/* not IPv4 frag other than the first frag */
5017	s = gen_load_a(OR_NET, 6, BPF_H);
5018	b = new_block(JMP(BPF_JSET));
5019	b->s.k = 0x1fff;
5020	b->stmts = s;
5021	gen_not(b);
5022
5023	return b;
5024}
5025
5026/*
5027 * Generate a comparison to a port value in the transport-layer header
5028 * at the specified offset from the beginning of that header.
5029 *
5030 * XXX - this handles a variable-length prefix preceding the link-layer
5031 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5032 * variable-length link-layer headers (such as Token Ring or 802.11
5033 * headers).
5034 */
5035static struct block *
5036gen_portatom(off, v)
5037	int off;
5038	bpf_int32 v;
5039{
5040	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5041}
5042
5043#ifdef INET6
5044static struct block *
5045gen_portatom6(off, v)
5046	int off;
5047	bpf_int32 v;
5048{
5049	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5050}
5051#endif/*INET6*/
5052
5053struct block *
5054gen_portop(port, proto, dir)
5055	int port, proto, dir;
5056{
5057	struct block *b0, *b1, *tmp;
5058
5059	/* ip proto 'proto' and not a fragment other than the first fragment */
5060	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5061	b0 = gen_ipfrag();
5062	gen_and(tmp, b0);
5063
5064	switch (dir) {
5065	case Q_SRC:
5066		b1 = gen_portatom(0, (bpf_int32)port);
5067		break;
5068
5069	case Q_DST:
5070		b1 = gen_portatom(2, (bpf_int32)port);
5071		break;
5072
5073	case Q_OR:
5074	case Q_DEFAULT:
5075		tmp = gen_portatom(0, (bpf_int32)port);
5076		b1 = gen_portatom(2, (bpf_int32)port);
5077		gen_or(tmp, b1);
5078		break;
5079
5080	case Q_AND:
5081		tmp = gen_portatom(0, (bpf_int32)port);
5082		b1 = gen_portatom(2, (bpf_int32)port);
5083		gen_and(tmp, b1);
5084		break;
5085
5086	default:
5087		abort();
5088	}
5089	gen_and(b0, b1);
5090
5091	return b1;
5092}
5093
5094static struct block *
5095gen_port(port, ip_proto, dir)
5096	int port;
5097	int ip_proto;
5098	int dir;
5099{
5100	struct block *b0, *b1, *tmp;
5101
5102	/*
5103	 * ether proto ip
5104	 *
5105	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5106	 * not LLC encapsulation with LLCSAP_IP.
5107	 *
5108	 * For IEEE 802 networks - which includes 802.5 token ring
5109	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5110	 * says that SNAP encapsulation is used, not LLC encapsulation
5111	 * with LLCSAP_IP.
5112	 *
5113	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5114	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5115	 * encapsulation with LLCSAP_IP.
5116	 *
5117	 * So we always check for ETHERTYPE_IP.
5118	 */
5119	b0 =  gen_linktype(ETHERTYPE_IP);
5120
5121	switch (ip_proto) {
5122	case IPPROTO_UDP:
5123	case IPPROTO_TCP:
5124	case IPPROTO_SCTP:
5125		b1 = gen_portop(port, ip_proto, dir);
5126		break;
5127
5128	case PROTO_UNDEF:
5129		tmp = gen_portop(port, IPPROTO_TCP, dir);
5130		b1 = gen_portop(port, IPPROTO_UDP, dir);
5131		gen_or(tmp, b1);
5132		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5133		gen_or(tmp, b1);
5134		break;
5135
5136	default:
5137		abort();
5138	}
5139	gen_and(b0, b1);
5140	return b1;
5141}
5142
5143#ifdef INET6
5144struct block *
5145gen_portop6(port, proto, dir)
5146	int port, proto, dir;
5147{
5148	struct block *b0, *b1, *tmp;
5149
5150	/* ip6 proto 'proto' */
5151	/* XXX - catch the first fragment of a fragmented packet? */
5152	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5153
5154	switch (dir) {
5155	case Q_SRC:
5156		b1 = gen_portatom6(0, (bpf_int32)port);
5157		break;
5158
5159	case Q_DST:
5160		b1 = gen_portatom6(2, (bpf_int32)port);
5161		break;
5162
5163	case Q_OR:
5164	case Q_DEFAULT:
5165		tmp = gen_portatom6(0, (bpf_int32)port);
5166		b1 = gen_portatom6(2, (bpf_int32)port);
5167		gen_or(tmp, b1);
5168		break;
5169
5170	case Q_AND:
5171		tmp = gen_portatom6(0, (bpf_int32)port);
5172		b1 = gen_portatom6(2, (bpf_int32)port);
5173		gen_and(tmp, b1);
5174		break;
5175
5176	default:
5177		abort();
5178	}
5179	gen_and(b0, b1);
5180
5181	return b1;
5182}
5183
5184static struct block *
5185gen_port6(port, ip_proto, dir)
5186	int port;
5187	int ip_proto;
5188	int dir;
5189{
5190	struct block *b0, *b1, *tmp;
5191
5192	/* link proto ip6 */
5193	b0 =  gen_linktype(ETHERTYPE_IPV6);
5194
5195	switch (ip_proto) {
5196	case IPPROTO_UDP:
5197	case IPPROTO_TCP:
5198	case IPPROTO_SCTP:
5199		b1 = gen_portop6(port, ip_proto, dir);
5200		break;
5201
5202	case PROTO_UNDEF:
5203		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5204		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5205		gen_or(tmp, b1);
5206		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5207		gen_or(tmp, b1);
5208		break;
5209
5210	default:
5211		abort();
5212	}
5213	gen_and(b0, b1);
5214	return b1;
5215}
5216#endif /* INET6 */
5217
5218/* gen_portrange code */
5219static struct block *
5220gen_portrangeatom(off, v1, v2)
5221	int off;
5222	bpf_int32 v1, v2;
5223{
5224	struct block *b1, *b2;
5225
5226	if (v1 > v2) {
5227		/*
5228		 * Reverse the order of the ports, so v1 is the lower one.
5229		 */
5230		bpf_int32 vtemp;
5231
5232		vtemp = v1;
5233		v1 = v2;
5234		v2 = vtemp;
5235	}
5236
5237	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5238	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5239
5240	gen_and(b1, b2);
5241
5242	return b2;
5243}
5244
5245struct block *
5246gen_portrangeop(port1, port2, proto, dir)
5247	int port1, port2;
5248	int proto;
5249	int dir;
5250{
5251	struct block *b0, *b1, *tmp;
5252
5253	/* ip proto 'proto' and not a fragment other than the first fragment */
5254	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5255	b0 = gen_ipfrag();
5256	gen_and(tmp, b0);
5257
5258	switch (dir) {
5259	case Q_SRC:
5260		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5261		break;
5262
5263	case Q_DST:
5264		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5265		break;
5266
5267	case Q_OR:
5268	case Q_DEFAULT:
5269		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5270		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5271		gen_or(tmp, b1);
5272		break;
5273
5274	case Q_AND:
5275		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5276		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5277		gen_and(tmp, b1);
5278		break;
5279
5280	default:
5281		abort();
5282	}
5283	gen_and(b0, b1);
5284
5285	return b1;
5286}
5287
5288static struct block *
5289gen_portrange(port1, port2, ip_proto, dir)
5290	int port1, port2;
5291	int ip_proto;
5292	int dir;
5293{
5294	struct block *b0, *b1, *tmp;
5295
5296	/* link proto ip */
5297	b0 =  gen_linktype(ETHERTYPE_IP);
5298
5299	switch (ip_proto) {
5300	case IPPROTO_UDP:
5301	case IPPROTO_TCP:
5302	case IPPROTO_SCTP:
5303		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5304		break;
5305
5306	case PROTO_UNDEF:
5307		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5308		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5309		gen_or(tmp, b1);
5310		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5311		gen_or(tmp, b1);
5312		break;
5313
5314	default:
5315		abort();
5316	}
5317	gen_and(b0, b1);
5318	return b1;
5319}
5320
5321#ifdef INET6
5322static struct block *
5323gen_portrangeatom6(off, v1, v2)
5324	int off;
5325	bpf_int32 v1, v2;
5326{
5327	struct block *b1, *b2;
5328
5329	if (v1 > v2) {
5330		/*
5331		 * Reverse the order of the ports, so v1 is the lower one.
5332		 */
5333		bpf_int32 vtemp;
5334
5335		vtemp = v1;
5336		v1 = v2;
5337		v2 = vtemp;
5338	}
5339
5340	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5341	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5342
5343	gen_and(b1, b2);
5344
5345	return b2;
5346}
5347
5348struct block *
5349gen_portrangeop6(port1, port2, proto, dir)
5350	int port1, port2;
5351	int proto;
5352	int dir;
5353{
5354	struct block *b0, *b1, *tmp;
5355
5356	/* ip6 proto 'proto' */
5357	/* XXX - catch the first fragment of a fragmented packet? */
5358	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5359
5360	switch (dir) {
5361	case Q_SRC:
5362		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5363		break;
5364
5365	case Q_DST:
5366		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5367		break;
5368
5369	case Q_OR:
5370	case Q_DEFAULT:
5371		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5372		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5373		gen_or(tmp, b1);
5374		break;
5375
5376	case Q_AND:
5377		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5378		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5379		gen_and(tmp, b1);
5380		break;
5381
5382	default:
5383		abort();
5384	}
5385	gen_and(b0, b1);
5386
5387	return b1;
5388}
5389
5390static struct block *
5391gen_portrange6(port1, port2, ip_proto, dir)
5392	int port1, port2;
5393	int ip_proto;
5394	int dir;
5395{
5396	struct block *b0, *b1, *tmp;
5397
5398	/* link proto ip6 */
5399	b0 =  gen_linktype(ETHERTYPE_IPV6);
5400
5401	switch (ip_proto) {
5402	case IPPROTO_UDP:
5403	case IPPROTO_TCP:
5404	case IPPROTO_SCTP:
5405		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5406		break;
5407
5408	case PROTO_UNDEF:
5409		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5410		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5411		gen_or(tmp, b1);
5412		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5413		gen_or(tmp, b1);
5414		break;
5415
5416	default:
5417		abort();
5418	}
5419	gen_and(b0, b1);
5420	return b1;
5421}
5422#endif /* INET6 */
5423
5424static int
5425lookup_proto(name, proto)
5426	register const char *name;
5427	register int proto;
5428{
5429	register int v;
5430
5431	switch (proto) {
5432
5433	case Q_DEFAULT:
5434	case Q_IP:
5435	case Q_IPV6:
5436		v = pcap_nametoproto(name);
5437		if (v == PROTO_UNDEF)
5438			bpf_error("unknown ip proto '%s'", name);
5439		break;
5440
5441	case Q_LINK:
5442		/* XXX should look up h/w protocol type based on linktype */
5443		v = pcap_nametoeproto(name);
5444		if (v == PROTO_UNDEF) {
5445			v = pcap_nametollc(name);
5446			if (v == PROTO_UNDEF)
5447				bpf_error("unknown ether proto '%s'", name);
5448		}
5449		break;
5450
5451	case Q_ISO:
5452		if (strcmp(name, "esis") == 0)
5453			v = ISO9542_ESIS;
5454		else if (strcmp(name, "isis") == 0)
5455			v = ISO10589_ISIS;
5456		else if (strcmp(name, "clnp") == 0)
5457			v = ISO8473_CLNP;
5458		else
5459			bpf_error("unknown osi proto '%s'", name);
5460		break;
5461
5462	default:
5463		v = PROTO_UNDEF;
5464		break;
5465	}
5466	return v;
5467}
5468
5469#if 0
5470struct stmt *
5471gen_joinsp(s, n)
5472	struct stmt **s;
5473	int n;
5474{
5475	return NULL;
5476}
5477#endif
5478
5479static struct block *
5480gen_protochain(v, proto, dir)
5481	int v;
5482	int proto;
5483	int dir;
5484{
5485#ifdef NO_PROTOCHAIN
5486	return gen_proto(v, proto, dir);
5487#else
5488	struct block *b0, *b;
5489	struct slist *s[100];
5490	int fix2, fix3, fix4, fix5;
5491	int ahcheck, again, end;
5492	int i, max;
5493	int reg2 = alloc_reg();
5494
5495	memset(s, 0, sizeof(s));
5496	fix2 = fix3 = fix4 = fix5 = 0;
5497
5498	switch (proto) {
5499	case Q_IP:
5500	case Q_IPV6:
5501		break;
5502	case Q_DEFAULT:
5503		b0 = gen_protochain(v, Q_IP, dir);
5504		b = gen_protochain(v, Q_IPV6, dir);
5505		gen_or(b0, b);
5506		return b;
5507	default:
5508		bpf_error("bad protocol applied for 'protochain'");
5509		/*NOTREACHED*/
5510	}
5511
5512	/*
5513	 * We don't handle variable-length prefixes before the link-layer
5514	 * header, or variable-length link-layer headers, here yet.
5515	 * We might want to add BPF instructions to do the protochain
5516	 * work, to simplify that and, on platforms that have a BPF
5517	 * interpreter with the new instructions, let the filtering
5518	 * be done in the kernel.  (We already require a modified BPF
5519	 * engine to do the protochain stuff, to support backward
5520	 * branches, and backward branch support is unlikely to appear
5521	 * in kernel BPF engines.)
