1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 *
22 * $FreeBSD: releng/10.3/contrib/libpcap/gencode.c 251129 2013-05-30 08:02:00Z delphij $
23 */
24#ifndef lint
25static const char rcsid[] _U_ =
26    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
27#endif
28
29#ifdef HAVE_CONFIG_H
30#include "config.h"
31#endif
32
33#ifdef WIN32
34#include <pcap-stdinc.h>
35#else /* WIN32 */
36#if HAVE_INTTYPES_H
37#include <inttypes.h>
38#elif HAVE_STDINT_H
39#include <stdint.h>
40#endif
41#ifdef HAVE_SYS_BITYPES_H
42#include <sys/bitypes.h>
43#endif
44#include <sys/types.h>
45#include <sys/socket.h>
46#endif /* WIN32 */
47
48/*
49 * XXX - why was this included even on UNIX?
50 */
51#ifdef __MINGW32__
52#include "ip6_misc.h"
53#endif
54
55#ifndef WIN32
56
57#ifdef __NetBSD__
58#include <sys/param.h>
59#endif
60
61#include <netinet/in.h>
62#include <arpa/inet.h>
63
64#endif /* WIN32 */
65
66#include <stdlib.h>
67#include <string.h>
68#include <memory.h>
69#include <setjmp.h>
70#include <stdarg.h>
71
72#ifdef MSDOS
73#include "pcap-dos.h"
74#endif
75
76#include "pcap-int.h"
77
78#include "ethertype.h"
79#include "nlpid.h"
80#include "llc.h"
81#include "gencode.h"
82#include "ieee80211.h"
83#include "atmuni31.h"
84#include "sunatmpos.h"
85#include "ppp.h"
86#include "pcap/sll.h"
87#include "pcap/ipnet.h"
88#include "arcnet.h"
89#if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
90#include <linux/types.h>
91#include <linux/if_packet.h>
92#include <linux/filter.h>
93#endif
94#ifdef HAVE_NET_PFVAR_H
95#include <sys/socket.h>
96#include <net/if.h>
97#include <net/pfvar.h>
98#include <net/if_pflog.h>
99#endif
100#ifndef offsetof
101#define offsetof(s, e) ((size_t)&((s *)0)->e)
102#endif
103#ifdef INET6
104#ifndef WIN32
105#include <netdb.h>	/* for "struct addrinfo" */
106#endif /* WIN32 */
107#endif /*INET6*/
108#include <pcap/namedb.h>
109
110#define ETHERMTU	1500
111
112#ifndef IPPROTO_HOPOPTS
113#define IPPROTO_HOPOPTS 0
114#endif
115#ifndef IPPROTO_ROUTING
116#define IPPROTO_ROUTING 43
117#endif
118#ifndef IPPROTO_FRAGMENT
119#define IPPROTO_FRAGMENT 44
120#endif
121#ifndef IPPROTO_DSTOPTS
122#define IPPROTO_DSTOPTS 60
123#endif
124#ifndef IPPROTO_SCTP
125#define IPPROTO_SCTP 132
126#endif
127
128#ifdef HAVE_OS_PROTO_H
129#include "os-proto.h"
130#endif
131
132#define JMP(c) ((c)|BPF_JMP|BPF_K)
133
134/* Locals */
135static jmp_buf top_ctx;
136static pcap_t *bpf_pcap;
137
138/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
139#ifdef WIN32
140static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
141#else
142static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
143#endif
144
145/* XXX */
146#ifdef PCAP_FDDIPAD
147static int	pcap_fddipad;
148#endif
149
150/* VARARGS */
151void
152bpf_error(const char *fmt, ...)
153{
154	va_list ap;
155
156	va_start(ap, fmt);
157	if (bpf_pcap != NULL)
158		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
159		    fmt, ap);
160	va_end(ap);
161	longjmp(top_ctx, 1);
162	/* NOTREACHED */
163}
164
165static void init_linktype(pcap_t *);
166
167static void init_regs(void);
168static int alloc_reg(void);
169static void free_reg(int);
170
171static struct block *root;
172
173/*
174 * Value passed to gen_load_a() to indicate what the offset argument
175 * is relative to.
176 */
177enum e_offrel {
178	OR_PACKET,	/* relative to the beginning of the packet */
179	OR_LINK,	/* relative to the beginning of the link-layer header */
180	OR_MACPL,	/* relative to the end of the MAC-layer header */
181	OR_NET,		/* relative to the network-layer header */
182	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
183	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
184	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
185};
186
187#ifdef INET6
188/*
189 * As errors are handled by a longjmp, anything allocated must be freed
190 * in the longjmp handler, so it must be reachable from that handler.
191 * One thing that's allocated is the result of pcap_nametoaddrinfo();
192 * it must be freed with freeaddrinfo().  This variable points to any
193 * addrinfo structure that would need to be freed.
194 */
195static struct addrinfo *ai;
196#endif
197
198/*
199 * We divy out chunks of memory rather than call malloc each time so
200 * we don't have to worry about leaking memory.  It's probably
201 * not a big deal if all this memory was wasted but if this ever
202 * goes into a library that would probably not be a good idea.
203 *
204 * XXX - this *is* in a library....
205 */
206#define NCHUNKS 16
207#define CHUNK0SIZE 1024
208struct chunk {
209	u_int n_left;
210	void *m;
211};
212
213static struct chunk chunks[NCHUNKS];
214static int cur_chunk;
215
216static void *newchunk(u_int);
217static void freechunks(void);
218static inline struct block *new_block(int);
219static inline struct slist *new_stmt(int);
220static struct block *gen_retblk(int);
221static inline void syntax(void);
222
223static void backpatch(struct block *, struct block *);
224static void merge(struct block *, struct block *);
225static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
226static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
227static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
228static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
229static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
230static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
231    bpf_u_int32);
232static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
233static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
234    bpf_u_int32, bpf_u_int32, int, bpf_int32);
235static struct slist *gen_load_llrel(u_int, u_int);
236static struct slist *gen_load_macplrel(u_int, u_int);
237static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
238static struct slist *gen_loadx_iphdrlen(void);
239static struct block *gen_uncond(int);
240static inline struct block *gen_true(void);
241static inline struct block *gen_false(void);
242static struct block *gen_ether_linktype(int);
243static struct block *gen_ipnet_linktype(int);
244static struct block *gen_linux_sll_linktype(int);
245static struct slist *gen_load_prism_llprefixlen(void);
246static struct slist *gen_load_avs_llprefixlen(void);
247static struct slist *gen_load_radiotap_llprefixlen(void);
248static struct slist *gen_load_ppi_llprefixlen(void);
249static void insert_compute_vloffsets(struct block *);
250static struct slist *gen_llprefixlen(void);
251static struct slist *gen_off_macpl(void);
252static int ethertype_to_ppptype(int);
253static struct block *gen_linktype(int);
254static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
255static struct block *gen_llc_linktype(int);
256static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
257#ifdef INET6
258static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
259#endif
260static struct block *gen_ahostop(const u_char *, int);
261static struct block *gen_ehostop(const u_char *, int);
262static struct block *gen_fhostop(const u_char *, int);
263static struct block *gen_thostop(const u_char *, int);
264static struct block *gen_wlanhostop(const u_char *, int);
265static struct block *gen_ipfchostop(const u_char *, int);
266static struct block *gen_dnhostop(bpf_u_int32, int);
267static struct block *gen_mpls_linktype(int);
268static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
269#ifdef INET6
270static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
271#endif
272#ifndef INET6
273static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
274#endif
275static struct block *gen_ipfrag(void);
276static struct block *gen_portatom(int, bpf_int32);
277static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
278static struct block *gen_portatom6(int, bpf_int32);
279static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
280struct block *gen_portop(int, int, int);
281static struct block *gen_port(int, int, int);
282struct block *gen_portrangeop(int, int, int, int);
283static struct block *gen_portrange(int, int, int, int);
284struct block *gen_portop6(int, int, int);
285static struct block *gen_port6(int, int, int);
286struct block *gen_portrangeop6(int, int, int, int);
287static struct block *gen_portrange6(int, int, int, int);
288static int lookup_proto(const char *, int);
289static struct block *gen_protochain(int, int, int);
290static struct block *gen_proto(int, int, int);
291static struct slist *xfer_to_x(struct arth *);
292static struct slist *xfer_to_a(struct arth *);
293static struct block *gen_mac_multicast(int);
294static struct block *gen_len(int, int);
295static struct block *gen_check_802_11_data_frame(void);
296
297static struct block *gen_ppi_dlt_check(void);
298static struct block *gen_msg_abbrev(int type);
299
300static void *
301newchunk(n)
302	u_int n;
303{
304	struct chunk *cp;
305	int k;
306	size_t size;
307
308#ifndef __NetBSD__
309	/* XXX Round up to nearest long. */
310	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
311#else
312	/* XXX Round up to structure boundary. */
313	n = ALIGN(n);
314#endif
315
316	cp = &chunks[cur_chunk];
317	if (n > cp->n_left) {
318		++cp, k = ++cur_chunk;
319		if (k >= NCHUNKS)
320			bpf_error("out of memory");
321		size = CHUNK0SIZE << k;
322		cp->m = (void *)malloc(size);
323		if (cp->m == NULL)
324			bpf_error("out of memory");
325		memset((char *)cp->m, 0, size);
326		cp->n_left = size;
327		if (n > size)
328			bpf_error("out of memory");
329	}
330	cp->n_left -= n;
331	return (void *)((char *)cp->m + cp->n_left);
332}
333
334static void
335freechunks()
336{
337	int i;
338
339	cur_chunk = 0;
340	for (i = 0; i < NCHUNKS; ++i)
341		if (chunks[i].m != NULL) {
342			free(chunks[i].m);
343			chunks[i].m = NULL;
344		}
345}
346
347/*
348 * A strdup whose allocations are freed after code generation is over.
349 */
350char *
351sdup(s)
352	register const char *s;
353{
354	int n = strlen(s) + 1;
355	char *cp = newchunk(n);
356
357	strlcpy(cp, s, n);
358	return (cp);
359}
360
361static inline struct block *
362new_block(code)
363	int code;
364{
365	struct block *p;
366
367	p = (struct block *)newchunk(sizeof(*p));
368	p->s.code = code;
369	p->head = p;
370
371	return p;
372}
373
374static inline struct slist *
375new_stmt(code)
376	int code;
377{
378	struct slist *p;
379
380	p = (struct slist *)newchunk(sizeof(*p));
381	p->s.code = code;
382
383	return p;
384}
385
386static struct block *
387gen_retblk(v)
388	int v;
389{
390	struct block *b = new_block(BPF_RET|BPF_K);
391
392	b->s.k = v;
393	return b;
394}
395
396static inline void
397syntax()
398{
399	bpf_error("syntax error in filter expression");
400}
401
402static bpf_u_int32 netmask;
403static int snaplen;
404int no_optimize;
405#ifdef WIN32
406static int
407pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
408	     const char *buf, int optimize, bpf_u_int32 mask);
409
410int
411pcap_compile(pcap_t *p, struct bpf_program *program,
412	     const char *buf, int optimize, bpf_u_int32 mask)
413{
414	int result;
415
416	EnterCriticalSection(&g_PcapCompileCriticalSection);
417
418	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
419
420	LeaveCriticalSection(&g_PcapCompileCriticalSection);
421
422	return result;
423}
424
425static int
426pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
427	     const char *buf, int optimize, bpf_u_int32 mask)
428#else /* WIN32 */
429int
430pcap_compile(pcap_t *p, struct bpf_program *program,
431	     const char *buf, int optimize, bpf_u_int32 mask)
432#endif /* WIN32 */
433{
434	extern int n_errors;
435	const char * volatile xbuf = buf;
436	u_int len;
437
438	/*
439	 * If this pcap_t hasn't been activated, it doesn't have a
440	 * link-layer type, so we can't use it.