5522	 */
5523	switch (linktype) {
5524
5525	case DLT_IEEE802_11:
5526	case DLT_PRISM_HEADER:
5527	case DLT_IEEE802_11_RADIO_AVS:
5528	case DLT_IEEE802_11_RADIO:
5529	case DLT_PPI:
5530		bpf_error("'protochain' not supported with 802.11");
5531	}
5532
5533	no_optimize = 1; /*this code is not compatible with optimzer yet */
5534
5535	/*
5536	 * s[0] is a dummy entry to protect other BPF insn from damage
5537	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5538	 * hard to find interdependency made by jump table fixup.
5539	 */
5540	i = 0;
5541	s[i] = new_stmt(0);	/*dummy*/
5542	i++;
5543
5544	switch (proto) {
5545	case Q_IP:
5546		b0 = gen_linktype(ETHERTYPE_IP);
5547
5548		/* A = ip->ip_p */
5549		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5550		s[i]->s.k = off_macpl + off_nl + 9;
5551		i++;
5552		/* X = ip->ip_hl << 2 */
5553		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5554		s[i]->s.k = off_macpl + off_nl;
5555		i++;
5556		break;
5557#ifdef INET6
5558	case Q_IPV6:
5559		b0 = gen_linktype(ETHERTYPE_IPV6);
5560
5561		/* A = ip6->ip_nxt */
5562		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5563		s[i]->s.k = off_macpl + off_nl + 6;
5564		i++;
5565		/* X = sizeof(struct ip6_hdr) */
5566		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5567		s[i]->s.k = 40;
5568		i++;
5569		break;
5570#endif
5571	default:
5572		bpf_error("unsupported proto to gen_protochain");
5573		/*NOTREACHED*/
5574	}
5575
5576	/* again: if (A == v) goto end; else fall through; */
5577	again = i;
5578	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5579	s[i]->s.k = v;
5580	s[i]->s.jt = NULL;		/*later*/
5581	s[i]->s.jf = NULL;		/*update in next stmt*/
5582	fix5 = i;
5583	i++;
5584
5585#ifndef IPPROTO_NONE
5586#define IPPROTO_NONE	59
5587#endif
5588	/* if (A == IPPROTO_NONE) goto end */
5589	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5590	s[i]->s.jt = NULL;	/*later*/
5591	s[i]->s.jf = NULL;	/*update in next stmt*/
5592	s[i]->s.k = IPPROTO_NONE;
5593	s[fix5]->s.jf = s[i];
5594	fix2 = i;
5595	i++;
5596
5597#ifdef INET6
5598	if (proto == Q_IPV6) {
5599		int v6start, v6end, v6advance, j;
5600
5601		v6start = i;
5602		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5603		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5604		s[i]->s.jt = NULL;	/*later*/
5605		s[i]->s.jf = NULL;	/*update in next stmt*/
5606		s[i]->s.k = IPPROTO_HOPOPTS;
5607		s[fix2]->s.jf = s[i];
5608		i++;
5609		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5610		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5611		s[i]->s.jt = NULL;	/*later*/
5612		s[i]->s.jf = NULL;	/*update in next stmt*/
5613		s[i]->s.k = IPPROTO_DSTOPTS;
5614		i++;
5615		/* if (A == IPPROTO_ROUTING) goto v6advance */
5616		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5617		s[i]->s.jt = NULL;	/*later*/
5618		s[i]->s.jf = NULL;	/*update in next stmt*/
5619		s[i]->s.k = IPPROTO_ROUTING;
5620		i++;
5621		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5622		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5623		s[i]->s.jt = NULL;	/*later*/
5624		s[i]->s.jf = NULL;	/*later*/
5625		s[i]->s.k = IPPROTO_FRAGMENT;
5626		fix3 = i;
5627		v6end = i;
5628		i++;
5629
5630		/* v6advance: */
5631		v6advance = i;
5632
5633		/*
5634		 * in short,
5635		 * A = P[X + packet head];
5636		 * X = X + (P[X + packet head + 1] + 1) * 8;
5637		 */
5638		/* A = P[X + packet head] */
5639		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5640		s[i]->s.k = off_macpl + off_nl;
5641		i++;
5642		/* MEM[reg2] = A */
5643		s[i] = new_stmt(BPF_ST);
5644		s[i]->s.k = reg2;
5645		i++;
5646		/* A = P[X + packet head + 1]; */
5647		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5648		s[i]->s.k = off_macpl + off_nl + 1;
5649		i++;
5650		/* A += 1 */
5651		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5652		s[i]->s.k = 1;
5653		i++;
5654		/* A *= 8 */
5655		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5656		s[i]->s.k = 8;
5657		i++;
5658		/* A += X */
5659		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5660		s[i]->s.k = 0;
5661		i++;
5662		/* X = A; */
5663		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5664		i++;
5665		/* A = MEM[reg2] */
5666		s[i] = new_stmt(BPF_LD|BPF_MEM);
5667		s[i]->s.k = reg2;
5668		i++;
5669
5670		/* goto again; (must use BPF_JA for backward jump) */
5671		s[i] = new_stmt(BPF_JMP|BPF_JA);
5672		s[i]->s.k = again - i - 1;
5673		s[i - 1]->s.jf = s[i];
5674		i++;
5675
5676		/* fixup */
5677		for (j = v6start; j <= v6end; j++)
5678			s[j]->s.jt = s[v6advance];
5679	} else
5680#endif
5681	{
5682		/* nop */
5683		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5684		s[i]->s.k = 0;
5685		s[fix2]->s.jf = s[i];
5686		i++;
5687	}
5688
5689	/* ahcheck: */
5690	ahcheck = i;
5691	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5692	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5693	s[i]->s.jt = NULL;	/*later*/
5694	s[i]->s.jf = NULL;	/*later*/
5695	s[i]->s.k = IPPROTO_AH;
5696	if (fix3)
5697		s[fix3]->s.jf = s[ahcheck];
5698	fix4 = i;
5699	i++;
5700
5701	/*
5702	 * in short,
5703	 * A = P[X];
5704	 * X = X + (P[X + 1] + 2) * 4;
5705	 */
5706	/* A = X */
5707	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5708	i++;
5709	/* A = P[X + packet head]; */
5710	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5711	s[i]->s.k = off_macpl + off_nl;
5712	i++;
5713	/* MEM[reg2] = A */
5714	s[i] = new_stmt(BPF_ST);
5715	s[i]->s.k = reg2;
5716	i++;
5717	/* A = X */
5718	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5719	i++;
5720	/* A += 1 */
5721	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5722	s[i]->s.k = 1;
5723	i++;
5724	/* X = A */
5725	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5726	i++;
5727	/* A = P[X + packet head] */
5728	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5729	s[i]->s.k = off_macpl + off_nl;
5730	i++;
5731	/* A += 2 */
5732	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5733	s[i]->s.k = 2;
5734	i++;
5735	/* A *= 4 */
5736	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5737	s[i]->s.k = 4;
5738	i++;
5739	/* X = A; */
5740	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5741	i++;
5742	/* A = MEM[reg2] */
5743	s[i] = new_stmt(BPF_LD|BPF_MEM);
5744	s[i]->s.k = reg2;
5745	i++;
5746
5747	/* goto again; (must use BPF_JA for backward jump) */
5748	s[i] = new_stmt(BPF_JMP|BPF_JA);
5749	s[i]->s.k = again - i - 1;
5750	i++;
5751
5752	/* end: nop */
5753	end = i;
5754	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5755	s[i]->s.k = 0;
5756	s[fix2]->s.jt = s[end];
5757	s[fix4]->s.jf = s[end];
5758	s[fix5]->s.jt = s[end];
5759	i++;
5760
5761	/*
5762	 * make slist chain
5763	 */
5764	max = i;
5765	for (i = 0; i < max - 1; i++)
5766		s[i]->next = s[i + 1];
5767	s[max - 1]->next = NULL;
5768
5769	/*
5770	 * emit final check
5771	 */
5772	b = new_block(JMP(BPF_JEQ));
5773	b->stmts = s[1];	/*remember, s[0] is dummy*/
5774	b->s.k = v;
5775
5776	free_reg(reg2);
5777
5778	gen_and(b0, b);
5779	return b;
5780#endif
5781}
5782
5783static struct block *
5784gen_check_802_11_data_frame()
5785{
5786	struct slist *s;
5787	struct block *b0, *b1;
5788
5789	/*
5790	 * A data frame has the 0x08 bit (b3) in the frame control field set
5791	 * and the 0x04 bit (b2) clear.
5792	 */
5793	s = gen_load_a(OR_LINK, 0, BPF_B);
5794	b0 = new_block(JMP(BPF_JSET));
5795	b0->s.k = 0x08;
5796	b0->stmts = s;
5797
5798	s = gen_load_a(OR_LINK, 0, BPF_B);
5799	b1 = new_block(JMP(BPF_JSET));
5800	b1->s.k = 0x04;
5801	b1->stmts = s;
5802	gen_not(b1);
5803
5804	gen_and(b1, b0);
5805
5806	return b0;
5807}
5808
5809/*
5810 * Generate code that checks whether the packet is a packet for protocol
5811 * <proto> and whether the type field in that protocol's header has
5812 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5813 * IP packet and checks the protocol number in the IP header against <v>.
5814 *
5815 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5816 * against Q_IP and Q_IPV6.
5817 */
5818static struct block *
5819gen_proto(v, proto, dir)
5820	int v;
5821	int proto;
5822	int dir;
5823{
5824	struct block *b0, *b1;
5825#ifdef INET6
5826#ifndef CHASE_CHAIN
5827	struct block *b2;
5828#endif
5829#endif
5830
5831	if (dir != Q_DEFAULT)
5832		bpf_error("direction applied to 'proto'");
5833
5834	switch (proto) {
5835	case Q_DEFAULT:
5836#ifdef INET6
5837		b0 = gen_proto(v, Q_IP, dir);
5838		b1 = gen_proto(v, Q_IPV6, dir);
5839		gen_or(b0, b1);
5840		return b1;
5841#else
5842		/*FALLTHROUGH*/
5843#endif
5844	case Q_IP:
5845		/*
5846		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5847		 * not LLC encapsulation with LLCSAP_IP.
5848		 *
5849		 * For IEEE 802 networks - which includes 802.5 token ring
5850		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5851		 * says that SNAP encapsulation is used, not LLC encapsulation
5852		 * with LLCSAP_IP.
5853		 *
5854		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5855		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5856		 * encapsulation with LLCSAP_IP.
5857		 *
5858		 * So we always check for ETHERTYPE_IP.
5859		 */
5860		b0 = gen_linktype(ETHERTYPE_IP);
5861#ifndef CHASE_CHAIN
5862		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5863#else
5864		b1 = gen_protochain(v, Q_IP);
5865#endif
5866		gen_and(b0, b1);
5867		return b1;
5868
5869	case Q_ISO:
5870		switch (linktype) {
5871
5872		case DLT_FRELAY:
5873			/*
5874			 * Frame Relay packets typically have an OSI
5875			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5876			 * generates code to check for all the OSI
5877			 * NLPIDs, so calling it and then adding a check
5878			 * for the particular NLPID for which we're
5879			 * looking is bogus, as we can just check for
5880			 * the NLPID.
5881			 *
5882			 * What we check for is the NLPID and a frame
5883			 * control field value of UI, i.e. 0x03 followed
5884			 * by the NLPID.
5885			 *
5886			 * XXX - assumes a 2-byte Frame Relay header with
5887			 * DLCI and flags.  What if the address is longer?
5888			 *
5889			 * XXX - what about SNAP-encapsulated frames?
5890			 */
5891			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5892			/*NOTREACHED*/
5893			break;
5894
5895		case DLT_C_HDLC:
5896			/*
5897			 * Cisco uses an Ethertype lookalike - for OSI,
5898			 * it's 0xfefe.
5899			 */
5900			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5901			/* OSI in C-HDLC is stuffed with a fudge byte */
5902			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5903			gen_and(b0, b1);
5904			return b1;
5905
5906		default:
5907			b0 = gen_linktype(LLCSAP_ISONS);
5908			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5909			gen_and(b0, b1);
5910			return b1;
5911		}
5912
5913	case Q_ISIS:
5914		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5915		/*
5916		 * 4 is the offset of the PDU type relative to the IS-IS
5917		 * header.
5918		 */
5919		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5920		gen_and(b0, b1);
5921		return b1;
5922
5923	case Q_ARP:
5924		bpf_error("arp does not encapsulate another protocol");
5925		/* NOTREACHED */
5926
5927	case Q_RARP:
5928		bpf_error("rarp does not encapsulate another protocol");
5929		/* NOTREACHED */
5930
5931	case Q_ATALK:
5932		bpf_error("atalk encapsulation is not specifiable");
5933		/* NOTREACHED */
5934
5935	case Q_DECNET:
5936		bpf_error("decnet encapsulation is not specifiable");
5937		/* NOTREACHED */
5938
5939	case Q_SCA:
5940		bpf_error("sca does not encapsulate another protocol");
5941		/* NOTREACHED */
5942
5943	case Q_LAT:
5944		bpf_error("lat does not encapsulate another protocol");
5945		/* NOTREACHED */
5946
5947	case Q_MOPRC:
5948		bpf_error("moprc does not encapsulate another protocol");
5949		/* NOTREACHED */
5950
5951	case Q_MOPDL:
5952		bpf_error("mopdl does not encapsulate another protocol");
5953		/* NOTREACHED */
5954
5955	case Q_LINK:
5956		return gen_linktype(v);
5957
5958	case Q_UDP:
5959		bpf_error("'udp proto' is bogus");
5960		/* NOTREACHED */
5961
5962	case Q_TCP:
5963		bpf_error("'tcp proto' is bogus");
5964		/* NOTREACHED */
5965
5966	case Q_SCTP:
5967		bpf_error("'sctp proto' is bogus");
5968		/* NOTREACHED */
5969
5970	case Q_ICMP:
5971		bpf_error("'icmp proto' is bogus");
5972		/* NOTREACHED */
5973
5974	case Q_IGMP:
5975		bpf_error("'igmp proto' is bogus");
5976		/* NOTREACHED */
5977
5978	case Q_IGRP:
5979		bpf_error("'igrp proto' is bogus");
5980		/* NOTREACHED */
5981
5982	case Q_PIM:
5983		bpf_error("'pim proto' is bogus");
5984		/* NOTREACHED */
5985
5986	case Q_VRRP:
5987		bpf_error("'vrrp proto' is bogus");
5988		/* NOTREACHED */
5989
5990	case Q_CARP:
5991		bpf_error("'carp proto' is bogus");
5992		/* NOTREACHED */
5993
5994#ifdef INET6
5995	case Q_IPV6:
5996		b0 = gen_linktype(ETHERTYPE_IPV6);
5997#ifndef CHASE_CHAIN
5998		/*
5999		 * Also check for a fragment header before the final
6000		 * header.
6001		 */
6002		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
6003		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
6004		gen_and(b2, b1);
6005		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
6006		gen_or(b2, b1);
6007#else
6008		b1 = gen_protochain(v, Q_IPV6);
6009#endif
6010		gen_and(b0, b1);
6011		return b1;
6012
6013	case Q_ICMPV6:
6014		bpf_error("'icmp6 proto' is bogus");
6015#endif /* INET6 */
6016
6017	case Q_AH:
6018		bpf_error("'ah proto' is bogus");
6019
6020	case Q_ESP:
6021		bpf_error("'ah proto' is bogus");
6022
6023	case Q_STP:
6024		bpf_error("'stp proto' is bogus");
6025
6026	case Q_IPX:
6027		bpf_error("'ipx proto' is bogus");
6028
6029	case Q_NETBEUI:
6030		bpf_error("'netbeui proto' is bogus");
6031
6032	case Q_RADIO:
6033		bpf_error("'radio proto' is bogus");
6034
6035	default:
6036		abort();
6037		/* NOTREACHED */
6038	}
6039	/* NOTREACHED */
6040}
6041
6042struct block *
6043gen_scode(name, q)
6044	register const char *name;
6045	struct qual q;
6046{
6047	int proto = q.proto;
6048	int dir = q.dir;
6049	int tproto;
6050	u_char *eaddr;
6051	bpf_u_int32 mask, addr;
6052#ifndef INET6
6053	bpf_u_int32 **alist;
6054#else
6055	int tproto6;
6056	struct sockaddr_in *sin4;
6057	struct sockaddr_in6 *sin6;
6058	struct addrinfo *res, *res0;
6059	struct in6_addr mask128;
6060#endif /*INET6*/
6061	struct block *b, *tmp;
6062	int port, real_proto;
6063	int port1, port2;
6064
6065	switch (q.addr) {
6066
6067	case Q_NET:
6068		addr = pcap_nametonetaddr(name);
6069		if (addr == 0)
6070			bpf_error("unknown network '%s'", name);
6071		/* Left justify network addr and calculate its network mask */
6072		mask = 0xffffffff;
6073		while (addr && (addr & 0xff000000) == 0) {
6074			addr <<= 8;
6075			mask <<= 8;
6076		}
6077		return gen_host(addr, mask, proto, dir, q.addr);
6078
6079	case Q_DEFAULT:
6080	case Q_HOST:
6081		if (proto == Q_LINK) {
6082			switch (linktype) {
6083
6084			case DLT_EN10MB:
6085			case DLT_NETANALYZER:
6086			case DLT_NETANALYZER_TRANSPARENT:
6087				eaddr = pcap_ether_hostton(name);
6088				if (eaddr == NULL)
6089					bpf_error(
6090					    "unknown ether host '%s'", name);
6091				b = gen_ehostop(eaddr, dir);
6092				free(eaddr);
6093				return b;
6094
6095			case DLT_FDDI:
6096				eaddr = pcap_ether_hostton(name);
6097				if (eaddr == NULL)
6098					bpf_error(
6099					    "unknown FDDI host '%s'", name);
6100				b = gen_fhostop(eaddr, dir);
6101				free(eaddr);
6102				return b;
6103
6104			case DLT_IEEE802:
6105				eaddr = pcap_ether_hostton(name);
6106				if (eaddr == NULL)
6107					bpf_error(
6108					    "unknown token ring host '%s'", name);
6109				b = gen_thostop(eaddr, dir);
6110				free(eaddr);
6111				return b;
6112
6113			case DLT_IEEE802_11:
6114			case DLT_PRISM_HEADER:
6115			case DLT_IEEE802_11_RADIO_AVS:
6116			case DLT_IEEE802_11_RADIO:
6117			case DLT_PPI:
6118				eaddr = pcap_ether_hostton(name);
6119				if (eaddr == NULL)
6120					bpf_error(
6121					    "unknown 802.11 host '%s'", name);
6122				b = gen_wlanhostop(eaddr, dir);
6123				free(eaddr);
6124				return b;
6125
6126			case DLT_IP_OVER_FC:
6127				eaddr = pcap_ether_hostton(name);
6128				if (eaddr == NULL)
6129					bpf_error(
6130					    "unknown Fibre Channel host '%s'", name);
6131				b = gen_ipfchostop(eaddr, dir);
6132				free(eaddr);
6133				return b;
6134
6135			case DLT_SUNATM:
6136				if (!is_lane)
6137					break;
6138
6139				/*
6140				 * Check that the packet doesn't begin
6141				 * with an LE Control marker.  (We've
6142				 * already generated a test for LANE.)
6143				 */
6144				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6145				    BPF_H, 0xFF00);
6146				gen_not(tmp);
6147
6148				eaddr = pcap_ether_hostton(name);
6149				if (eaddr == NULL)
6150					bpf_error(
6151					    "unknown ether host '%s'", name);
6152				b = gen_ehostop(eaddr, dir);
6153				gen_and(tmp, b);
6154				free(eaddr);
6155				return b;
6156			}
6157
6158			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6159		} else if (proto == Q_DECNET) {
6160			unsigned short dn_addr = __pcap_nametodnaddr(name);
6161			/*
6162			 * I don't think DECNET hosts can be multihomed, so
6163			 * there is no need to build up a list of addresses
6164			 */
6165			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6166		} else {
6167#ifndef INET6
6168			alist = pcap_nametoaddr(name);
6169			if (alist == NULL || *alist == NULL)
6170				bpf_error("unknown host '%s'", name);
6171			tproto = proto;
6172			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6173				tproto = Q_IP;
6174			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6175			while (*alist) {
6176				tmp = gen_host(**alist++, 0xffffffff,
6177					       tproto, dir, q.addr);
6178				gen_or(b, tmp);
6179				b = tmp;
6180			}
6181			return b;
6182#else
6183			memset(&mask128, 0xff, sizeof(mask128));
6184			res0 = res = pcap_nametoaddrinfo(name);
6185			if (res == NULL)
6186				bpf_error("unknown host '%s'", name);
6187			ai = res;
6188			b = tmp = NULL;
6189			tproto = tproto6 = proto;
6190			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6191				tproto = Q_IP;
6192				tproto6 = Q_IPV6;
6193			}
6194			for (res = res0; res; res = res->ai_next) {
6195				switch (res->ai_family) {
6196				case AF_INET:
6197					if (tproto == Q_IPV6)
6198						continue;
6199
6200					sin4 = (struct sockaddr_in *)
6201						res->ai_addr;
6202					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6203						0xffffffff, tproto, dir, q.addr);
6204					break;
6205				case AF_INET6:
6206					if (tproto6 == Q_IP)
6207						continue;
6208
6209					sin6 = (struct sockaddr_in6 *)
6210						res->ai_addr;
6211					tmp = gen_host6(&sin6->sin6_addr,
6212						&mask128, tproto6, dir, q.addr);
6213					break;
6214				default:
6215					continue;
6216				}
6217				if (b)
6218					gen_or(b, tmp);
6219				b = tmp;
6220			}
6221			ai = NULL;
6222			freeaddrinfo(res0);
6223			if (b == NULL) {
6224				bpf_error("unknown host '%s'%s", name,
6225				    (proto == Q_DEFAULT)
6226					? ""
6227					: " for specified address family");
6228			}
6229			return b;
6230#endif /*INET6*/
6231		}
6232
6233	case Q_PORT:
6234		if (proto != Q_DEFAULT &&
6235		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6236			bpf_error("illegal qualifier of 'port'");
6237		if (pcap_nametoport(name, &port, &real_proto) == 0)
6238			bpf_error("unknown port '%s'", name);
6239		if (proto == Q_UDP) {
6240			if (real_proto == IPPROTO_TCP)
6241				bpf_error("port '%s' is tcp", name);
6242			else if (real_proto == IPPROTO_SCTP)
6243				bpf_error("port '%s' is sctp", name);
6244			else
6245				/* override PROTO_UNDEF */
6246				real_proto = IPPROTO_UDP;
6247		}
6248		if (proto == Q_TCP) {
6249			if (real_proto == IPPROTO_UDP)
6250				bpf_error("port '%s' is udp", name);
6251
6252			else if (real_proto == IPPROTO_SCTP)
6253				bpf_error("port '%s' is sctp", name);
6254			else
6255				/* override PROTO_UNDEF */
6256				real_proto = IPPROTO_TCP;
6257		}
6258		if (proto == Q_SCTP) {
6259			if (real_proto == IPPROTO_UDP)
6260				bpf_error("port '%s' is udp", name);
6261
6262			else if (real_proto == IPPROTO_TCP)
6263				bpf_error("port '%s' is tcp", name);
6264			else
6265				/* override PROTO_UNDEF */
6266				real_proto = IPPROTO_SCTP;
6267		}
6268		if (port < 0)
6269			bpf_error("illegal port number %d < 0", port);
6270		if (port > 65535)
6271			bpf_error("illegal port number %d > 65535", port);
6272#ifndef INET6
6273		return gen_port(port, real_proto, dir);
6274#else
6275		b = gen_port(port, real_proto, dir);
6276		gen_or(gen_port6(port, real_proto, dir), b);
6277		return b;
6278#endif /* INET6 */
6279
6280	case Q_PORTRANGE:
6281		if (proto != Q_DEFAULT &&
6282		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6283			bpf_error("illegal qualifier of 'portrange'");
6284		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6285			bpf_error("unknown port in range '%s'", name);
6286		if (proto == Q_UDP) {
6287			if (real_proto == IPPROTO_TCP)
6288				bpf_error("port in range '%s' is tcp", name);
6289			else if (real_proto == IPPROTO_SCTP)
6290				bpf_error("port in range '%s' is sctp", name);
6291			else
6292				/* override PROTO_UNDEF */
6293				real_proto = IPPROTO_UDP;
6294		}
6295		if (proto == Q_TCP) {
6296			if (real_proto == IPPROTO_UDP)
6297				bpf_error("port in range '%s' is udp", name);
6298			else if (real_proto == IPPROTO_SCTP)
6299				bpf_error("port in range '%s' is sctp", name);
6300			else
6301				/* override PROTO_UNDEF */
6302				real_proto = IPPROTO_TCP;
6303		}
6304		if (proto == Q_SCTP) {
6305			if (real_proto == IPPROTO_UDP)
6306				bpf_error("port in range '%s' is udp", name);
6307			else if (real_proto == IPPROTO_TCP)
6308				bpf_error("port in range '%s' is tcp", name);
6309			else
6310				/* override PROTO_UNDEF */
6311				real_proto = IPPROTO_SCTP;
6312		}
6313		if (port1 < 0)
6314			bpf_error("illegal port number %d < 0", port1);
6315		if (port1 > 65535)
6316			bpf_error("illegal port number %d > 65535", port1);
6317		if (port2 < 0)
6318			bpf_error("illegal port number %d < 0", port2);
6319		if (port2 > 65535)
6320			bpf_error("illegal port number %d > 65535", port2);
6321
6322#ifndef INET6
6323		return gen_portrange(port1, port2, real_proto, dir);
6324#else
6325		b = gen_portrange(port1, port2, real_proto, dir);
6326		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6327		return b;
6328#endif /* INET6 */
6329
6330	case Q_GATEWAY:
6331#ifndef INET6
6332		eaddr = pcap_ether_hostton(name);
6333		if (eaddr == NULL)
6334			bpf_error("unknown ether host: %s", name);
6335
6336		alist = pcap_nametoaddr(name);
6337		if (alist == NULL || *alist == NULL)
6338			bpf_error("unknown host '%s'", name);
6339		b = gen_gateway(eaddr, alist, proto, dir);
6340		free(eaddr);
6341		return b;
6342#else
6343		bpf_error("'gateway' not supported in this configuration");
6344#endif /*INET6*/
6345
6346	case Q_PROTO:
6347		real_proto = lookup_proto(name, proto);
6348		if (real_proto >= 0)
6349			return gen_proto(real_proto, proto, dir);
6350		else
6351			bpf_error("unknown protocol: %s", name);
6352
6353	case Q_PROTOCHAIN:
6354		real_proto = lookup_proto(name, proto);
6355		if (real_proto >= 0)
6356			return gen_protochain(real_proto, proto, dir);
6357		else
6358			bpf_error("unknown protocol: %s", name);
6359
6360	case Q_UNDEF:
6361		syntax();
6362		/* NOTREACHED */
6363	}
6364	abort();
6365	/* NOTREACHED */
6366}
6367
6368struct block *
6369gen_mcode(s1, s2, masklen, q)
6370	register const char *s1, *s2;
6371	register int masklen;
6372	struct qual q;
6373{
6374	register int nlen, mlen;
6375	bpf_u_int32 n, m;
6376
6377	nlen = __pcap_atoin(s1, &n);
6378	/* Promote short ipaddr */
6379	n <<= 32 - nlen;
6380
6381	if (s2 != NULL) {
6382		mlen = __pcap_atoin(s2, &m);
6383		/* Promote short ipaddr */
6384		m <<= 32 - mlen;
6385		if ((n & ~m) != 0)
6386			bpf_error("non-network bits set in \"%s mask %s\"",
6387			    s1, s2);
6388	} else {
6389		/* Convert mask len to mask */
6390		if (masklen > 32)
6391			bpf_error("mask length must be <= 32");
6392		if (masklen == 0) {
6393			/*
6394			 * X << 32 is not guaranteed by C to be 0; it's
6395			 * undefined.