441	 */
442	if (!p->activated) {
443		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
444		    "not-yet-activated pcap_t passed to pcap_compile");
445		return (-1);
446	}
447	no_optimize = 0;
448	n_errors = 0;
449	root = NULL;
450	bpf_pcap = p;
451	init_regs();
452	if (setjmp(top_ctx)) {
453#ifdef INET6
454		if (ai != NULL) {
455			freeaddrinfo(ai);
456			ai = NULL;
457		}
458#endif
459		lex_cleanup();
460		freechunks();
461		return (-1);
462	}
463
464	netmask = mask;
465
466	snaplen = pcap_snapshot(p);
467	if (snaplen == 0) {
468		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
469			 "snaplen of 0 rejects all packets");
470		return -1;
471	}
472
473	lex_init(xbuf ? xbuf : "");
474	init_linktype(p);
475	(void)pcap_parse();
476
477	if (n_errors)
478		syntax();
479
480	if (root == NULL)
481		root = gen_retblk(snaplen);
482
483	if (optimize && !no_optimize) {
484		bpf_optimize(&root);
485		if (root == NULL ||
486		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
487			bpf_error("expression rejects all packets");
488	}
489	program->bf_insns = icode_to_fcode(root, &len);
490	program->bf_len = len;
491
492	lex_cleanup();
493	freechunks();
494	return (0);
495}
496
497/*
498 * entry point for using the compiler with no pcap open
499 * pass in all the stuff that is needed explicitly instead.
500 */
501int
502pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
503		    struct bpf_program *program,
504	     const char *buf, int optimize, bpf_u_int32 mask)
505{
506	pcap_t *p;
507	int ret;
508
509	p = pcap_open_dead(linktype_arg, snaplen_arg);
510	if (p == NULL)
511		return (-1);
512	ret = pcap_compile(p, program, buf, optimize, mask);
513	pcap_close(p);
514	return (ret);
515}
516
517/*
518 * Clean up a "struct bpf_program" by freeing all the memory allocated
519 * in it.
520 */
521void
522pcap_freecode(struct bpf_program *program)
523{
524	program->bf_len = 0;
525	if (program->bf_insns != NULL) {
526		free((char *)program->bf_insns);
527		program->bf_insns = NULL;
528	}
529}
530
531/*
532 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
533 * which of the jt and jf fields has been resolved and which is a pointer
534 * back to another unresolved block (or nil).  At least one of the fields
535 * in each block is already resolved.
536 */
537static void
538backpatch(list, target)
539	struct block *list, *target;
540{
541	struct block *next;
542
543	while (list) {
544		if (!list->sense) {
545			next = JT(list);
546			JT(list) = target;
547		} else {
548			next = JF(list);
549			JF(list) = target;
550		}
551		list = next;
552	}
553}
554
555/*
556 * Merge the lists in b0 and b1, using the 'sense' field to indicate
557 * which of jt and jf is the link.
558 */
559static void
560merge(b0, b1)
561	struct block *b0, *b1;
562{
563	register struct block **p = &b0;
564
565	/* Find end of list. */
566	while (*p)
567		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
568
569	/* Concatenate the lists. */
570	*p = b1;
571}
572
573void
574finish_parse(p)
575	struct block *p;
576{
577	struct block *ppi_dlt_check;
578
579	/*
580	 * Insert before the statements of the first (root) block any
581	 * statements needed to load the lengths of any variable-length
582	 * headers into registers.
583	 *
584	 * XXX - a fancier strategy would be to insert those before the
585	 * statements of all blocks that use those lengths and that
586	 * have no predecessors that use them, so that we only compute
587	 * the lengths if we need them.  There might be even better
588	 * approaches than that.
589	 *
590	 * However, those strategies would be more complicated, and
591	 * as we don't generate code to compute a length if the
592	 * program has no tests that use the length, and as most
593	 * tests will probably use those lengths, we would just
594	 * postpone computing the lengths so that it's not done
595	 * for tests that fail early, and it's not clear that's
596	 * worth the effort.
597	 */
598	insert_compute_vloffsets(p->head);
599
600	/*
601	 * For DLT_PPI captures, generate a check of the per-packet
602	 * DLT value to make sure it's DLT_IEEE802_11.
603	 */
604	ppi_dlt_check = gen_ppi_dlt_check();
605	if (ppi_dlt_check != NULL)
606		gen_and(ppi_dlt_check, p);
607
608	backpatch(p, gen_retblk(snaplen));
609	p->sense = !p->sense;
610	backpatch(p, gen_retblk(0));
611	root = p->head;
612}
613
614void
615gen_and(b0, b1)
616	struct block *b0, *b1;
617{
618	backpatch(b0, b1->head);
619	b0->sense = !b0->sense;
620	b1->sense = !b1->sense;
621	merge(b1, b0);
622	b1->sense = !b1->sense;
623	b1->head = b0->head;
624}
625
626void
627gen_or(b0, b1)
628	struct block *b0, *b1;
629{
630	b0->sense = !b0->sense;
631	backpatch(b0, b1->head);
632	b0->sense = !b0->sense;
633	merge(b1, b0);
634	b1->head = b0->head;
635}
636
637void
638gen_not(b)
639	struct block *b;
640{
641	b->sense = !b->sense;
642}
643
644static struct block *
645gen_cmp(offrel, offset, size, v)
646	enum e_offrel offrel;
647	u_int offset, size;
648	bpf_int32 v;
649{
650	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
651}
652
653static struct block *
654gen_cmp_gt(offrel, offset, size, v)
655	enum e_offrel offrel;
656	u_int offset, size;
657	bpf_int32 v;
658{
659	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
660}
661
662static struct block *
663gen_cmp_ge(offrel, offset, size, v)
664	enum e_offrel offrel;
665	u_int offset, size;
666	bpf_int32 v;
667{
668	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
669}
670
671static struct block *
672gen_cmp_lt(offrel, offset, size, v)
673	enum e_offrel offrel;
674	u_int offset, size;
675	bpf_int32 v;
676{
677	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
678}
679
680static struct block *
681gen_cmp_le(offrel, offset, size, v)
682	enum e_offrel offrel;
683	u_int offset, size;
684	bpf_int32 v;
685{
686	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
687}
688
689static struct block *
690gen_mcmp(offrel, offset, size, v, mask)
691	enum e_offrel offrel;
692	u_int offset, size;
693	bpf_int32 v;
694	bpf_u_int32 mask;
695{
696	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
697}
698
699static struct block *
700gen_bcmp(offrel, offset, size, v)
701	enum e_offrel offrel;
702	register u_int offset, size;
703	register const u_char *v;
704{
705	register struct block *b, *tmp;
706
707	b = NULL;
708	while (size >= 4) {
709		register const u_char *p = &v[size - 4];
710		bpf_int32 w = ((bpf_int32)p[0] << 24) |
711		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
712
713		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
714		if (b != NULL)
715			gen_and(b, tmp);
716		b = tmp;
717		size -= 4;
718	}
719	while (size >= 2) {
720		register const u_char *p = &v[size - 2];
721		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
722
723		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
724		if (b != NULL)
725			gen_and(b, tmp);
726		b = tmp;
727		size -= 2;
728	}
729	if (size > 0) {
730		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
731		if (b != NULL)
732			gen_and(b, tmp);
733		b = tmp;
734	}
735	return b;
736}
737
738/*
739 * AND the field of size "size" at offset "offset" relative to the header
740 * specified by "offrel" with "mask", and compare it with the value "v"
741 * with the test specified by "jtype"; if "reverse" is true, the test
742 * should test the opposite of "jtype".
743 */
744static struct block *
745gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
746	enum e_offrel offrel;
747	bpf_int32 v;
748	bpf_u_int32 offset, size, mask, jtype;
749	int reverse;
750{
751	struct slist *s, *s2;
752	struct block *b;
753
754	s = gen_load_a(offrel, offset, size);
755
756	if (mask != 0xffffffff) {
757		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
758		s2->s.k = mask;
759		sappend(s, s2);
760	}
761
762	b = new_block(JMP(jtype));
763	b->stmts = s;
764	b->s.k = v;
765	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
766		gen_not(b);
767	return b;
768}
769
770/*
771 * Various code constructs need to know the layout of the data link
772 * layer.  These variables give the necessary offsets from the beginning
773 * of the packet data.
774 */
775
776/*
777 * This is the offset of the beginning of the link-layer header from
778 * the beginning of the raw packet data.
779 *
780 * It's usually 0, except for 802.11 with a fixed-length radio header.
781 * (For 802.11 with a variable-length radio header, we have to generate
782 * code to compute that offset; off_ll is 0 in that case.)
783 */
784static u_int off_ll;
785
786/*
787 * If there's a variable-length header preceding the link-layer header,
788 * "reg_off_ll" is the register number for a register containing the
789 * length of that header, and therefore the offset of the link-layer
790 * header from the beginning of the raw packet data.  Otherwise,
791 * "reg_off_ll" is -1.
792 */
793static int reg_off_ll;
794
795/*
796 * This is the offset of the beginning of the MAC-layer header from
797 * the beginning of the link-layer header.
798 * It's usually 0, except for ATM LANE, where it's the offset, relative
799 * to the beginning of the raw packet data, of the Ethernet header, and
800 * for Ethernet with various additional information.
801 */
802static u_int off_mac;
803
804/*
805 * This is the offset of the beginning of the MAC-layer payload,
806 * from the beginning of the raw packet data.
807 *
808 * I.e., it's the sum of the length of the link-layer header (without,
809 * for example, any 802.2 LLC header, so it's the MAC-layer
810 * portion of that header), plus any prefix preceding the
811 * link-layer header.
812 */
813static u_int off_macpl;
814
815/*
816 * This is 1 if the offset of the beginning of the MAC-layer payload
817 * from the beginning of the link-layer header is variable-length.
818 */
819static int off_macpl_is_variable;
820
821/*
822 * If the link layer has variable_length headers, "reg_off_macpl"
823 * is the register number for a register containing the length of the
824 * link-layer header plus the length of any variable-length header
825 * preceding the link-layer header.  Otherwise, "reg_off_macpl"
826 * is -1.
827 */
828static int reg_off_macpl;
829
830/*
831 * "off_linktype" is the offset to information in the link-layer header
832 * giving the packet type.  This offset is relative to the beginning
833 * of the link-layer header (i.e., it doesn't include off_ll).
834 *
835 * For Ethernet, it's the offset of the Ethernet type field.
836 *
837 * For link-layer types that always use 802.2 headers, it's the
838 * offset of the LLC header.
839 *
840 * For PPP, it's the offset of the PPP type field.
841 *
842 * For Cisco HDLC, it's the offset of the CHDLC type field.
843 *
844 * For BSD loopback, it's the offset of the AF_ value.
845 *
846 * For Linux cooked sockets, it's the offset of the type field.
847 *
848 * It's set to -1 for no encapsulation, in which case, IP is assumed.
849 */
850static u_int off_linktype;
851
852/*
853 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
854 * checks to check the PPP header, assumed to follow a LAN-style link-
855 * layer header and a PPPoE session header.
856 */
857static int is_pppoes = 0;
858
859/*
860 * TRUE if the link layer includes an ATM pseudo-header.
861 */
862static int is_atm = 0;
863
864/*
865 * TRUE if "lane" appeared in the filter; it causes us to generate
866 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
867 */
868static int is_lane = 0;
869
870/*
871 * These are offsets for the ATM pseudo-header.
872 */
873static u_int off_vpi;
874static u_int off_vci;
875static u_int off_proto;
876
877/*
878 * These are offsets for the MTP2 fields.
879 */
880static u_int off_li;
881
882/*
883 * These are offsets for the MTP3 fields.
884 */
885static u_int off_sio;
886static u_int off_opc;
887static u_int off_dpc;
888static u_int off_sls;
889
890/*
891 * This is the offset of the first byte after the ATM pseudo_header,
892 * or -1 if there is no ATM pseudo-header.
893 */
894static u_int off_payload;
895
896/*
897 * These are offsets to the beginning of the network-layer header.
898 * They are relative to the beginning of the MAC-layer payload (i.e.,
899 * they don't include off_ll or off_macpl).
900 *
901 * If the link layer never uses 802.2 LLC:
902 *
903 *	"off_nl" and "off_nl_nosnap" are the same.
904 *
905 * If the link layer always uses 802.2 LLC:
906 *
907 *	"off_nl" is the offset if there's a SNAP header following
908 *	the 802.2 header;
909 *
910 *	"off_nl_nosnap" is the offset if there's no SNAP header.
911 *
912 * If the link layer is Ethernet:
913 *
914 *	"off_nl" is the offset if the packet is an Ethernet II packet
915 *	(we assume no 802.3+802.2+SNAP);
916 *
917 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
918 *	with an 802.2 header following it.
919 */
920static u_int off_nl;
921static u_int off_nl_nosnap;
922
923static int linktype;
924
925static void
926init_linktype(p)
927	pcap_t *p;
928{
929	linktype = pcap_datalink(p);
930#ifdef PCAP_FDDIPAD
931	pcap_fddipad = p->fddipad;
932#endif
933
934	/*
935	 * Assume it's not raw ATM with a pseudo-header, for now.
936	 */
937	off_mac = 0;
938	is_atm = 0;
939	is_lane = 0;
940	off_vpi = -1;
941	off_vci = -1;
942	off_proto = -1;
943	off_payload = -1;
944
945	/*
946	 * And that we're not doing PPPoE.
947	 */
948	is_pppoes = 0;
949
950	/*
951	 * And assume we're not doing SS7.
952	 */
953	off_li = -1;
954	off_sio = -1;
955	off_opc = -1;
956	off_dpc = -1;
957	off_sls = -1;
958
959	/*
960	 * Also assume it's not 802.11.
961	 */
962	off_ll = 0;
963	off_macpl = 0;
964	off_macpl_is_variable = 0;
965
966	orig_linktype = -1;
967	orig_nl = -1;
968        label_stack_depth = 0;
969
970	reg_off_ll = -1;
971	reg_off_macpl = -1;
972
973	switch (linktype) {
974
975	case DLT_ARCNET:
976		off_linktype = 2;
977		off_macpl = 6;
978		off_nl = 0;		/* XXX in reality, variable! */
979		off_nl_nosnap = 0;	/* no 802.2 LLC */
980		return;
981
982	case DLT_ARCNET_LINUX:
983		off_linktype = 4;
984		off_macpl = 8;
985		off_nl = 0;		/* XXX in reality, variable! */
986		off_nl_nosnap = 0;	/* no 802.2 LLC */
987		return;
988
989	case DLT_EN10MB:
990		off_linktype = 12;
991		off_macpl = 14;		/* Ethernet header length */
992		off_nl = 0;		/* Ethernet II */
993		off_nl_nosnap = 3;	/* 802.3+802.2 */
994		return;
995
996	case DLT_SLIP:
997		/*
998		 * SLIP doesn't have a link level type.  The 16 byte
999		 * header is hacked into our SLIP driver.
1000		 */
1001		off_linktype = -1;
1002		off_macpl = 16;
1003		off_nl = 0;
1004		off_nl_nosnap = 0;	/* no 802.2 LLC */
1005		return;
1006
1007	case DLT_SLIP_BSDOS:
1008		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1009		off_linktype = -1;
1010		/* XXX end */
1011		off_macpl = 24;
1012		off_nl = 0;
1013		off_nl_nosnap = 0;	/* no 802.2 LLC */
1014		return;
1015
1016	case DLT_NULL:
1017	case DLT_LOOP:
1018		off_linktype = 0;
1019		off_macpl = 4;
1020		off_nl = 0;
1021		off_nl_nosnap = 0;	/* no 802.2 LLC */
1022		return;
1023
1024	case DLT_ENC:
1025		off_linktype = 0;
1026		off_macpl = 12;
1027		off_nl = 0;
1028		off_nl_nosnap = 0;	/* no 802.2 LLC */
1029		return;
1030
1031	case DLT_PPP:
1032	case DLT_PPP_PPPD:
1033	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1034	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1035		off_linktype = 2;
1036		off_macpl = 4;
1037		off_nl = 0;
1038		off_nl_nosnap = 0;	/* no 802.2 LLC */
1039		return;
1040
1041	case DLT_PPP_ETHER:
1042		/*
1043		 * This does no include the Ethernet header, and
1044		 * only covers session state.
1045		 */
1046		off_linktype = 6;
1047		off_macpl = 8;
1048		off_nl = 0;
1049		off_nl_nosnap = 0;	/* no 802.2 LLC */
1050		return;
1051
1052	case DLT_PPP_BSDOS:
1053		off_linktype = 5;
1054		off_macpl = 24;
1055		off_nl = 0;
1056		off_nl_nosnap = 0;	/* no 802.2 LLC */
1057		return;
1058
1059	case DLT_FDDI:
1060		/*
1061		 * FDDI doesn't really have a link-level type field.
1062		 * We set "off_linktype" to the offset of the LLC header.
1063		 *
1064		 * To check for Ethernet types, we assume that SSAP = SNAP
1065		 * is being used and pick out the encapsulated Ethernet type.
1066		 * XXX - should we generate code to check for SNAP?
1067		 */
1068		off_linktype = 13;
1069#ifdef PCAP_FDDIPAD
1070		off_linktype += pcap_fddipad;
1071#endif
1072		off_macpl = 13;		/* FDDI MAC header length */
1073#ifdef PCAP_FDDIPAD
1074		off_macpl += pcap_fddipad;
1075#endif
1076		off_nl = 8;		/* 802.2+SNAP */
1077		off_nl_nosnap = 3;	/* 802.2 */
1078		return;
1079
1080	case DLT_IEEE802:
1081		/*
1082		 * Token Ring doesn't really have a link-level type field.
1083		 * We set "off_linktype" to the offset of the LLC header.
1084		 *
1085		 * To check for Ethernet types, we assume that SSAP = SNAP
1086		 * is being used and pick out the encapsulated Ethernet type.
1087		 * XXX - should we generate code to check for SNAP?
1088		 *
1089		 * XXX - the header is actually variable-length.
1090		 * Some various Linux patched versions gave 38
1091		 * as "off_linktype" and 40 as "off_nl"; however,
1092		 * if a token ring packet has *no* routing
1093		 * information, i.e. is not source-routed, the correct
1094		 * values are 20 and 22, as they are in the vanilla code.
1095		 *
1096		 * A packet is source-routed iff the uppermost bit
1097		 * of the first byte of the source address, at an
1098		 * offset of 8, has the uppermost bit set.  If the
1099		 * packet is source-routed, the total number of bytes
1100		 * of routing information is 2 plus bits 0x1F00 of
1101		 * the 16-bit value at an offset of 14 (shifted right
1102		 * 8 - figure out which byte that is).
1103		 */
1104		off_linktype = 14;
1105		off_macpl = 14;		/* Token Ring MAC header length */
1106		off_nl = 8;		/* 802.2+SNAP */
1107		off_nl_nosnap = 3;	/* 802.2 */
1108		return;
1109
1110	case DLT_IEEE802_11:
1111	case DLT_PRISM_HEADER:
1112	case DLT_IEEE802_11_RADIO_AVS:
1113	case DLT_IEEE802_11_RADIO:
1114		/*
1115		 * 802.11 doesn't really have a link-level type field.
1116		 * We set "off_linktype" to the offset of the LLC header.
1117		 *
1118		 * To check for Ethernet types, we assume that SSAP = SNAP
1119		 * is being used and pick out the encapsulated Ethernet type.
1120		 * XXX - should we generate code to check for SNAP?
1121		 *
1122		 * We also handle variable-length radio headers here.
1123		 * The Prism header is in theory variable-length, but in
1124		 * practice it's always 144 bytes long.  However, some
1125		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1126		 * sometimes or always supply an AVS header, so we
1127		 * have to check whether the radio header is a Prism
1128		 * header or an AVS header, so, in practice, it's
1129		 * variable-length.
1130		 */
1131		off_linktype = 24;
1132		off_macpl = 0;		/* link-layer header is variable-length */
1133		off_macpl_is_variable = 1;
1134		off_nl = 8;		/* 802.2+SNAP */
1135		off_nl_nosnap = 3;	/* 802.2 */
1136		return;
1137
1138	case DLT_PPI:
1139		/*
1140		 * At the moment we treat PPI the same way that we treat
1141		 * normal Radiotap encoded packets. The difference is in
1142		 * the function that generates the code at the beginning
1143		 * to compute the header length.  Since this code generator
1144		 * of PPI supports bare 802.11 encapsulation only (i.e.
1145		 * the encapsulated DLT should be DLT_IEEE802_11) we
1146		 * generate code to check for this too.
1147		 */
1148		off_linktype = 24;
1149		off_macpl = 0;		/* link-layer header is variable-length */
1150		off_macpl_is_variable = 1;
1151		off_nl = 8;		/* 802.2+SNAP */
1152		off_nl_nosnap = 3;	/* 802.2 */
1153		return;
1154
1155	case DLT_ATM_RFC1483:
1156	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1157		/*
1158		 * assume routed, non-ISO PDUs
1159		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1160		 *
1161		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1162		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1163		 * latter would presumably be treated the way PPPoE
1164		 * should be, so you can do "pppoe and udp port 2049"
1165		 * or "pppoa and tcp port 80" and have it check for
1166		 * PPPo{A,E} and a PPP protocol of IP and....