6396			 */
6397			m = 0;
6398		} else
6399			m = 0xffffffff << (32 - masklen);
6400		if ((n & ~m) != 0)
6401			bpf_error("non-network bits set in \"%s/%d\"",
6402			    s1, masklen);
6403	}
6404
6405	switch (q.addr) {
6406
6407	case Q_NET:
6408		return gen_host(n, m, q.proto, q.dir, q.addr);
6409
6410	default:
6411		bpf_error("Mask syntax for networks only");
6412		/* NOTREACHED */
6413	}
6414	/* NOTREACHED */
6415	return NULL;
6416}
6417
6418struct block *
6419gen_ncode(s, v, q)
6420	register const char *s;
6421	bpf_u_int32 v;
6422	struct qual q;
6423{
6424	bpf_u_int32 mask;
6425	int proto = q.proto;
6426	int dir = q.dir;
6427	register int vlen;
6428
6429	if (s == NULL)
6430		vlen = 32;
6431	else if (q.proto == Q_DECNET)
6432		vlen = __pcap_atodn(s, &v);
6433	else
6434		vlen = __pcap_atoin(s, &v);
6435
6436	switch (q.addr) {
6437
6438	case Q_DEFAULT:
6439	case Q_HOST:
6440	case Q_NET:
6441		if (proto == Q_DECNET)
6442			return gen_host(v, 0, proto, dir, q.addr);
6443		else if (proto == Q_LINK) {
6444			bpf_error("illegal link layer address");
6445		} else {
6446			mask = 0xffffffff;
6447			if (s == NULL && q.addr == Q_NET) {
6448				/* Promote short net number */
6449				while (v && (v & 0xff000000) == 0) {
6450					v <<= 8;
6451					mask <<= 8;
6452				}
6453			} else {
6454				/* Promote short ipaddr */
6455				v <<= 32 - vlen;
6456				mask <<= 32 - vlen;
6457			}
6458			return gen_host(v, mask, proto, dir, q.addr);
6459		}
6460
6461	case Q_PORT:
6462		if (proto == Q_UDP)
6463			proto = IPPROTO_UDP;
6464		else if (proto == Q_TCP)
6465			proto = IPPROTO_TCP;
6466		else if (proto == Q_SCTP)
6467			proto = IPPROTO_SCTP;
6468		else if (proto == Q_DEFAULT)
6469			proto = PROTO_UNDEF;
6470		else
6471			bpf_error("illegal qualifier of 'port'");
6472
6473		if (v > 65535)
6474			bpf_error("illegal port number %u > 65535", v);
6475
6476#ifndef INET6
6477		return gen_port((int)v, proto, dir);
6478#else
6479	    {
6480		struct block *b;
6481		b = gen_port((int)v, proto, dir);
6482		gen_or(gen_port6((int)v, proto, dir), b);
6483		return b;
6484	    }
6485#endif /* INET6 */
6486
6487	case Q_PORTRANGE:
6488		if (proto == Q_UDP)
6489			proto = IPPROTO_UDP;
6490		else if (proto == Q_TCP)
6491			proto = IPPROTO_TCP;
6492		else if (proto == Q_SCTP)
6493			proto = IPPROTO_SCTP;
6494		else if (proto == Q_DEFAULT)
6495			proto = PROTO_UNDEF;
6496		else
6497			bpf_error("illegal qualifier of 'portrange'");
6498
6499		if (v > 65535)
6500			bpf_error("illegal port number %u > 65535", v);
6501
6502#ifndef INET6
6503		return gen_portrange((int)v, (int)v, proto, dir);
6504#else
6505	    {
6506		struct block *b;
6507		b = gen_portrange((int)v, (int)v, proto, dir);
6508		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6509		return b;
6510	    }
6511#endif /* INET6 */
6512
6513	case Q_GATEWAY:
6514		bpf_error("'gateway' requires a name");
6515		/* NOTREACHED */
6516
6517	case Q_PROTO:
6518		return gen_proto((int)v, proto, dir);
6519
6520	case Q_PROTOCHAIN:
6521		return gen_protochain((int)v, proto, dir);
6522
6523	case Q_UNDEF:
6524		syntax();
6525		/* NOTREACHED */
6526
6527	default:
6528		abort();
6529		/* NOTREACHED */
6530	}
6531	/* NOTREACHED */
6532}
6533
6534#ifdef INET6
6535struct block *
6536gen_mcode6(s1, s2, masklen, q)
6537	register const char *s1, *s2;
6538	register int masklen;
6539	struct qual q;
6540{
6541	struct addrinfo *res;
6542	struct in6_addr *addr;
6543	struct in6_addr mask;
6544	struct block *b;
6545	u_int32_t *a, *m;
6546
6547	if (s2)
6548		bpf_error("no mask %s supported", s2);
6549
6550	res = pcap_nametoaddrinfo(s1);
6551	if (!res)
6552		bpf_error("invalid ip6 address %s", s1);
6553	ai = res;
6554	if (res->ai_next)
6555		bpf_error("%s resolved to multiple address", s1);
6556	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6557
6558	if (sizeof(mask) * 8 < masklen)
6559		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6560	memset(&mask, 0, sizeof(mask));
6561	memset(&mask, 0xff, masklen / 8);
6562	if (masklen % 8) {
6563		mask.s6_addr[masklen / 8] =
6564			(0xff << (8 - masklen % 8)) & 0xff;
6565	}
6566
6567	a = (u_int32_t *)addr;
6568	m = (u_int32_t *)&mask;
6569	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6570	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6571		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6572	}
6573
6574	switch (q.addr) {
6575
6576	case Q_DEFAULT:
6577	case Q_HOST:
6578		if (masklen != 128)
6579			bpf_error("Mask syntax for networks only");
6580		/* FALLTHROUGH */
6581
6582	case Q_NET:
6583		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6584		ai = NULL;
6585		freeaddrinfo(res);
6586		return b;
6587
6588	default:
6589		bpf_error("invalid qualifier against IPv6 address");
6590		/* NOTREACHED */
6591	}
6592	return NULL;
6593}
6594#endif /*INET6*/
6595
6596struct block *
6597gen_ecode(eaddr, q)
6598	register const u_char *eaddr;
6599	struct qual q;
6600{
6601	struct block *b, *tmp;
6602
6603	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6604		switch (linktype) {
6605		case DLT_EN10MB:
6606		case DLT_NETANALYZER:
6607		case DLT_NETANALYZER_TRANSPARENT:
6608			return gen_ehostop(eaddr, (int)q.dir);
6609		case DLT_FDDI:
6610			return gen_fhostop(eaddr, (int)q.dir);
6611		case DLT_IEEE802:
6612			return gen_thostop(eaddr, (int)q.dir);
6613		case DLT_IEEE802_11:
6614		case DLT_PRISM_HEADER:
6615		case DLT_IEEE802_11_RADIO_AVS:
6616		case DLT_IEEE802_11_RADIO:
6617		case DLT_PPI:
6618			return gen_wlanhostop(eaddr, (int)q.dir);
6619		case DLT_SUNATM:
6620			if (is_lane) {
6621				/*
6622				 * Check that the packet doesn't begin with an
6623				 * LE Control marker.  (We've already generated
6624				 * a test for LANE.)
6625				 */
6626				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6627					0xFF00);
6628				gen_not(tmp);
6629
6630				/*
6631				 * Now check the MAC address.
6632				 */
6633				b = gen_ehostop(eaddr, (int)q.dir);
6634				gen_and(tmp, b);
6635				return b;
6636			}
6637			break;
6638		case DLT_IP_OVER_FC:
6639			return gen_ipfchostop(eaddr, (int)q.dir);
6640		default:
6641			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6642			break;
6643		}
6644	}
6645	bpf_error("ethernet address used in non-ether expression");
6646	/* NOTREACHED */
6647	return NULL;
6648}
6649
6650void
6651sappend(s0, s1)
6652	struct slist *s0, *s1;
6653{
6654	/*
6655	 * This is definitely not the best way to do this, but the
6656	 * lists will rarely get long.
6657	 */
6658	while (s0->next)
6659		s0 = s0->next;
6660	s0->next = s1;
6661}
6662
6663static struct slist *
6664xfer_to_x(a)
6665	struct arth *a;
6666{
6667	struct slist *s;
6668
6669	s = new_stmt(BPF_LDX|BPF_MEM);
6670	s->s.k = a->regno;
6671	return s;
6672}
6673
6674static struct slist *
6675xfer_to_a(a)
6676	struct arth *a;
6677{
6678	struct slist *s;
6679
6680	s = new_stmt(BPF_LD|BPF_MEM);
6681	s->s.k = a->regno;
6682	return s;
6683}
6684
6685/*
6686 * Modify "index" to use the value stored into its register as an
6687 * offset relative to the beginning of the header for the protocol
6688 * "proto", and allocate a register and put an item "size" bytes long
6689 * (1, 2, or 4) at that offset into that register, making it the register
6690 * for "index".
6691 */
6692struct arth *
6693gen_load(proto, inst, size)
6694	int proto;
6695	struct arth *inst;
6696	int size;
6697{
6698	struct slist *s, *tmp;
6699	struct block *b;
6700	int regno = alloc_reg();
6701
6702	free_reg(inst->regno);
6703	switch (size) {
6704
6705	default:
6706		bpf_error("data size must be 1, 2, or 4");
6707
6708	case 1:
6709		size = BPF_B;
6710		break;
6711
6712	case 2:
6713		size = BPF_H;
6714		break;
6715
6716	case 4:
6717		size = BPF_W;
6718		break;
6719	}
6720	switch (proto) {
6721	default:
6722		bpf_error("unsupported index operation");
6723
6724	case Q_RADIO:
6725		/*
6726		 * The offset is relative to the beginning of the packet
6727		 * data, if we have a radio header.  (If we don't, this
6728		 * is an error.)
6729		 */
6730		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6731		    linktype != DLT_IEEE802_11_RADIO &&
6732		    linktype != DLT_PRISM_HEADER)
6733			bpf_error("radio information not present in capture");
6734
6735		/*
6736		 * Load into the X register the offset computed into the
6737		 * register specified by "index".
6738		 */
6739		s = xfer_to_x(inst);
6740
6741		/*
6742		 * Load the item at that offset.
6743		 */
6744		tmp = new_stmt(BPF_LD|BPF_IND|size);
6745		sappend(s, tmp);
6746		sappend(inst->s, s);
6747		break;
6748
6749	case Q_LINK:
6750		/*
6751		 * The offset is relative to the beginning of
6752		 * the link-layer header.
6753		 *
6754		 * XXX - what about ATM LANE?  Should the index be
6755		 * relative to the beginning of the AAL5 frame, so
6756		 * that 0 refers to the beginning of the LE Control
6757		 * field, or relative to the beginning of the LAN
6758		 * frame, so that 0 refers, for Ethernet LANE, to
6759		 * the beginning of the destination address?
6760		 */
6761		s = gen_llprefixlen();
6762
6763		/*
6764		 * If "s" is non-null, it has code to arrange that the
6765		 * X register contains the length of the prefix preceding
6766		 * the link-layer header.  Add to it the offset computed
6767		 * into the register specified by "index", and move that
6768		 * into the X register.  Otherwise, just load into the X
6769		 * register the offset computed into the register specified
6770		 * by "index".
6771		 */
6772		if (s != NULL) {
6773			sappend(s, xfer_to_a(inst));
6774			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6775			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6776		} else
6777			s = xfer_to_x(inst);
6778
6779		/*
6780		 * Load the item at the sum of the offset we've put in the
6781		 * X register and the offset of the start of the link
6782		 * layer header (which is 0 if the radio header is
6783		 * variable-length; that header length is what we put
6784		 * into the X register and then added to the index).
6785		 */
6786		tmp = new_stmt(BPF_LD|BPF_IND|size);
6787		tmp->s.k = off_ll;
6788		sappend(s, tmp);
6789		sappend(inst->s, s);
6790		break;
6791
6792	case Q_IP:
6793	case Q_ARP:
6794	case Q_RARP:
6795	case Q_ATALK:
6796	case Q_DECNET:
6797	case Q_SCA:
6798	case Q_LAT:
6799	case Q_MOPRC:
6800	case Q_MOPDL:
6801#ifdef INET6
6802	case Q_IPV6:
6803#endif
6804		/*
6805		 * The offset is relative to the beginning of
6806		 * the network-layer header.
6807		 * XXX - are there any cases where we want
6808		 * off_nl_nosnap?
6809		 */
6810		s = gen_off_macpl();
6811
6812		/*
6813		 * If "s" is non-null, it has code to arrange that the
6814		 * X register contains the offset of the MAC-layer
6815		 * payload.  Add to it the offset computed into the
6816		 * register specified by "index", and move that into
6817		 * the X register.  Otherwise, just load into the X
6818		 * register the offset computed into the register specified
6819		 * by "index".
6820		 */
6821		if (s != NULL) {
6822			sappend(s, xfer_to_a(inst));
6823			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6824			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6825		} else
6826			s = xfer_to_x(inst);
6827
6828		/*
6829		 * Load the item at the sum of the offset we've put in the
6830		 * X register, the offset of the start of the network
6831		 * layer header from the beginning of the MAC-layer
6832		 * payload, and the purported offset of the start of the
6833		 * MAC-layer payload (which might be 0 if there's a
6834		 * variable-length prefix before the link-layer header
6835		 * or the link-layer header itself is variable-length;
6836		 * the variable-length offset of the start of the
6837		 * MAC-layer payload is what we put into the X register
6838		 * and then added to the index).
6839		 */
6840		tmp = new_stmt(BPF_LD|BPF_IND|size);
6841		tmp->s.k = off_macpl + off_nl;
6842		sappend(s, tmp);
6843		sappend(inst->s, s);
6844
6845		/*
6846		 * Do the computation only if the packet contains
6847		 * the protocol in question.
6848		 */
6849		b = gen_proto_abbrev(proto);
6850		if (inst->b)
6851			gen_and(inst->b, b);
6852		inst->b = b;
6853		break;
6854
6855	case Q_SCTP:
6856	case Q_TCP:
6857	case Q_UDP:
6858	case Q_ICMP:
6859	case Q_IGMP:
6860	case Q_IGRP:
6861	case Q_PIM:
6862	case Q_VRRP:
6863	case Q_CARP:
6864		/*
6865		 * The offset is relative to the beginning of
6866		 * the transport-layer header.
6867		 *
6868		 * Load the X register with the length of the IPv4 header
6869		 * (plus the offset of the link-layer header, if it's
6870		 * a variable-length header), in bytes.
6871		 *
6872		 * XXX - are there any cases where we want
6873		 * off_nl_nosnap?
6874		 * XXX - we should, if we're built with
6875		 * IPv6 support, generate code to load either
6876		 * IPv4, IPv6, or both, as appropriate.
6877		 */
6878		s = gen_loadx_iphdrlen();
6879
6880		/*
6881		 * The X register now contains the sum of the length
6882		 * of any variable-length header preceding the link-layer
6883		 * header, any variable-length link-layer header, and the
6884		 * length of the network-layer header.
6885		 *
6886		 * Load into the A register the offset relative to
6887		 * the beginning of the transport layer header,
6888		 * add the X register to that, move that to the
6889		 * X register, and load with an offset from the
6890		 * X register equal to the offset of the network
6891		 * layer header relative to the beginning of
6892		 * the MAC-layer payload plus the fixed-length
6893		 * portion of the offset of the MAC-layer payload
6894		 * from the beginning of the raw packet data.
6895		 */
6896		sappend(s, xfer_to_a(inst));
6897		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6898		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6899		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6900		tmp->s.k = off_macpl + off_nl;
6901		sappend(inst->s, s);
6902
6903		/*
6904		 * Do the computation only if the packet contains
6905		 * the protocol in question - which is true only
6906		 * if this is an IP datagram and is the first or
6907		 * only fragment of that datagram.
6908		 */
6909		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6910		if (inst->b)
6911			gen_and(inst->b, b);
6912#ifdef INET6
6913		gen_and(gen_proto_abbrev(Q_IP), b);
6914#endif
6915		inst->b = b;
6916		break;
6917#ifdef INET6
6918	case Q_ICMPV6:
6919		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6920		/*NOTREACHED*/
6921#endif
6922	}
6923	inst->regno = regno;
6924	s = new_stmt(BPF_ST);
6925	s->s.k = regno;
6926	sappend(inst->s, s);
6927
6928	return inst;
6929}
6930
6931struct block *
6932gen_relation(code, a0, a1, reversed)
6933	int code;
6934	struct arth *a0, *a1;
6935	int reversed;
6936{
6937	struct slist *s0, *s1, *s2;
6938	struct block *b, *tmp;
6939
6940	s0 = xfer_to_x(a1);
6941	s1 = xfer_to_a(a0);
6942	if (code == BPF_JEQ) {
6943		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6944		b = new_block(JMP(code));
6945		sappend(s1, s2);
6946	}
6947	else
6948		b = new_block(BPF_JMP|code|BPF_X);
6949	if (reversed)
6950		gen_not(b);
6951
6952	sappend(s0, s1);
6953	sappend(a1->s, s0);
6954	sappend(a0->s, a1->s);
6955
6956	b->stmts = a0->s;
6957
6958	free_reg(a0->regno);
6959	free_reg(a1->regno);
6960
6961	/* 'and' together protocol checks */
6962	if (a0->b) {
6963		if (a1->b) {
6964			gen_and(a0->b, tmp = a1->b);
6965		}
6966		else
6967			tmp = a0->b;
6968	} else
6969		tmp = a1->b;
6970
6971	if (tmp)
6972		gen_and(tmp, b);
6973
6974	return b;
6975}
6976
6977struct arth *
6978gen_loadlen()
6979{
6980	int regno = alloc_reg();
6981	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6982	struct slist *s;
6983
6984	s = new_stmt(BPF_LD|BPF_LEN);
6985	s->next = new_stmt(BPF_ST);
6986	s->next->s.k = regno;
6987	a->s = s;
6988	a->regno = regno;
6989
6990	return a;
6991}
6992
6993struct arth *
6994gen_loadi(val)
6995	int val;
6996{
6997	struct arth *a;
6998	struct slist *s;
6999	int reg;
7000
7001	a = (struct arth *)newchunk(sizeof(*a));
7002
7003	reg = alloc_reg();
7004
7005	s = new_stmt(BPF_LD|BPF_IMM);
7006	s->s.k = val;
7007	s->next = new_stmt(BPF_ST);
7008	s->next->s.k = reg;
7009	a->s = s;
7010	a->regno = reg;
7011
7012	return a;
7013}
7014
7015struct arth *
7016gen_neg(a)
7017	struct arth *a;
7018{
7019	struct slist *s;
7020
7021	s = xfer_to_a(a);
7022	sappend(a->s, s);
7023	s = new_stmt(BPF_ALU|BPF_NEG);
7024	s->s.k = 0;
7025	sappend(a->s, s);
7026	s = new_stmt(BPF_ST);
7027	s->s.k = a->regno;
7028	sappend(a->s, s);
7029
7030	return a;
7031}
7032
7033struct arth *
7034gen_arth(code, a0, a1)
7035	int code;
7036	struct arth *a0, *a1;
7037{
7038	struct slist *s0, *s1, *s2;
7039
7040	s0 = xfer_to_x(a1);
7041	s1 = xfer_to_a(a0);
7042	s2 = new_stmt(BPF_ALU|BPF_X|code);
7043
7044	sappend(s1, s2);
7045	sappend(s0, s1);
7046	sappend(a1->s, s0);
7047	sappend(a0->s, a1->s);
7048
7049	free_reg(a0->regno);
7050	free_reg(a1->regno);
7051
7052	s0 = new_stmt(BPF_ST);
7053	a0->regno = s0->s.k = alloc_reg();
7054	sappend(a0->s, s0);
7055
7056	return a0;
7057}
7058
7059/*
7060 * Here we handle simple allocation of the scratch registers.
7061 * If too many registers are alloc'd, the allocator punts.
7062 */
7063static int regused[BPF_MEMWORDS];
7064static int curreg;
7065
7066/*
7067 * Initialize the table of used registers and the current register.
7068 */
7069static void
7070init_regs()
7071{
7072	curreg = 0;
7073	memset(regused, 0, sizeof regused);
7074}
7075
7076/*
7077 * Return the next free register.
7078 */
7079static int
7080alloc_reg()
7081{
7082	int n = BPF_MEMWORDS;
7083
7084	while (--n >= 0) {
7085		if (regused[curreg])
7086			curreg = (curreg + 1) % BPF_MEMWORDS;
7087		else {
7088			regused[curreg] = 1;
7089			return curreg;
7090		}
7091	}
7092	bpf_error("too many registers needed to evaluate expression");
7093	/* NOTREACHED */
7094	return 0;
7095}
7096
7097/*
7098 * Return a register to the table so it can
7099 * be used later.
7100 */
7101static void
7102free_reg(n)
7103	int n;
7104{
7105	regused[n] = 0;
7106}
7107
7108static struct block *
7109gen_len(jmp, n)
7110	int jmp, n;
7111{
7112	struct slist *s;
7113	struct block *b;
7114
7115	s = new_stmt(BPF_LD|BPF_LEN);
7116	b = new_block(JMP(jmp));
7117	b->stmts = s;
7118	b->s.k = n;
7119
7120	return b;
7121}
7122
7123struct block *
7124gen_greater(n)
7125	int n;
7126{
7127	return gen_len(BPF_JGE, n);
7128}
7129
7130/*
7131 * Actually, this is less than or equal.
7132 */
7133struct block *
7134gen_less(n)
7135	int n;
7136{
7137	struct block *b;
7138
7139	b = gen_len(BPF_JGT, n);
7140	gen_not(b);
7141
7142	return b;
7143}
7144
7145/*
7146 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7147 * the beginning of the link-layer header.
7148 * XXX - that means you can't test values in the radiotap header, but
7149 * as that header is difficult if not impossible to parse generally
7150 * without a loop, that might not be a severe problem.  A new keyword
7151 * "radio" could be added for that, although what you'd really want
7152 * would be a way of testing particular radio header values, which
7153 * would generate code appropriate to the radio header in question.
7154 */
7155struct block *
7156gen_byteop(op, idx, val)
7157	int op, idx, val;
7158{
7159	struct block *b;
7160	struct slist *s;
7161
7162	switch (op) {
7163	default:
7164		abort();
7165
7166	case '=':
7167		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7168
7169	case '<':
7170		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7171		return b;
7172
7173	case '>':
7174		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7175		return b;
7176
7177	case '|':
7178		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7179		break;
7180
7181	case '&':
7182		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7183		break;
7184	}
7185	s->s.k = val;
7186	b = new_block(JMP(BPF_JEQ));
7187	b->stmts = s;
7188	gen_not(b);
7189
7190	return b;
7191}
7192
7193static u_char abroadcast[] = { 0x0 };
7194
7195struct block *
7196gen_broadcast(proto)
7197	int proto;
7198{
7199	bpf_u_int32 hostmask;
7200	struct block *b0, *b1, *b2;
7201	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7202
7203	switch (proto) {
7204
7205	case Q_DEFAULT:
7206	case Q_LINK:
7207		switch (linktype) {
7208		case DLT_ARCNET:
7209		case DLT_ARCNET_LINUX:
7210			return gen_ahostop(abroadcast, Q_DST);
7211		case DLT_EN10MB:
7212		case DLT_NETANALYZER:
7213		case DLT_NETANALYZER_TRANSPARENT:
7214			return gen_ehostop(ebroadcast, Q_DST);
7215		case DLT_FDDI:
7216			return gen_fhostop(ebroadcast, Q_DST);
7217		case DLT_IEEE802:
7218			return gen_thostop(ebroadcast, Q_DST);
7219		case DLT_IEEE802_11:
7220		case DLT_PRISM_HEADER:
7221		case DLT_IEEE802_11_RADIO_AVS:
7222		case DLT_IEEE802_11_RADIO:
7223		case DLT_PPI:
7224			return gen_wlanhostop(ebroadcast, Q_DST);
7225		case DLT_IP_OVER_FC:
7226			return gen_ipfchostop(ebroadcast, Q_DST);
7227		case DLT_SUNATM:
7228			if (is_lane) {
7229				/*
7230				 * Check that the packet doesn't begin with an
7231				 * LE Control marker.  (We've already generated
7232				 * a test for LANE.)
7233				 */
7234				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7235				    BPF_H, 0xFF00);
7236				gen_not(b1);
7237
7238				/*
7239				 * Now check the MAC address.