1167		 */
1168		off_linktype = 0;
1169		off_macpl = 0;		/* packet begins with LLC header */
1170		off_nl = 8;		/* 802.2+SNAP */
1171		off_nl_nosnap = 3;	/* 802.2 */
1172		return;
1173
1174	case DLT_SUNATM:
1175		/*
1176		 * Full Frontal ATM; you get AALn PDUs with an ATM
1177		 * pseudo-header.
1178		 */
1179		is_atm = 1;
1180		off_vpi = SUNATM_VPI_POS;
1181		off_vci = SUNATM_VCI_POS;
1182		off_proto = PROTO_POS;
1183		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1184		off_payload = SUNATM_PKT_BEGIN_POS;
1185		off_linktype = off_payload;
1186		off_macpl = off_payload;	/* if LLC-encapsulated */
1187		off_nl = 8;		/* 802.2+SNAP */
1188		off_nl_nosnap = 3;	/* 802.2 */
1189		return;
1190
1191	case DLT_RAW:
1192	case DLT_IPV4:
1193	case DLT_IPV6:
1194		off_linktype = -1;
1195		off_macpl = 0;
1196		off_nl = 0;
1197		off_nl_nosnap = 0;	/* no 802.2 LLC */
1198		return;
1199
1200	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1201		off_linktype = 14;
1202		off_macpl = 16;
1203		off_nl = 0;
1204		off_nl_nosnap = 0;	/* no 802.2 LLC */
1205		return;
1206
1207	case DLT_LTALK:
1208		/*
1209		 * LocalTalk does have a 1-byte type field in the LLAP header,
1210		 * but really it just indicates whether there is a "short" or
1211		 * "long" DDP packet following.
1212		 */
1213		off_linktype = -1;
1214		off_macpl = 0;
1215		off_nl = 0;
1216		off_nl_nosnap = 0;	/* no 802.2 LLC */
1217		return;
1218
1219	case DLT_IP_OVER_FC:
1220		/*
1221		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1222		 * link-level type field.  We set "off_linktype" to the
1223		 * offset of the LLC header.
1224		 *
1225		 * To check for Ethernet types, we assume that SSAP = SNAP
1226		 * is being used and pick out the encapsulated Ethernet type.
1227		 * XXX - should we generate code to check for SNAP? RFC
1228		 * 2625 says SNAP should be used.
1229		 */
1230		off_linktype = 16;
1231		off_macpl = 16;
1232		off_nl = 8;		/* 802.2+SNAP */
1233		off_nl_nosnap = 3;	/* 802.2 */
1234		return;
1235
1236	case DLT_FRELAY:
1237		/*
1238		 * XXX - we should set this to handle SNAP-encapsulated
1239		 * frames (NLPID of 0x80).
1240		 */
1241		off_linktype = -1;
1242		off_macpl = 0;
1243		off_nl = 0;
1244		off_nl_nosnap = 0;	/* no 802.2 LLC */
1245		return;
1246
1247                /*
1248                 * the only BPF-interesting FRF.16 frames are non-control frames;
1249                 * Frame Relay has a variable length link-layer
1250                 * so lets start with offset 4 for now and increments later on (FIXME);
1251                 */
1252	case DLT_MFR:
1253		off_linktype = -1;
1254		off_macpl = 0;
1255		off_nl = 4;
1256		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1257		return;
1258
1259	case DLT_APPLE_IP_OVER_IEEE1394:
1260		off_linktype = 16;
1261		off_macpl = 18;
1262		off_nl = 0;
1263		off_nl_nosnap = 0;	/* no 802.2 LLC */
1264		return;
1265
1266	case DLT_SYMANTEC_FIREWALL:
1267		off_linktype = 6;
1268		off_macpl = 44;
1269		off_nl = 0;		/* Ethernet II */
1270		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1271		return;
1272
1273#ifdef HAVE_NET_PFVAR_H
1274	case DLT_PFLOG:
1275		off_linktype = 0;
1276		off_macpl = PFLOG_HDRLEN;
1277		off_nl = 0;
1278		off_nl_nosnap = 0;	/* no 802.2 LLC */
1279		return;
1280#endif
1281
1282        case DLT_JUNIPER_MFR:
1283        case DLT_JUNIPER_MLFR:
1284        case DLT_JUNIPER_MLPPP:
1285        case DLT_JUNIPER_PPP:
1286        case DLT_JUNIPER_CHDLC:
1287        case DLT_JUNIPER_FRELAY:
1288                off_linktype = 4;
1289		off_macpl = 4;
1290		off_nl = 0;
1291		off_nl_nosnap = -1;	/* no 802.2 LLC */
1292                return;
1293
1294	case DLT_JUNIPER_ATM1:
1295		off_linktype = 4;	/* in reality variable between 4-8 */
1296		off_macpl = 4;	/* in reality variable between 4-8 */
1297		off_nl = 0;
1298		off_nl_nosnap = 10;
1299		return;
1300
1301	case DLT_JUNIPER_ATM2:
1302		off_linktype = 8;	/* in reality variable between 8-12 */
1303		off_macpl = 8;	/* in reality variable between 8-12 */
1304		off_nl = 0;
1305		off_nl_nosnap = 10;
1306		return;
1307
1308		/* frames captured on a Juniper PPPoE service PIC
1309		 * contain raw ethernet frames */
1310	case DLT_JUNIPER_PPPOE:
1311        case DLT_JUNIPER_ETHER:
1312        	off_macpl = 14;
1313		off_linktype = 16;
1314		off_nl = 18;		/* Ethernet II */
1315		off_nl_nosnap = 21;	/* 802.3+802.2 */
1316		return;
1317
1318	case DLT_JUNIPER_PPPOE_ATM:
1319		off_linktype = 4;
1320		off_macpl = 6;
1321		off_nl = 0;
1322		off_nl_nosnap = -1;	/* no 802.2 LLC */
1323		return;
1324
1325	case DLT_JUNIPER_GGSN:
1326		off_linktype = 6;
1327		off_macpl = 12;
1328		off_nl = 0;
1329		off_nl_nosnap = -1;	/* no 802.2 LLC */
1330		return;
1331
1332	case DLT_JUNIPER_ES:
1333		off_linktype = 6;
1334		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1335		off_nl = -1;		/* not really a network layer but raw IP addresses */
1336		off_nl_nosnap = -1;	/* no 802.2 LLC */
1337		return;
1338
1339	case DLT_JUNIPER_MONITOR:
1340		off_linktype = 12;
1341		off_macpl = 12;
1342		off_nl = 0;		/* raw IP/IP6 header */
1343		off_nl_nosnap = -1;	/* no 802.2 LLC */
1344		return;
1345
1346	case DLT_JUNIPER_SERVICES:
1347		off_linktype = 12;
1348		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1349		off_nl = -1;		/* L3 proto location dep. on cookie type */
1350		off_nl_nosnap = -1;	/* no 802.2 LLC */
1351		return;
1352
1353	case DLT_JUNIPER_VP:
1354		off_linktype = 18;
1355		off_macpl = -1;
1356		off_nl = -1;
1357		off_nl_nosnap = -1;
1358		return;
1359
1360	case DLT_JUNIPER_ST:
1361		off_linktype = 18;
1362		off_macpl = -1;
1363		off_nl = -1;
1364		off_nl_nosnap = -1;
1365		return;
1366
1367	case DLT_JUNIPER_ISM:
1368		off_linktype = 8;
1369		off_macpl = -1;
1370		off_nl = -1;
1371		off_nl_nosnap = -1;
1372		return;
1373
1374	case DLT_JUNIPER_VS:
1375	case DLT_JUNIPER_SRX_E2E:
1376	case DLT_JUNIPER_FIBRECHANNEL:
1377	case DLT_JUNIPER_ATM_CEMIC:
1378		off_linktype = 8;
1379		off_macpl = -1;
1380		off_nl = -1;
1381		off_nl_nosnap = -1;
1382		return;
1383
1384	case DLT_MTP2:
1385		off_li = 2;
1386		off_sio = 3;
1387		off_opc = 4;
1388		off_dpc = 4;
1389		off_sls = 7;
1390		off_linktype = -1;
1391		off_macpl = -1;
1392		off_nl = -1;
1393		off_nl_nosnap = -1;
1394		return;
1395
1396	case DLT_MTP2_WITH_PHDR:
1397		off_li = 6;
1398		off_sio = 7;
1399		off_opc = 8;
1400		off_dpc = 8;
1401		off_sls = 11;
1402		off_linktype = -1;
1403		off_macpl = -1;
1404		off_nl = -1;
1405		off_nl_nosnap = -1;
1406		return;
1407
1408	case DLT_ERF:
1409		off_li = 22;
1410		off_sio = 23;
1411		off_opc = 24;
1412		off_dpc = 24;
1413		off_sls = 27;
1414		off_linktype = -1;
1415		off_macpl = -1;
1416		off_nl = -1;
1417		off_nl_nosnap = -1;
1418		return;
1419
1420	case DLT_PFSYNC:
1421		off_linktype = -1;
1422		off_macpl = 4;
1423		off_nl = 0;
1424		off_nl_nosnap = 0;
1425		return;
1426
1427	case DLT_AX25_KISS:
1428		/*
1429		 * Currently, only raw "link[N:M]" filtering is supported.
1430		 */
1431		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1432		off_macpl = -1;
1433		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1434		off_nl_nosnap = -1;	/* no 802.2 LLC */
1435		off_mac = 1;		/* step over the kiss length byte */
1436		return;
1437
1438	case DLT_IPNET:
1439		off_linktype = 1;
1440		off_macpl = 24;		/* ipnet header length */
1441		off_nl = 0;
1442		off_nl_nosnap = -1;
1443		return;
1444
1445	case DLT_NETANALYZER:
1446		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1447		off_linktype = 16;	/* includes 4-byte pseudo-header */
1448		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1449		off_nl = 0;		/* Ethernet II */
1450		off_nl_nosnap = 3;	/* 802.3+802.2 */
1451		return;
1452
1453	case DLT_NETANALYZER_TRANSPARENT:
1454		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1455		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1456		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1457		off_nl = 0;		/* Ethernet II */
1458		off_nl_nosnap = 3;	/* 802.3+802.2 */
1459		return;
1460
1461	default:
1462		/*
1463		 * For values in the range in which we've assigned new
1464		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1465		 */
1466		if (linktype >= DLT_MATCHING_MIN &&
1467		    linktype <= DLT_MATCHING_MAX) {
1468			off_linktype = -1;
1469			off_macpl = -1;
1470			off_nl = -1;
1471			off_nl_nosnap = -1;
1472			return;
1473		}
1474
1475	}
1476	bpf_error("unknown data link type %d", linktype);
1477	/* NOTREACHED */
1478}
1479
1480/*
1481 * Load a value relative to the beginning of the link-layer header.
1482 * The link-layer header doesn't necessarily begin at the beginning
1483 * of the packet data; there might be a variable-length prefix containing
1484 * radio information.