7240				 */
7241				b0 = gen_ehostop(ebroadcast, Q_DST);
7242				gen_and(b1, b0);
7243				return b0;
7244			}
7245			break;
7246		default:
7247			bpf_error("not a broadcast link");
7248		}
7249		break;
7250
7251	case Q_IP:
7252		/*
7253		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7254		 * as an indication that we don't know the netmask, and fail
7255		 * in that case.
7256		 */
7257		if (netmask == PCAP_NETMASK_UNKNOWN)
7258			bpf_error("netmask not known, so 'ip broadcast' not supported");
7259		b0 = gen_linktype(ETHERTYPE_IP);
7260		hostmask = ~netmask;
7261		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7262		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7263			      (bpf_int32)(~0 & hostmask), hostmask);
7264		gen_or(b1, b2);
7265		gen_and(b0, b2);
7266		return b2;
7267	}
7268	bpf_error("only link-layer/IP broadcast filters supported");
7269	/* NOTREACHED */
7270	return NULL;
7271}
7272
7273/*
7274 * Generate code to test the low-order bit of a MAC address (that's
7275 * the bottom bit of the *first* byte).
7276 */
7277static struct block *
7278gen_mac_multicast(offset)
7279	int offset;
7280{
7281	register struct block *b0;
7282	register struct slist *s;
7283
7284	/* link[offset] & 1 != 0 */
7285	s = gen_load_a(OR_LINK, offset, BPF_B);
7286	b0 = new_block(JMP(BPF_JSET));
7287	b0->s.k = 1;
7288	b0->stmts = s;
7289	return b0;
7290}
7291
7292struct block *
7293gen_multicast(proto)
7294	int proto;
7295{
7296	register struct block *b0, *b1, *b2;
7297	register struct slist *s;
7298
7299	switch (proto) {
7300
7301	case Q_DEFAULT:
7302	case Q_LINK:
7303		switch (linktype) {
7304		case DLT_ARCNET:
7305		case DLT_ARCNET_LINUX:
7306			/* all ARCnet multicasts use the same address */
7307			return gen_ahostop(abroadcast, Q_DST);
7308		case DLT_EN10MB:
7309		case DLT_NETANALYZER:
7310		case DLT_NETANALYZER_TRANSPARENT:
7311			/* ether[0] & 1 != 0 */
7312			return gen_mac_multicast(0);
7313		case DLT_FDDI:
7314			/*
7315			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7316			 *
7317			 * XXX - was that referring to bit-order issues?
7318			 */
7319			/* fddi[1] & 1 != 0 */
7320			return gen_mac_multicast(1);
7321		case DLT_IEEE802:
7322			/* tr[2] & 1 != 0 */
7323			return gen_mac_multicast(2);
7324		case DLT_IEEE802_11:
7325		case DLT_PRISM_HEADER:
7326		case DLT_IEEE802_11_RADIO_AVS:
7327		case DLT_IEEE802_11_RADIO:
7328		case DLT_PPI:
7329			/*
7330			 * Oh, yuk.
7331			 *
7332			 *	For control frames, there is no DA.
7333			 *
7334			 *	For management frames, DA is at an
7335			 *	offset of 4 from the beginning of
7336			 *	the packet.
7337			 *
7338			 *	For data frames, DA is at an offset
7339			 *	of 4 from the beginning of the packet
7340			 *	if To DS is clear and at an offset of
7341			 *	16 from the beginning of the packet
7342			 *	if To DS is set.
7343			 */
7344
7345			/*
7346			 * Generate the tests to be done for data frames.
7347			 *
7348			 * First, check for To DS set, i.e. "link[1] & 0x01".
7349			 */
7350			s = gen_load_a(OR_LINK, 1, BPF_B);
7351			b1 = new_block(JMP(BPF_JSET));
7352			b1->s.k = 0x01;	/* To DS */
7353			b1->stmts = s;
7354
7355			/*
7356			 * If To DS is set, the DA is at 16.
7357			 */
7358			b0 = gen_mac_multicast(16);
7359			gen_and(b1, b0);
7360
7361			/*
7362			 * Now, check for To DS not set, i.e. check
7363			 * "!(link[1] & 0x01)".
7364			 */
7365			s = gen_load_a(OR_LINK, 1, BPF_B);
7366			b2 = new_block(JMP(BPF_JSET));
7367			b2->s.k = 0x01;	/* To DS */
7368			b2->stmts = s;
7369			gen_not(b2);
7370
7371			/*
7372			 * If To DS is not set, the DA is at 4.
7373			 */
7374			b1 = gen_mac_multicast(4);
7375			gen_and(b2, b1);
7376
7377			/*
7378			 * Now OR together the last two checks.  That gives
7379			 * the complete set of checks for data frames.
7380			 */
7381			gen_or(b1, b0);
7382
7383			/*
7384			 * Now check for a data frame.
7385			 * I.e, check "link[0] & 0x08".
7386			 */
7387			s = gen_load_a(OR_LINK, 0, BPF_B);
7388			b1 = new_block(JMP(BPF_JSET));
7389			b1->s.k = 0x08;
7390			b1->stmts = s;
7391
7392			/*
7393			 * AND that with the checks done for data frames.
7394			 */
7395			gen_and(b1, b0);
7396
7397			/*
7398			 * If the high-order bit of the type value is 0, this
7399			 * is a management frame.
7400			 * I.e, check "!(link[0] & 0x08)".
7401			 */
7402			s = gen_load_a(OR_LINK, 0, BPF_B);
7403			b2 = new_block(JMP(BPF_JSET));
7404			b2->s.k = 0x08;
7405			b2->stmts = s;
7406			gen_not(b2);
7407
7408			/*
7409			 * For management frames, the DA is at 4.
7410			 */
7411			b1 = gen_mac_multicast(4);
7412			gen_and(b2, b1);
7413
7414			/*
7415			 * OR that with the checks done for data frames.
7416			 * That gives the checks done for management and
7417			 * data frames.
7418			 */
7419			gen_or(b1, b0);
7420
7421			/*
7422			 * If the low-order bit of the type value is 1,
7423			 * this is either a control frame or a frame
7424			 * with a reserved type, and thus not a
7425			 * frame with an SA.
7426			 *
7427			 * I.e., check "!(link[0] & 0x04)".
7428			 */
7429			s = gen_load_a(OR_LINK, 0, BPF_B);
7430			b1 = new_block(JMP(BPF_JSET));
7431			b1->s.k = 0x04;
7432			b1->stmts = s;
7433			gen_not(b1);
7434
7435			/*
7436			 * AND that with the checks for data and management
7437			 * frames.
7438			 */
7439			gen_and(b1, b0);
7440			return b0;
7441		case DLT_IP_OVER_FC:
7442			b0 = gen_mac_multicast(2);
7443			return b0;
7444		case DLT_SUNATM:
7445			if (is_lane) {
7446				/*
7447				 * Check that the packet doesn't begin with an
7448				 * LE Control marker.  (We've already generated
7449				 * a test for LANE.)
7450				 */
7451				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7452				    BPF_H, 0xFF00);
7453				gen_not(b1);
7454
7455				/* ether[off_mac] & 1 != 0 */
7456				b0 = gen_mac_multicast(off_mac);
7457				gen_and(b1, b0);
7458				return b0;
7459			}
7460			break;
7461		default:
7462			break;
7463		}
7464		/* Link not known to support multicasts */
7465		break;
7466
7467	case Q_IP:
7468		b0 = gen_linktype(ETHERTYPE_IP);
7469		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7470		gen_and(b0, b1);
7471		return b1;
7472
7473#ifdef INET6
7474	case Q_IPV6:
7475		b0 = gen_linktype(ETHERTYPE_IPV6);
7476		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7477		gen_and(b0, b1);
7478		return b1;
7479#endif /* INET6 */
7480	}
7481	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7482	/* NOTREACHED */
7483	return NULL;
7484}
7485
7486/*
7487 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7488 * Outbound traffic is sent by this machine, while inbound traffic is
7489 * sent by a remote machine (and may include packets destined for a
7490 * unicast or multicast link-layer address we are not subscribing to).
7491 * These are the same definitions implemented by pcap_setdirection().
7492 * Capturing only unicast traffic destined for this host is probably
7493 * better accomplished using a higher-layer filter.
7494 */
7495struct block *
7496gen_inbound(dir)
7497	int dir;
7498{
7499	register struct block *b0;
7500
7501	/*
7502	 * Only some data link types support inbound/outbound qualifiers.
7503	 */
7504	switch (linktype) {
7505	case DLT_SLIP:
7506		b0 = gen_relation(BPF_JEQ,
7507			  gen_load(Q_LINK, gen_loadi(0), 1),
7508			  gen_loadi(0),
7509			  dir);
7510		break;
7511
7512	case DLT_IPNET:
7513		if (dir) {
7514			/* match outgoing packets */
7515			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7516		} else {
7517			/* match incoming packets */
7518			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7519		}
7520		break;
7521
7522	case DLT_LINUX_SLL:
7523		/* match outgoing packets */
7524		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7525		if (!dir) {
7526			/* to filter on inbound traffic, invert the match */
7527			gen_not(b0);
7528		}
7529		break;
7530
7531#ifdef HAVE_NET_PFVAR_H
7532	case DLT_PFLOG:
7533		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7534		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7535		break;
7536#endif
7537
7538	case DLT_PPP_PPPD:
7539		if (dir) {
7540			/* match outgoing packets */
7541			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7542		} else {
7543			/* match incoming packets */
7544			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7545		}
7546		break;
7547
7548        case DLT_JUNIPER_MFR:
7549        case DLT_JUNIPER_MLFR:
7550        case DLT_JUNIPER_MLPPP:
7551	case DLT_JUNIPER_ATM1:
7552	case DLT_JUNIPER_ATM2:
7553	case DLT_JUNIPER_PPPOE:
7554	case DLT_JUNIPER_PPPOE_ATM:
7555        case DLT_JUNIPER_GGSN:
7556        case DLT_JUNIPER_ES:
7557        case DLT_JUNIPER_MONITOR:
7558        case DLT_JUNIPER_SERVICES:
7559        case DLT_JUNIPER_ETHER:
7560        case DLT_JUNIPER_PPP:
7561        case DLT_JUNIPER_FRELAY:
7562        case DLT_JUNIPER_CHDLC:
7563        case DLT_JUNIPER_VP:
7564        case DLT_JUNIPER_ST:
7565        case DLT_JUNIPER_ISM:
7566        case DLT_JUNIPER_VS:
7567        case DLT_JUNIPER_SRX_E2E:
7568        case DLT_JUNIPER_FIBRECHANNEL:
7569	case DLT_JUNIPER_ATM_CEMIC:
7570
7571		/* juniper flags (including direction) are stored
7572		 * the byte after the 3-byte magic number */
7573		if (dir) {
7574			/* match outgoing packets */
7575			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7576		} else {
7577			/* match incoming packets */
7578			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7579		}
7580		break;
7581
7582	default:
7583		/*
7584		 * If we have packet meta-data indicating a direction,
7585		 * check it, otherwise give up as this link-layer type
7586		 * has nothing in the packet data.
7587		 */
7588#if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7589		/*
7590		 * We infer that this is Linux with PF_PACKET support.
7591		 * If this is a *live* capture, we can look at
7592		 * special meta-data in the filter expression;
7593		 * if it's a savefile, we can't.
7594		 */
7595		if (bpf_pcap->sf.rfile != NULL) {
7596			/* We have a FILE *, so this is a savefile */
7597			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7598			    linktype);
7599			b0 = NULL;
7600			/* NOTREACHED */
7601		}
7602		/* match outgoing packets */
7603		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7604		             PACKET_OUTGOING);
7605		if (!dir) {
7606			/* to filter on inbound traffic, invert the match */
7607			gen_not(b0);
7608		}
7609#else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7610		bpf_error("inbound/outbound not supported on linktype %d",
7611		    linktype);
7612		b0 = NULL;
7613		/* NOTREACHED */
7614#endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7615	}
7616	return (b0);
7617}
7618
7619#ifdef HAVE_NET_PFVAR_H
7620/* PF firewall log matched interface */
7621struct block *
7622gen_pf_ifname(const char *ifname)
7623{
7624	struct block *b0;
7625	u_int len, off;
7626
7627	if (linktype != DLT_PFLOG) {
7628		bpf_error("ifname supported only on PF linktype");
7629		/* NOTREACHED */
7630	}
7631	len = sizeof(((struct pfloghdr *)0)->ifname);
7632	off = offsetof(struct pfloghdr, ifname);
7633	if (strlen(ifname) >= len) {
7634		bpf_error("ifname interface names can only be %d characters",
7635		    len-1);
7636		/* NOTREACHED */
7637	}
7638	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7639	return (b0);
7640}
7641
7642/* PF firewall log ruleset name */
7643struct block *
7644gen_pf_ruleset(char *ruleset)
7645{
7646	struct block *b0;
7647
7648	if (linktype != DLT_PFLOG) {
7649		bpf_error("ruleset supported only on PF linktype");
7650		/* NOTREACHED */
7651	}
7652
7653	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7654		bpf_error("ruleset names can only be %ld characters",
7655		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7656		/* NOTREACHED */
7657	}
7658
7659	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7660	    strlen(ruleset), (const u_char *)ruleset);
7661	return (b0);
7662}
7663
7664/* PF firewall log rule number */
7665struct block *
7666gen_pf_rnr(int rnr)
7667{
7668	struct block *b0;
7669
7670	if (linktype != DLT_PFLOG) {
7671		bpf_error("rnr supported only on PF linktype");
7672		/* NOTREACHED */
7673	}
7674
7675	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7676		 (bpf_int32)rnr);
7677	return (b0);
7678}
7679
7680/* PF firewall log sub-rule number */
7681struct block *
7682gen_pf_srnr(int srnr)
7683{
7684	struct block *b0;
7685
7686	if (linktype != DLT_PFLOG) {
7687		bpf_error("srnr supported only on PF linktype");
7688		/* NOTREACHED */
7689	}
7690
7691	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7692	    (bpf_int32)srnr);
7693	return (b0);
7694}
7695
7696/* PF firewall log reason code */
7697struct block *
7698gen_pf_reason(int reason)
7699{
7700	struct block *b0;
7701
7702	if (linktype != DLT_PFLOG) {
7703		bpf_error("reason supported only on PF linktype");
7704		/* NOTREACHED */
7705	}
7706
7707	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7708	    (bpf_int32)reason);
7709	return (b0);
7710}
7711
7712/* PF firewall log action */
7713struct block *
7714gen_pf_action(int action)
7715{
7716	struct block *b0;
7717
7718	if (linktype != DLT_PFLOG) {
7719		bpf_error("action supported only on PF linktype");
7720		/* NOTREACHED */
7721	}
7722
7723	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7724	    (bpf_int32)action);
7725	return (b0);
7726}
7727#else /* !HAVE_NET_PFVAR_H */
7728struct block *
7729gen_pf_ifname(const char *ifname)
7730{
7731	bpf_error("libpcap was compiled without pf support");
7732	/* NOTREACHED */
7733	return (NULL);
7734}
7735
7736struct block *
7737gen_pf_ruleset(char *ruleset)
7738{
7739	bpf_error("libpcap was compiled on a machine without pf support");
7740	/* NOTREACHED */
7741	return (NULL);
7742}
7743
7744struct block *
7745gen_pf_rnr(int rnr)
7746{
7747	bpf_error("libpcap was compiled on a machine without pf support");
7748	/* NOTREACHED */
7749	return (NULL);
7750}
7751
7752struct block *
7753gen_pf_srnr(int srnr)
7754{
7755	bpf_error("libpcap was compiled on a machine without pf support");
7756	/* NOTREACHED */
7757	return (NULL);
7758}
7759
7760struct block *
7761gen_pf_reason(int reason)
7762{
7763	bpf_error("libpcap was compiled on a machine without pf support");
7764	/* NOTREACHED */
7765	return (NULL);
7766}
7767
7768struct block *
7769gen_pf_action(int action)
7770{
7771	bpf_error("libpcap was compiled on a machine without pf support");
7772	/* NOTREACHED */
7773	return (NULL);
7774}
7775#endif /* HAVE_NET_PFVAR_H */
7776
7777/* IEEE 802.11 wireless header */
7778struct block *
7779gen_p80211_type(int type, int mask)
7780{
7781	struct block *b0;
7782
7783	switch (linktype) {
7784
7785	case DLT_IEEE802_11:
7786	case DLT_PRISM_HEADER:
7787	case DLT_IEEE802_11_RADIO_AVS:
7788	case DLT_IEEE802_11_RADIO:
7789		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7790		    (bpf_int32)mask);
7791		break;
7792
7793	default:
7794		bpf_error("802.11 link-layer types supported only on 802.11");
7795		/* NOTREACHED */
7796	}
7797
7798	return (b0);
7799}
7800
7801struct block *
7802gen_p80211_fcdir(int fcdir)
7803{
7804	struct block *b0;
7805
7806	switch (linktype) {
7807
7808	case DLT_IEEE802_11:
7809	case DLT_PRISM_HEADER:
7810	case DLT_IEEE802_11_RADIO_AVS:
7811	case DLT_IEEE802_11_RADIO:
7812		break;
7813
7814	default:
7815		bpf_error("frame direction supported only with 802.11 headers");
7816		/* NOTREACHED */
7817	}
7818
7819	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7820		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7821
7822	return (b0);
7823}
7824
7825struct block *
7826gen_acode(eaddr, q)
7827	register const u_char *eaddr;
7828	struct qual q;
7829{
7830	switch (linktype) {
7831
7832	case DLT_ARCNET:
7833	case DLT_ARCNET_LINUX:
7834		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7835		    q.proto == Q_LINK)
7836			return (gen_ahostop(eaddr, (int)q.dir));
7837		else {
7838			bpf_error("ARCnet address used in non-arc expression");
7839			/* NOTREACHED */
7840		}
7841		break;
7842
7843	default:
7844		bpf_error("aid supported only on ARCnet");
7845		/* NOTREACHED */
7846	}
7847	bpf_error("ARCnet address used in non-arc expression");
7848	/* NOTREACHED */
7849	return NULL;
7850}
7851
7852static struct block *
7853gen_ahostop(eaddr, dir)
7854	register const u_char *eaddr;
7855	register int dir;
7856{
7857	register struct block *b0, *b1;
7858
7859	switch (dir) {
7860	/* src comes first, different from Ethernet */
7861	case Q_SRC:
7862		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7863
7864	case Q_DST:
7865		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7866
7867	case Q_AND:
7868		b0 = gen_ahostop(eaddr, Q_SRC);
7869		b1 = gen_ahostop(eaddr, Q_DST);
7870		gen_and(b0, b1);
7871		return b1;
7872
7873	case Q_DEFAULT:
7874	case Q_OR:
7875		b0 = gen_ahostop(eaddr, Q_SRC);
7876		b1 = gen_ahostop(eaddr, Q_DST);
7877		gen_or(b0, b1);
7878		return b1;
7879
7880	case Q_ADDR1:
7881		bpf_error("'addr1' is only supported on 802.11");
7882		break;
7883
7884	case Q_ADDR2:
7885		bpf_error("'addr2' is only supported on 802.11");
7886		break;
7887
7888	case Q_ADDR3:
7889		bpf_error("'addr3' is only supported on 802.11");
7890		break;
7891
7892	case Q_ADDR4:
7893		bpf_error("'addr4' is only supported on 802.11");
7894		break;
7895
7896	case Q_RA:
7897		bpf_error("'ra' is only supported on 802.11");
7898		break;
7899
7900	case Q_TA:
7901		bpf_error("'ta' is only supported on 802.11");
7902		break;
7903	}
7904	abort();
7905	/* NOTREACHED */
7906}
7907
7908/*
7909 * support IEEE 802.1Q VLAN trunk over ethernet
7910 */
7911struct block *
7912gen_vlan(vlan_num)
7913	int vlan_num;
7914{
7915	struct	block	*b0, *b1;
7916
7917	/* can't check for VLAN-encapsulated packets inside MPLS */
7918	if (label_stack_depth > 0)
7919		bpf_error("no VLAN match after MPLS");
7920
7921	/*
7922	 * Check for a VLAN packet, and then change the offsets to point
7923	 * to the type and data fields within the VLAN packet.  Just
7924	 * increment the offsets, so that we can support a hierarchy, e.g.
7925	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7926	 * VLAN 100.
7927	 *
7928	 * XXX - this is a bit of a kludge.  If we were to split the
7929	 * compiler into a parser that parses an expression and
7930	 * generates an expression tree, and a code generator that
7931	 * takes an expression tree (which could come from our
7932	 * parser or from some other parser) and generates BPF code,
7933	 * we could perhaps make the offsets parameters of routines
7934	 * and, in the handler for an "AND" node, pass to subnodes
7935	 * other than the VLAN node the adjusted offsets.
7936	 *
7937	 * This would mean that "vlan" would, instead of changing the
7938	 * behavior of *all* tests after it, change only the behavior
7939	 * of tests ANDed with it.  That would change the documented
7940	 * semantics of "vlan", which might break some expressions.
7941	 * However, it would mean that "(vlan and ip) or ip" would check
7942	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7943	 * checking only for VLAN-encapsulated IP, so that could still
7944	 * be considered worth doing; it wouldn't break expressions
7945	 * that are of the form "vlan and ..." or "vlan N and ...",
7946	 * which I suspect are the most common expressions involving
7947	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7948	 * would really want, now, as all the "or ..." tests would
7949	 * be done assuming a VLAN, even though the "or" could be viewed
7950	 * as meaning "or, if this isn't a VLAN packet...".
7951	 */
7952	orig_nl = off_nl;
7953
7954	switch (linktype) {
7955
7956	case DLT_EN10MB:
7957	case DLT_NETANALYZER:
7958	case DLT_NETANALYZER_TRANSPARENT:
7959		/* check for VLAN, including QinQ */
7960		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7961		    (bpf_int32)ETHERTYPE_8021Q);
7962		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7963		    (bpf_int32)ETHERTYPE_8021QINQ);
7964		gen_or(b0,b1);
7965		b0 = b1;
7966
7967		/* If a specific VLAN is requested, check VLAN id */
7968		if (vlan_num >= 0) {
7969			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7970			    (bpf_int32)vlan_num, 0x0fff);
7971			gen_and(b0, b1);
7972			b0 = b1;
7973		}
7974
7975		off_macpl += 4;
7976		off_linktype += 4;
7977#if 0
7978		off_nl_nosnap += 4;
7979		off_nl += 4;
7980#endif
7981		break;
7982
7983	default:
7984		bpf_error("no VLAN support for data link type %d",
7985		      linktype);
7986		/*NOTREACHED*/
7987	}
7988
7989	return (b0);
7990}
7991
7992/*
7993 * support for MPLS
7994 */
7995struct block *
7996gen_mpls(label_num)
7997	int label_num;
7998{
7999	struct	block	*b0,*b1;
8000
8001	/*
8002	 * Change the offsets to point to the type and data fields within
8003	 * the MPLS packet.  Just increment the offsets, so that we
8004	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8005	 * capture packets with an outer label of 100000 and an inner
8006	 * label of 1024.
8007	 *
8008	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8009	 */
8010        orig_nl = off_nl;
8011
8012        if (label_stack_depth > 0) {
8013            /* just match the bottom-of-stack bit clear */
8014            b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
8015        } else {
8016            /*
8017             * Indicate that we're checking MPLS-encapsulated headers,
8018             * to make sure higher level code generators don't try to
8019             * match against IP-related protocols such as Q_ARP, Q_RARP
8020             * etc.
8021             */
8022            switch (linktype) {
8023
8024            case DLT_C_HDLC: /* fall through */
8025            case DLT_EN10MB:
8026            case DLT_NETANALYZER:
8027            case DLT_NETANALYZER_TRANSPARENT:
8028                    b0 = gen_linktype(ETHERTYPE_MPLS);
8029                    break;
8030
8031            case DLT_PPP:
8032                    b0 = gen_linktype(PPP_MPLS_UCAST);
8033                    break;
8034
8035                    /* FIXME add other DLT_s ...
8036                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
8037                     * leave it for now */
8038
8039            default:
8040                    bpf_error("no MPLS support for data link type %d",
8041                          linktype);
8042                    b0 = NULL;
8043                    /*NOTREACHED*/
8044                    break;
8045            }
8046        }
8047
8048	/* If a specific MPLS label is requested, check it */
8049	if (label_num >= 0) {
8050		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8051		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8052		    0xfffff000); /* only compare the first 20 bits */
8053		gen_and(b0, b1);
8054		b0 = b1;
8055	}
8056
8057        off_nl_nosnap += 4;
8058        off_nl += 4;
8059        label_stack_depth++;
8060	return (b0);
8061}
8062
8063/*
8064 * Support PPPOE discovery and session.
8065 */
8066struct block *
8067gen_pppoed()
8068{
8069	/* check for PPPoE discovery */
8070	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8071}
8072
8073struct block *
8074gen_pppoes()
8075{
8076	struct block *b0;
8077
8078	/*
8079	 * Test against the PPPoE session link-layer type.
8080	 */
8081	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8082
8083	/*
8084	 * Change the offsets to point to the type and data fields within
8085	 * the PPP packet, and note that this is PPPoE rather than
8086	 * raw PPP.
8087	 *
8088	 * XXX - this is a bit of a kludge.  If we were to split the
8089	 * compiler into a parser that parses an expression and
8090	 * generates an expression tree, and a code generator that
8091	 * takes an expression tree (which could come from our
8092	 * parser or from some other parser) and generates BPF code,
8093	 * we could perhaps make the offsets parameters of routines
8094	 * and, in the handler for an "AND" node, pass to subnodes
8095	 * other than the PPPoE node the adjusted offsets.
8096	 *
8097	 * This would mean that "pppoes" would, instead of changing the
8098	 * behavior of *all* tests after it, change only the behavior
8099	 * of tests ANDed with it.  That would change the documented
8100	 * semantics of "pppoes", which might break some expressions.
8101	 * However, it would mean that "(pppoes and ip) or ip" would check
8102	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8103	 * checking only for VLAN-encapsulated IP, so that could still
8104	 * be considered worth doing; it wouldn't break expressions
8105	 * that are of the form "pppoes and ..." which I suspect are the
8106	 * most common expressions involving "pppoes".  "pppoes or ..."