1485 */
1486static struct slist *
1487gen_load_llrel(offset, size)
1488	u_int offset, size;
1489{
1490	struct slist *s, *s2;
1491
1492	s = gen_llprefixlen();
1493
1494	/*
1495	 * If "s" is non-null, it has code to arrange that the X register
1496	 * contains the length of the prefix preceding the link-layer
1497	 * header.
1498	 *
1499	 * Otherwise, the length of the prefix preceding the link-layer
1500	 * header is "off_ll".
1501	 */
1502	if (s != NULL) {
1503		/*
1504		 * There's a variable-length prefix preceding the
1505		 * link-layer header.  "s" points to a list of statements
1506		 * that put the length of that prefix into the X register.
1507		 * do an indirect load, to use the X register as an offset.
1508		 */
1509		s2 = new_stmt(BPF_LD|BPF_IND|size);
1510		s2->s.k = offset;
1511		sappend(s, s2);
1512	} else {
1513		/*
1514		 * There is no variable-length header preceding the
1515		 * link-layer header; add in off_ll, which, if there's
1516		 * a fixed-length header preceding the link-layer header,
1517		 * is the length of that header.
1518		 */
1519		s = new_stmt(BPF_LD|BPF_ABS|size);
1520		s->s.k = offset + off_ll;
1521	}
1522	return s;
1523}
1524
1525/*
1526 * Load a value relative to the beginning of the MAC-layer payload.
1527 */
1528static struct slist *
1529gen_load_macplrel(offset, size)
1530	u_int offset, size;
1531{
1532	struct slist *s, *s2;
1533
1534	s = gen_off_macpl();
1535
1536	/*
1537	 * If s is non-null, the offset of the MAC-layer payload is
1538	 * variable, and s points to a list of instructions that
1539	 * arrange that the X register contains that offset.
1540	 *
1541	 * Otherwise, the offset of the MAC-layer payload is constant,
1542	 * and is in off_macpl.
1543	 */
1544	if (s != NULL) {
1545		/*
1546		 * The offset of the MAC-layer payload is in the X
1547		 * register.  Do an indirect load, to use the X register
1548		 * as an offset.
1549		 */
1550		s2 = new_stmt(BPF_LD|BPF_IND|size);
1551		s2->s.k = offset;
1552		sappend(s, s2);
1553	} else {
1554		/*
1555		 * The offset of the MAC-layer payload is constant,
1556		 * and is in off_macpl; load the value at that offset
1557		 * plus the specified offset.
1558		 */
1559		s = new_stmt(BPF_LD|BPF_ABS|size);
1560		s->s.k = off_macpl + offset;
1561	}
1562	return s;
1563}
1564
1565/*
1566 * Load a value relative to the beginning of the specified header.
1567 */
1568static struct slist *
1569gen_load_a(offrel, offset, size)
1570	enum e_offrel offrel;
1571	u_int offset, size;
1572{
1573	struct slist *s, *s2;
1574
1575	switch (offrel) {
1576
1577	case OR_PACKET:
1578                s = new_stmt(BPF_LD|BPF_ABS|size);
1579                s->s.k = offset;
1580		break;
1581
1582	case OR_LINK:
1583		s = gen_load_llrel(offset, size);
1584		break;
1585
1586	case OR_MACPL:
1587		s = gen_load_macplrel(offset, size);
1588		break;
1589
1590	case OR_NET:
1591		s = gen_load_macplrel(off_nl + offset, size);
1592		break;
1593
1594	case OR_NET_NOSNAP:
1595		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1596		break;
1597
1598	case OR_TRAN_IPV4:
1599		/*
1600		 * Load the X register with the length of the IPv4 header
1601		 * (plus the offset of the link-layer header, if it's
1602		 * preceded by a variable-length header such as a radio
1603		 * header), in bytes.
1604		 */
1605		s = gen_loadx_iphdrlen();
1606
1607		/*
1608		 * Load the item at {offset of the MAC-layer payload} +
1609		 * {offset, relative to the start of the MAC-layer
1610		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1611		 * {specified offset}.
1612		 *
1613		 * (If the offset of the MAC-layer payload is variable,
1614		 * it's included in the value in the X register, and
1615		 * off_macpl is 0.)
1616		 */
1617		s2 = new_stmt(BPF_LD|BPF_IND|size);
1618		s2->s.k = off_macpl + off_nl + offset;
1619		sappend(s, s2);
1620		break;
1621
1622	case OR_TRAN_IPV6:
1623		s = gen_load_macplrel(off_nl + 40 + offset, size);
1624		break;
1625
1626	default:
1627		abort();
1628		return NULL;
1629	}
1630	return s;
1631}
1632
1633/*
1634 * Generate code to load into the X register the sum of the length of
1635 * the IPv4 header and any variable-length header preceding the link-layer
1636 * header.
1637 */
1638static struct slist *
1639gen_loadx_iphdrlen()
1640{
1641	struct slist *s, *s2;
1642
1643	s = gen_off_macpl();
1644	if (s != NULL) {
1645		/*
1646		 * There's a variable-length prefix preceding the
1647		 * link-layer header, or the link-layer header is itself
1648		 * variable-length.  "s" points to a list of statements
1649		 * that put the offset of the MAC-layer payload into
1650		 * the X register.
1651		 *
1652		 * The 4*([k]&0xf) addressing mode can't be used, as we
1653		 * don't have a constant offset, so we have to load the
1654		 * value in question into the A register and add to it
1655		 * the value from the X register.
1656		 */
1657		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1658		s2->s.k = off_nl;
1659		sappend(s, s2);
1660		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1661		s2->s.k = 0xf;
1662		sappend(s, s2);
1663		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1664		s2->s.k = 2;
1665		sappend(s, s2);
1666
1667		/*
1668		 * The A register now contains the length of the
1669		 * IP header.  We need to add to it the offset of
1670		 * the MAC-layer payload, which is still in the X
1671		 * register, and move the result into the X register.
1672		 */
1673		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1674		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1675	} else {
1676		/*
1677		 * There is no variable-length header preceding the
1678		 * link-layer header, and the link-layer header is
1679		 * fixed-length; load the length of the IPv4 header,
1680		 * which is at an offset of off_nl from the beginning
1681		 * of the MAC-layer payload, and thus at an offset
1682		 * of off_mac_pl + off_nl from the beginning of the
1683		 * raw packet data.
1684		 */
1685		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1686		s->s.k = off_macpl + off_nl;
1687	}
1688	return s;
1689}
1690
1691static struct block *
1692gen_uncond(rsense)
1693	int rsense;
1694{
1695	struct block *b;
1696	struct slist *s;
1697
1698	s = new_stmt(BPF_LD|BPF_IMM);
1699	s->s.k = !rsense;
1700	b = new_block(JMP(BPF_JEQ));
1701	b->stmts = s;
1702
1703	return b;
1704}
1705
1706static inline struct block *
1707gen_true()
1708{
1709	return gen_uncond(1);
1710}
1711
1712static inline struct block *
1713gen_false()
1714{
1715	return gen_uncond(0);
1716}
1717
1718/*
1719 * Byte-swap a 32-bit number.
1720 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1721 * big-endian platforms.)
1722 */
1723#define	SWAPLONG(y) \
1724((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1725
1726/*
1727 * Generate code to match a particular packet type.
1728 *
1729 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1730 * value, if <= ETHERMTU.  We use that to determine whether to
1731 * match the type/length field or to check the type/length field for
1732 * a value <= ETHERMTU to see whether it's a type field and then do
1733 * the appropriate test.
1734 */
1735static struct block *
1736gen_ether_linktype(proto)
1737	register int proto;
1738{
1739	struct block *b0, *b1;
1740
1741	switch (proto) {
1742
1743	case LLCSAP_ISONS:
1744	case LLCSAP_IP:
1745	case LLCSAP_NETBEUI:
1746		/*
1747		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1748		 * so we check the DSAP and SSAP.
1749		 *
1750		 * LLCSAP_IP checks for IP-over-802.2, rather
1751		 * than IP-over-Ethernet or IP-over-SNAP.
1752		 *
1753		 * XXX - should we check both the DSAP and the
1754		 * SSAP, like this, or should we check just the
1755		 * DSAP, as we do for other types <= ETHERMTU
1756		 * (i.e., other SAP values)?
1757		 */
1758		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1759		gen_not(b0);
1760		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1761			     ((proto << 8) | proto));
1762		gen_and(b0, b1);
1763		return b1;
1764
1765	case LLCSAP_IPX:
1766		/*
1767		 * Check for;
1768		 *
1769		 *	Ethernet_II frames, which are Ethernet
1770		 *	frames with a frame type of ETHERTYPE_IPX;
1771		 *
1772		 *	Ethernet_802.3 frames, which are 802.3
1773		 *	frames (i.e., the type/length field is
1774		 *	a length field, <= ETHERMTU, rather than
1775		 *	a type field) with the first two bytes
1776		 *	after the Ethernet/802.3 header being
1777		 *	0xFFFF;
1778		 *
1779		 *	Ethernet_802.2 frames, which are 802.3
1780		 *	frames with an 802.2 LLC header and
1781		 *	with the IPX LSAP as the DSAP in the LLC
1782		 *	header;
1783		 *
1784		 *	Ethernet_SNAP frames, which are 802.3
1785		 *	frames with an LLC header and a SNAP
1786		 *	header and with an OUI of 0x000000
1787		 *	(encapsulated Ethernet) and a protocol
1788		 *	ID of ETHERTYPE_IPX in the SNAP header.
1789		 *
1790		 * XXX - should we generate the same code both
1791		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1792		 */
1793
1794		/*
1795		 * This generates code to check both for the
1796		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1797		 */
1798		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1799		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1800		gen_or(b0, b1);
1801
1802		/*
1803		 * Now we add code to check for SNAP frames with
1804		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1805		 */
1806		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1807		gen_or(b0, b1);
1808
1809		/*
1810		 * Now we generate code to check for 802.3
1811		 * frames in general.
1812		 */
1813		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1814		gen_not(b0);
1815
1816		/*
1817		 * Now add the check for 802.3 frames before the
1818		 * check for Ethernet_802.2 and Ethernet_802.3,
1819		 * as those checks should only be done on 802.3
1820		 * frames, not on Ethernet frames.
1821		 */
1822		gen_and(b0, b1);
1823
1824		/*
1825		 * Now add the check for Ethernet_II frames, and
1826		 * do that before checking for the other frame
1827		 * types.
1828		 */
1829		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1830		    (bpf_int32)ETHERTYPE_IPX);
1831		gen_or(b0, b1);
1832		return b1;
1833
1834	case ETHERTYPE_ATALK:
1835	case ETHERTYPE_AARP:
1836		/*
1837		 * EtherTalk (AppleTalk protocols on Ethernet link
1838		 * layer) may use 802.2 encapsulation.
1839		 */
1840
1841		/*
1842		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1843		 * we check for an Ethernet type field less than
1844		 * 1500, which means it's an 802.3 length field.
1845		 */
1846		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1847		gen_not(b0);
1848
1849		/*
1850		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1851		 * SNAP packets with an organization code of
1852		 * 0x080007 (Apple, for Appletalk) and a protocol
1853		 * type of ETHERTYPE_ATALK (Appletalk).
1854		 *
1855		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1856		 * SNAP packets with an organization code of
1857		 * 0x000000 (encapsulated Ethernet) and a protocol
1858		 * type of ETHERTYPE_AARP (Appletalk ARP).
1859		 */
1860		if (proto == ETHERTYPE_ATALK)
1861			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1862		else	/* proto == ETHERTYPE_AARP */
1863			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1864		gen_and(b0, b1);
1865
1866		/*
1867		 * Check for Ethernet encapsulation (Ethertalk
1868		 * phase 1?); we just check for the Ethernet
1869		 * protocol type.
1870		 */
1871		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1872
1873		gen_or(b0, b1);
1874		return b1;
1875
1876	default:
1877		if (proto <= ETHERMTU) {
1878			/*
1879			 * This is an LLC SAP value, so the frames
1880			 * that match would be 802.2 frames.
1881			 * Check that the frame is an 802.2 frame
1882			 * (i.e., that the length/type field is
1883			 * a length field, <= ETHERMTU) and
1884			 * then check the DSAP.
1885			 */
1886			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1887			gen_not(b0);
1888			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1889			    (bpf_int32)proto);
1890			gen_and(b0, b1);
1891			return b1;
1892		} else {
1893			/*
1894			 * This is an Ethernet type, so compare
1895			 * the length/type field with it (if
1896			 * the frame is an 802.2 frame, the length
1897			 * field will be <= ETHERMTU, and, as
1898			 * "proto" is > ETHERMTU, this test
1899			 * will fail and the frame won't match,
1900			 * which is what we want).
1901			 */
1902			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1903			    (bpf_int32)proto);
1904		}
1905	}
1906}
1907
1908/*
1909 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1910 * or IPv6 then we have an error.
1911 */
1912static struct block *
1913gen_ipnet_linktype(proto)
1914	register int proto;
1915{
1916	switch (proto) {
1917
1918	case ETHERTYPE_IP:
1919		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1920		    (bpf_int32)IPH_AF_INET);
1921		/* NOTREACHED */
1922
1923	case ETHERTYPE_IPV6:
1924		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1925		    (bpf_int32)IPH_AF_INET6);
1926		/* NOTREACHED */
1927
1928	default:
1929		break;
1930	}
1931
1932	return gen_false();
1933}
1934
1935/*
1936 * Generate code to match a particular packet type.
1937 *
1938 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1939 * value, if <= ETHERMTU.  We use that to determine whether to
1940 * match the type field or to check the type field for the special
1941 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1942 */
1943static struct block *
1944gen_linux_sll_linktype(proto)
1945	register int proto;
1946{
1947	struct block *b0, *b1;
1948
1949	switch (proto) {
1950
1951	case LLCSAP_ISONS:
1952	case LLCSAP_IP:
1953	case LLCSAP_NETBEUI:
1954		/*
1955		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1956		 * so we check the DSAP and SSAP.
1957		 *
1958		 * LLCSAP_IP checks for IP-over-802.2, rather
1959		 * than IP-over-Ethernet or IP-over-SNAP.
1960		 *
1961		 * XXX - should we check both the DSAP and the
1962		 * SSAP, like this, or should we check just the
1963		 * DSAP, as we do for other types <= ETHERMTU
1964		 * (i.e., other SAP values)?
1965		 */
1966		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1967		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1968			     ((proto << 8) | proto));
1969		gen_and(b0, b1);
1970		return b1;
1971
1972	case LLCSAP_IPX:
1973		/*
1974		 *	Ethernet_II frames, which are Ethernet
1975		 *	frames with a frame type of ETHERTYPE_IPX;
1976		 *
1977		 *	Ethernet_802.3 frames, which have a frame
1978		 *	type of LINUX_SLL_P_802_3;
1979		 *
1980		 *	Ethernet_802.2 frames, which are 802.3
1981		 *	frames with an 802.2 LLC header (i.e, have
1982		 *	a frame type of LINUX_SLL_P_802_2) and
1983		 *	with the IPX LSAP as the DSAP in the LLC
1984		 *	header;
1985		 *
1986		 *	Ethernet_SNAP frames, which are 802.3
1987		 *	frames with an LLC header and a SNAP
1988		 *	header and with an OUI of 0x000000
1989		 *	(encapsulated Ethernet) and a protocol
1990		 *	ID of ETHERTYPE_IPX in the SNAP header.
1991		 *
1992		 * First, do the checks on LINUX_SLL_P_802_2
1993		 * frames; generate the check for either
1994		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1995		 * then put a check for LINUX_SLL_P_802_2 frames
1996		 * before it.
1997		 */
1998		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1999		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2000		gen_or(b0, b1);
2001		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2002		gen_and(b0, b1);
2003
2004		/*
2005		 * Now check for 802.3 frames and OR that with
2006		 * the previous test.
2007		 */
2008		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2009		gen_or(b0, b1);
2010
2011		/*
2012		 * Now add the check for Ethernet_II frames, and
2013		 * do that before checking for the other frame
2014		 * types.
2015		 */
2016		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2017		    (bpf_int32)ETHERTYPE_IPX);
2018		gen_or(b0, b1);
2019		return b1;
2020
2021	case ETHERTYPE_ATALK:
2022	case ETHERTYPE_AARP:
2023		/*
2024		 * EtherTalk (AppleTalk protocols on Ethernet link
2025		 * layer) may use 802.2 encapsulation.
2026		 */
2027
2028		/*
2029		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2030		 * we check for the 802.2 protocol type in the
2031		 * "Ethernet type" field.
2032		 */
2033		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2034
2035		/*
2036		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2037		 * SNAP packets with an organization code of
2038		 * 0x080007 (Apple, for Appletalk) and a protocol
2039		 * type of ETHERTYPE_ATALK (Appletalk).
2040		 *
2041		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2042		 * SNAP packets with an organization code of
2043		 * 0x000000 (encapsulated Ethernet) and a protocol
2044		 * type of ETHERTYPE_AARP (Appletalk ARP).
2045		 */
2046		if (proto == ETHERTYPE_ATALK)
2047			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2048		else	/* proto == ETHERTYPE_AARP */
2049			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2050		gen_and(b0, b1);
2051
2052		/*
2053		 * Check for Ethernet encapsulation (Ethertalk
2054		 * phase 1?); we just check for the Ethernet
2055		 * protocol type.
2056		 */
2057		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2058
2059		gen_or(b0, b1);
2060		return b1;
2061
2062	default:
2063		if (proto <= ETHERMTU) {
2064			/*
2065			 * This is an LLC SAP value, so the frames
2066			 * that match would be 802.2 frames.
2067			 * Check for the 802.2 protocol type
2068			 * in the "Ethernet type" field, and
2069			 * then check the DSAP.
2070			 */
2071			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2072			    LINUX_SLL_P_802_2);
2073			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2074			     (bpf_int32)proto);
2075			gen_and(b0, b1);
2076			return b1;
2077		} else {
2078			/*
2079			 * This is an Ethernet type, so compare
2080			 * the length/type field with it (if
2081			 * the frame is an 802.2 frame, the length
2082			 * field will be <= ETHERMTU, and, as
2083			 * "proto" is > ETHERMTU, this test
2084			 * will fail and the frame won't match,
2085			 * which is what we want).
2086			 */
2087			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2088			    (bpf_int32)proto);
2089		}
2090	}
2091}
2092
2093static struct slist *
2094gen_load_prism_llprefixlen()
2095{
2096	struct slist *s1, *s2;
2097	struct slist *sjeq_avs_cookie;
2098	struct slist *sjcommon;
2099
2100	/*
2101	 * This code is not compatible with the optimizer, as
2102	 * we are generating jmp instructions within a normal
2103	 * slist of instructions
2104	 */
2105	no_optimize = 1;
2106
2107	/*
2108	 * Generate code to load the length of the radio header into
2109	 * the register assigned to hold that length, if one has been
2110	 * assigned.  (If one hasn't been assigned, no code we've
2111	 * generated uses that prefix, so we don't need to generate any
2112	 * code to load it.)
2113	 *
2114	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2115	 * or always use the AVS header rather than the Prism header.
2116	 * We load a 4-byte big-endian value at the beginning of the
2117	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2118	 * it's equal to 0x80211000.  If so, that indicates that it's
2119	 * an AVS header (the masked-out bits are the version number).
2120	 * Otherwise, it's a Prism header.
2121	 *
2122	 * XXX - the Prism header is also, in theory, variable-length,
2123	 * but no known software generates headers that aren't 144
2124	 * bytes long.
2125	 */
2126	if (reg_off_ll != -1) {
2127		/*
2128		 * Load the cookie.
2129		 */
2130		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2131		s1->s.k = 0;
2132
2133		/*
2134		 * AND it with 0xFFFFF000.
2135		 */
2136		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2137		s2->s.k = 0xFFFFF000;
2138		sappend(s1, s2);
2139
2140		/*
2141		 * Compare with 0x80211000.
2142		 */
2143		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2144		sjeq_avs_cookie->s.k = 0x80211000;
2145		sappend(s1, sjeq_avs_cookie);
2146
2147		/*
2148		 * If it's AVS:
2149		 *
2150		 * The 4 bytes at an offset of 4 from the beginning of
2151		 * the AVS header are the length of the AVS header.
2152		 * That field is big-endian.
2153		 */
2154		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2155		s2->s.k = 4;
2156		sappend(s1, s2);
2157		sjeq_avs_cookie->s.jt = s2;
2158
2159		/*
2160		 * Now jump to the code to allocate a register
2161		 * into which to save the header length and
2162		 * store the length there.  (The "jump always"
2163		 * instruction needs to have the k field set;
2164		 * it's added to the PC, so, as we're jumping
2165		 * over a single instruction, it should be 1.)
2166		 */
2167		sjcommon = new_stmt(JMP(BPF_JA));
2168		sjcommon->s.k = 1;
2169		sappend(s1, sjcommon);
2170
2171		/*
2172		 * Now for the code that handles the Prism header.
2173		 * Just load the length of the Prism header (144)
2174		 * into the A register.  Have the test for an AVS
2175		 * header branch here if we don't have an AVS header.
2176		 */
2177		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2178		s2->s.k = 144;
2179		sappend(s1, s2);
2180		sjeq_avs_cookie->s.jf = s2;
2181
2182		/*
2183		 * Now allocate a register to hold that value and store
2184		 * it.  The code for the AVS header will jump here after
2185		 * loading the length of the AVS header.
2186		 */
2187		s2 = new_stmt(BPF_ST);
2188		s2->s.k = reg_off_ll;
2189		sappend(s1, s2);
2190		sjcommon->s.jf = s2;
2191
2192		/*
2193		 * Now move it into the X register.
2194		 */
2195		s2 = new_stmt(BPF_MISC|BPF_TAX);
2196		sappend(s1, s2);
2197
2198		return (s1);
2199	} else
2200		return (NULL);
2201}
2202
2203static struct slist *
2204gen_load_avs_llprefixlen()
2205{
2206	struct slist *s1, *s2;
2207
2208	/*
2209	 * Generate code to load the length of the AVS header into
2210	 * the register assigned to hold that length, if one has been
2211	 * assigned.  (If one hasn't been assigned, no code we've
2212	 * generated uses that prefix, so we don't need to generate any
2213	 * code to load it.)