8107	 * doesn't necessarily do what the user would really want, now,
8108	 * as all the "or ..." tests would be done assuming PPPoE, even
8109	 * though the "or" could be viewed as meaning "or, if this isn't
8110	 * a PPPoE packet...".
8111	 */
8112	orig_linktype = off_linktype;	/* save original values */
8113	orig_nl = off_nl;
8114	is_pppoes = 1;
8115
8116	/*
8117	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8118	 * PPPoE header, followed by a PPP packet.
8119	 *
8120	 * There is no HDLC encapsulation for the PPP packet (it's
8121	 * encapsulated in PPPoES instead), so the link-layer type
8122	 * starts at the first byte of the PPP packet.  For PPPoE,
8123	 * that offset is relative to the beginning of the total
8124	 * link-layer payload, including any 802.2 LLC header, so
8125	 * it's 6 bytes past off_nl.
8126	 */
8127	off_linktype = off_nl + 6;
8128
8129	/*
8130	 * The network-layer offsets are relative to the beginning
8131	 * of the MAC-layer payload; that's past the 6-byte
8132	 * PPPoE header and the 2-byte PPP header.
8133	 */
8134	off_nl = 6+2;
8135	off_nl_nosnap = 6+2;
8136
8137	return b0;
8138}
8139
8140struct block *
8141gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8142	int atmfield;
8143	bpf_int32 jvalue;
8144	bpf_u_int32 jtype;
8145	int reverse;
8146{
8147	struct block *b0;
8148
8149	switch (atmfield) {
8150
8151	case A_VPI:
8152		if (!is_atm)
8153			bpf_error("'vpi' supported only on raw ATM");
8154		if (off_vpi == (u_int)-1)
8155			abort();
8156		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8157		    reverse, jvalue);
8158		break;
8159
8160	case A_VCI:
8161		if (!is_atm)
8162			bpf_error("'vci' supported only on raw ATM");
8163		if (off_vci == (u_int)-1)
8164			abort();
8165		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8166		    reverse, jvalue);
8167		break;
8168
8169	case A_PROTOTYPE:
8170		if (off_proto == (u_int)-1)
8171			abort();	/* XXX - this isn't on FreeBSD */
8172		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8173		    reverse, jvalue);
8174		break;
8175
8176	case A_MSGTYPE:
8177		if (off_payload == (u_int)-1)
8178			abort();
8179		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8180		    0xffffffff, jtype, reverse, jvalue);
8181		break;
8182
8183	case A_CALLREFTYPE:
8184		if (!is_atm)
8185			bpf_error("'callref' supported only on raw ATM");
8186		if (off_proto == (u_int)-1)
8187			abort();
8188		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8189		    jtype, reverse, jvalue);
8190		break;
8191
8192	default:
8193		abort();
8194	}
8195	return b0;
8196}
8197
8198struct block *
8199gen_atmtype_abbrev(type)
8200	int type;
8201{
8202	struct block *b0, *b1;
8203
8204	switch (type) {
8205
8206	case A_METAC:
8207		/* Get all packets in Meta signalling Circuit */
8208		if (!is_atm)
8209			bpf_error("'metac' supported only on raw ATM");
8210		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8211		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8212		gen_and(b0, b1);
8213		break;
8214
8215	case A_BCC:
8216		/* Get all packets in Broadcast Circuit*/
8217		if (!is_atm)
8218			bpf_error("'bcc' supported only on raw ATM");
8219		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8220		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8221		gen_and(b0, b1);
8222		break;
8223
8224	case A_OAMF4SC:
8225		/* Get all cells in Segment OAM F4 circuit*/
8226		if (!is_atm)
8227			bpf_error("'oam4sc' supported only on raw ATM");
8228		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8229		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8230		gen_and(b0, b1);
8231		break;
8232
8233	case A_OAMF4EC:
8234		/* Get all cells in End-to-End OAM F4 Circuit*/
8235		if (!is_atm)
8236			bpf_error("'oam4ec' supported only on raw ATM");
8237		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8238		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8239		gen_and(b0, b1);
8240		break;
8241
8242	case A_SC:
8243		/*  Get all packets in connection Signalling Circuit */
8244		if (!is_atm)
8245			bpf_error("'sc' supported only on raw ATM");
8246		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8247		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8248		gen_and(b0, b1);
8249		break;
8250
8251	case A_ILMIC:
8252		/* Get all packets in ILMI Circuit */
8253		if (!is_atm)
8254			bpf_error("'ilmic' supported only on raw ATM");
8255		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8256		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8257		gen_and(b0, b1);
8258		break;
8259
8260	case A_LANE:
8261		/* Get all LANE packets */
8262		if (!is_atm)
8263			bpf_error("'lane' supported only on raw ATM");
8264		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8265
8266		/*
8267		 * Arrange that all subsequent tests assume LANE
8268		 * rather than LLC-encapsulated packets, and set
8269		 * the offsets appropriately for LANE-encapsulated
8270		 * Ethernet.
8271		 *
8272		 * "off_mac" is the offset of the Ethernet header,
8273		 * which is 2 bytes past the ATM pseudo-header
8274		 * (skipping the pseudo-header and 2-byte LE Client
8275		 * field).  The other offsets are Ethernet offsets
8276		 * relative to "off_mac".
8277		 */
8278		is_lane = 1;
8279		off_mac = off_payload + 2;	/* MAC header */
8280		off_linktype = off_mac + 12;
8281		off_macpl = off_mac + 14;	/* Ethernet */
8282		off_nl = 0;			/* Ethernet II */
8283		off_nl_nosnap = 3;		/* 802.3+802.2 */
8284		break;
8285
8286	case A_LLC:
8287		/* Get all LLC-encapsulated packets */
8288		if (!is_atm)
8289			bpf_error("'llc' supported only on raw ATM");
8290		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8291		is_lane = 0;
8292		break;
8293
8294	default:
8295		abort();
8296	}
8297	return b1;
8298}
8299
8300/*
8301 * Filtering for MTP2 messages based on li value
8302 * FISU, length is null
8303 * LSSU, length is 1 or 2
8304 * MSU, length is 3 or more
8305 */
8306struct block *
8307gen_mtp2type_abbrev(type)
8308	int type;
8309{
8310	struct block *b0, *b1;
8311
8312	switch (type) {
8313
8314	case M_FISU:
8315		if ( (linktype != DLT_MTP2) &&
8316		     (linktype != DLT_ERF) &&
8317		     (linktype != DLT_MTP2_WITH_PHDR) )
8318			bpf_error("'fisu' supported only on MTP2");
8319		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8320		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8321		break;
8322
8323	case M_LSSU:
8324		if ( (linktype != DLT_MTP2) &&
8325		     (linktype != DLT_ERF) &&
8326		     (linktype != DLT_MTP2_WITH_PHDR) )
8327			bpf_error("'lssu' supported only on MTP2");
8328		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8329		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8330		gen_and(b1, b0);
8331		break;
8332
8333	case M_MSU:
8334		if ( (linktype != DLT_MTP2) &&
8335		     (linktype != DLT_ERF) &&
8336		     (linktype != DLT_MTP2_WITH_PHDR) )
8337			bpf_error("'msu' supported only on MTP2");
8338		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8339		break;
8340
8341	default:
8342		abort();
8343	}
8344	return b0;
8345}
8346
8347struct block *
8348gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8349	int mtp3field;
8350	bpf_u_int32 jvalue;
8351	bpf_u_int32 jtype;
8352	int reverse;
8353{
8354	struct block *b0;
8355	bpf_u_int32 val1 , val2 , val3;
8356
8357	switch (mtp3field) {
8358
8359	case M_SIO:
8360		if (off_sio == (u_int)-1)
8361			bpf_error("'sio' supported only on SS7");
8362		/* sio coded on 1 byte so max value 255 */
8363		if(jvalue > 255)
8364		        bpf_error("sio value %u too big; max value = 255",
8365		            jvalue);
8366		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8367		    (u_int)jtype, reverse, (u_int)jvalue);
8368		break;
8369
8370        case M_OPC:
8371	        if (off_opc == (u_int)-1)
8372			bpf_error("'opc' supported only on SS7");
8373		/* opc coded on 14 bits so max value 16383 */
8374		if (jvalue > 16383)
8375		        bpf_error("opc value %u too big; max value = 16383",
8376		            jvalue);
8377		/* the following instructions are made to convert jvalue
8378		 * to the form used to write opc in an ss7 message*/
8379		val1 = jvalue & 0x00003c00;
8380		val1 = val1 >>10;
8381		val2 = jvalue & 0x000003fc;
8382		val2 = val2 <<6;
8383		val3 = jvalue & 0x00000003;
8384		val3 = val3 <<22;
8385		jvalue = val1 + val2 + val3;
8386		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8387		    (u_int)jtype, reverse, (u_int)jvalue);
8388		break;
8389
8390	case M_DPC:
8391	        if (off_dpc == (u_int)-1)
8392			bpf_error("'dpc' supported only on SS7");
8393		/* dpc coded on 14 bits so max value 16383 */
8394		if (jvalue > 16383)
8395		        bpf_error("dpc value %u too big; max value = 16383",
8396		            jvalue);
8397		/* the following instructions are made to convert jvalue
8398		 * to the forme used to write dpc in an ss7 message*/
8399		val1 = jvalue & 0x000000ff;
8400		val1 = val1 << 24;
8401		val2 = jvalue & 0x00003f00;
8402		val2 = val2 << 8;
8403		jvalue = val1 + val2;
8404		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8405		    (u_int)jtype, reverse, (u_int)jvalue);
8406		break;
8407
8408	case M_SLS:
8409	        if (off_sls == (u_int)-1)
8410			bpf_error("'sls' supported only on SS7");
8411		/* sls coded on 4 bits so max value 15 */
8412		if (jvalue > 15)
8413		         bpf_error("sls value %u too big; max value = 15",
8414		             jvalue);
8415		/* the following instruction is made to convert jvalue
8416		 * to the forme used to write sls in an ss7 message*/
8417		jvalue = jvalue << 4;
8418		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8419		    (u_int)jtype,reverse, (u_int)jvalue);
8420		break;
8421
8422	default:
8423		abort();
8424	}
8425	return b0;
8426}
8427
8428static struct block *
8429gen_msg_abbrev(type)
8430	int type;
8431{
8432	struct block *b1;
8433
8434	/*
8435	 * Q.2931 signalling protocol messages for handling virtual circuits
8436	 * establishment and teardown
8437	 */
8438	switch (type) {
8439
8440	case A_SETUP:
8441		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8442		break;
8443
8444	case A_CALLPROCEED:
8445		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8446		break;
8447
8448	case A_CONNECT:
8449		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8450		break;
8451
8452	case A_CONNECTACK:
8453		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8454		break;
8455
8456	case A_RELEASE:
8457		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8458		break;
8459
8460	case A_RELEASE_DONE:
8461		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8462		break;
8463
8464	default:
8465		abort();
8466	}
8467	return b1;
8468}
8469
8470struct block *
8471gen_atmmulti_abbrev(type)
8472	int type;
8473{
8474	struct block *b0, *b1;
8475
8476	switch (type) {
8477
8478	case A_OAM:
8479		if (!is_atm)
8480			bpf_error("'oam' supported only on raw ATM");
8481		b1 = gen_atmmulti_abbrev(A_OAMF4);
8482		break;
8483
8484	case A_OAMF4:
8485		if (!is_atm)
8486			bpf_error("'oamf4' supported only on raw ATM");
8487		/* OAM F4 type */
8488		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8489		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8490		gen_or(b0, b1);
8491		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8492		gen_and(b0, b1);
8493		break;
8494
8495	case A_CONNECTMSG:
8496		/*
8497		 * Get Q.2931 signalling messages for switched
8498		 * virtual connection
8499		 */
8500		if (!is_atm)
8501			bpf_error("'connectmsg' supported only on raw ATM");
8502		b0 = gen_msg_abbrev(A_SETUP);
8503		b1 = gen_msg_abbrev(A_CALLPROCEED);
8504		gen_or(b0, b1);
8505		b0 = gen_msg_abbrev(A_CONNECT);
8506		gen_or(b0, b1);
8507		b0 = gen_msg_abbrev(A_CONNECTACK);
8508		gen_or(b0, b1);
8509		b0 = gen_msg_abbrev(A_RELEASE);
8510		gen_or(b0, b1);
8511		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8512		gen_or(b0, b1);
8513		b0 = gen_atmtype_abbrev(A_SC);
8514		gen_and(b0, b1);
8515		break;
8516
8517	case A_METACONNECT:
8518		if (!is_atm)
8519			bpf_error("'metaconnect' supported only on raw ATM");
8520		b0 = gen_msg_abbrev(A_SETUP);
8521		b1 = gen_msg_abbrev(A_CALLPROCEED);
8522		gen_or(b0, b1);
8523		b0 = gen_msg_abbrev(A_CONNECT);
8524		gen_or(b0, b1);
8525		b0 = gen_msg_abbrev(A_RELEASE);
8526		gen_or(b0, b1);
8527		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8528		gen_or(b0, b1);
8529		b0 = gen_atmtype_abbrev(A_METAC);
8530		gen_and(b0, b1);
8531		break;
8532
8533	default:
8534		abort();
8535	}
8536	return b1;
8537}
8538