2214	 */
2215	if (reg_off_ll != -1) {
2216		/*
2217		 * The 4 bytes at an offset of 4 from the beginning of
2218		 * the AVS header are the length of the AVS header.
2219		 * That field is big-endian.
2220		 */
2221		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2222		s1->s.k = 4;
2223
2224		/*
2225		 * Now allocate a register to hold that value and store
2226		 * it.
2227		 */
2228		s2 = new_stmt(BPF_ST);
2229		s2->s.k = reg_off_ll;
2230		sappend(s1, s2);
2231
2232		/*
2233		 * Now move it into the X register.
2234		 */
2235		s2 = new_stmt(BPF_MISC|BPF_TAX);
2236		sappend(s1, s2);
2237
2238		return (s1);
2239	} else
2240		return (NULL);
2241}
2242
2243static struct slist *
2244gen_load_radiotap_llprefixlen()
2245{
2246	struct slist *s1, *s2;
2247
2248	/*
2249	 * Generate code to load the length of the radiotap header into
2250	 * the register assigned to hold that length, if one has been
2251	 * assigned.  (If one hasn't been assigned, no code we've
2252	 * generated uses that prefix, so we don't need to generate any
2253	 * code to load it.)
2254	 */
2255	if (reg_off_ll != -1) {
2256		/*
2257		 * The 2 bytes at offsets of 2 and 3 from the beginning
2258		 * of the radiotap header are the length of the radiotap
2259		 * header; unfortunately, it's little-endian, so we have
2260		 * to load it a byte at a time and construct the value.
2261		 */
2262
2263		/*
2264		 * Load the high-order byte, at an offset of 3, shift it
2265		 * left a byte, and put the result in the X register.
2266		 */
2267		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2268		s1->s.k = 3;
2269		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2270		sappend(s1, s2);
2271		s2->s.k = 8;
2272		s2 = new_stmt(BPF_MISC|BPF_TAX);
2273		sappend(s1, s2);
2274
2275		/*
2276		 * Load the next byte, at an offset of 2, and OR the
2277		 * value from the X register into it.
2278		 */
2279		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2280		sappend(s1, s2);
2281		s2->s.k = 2;
2282		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2283		sappend(s1, s2);
2284
2285		/*
2286		 * Now allocate a register to hold that value and store
2287		 * it.
2288		 */
2289		s2 = new_stmt(BPF_ST);
2290		s2->s.k = reg_off_ll;
2291		sappend(s1, s2);
2292
2293		/*
2294		 * Now move it into the X register.
2295		 */
2296		s2 = new_stmt(BPF_MISC|BPF_TAX);
2297		sappend(s1, s2);
2298
2299		return (s1);
2300	} else
2301		return (NULL);
2302}
2303
2304/*
2305 * At the moment we treat PPI as normal Radiotap encoded
2306 * packets. The difference is in the function that generates
2307 * the code at the beginning to compute the header length.
2308 * Since this code generator of PPI supports bare 802.11
2309 * encapsulation only (i.e. the encapsulated DLT should be
2310 * DLT_IEEE802_11) we generate code to check for this too;
2311 * that's done in finish_parse().
2312 */
2313static struct slist *
2314gen_load_ppi_llprefixlen()
2315{
2316	struct slist *s1, *s2;
2317
2318	/*
2319	 * Generate code to load the length of the radiotap header
2320	 * into the register assigned to hold that length, if one has
2321	 * been assigned.
2322	 */
2323	if (reg_off_ll != -1) {
2324		/*
2325		 * The 2 bytes at offsets of 2 and 3 from the beginning
2326		 * of the radiotap header are the length of the radiotap
2327		 * header; unfortunately, it's little-endian, so we have
2328		 * to load it a byte at a time and construct the value.
2329		 */
2330
2331		/*
2332		 * Load the high-order byte, at an offset of 3, shift it
2333		 * left a byte, and put the result in the X register.
2334		 */
2335		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2336		s1->s.k = 3;
2337		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2338		sappend(s1, s2);
2339		s2->s.k = 8;
2340		s2 = new_stmt(BPF_MISC|BPF_TAX);
2341		sappend(s1, s2);
2342
2343		/*
2344		 * Load the next byte, at an offset of 2, and OR the
2345		 * value from the X register into it.
2346		 */
2347		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2348		sappend(s1, s2);
2349		s2->s.k = 2;
2350		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2351		sappend(s1, s2);
2352
2353		/*
2354		 * Now allocate a register to hold that value and store
2355		 * it.
2356		 */
2357		s2 = new_stmt(BPF_ST);
2358		s2->s.k = reg_off_ll;
2359		sappend(s1, s2);
2360
2361		/*
2362		 * Now move it into the X register.
2363		 */
2364		s2 = new_stmt(BPF_MISC|BPF_TAX);
2365		sappend(s1, s2);
2366
2367		return (s1);
2368	} else
2369		return (NULL);
2370}
2371
2372/*
2373 * Load a value relative to the beginning of the link-layer header after the 802.11
2374 * header, i.e. LLC_SNAP.
2375 * The link-layer header doesn't necessarily begin at the beginning
2376 * of the packet data; there might be a variable-length prefix containing
2377 * radio information.
2378 */
2379static struct slist *
2380gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2381{
2382	struct slist *s2;
2383	struct slist *sjset_data_frame_1;
2384	struct slist *sjset_data_frame_2;
2385	struct slist *sjset_qos;
2386	struct slist *sjset_radiotap_flags;
2387	struct slist *sjset_radiotap_tsft;
2388	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2389	struct slist *s_roundup;
2390
2391	if (reg_off_macpl == -1) {
2392		/*
2393		 * No register has been assigned to the offset of
2394		 * the MAC-layer payload, which means nobody needs
2395		 * it; don't bother computing it - just return
2396		 * what we already have.
2397		 */
2398		return (s);
2399	}
2400
2401	/*
2402	 * This code is not compatible with the optimizer, as
2403	 * we are generating jmp instructions within a normal
2404	 * slist of instructions
2405	 */
2406	no_optimize = 1;
2407
2408	/*
2409	 * If "s" is non-null, it has code to arrange that the X register
2410	 * contains the length of the prefix preceding the link-layer
2411	 * header.
2412	 *
2413	 * Otherwise, the length of the prefix preceding the link-layer
2414	 * header is "off_ll".
2415	 */
2416	if (s == NULL) {
2417		/*
2418		 * There is no variable-length header preceding the
2419		 * link-layer header.
2420		 *
2421		 * Load the length of the fixed-length prefix preceding
2422		 * the link-layer header (if any) into the X register,
2423		 * and store it in the reg_off_macpl register.
2424		 * That length is off_ll.
2425		 */
2426		s = new_stmt(BPF_LDX|BPF_IMM);
2427		s->s.k = off_ll;
2428	}
2429
2430	/*
2431	 * The X register contains the offset of the beginning of the
2432	 * link-layer header; add 24, which is the minimum length
2433	 * of the MAC header for a data frame, to that, and store it
2434	 * in reg_off_macpl, and then load the Frame Control field,
2435	 * which is at the offset in the X register, with an indexed load.
2436	 */
2437	s2 = new_stmt(BPF_MISC|BPF_TXA);
2438	sappend(s, s2);
2439	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2440	s2->s.k = 24;
2441	sappend(s, s2);
2442	s2 = new_stmt(BPF_ST);
2443	s2->s.k = reg_off_macpl;
2444	sappend(s, s2);
2445
2446	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2447	s2->s.k = 0;
2448	sappend(s, s2);
2449
2450	/*
2451	 * Check the Frame Control field to see if this is a data frame;
2452	 * a data frame has the 0x08 bit (b3) in that field set and the
2453	 * 0x04 bit (b2) clear.
2454	 */
2455	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2456	sjset_data_frame_1->s.k = 0x08;
2457	sappend(s, sjset_data_frame_1);
2458
2459	/*
2460	 * If b3 is set, test b2, otherwise go to the first statement of
2461	 * the rest of the program.
2462	 */
2463	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2464	sjset_data_frame_2->s.k = 0x04;
2465	sappend(s, sjset_data_frame_2);
2466	sjset_data_frame_1->s.jf = snext;
2467
2468	/*
2469	 * If b2 is not set, this is a data frame; test the QoS bit.
2470	 * Otherwise, go to the first statement of the rest of the
2471	 * program.
2472	 */
2473	sjset_data_frame_2->s.jt = snext;
2474	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2475	sjset_qos->s.k = 0x80;	/* QoS bit */
2476	sappend(s, sjset_qos);
2477
2478	/*
2479	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2480	 * field.
2481	 * Otherwise, go to the first statement of the rest of the
2482	 * program.
2483	 */
2484	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2485	s2->s.k = reg_off_macpl;
2486	sappend(s, s2);
2487	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2488	s2->s.k = 2;
2489	sappend(s, s2);
2490	s2 = new_stmt(BPF_ST);
2491	s2->s.k = reg_off_macpl;
2492	sappend(s, s2);
2493
2494	/*
2495	 * If we have a radiotap header, look at it to see whether
2496	 * there's Atheros padding between the MAC-layer header
2497	 * and the payload.
2498	 *
2499	 * Note: all of the fields in the radiotap header are
2500	 * little-endian, so we byte-swap all of the values
2501	 * we test against, as they will be loaded as big-endian
2502	 * values.
2503	 */
2504	if (linktype == DLT_IEEE802_11_RADIO) {
2505		/*
2506		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2507		 * in the presence flag?
2508		 */
2509		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2510		s2->s.k = 4;
2511		sappend(s, s2);
2512
2513		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2514		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2515		sappend(s, sjset_radiotap_flags);
2516
2517		/*
2518		 * If not, skip all of this.
2519		 */
2520		sjset_radiotap_flags->s.jf = snext;
2521
2522		/*
2523		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2524		 */
2525		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2526		    new_stmt(JMP(BPF_JSET));
2527		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2528		sappend(s, sjset_radiotap_tsft);
2529
2530		/*
2531		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2532		 * at an offset of 16 from the beginning of the raw packet
2533		 * data (8 bytes for the radiotap header and 8 bytes for
2534		 * the TSFT field).
2535		 *
2536		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2537		 * is set.
2538		 */
2539		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2540		s2->s.k = 16;
2541		sappend(s, s2);
2542
2543		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2544		sjset_tsft_datapad->s.k = 0x20;
2545		sappend(s, sjset_tsft_datapad);
2546
2547		/*
2548		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2549		 * at an offset of 8 from the beginning of the raw packet
2550		 * data (8 bytes for the radiotap header).
2551		 *
2552		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2553		 * is set.
2554		 */
2555		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2556		s2->s.k = 8;
2557		sappend(s, s2);
2558
2559		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2560		sjset_notsft_datapad->s.k = 0x20;
2561		sappend(s, sjset_notsft_datapad);
2562
2563		/*
2564		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2565		 * set, round the length of the 802.11 header to
2566		 * a multiple of 4.  Do that by adding 3 and then
2567		 * dividing by and multiplying by 4, which we do by
2568		 * ANDing with ~3.
2569		 */
2570		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2571		s_roundup->s.k = reg_off_macpl;
2572		sappend(s, s_roundup);
2573		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2574		s2->s.k = 3;
2575		sappend(s, s2);
2576		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2577		s2->s.k = ~3;
2578		sappend(s, s2);
2579		s2 = new_stmt(BPF_ST);
2580		s2->s.k = reg_off_macpl;
2581		sappend(s, s2);
2582
2583		sjset_tsft_datapad->s.jt = s_roundup;
2584		sjset_tsft_datapad->s.jf = snext;
2585		sjset_notsft_datapad->s.jt = s_roundup;
2586		sjset_notsft_datapad->s.jf = snext;
2587	} else
2588		sjset_qos->s.jf = snext;
2589
2590	return s;
2591}
2592
2593static void
2594insert_compute_vloffsets(b)
2595	struct block *b;
2596{
2597	struct slist *s;
2598
2599	/*
2600	 * For link-layer types that have a variable-length header
2601	 * preceding the link-layer header, generate code to load
2602	 * the offset of the link-layer header into the register
2603	 * assigned to that offset, if any.
2604	 */
2605	switch (linktype) {
2606
2607	case DLT_PRISM_HEADER:
2608		s = gen_load_prism_llprefixlen();
2609		break;
2610
2611	case DLT_IEEE802_11_RADIO_AVS:
2612		s = gen_load_avs_llprefixlen();
2613		break;
2614
2615	case DLT_IEEE802_11_RADIO:
2616		s = gen_load_radiotap_llprefixlen();
2617		break;
2618
2619	case DLT_PPI:
2620		s = gen_load_ppi_llprefixlen();
2621		break;
2622
2623	default:
2624		s = NULL;
2625		break;
2626	}
2627
2628	/*
2629	 * For link-layer types that have a variable-length link-layer
2630	 * header, generate code to load the offset of the MAC-layer
2631	 * payload into the register assigned to that offset, if any.
2632	 */
2633	switch (linktype) {
2634
2635	case DLT_IEEE802_11:
2636	case DLT_PRISM_HEADER:
2637	case DLT_IEEE802_11_RADIO_AVS:
2638	case DLT_IEEE802_11_RADIO:
2639	case DLT_PPI:
2640		s = gen_load_802_11_header_len(s, b->stmts);
2641		break;
2642	}
2643
2644	/*
2645	 * If we have any offset-loading code, append all the
2646	 * existing statements in the block to those statements,
2647	 * and make the resulting list the list of statements
2648	 * for the block.
2649	 */
2650	if (s != NULL) {
2651		sappend(s, b->stmts);
2652		b->stmts = s;
2653	}
2654}
2655
2656static struct block *
2657gen_ppi_dlt_check(void)
2658{
2659	struct slist *s_load_dlt;
2660	struct block *b;
2661
2662	if (linktype == DLT_PPI)
2663	{
2664		/* Create the statements that check for the DLT
2665		 */
2666		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2667		s_load_dlt->s.k = 4;
2668
2669		b = new_block(JMP(BPF_JEQ));
2670
2671		b->stmts = s_load_dlt;
2672		b->s.k = SWAPLONG(DLT_IEEE802_11);
2673	}
2674	else
2675	{
2676		b = NULL;
2677	}
2678
2679	return b;
2680}
2681
2682static struct slist *
2683gen_prism_llprefixlen(void)
2684{
2685	struct slist *s;
2686
2687	if (reg_off_ll == -1) {
2688		/*
2689		 * We haven't yet assigned a register for the length
2690		 * of the radio header; allocate one.
2691		 */
2692		reg_off_ll = alloc_reg();
2693	}
2694
2695	/*
2696	 * Load the register containing the radio length
2697	 * into the X register.
2698	 */
2699	s = new_stmt(BPF_LDX|BPF_MEM);
2700	s->s.k = reg_off_ll;
2701	return s;
2702}
2703
2704static struct slist *
2705gen_avs_llprefixlen(void)
2706{
2707	struct slist *s;
2708
2709	if (reg_off_ll == -1) {
2710		/*
2711		 * We haven't yet assigned a register for the length
2712		 * of the AVS header; allocate one.
2713		 */
2714		reg_off_ll = alloc_reg();
2715	}
2716
2717	/*
2718	 * Load the register containing the AVS length
2719	 * into the X register.
2720	 */
2721	s = new_stmt(BPF_LDX|BPF_MEM);
2722	s->s.k = reg_off_ll;
2723	return s;
2724}
2725
2726static struct slist *
2727gen_radiotap_llprefixlen(void)
2728{
2729	struct slist *s;
2730
2731	if (reg_off_ll == -1) {
2732		/*
2733		 * We haven't yet assigned a register for the length
2734		 * of the radiotap header; allocate one.
2735		 */
2736		reg_off_ll = alloc_reg();
2737	}
2738
2739	/*
2740	 * Load the register containing the radiotap length
2741	 * into the X register.
2742	 */
2743	s = new_stmt(BPF_LDX|BPF_MEM);
2744	s->s.k = reg_off_ll;
2745	return s;
2746}
2747
2748/*
2749 * At the moment we treat PPI as normal Radiotap encoded
2750 * packets. The difference is in the function that generates
2751 * the code at the beginning to compute the header length.
2752 * Since this code generator of PPI supports bare 802.11
2753 * encapsulation only (i.e. the encapsulated DLT should be
2754 * DLT_IEEE802_11) we generate code to check for this too.
2755 */
2756static struct slist *
2757gen_ppi_llprefixlen(void)
2758{
2759	struct slist *s;
2760
2761	if (reg_off_ll == -1) {
2762		/*
2763		 * We haven't yet assigned a register for the length
2764		 * of the radiotap header; allocate one.
2765		 */
2766		reg_off_ll = alloc_reg();
2767	}
2768
2769	/*
2770	 * Load the register containing the PPI length
2771	 * into the X register.
2772	 */
2773	s = new_stmt(BPF_LDX|BPF_MEM);
2774	s->s.k = reg_off_ll;
2775	return s;
2776}
2777
2778/*
2779 * Generate code to compute the link-layer header length, if necessary,
2780 * putting it into the X register, and to return either a pointer to a
2781 * "struct slist" for the list of statements in that code, or NULL if
2782 * no code is necessary.
2783 */
2784static struct slist *
2785gen_llprefixlen(void)
2786{
2787	switch (linktype) {
2788
2789	case DLT_PRISM_HEADER:
2790		return gen_prism_llprefixlen();
2791
2792	case DLT_IEEE802_11_RADIO_AVS:
2793		return gen_avs_llprefixlen();
2794
2795	case DLT_IEEE802_11_RADIO:
2796		return gen_radiotap_llprefixlen();
2797
2798	case DLT_PPI:
2799		return gen_ppi_llprefixlen();
2800
2801	default:
2802		return NULL;
2803	}
2804}
2805
2806/*
2807 * Generate code to load the register containing the offset of the
2808 * MAC-layer payload into the X register; if no register for that offset
2809 * has been allocated, allocate it first.
2810 */
2811static struct slist *
2812gen_off_macpl(void)
2813{
2814	struct slist *s;
2815
2816	if (off_macpl_is_variable) {
2817		if (reg_off_macpl == -1) {
2818			/*
2819			 * We haven't yet assigned a register for the offset
2820			 * of the MAC-layer payload; allocate one.
2821			 */
2822			reg_off_macpl = alloc_reg();
2823		}
2824
2825		/*
2826		 * Load the register containing the offset of the MAC-layer
2827		 * payload into the X register.
2828		 */
2829		s = new_stmt(BPF_LDX|BPF_MEM);
2830		s->s.k = reg_off_macpl;
2831		return s;
2832	} else {
2833		/*
2834		 * That offset isn't variable, so we don't need to
2835		 * generate any code.
2836		 */
2837		return NULL;
2838	}
2839}
2840
2841/*
2842 * Map an Ethernet type to the equivalent PPP type.
2843 */
2844static int
2845ethertype_to_ppptype(proto)
2846	int proto;
2847{
2848	switch (proto) {
2849
2850	case ETHERTYPE_IP:
2851		proto = PPP_IP;
2852		break;
2853
2854	case ETHERTYPE_IPV6:
2855		proto = PPP_IPV6;
2856		break;
2857
2858	case ETHERTYPE_DN:
2859		proto = PPP_DECNET;
2860		break;
2861
2862	case ETHERTYPE_ATALK:
2863		proto = PPP_APPLE;
2864		break;
2865
2866	case ETHERTYPE_NS:
2867		proto = PPP_NS;
2868		break;
2869
2870	case LLCSAP_ISONS:
2871		proto = PPP_OSI;
2872		break;
2873
2874	case LLCSAP_8021D:
2875		/*
2876		 * I'm assuming the "Bridging PDU"s that go
2877		 * over PPP are Spanning Tree Protocol
2878		 * Bridging PDUs.
2879		 */
2880		proto = PPP_BRPDU;
2881		break;
2882
2883	case LLCSAP_IPX:
2884		proto = PPP_IPX;
2885		break;
2886	}
2887	return (proto);
2888}
2889
2890/*
2891 * Generate code to match a particular packet type by matching the
2892 * link-layer type field or fields in the 802.2 LLC header.
2893 *
2894 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2895 * value, if <= ETHERMTU.
2896 */
2897static struct block *
2898gen_linktype(proto)
2899	register int proto;
2900{
2901	struct block *b0, *b1, *b2;
2902
2903	/* are we checking MPLS-encapsulated packets? */
2904	if (label_stack_depth > 0) {
2905		switch (proto) {
2906		case ETHERTYPE_IP:
2907		case PPP_IP:
2908			/* FIXME add other L3 proto IDs */
2909			return gen_mpls_linktype(Q_IP);
2910
2911		case ETHERTYPE_IPV6:
2912		case PPP_IPV6:
2913			/* FIXME add other L3 proto IDs */
2914			return gen_mpls_linktype(Q_IPV6);
2915
2916		default:
2917			bpf_error("unsupported protocol over mpls");
2918			/* NOTREACHED */
2919		}
2920	}
2921
2922	/*
2923	 * Are we testing PPPoE packets?
2924	 */
2925	if (is_pppoes) {
2926		/*
2927		 * The PPPoE session header is part of the
2928		 * MAC-layer payload, so all references
2929		 * should be relative to the beginning of
2930		 * that payload.
2931		 */
2932
2933		/*
2934		 * We use Ethernet protocol types inside libpcap;
2935		 * map them to the corresponding PPP protocol types.
2936		 */
2937		proto = ethertype_to_ppptype(proto);
2938		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2939	}
2940
2941	switch (linktype) {
2942
2943	case DLT_EN10MB:
2944	case DLT_NETANALYZER:
2945	case DLT_NETANALYZER_TRANSPARENT:
2946		return gen_ether_linktype(proto);
2947		/*NOTREACHED*/
2948		break;
2949
2950	case DLT_C_HDLC:
2951		switch (proto) {
2952
2953		case LLCSAP_ISONS:
2954			proto = (proto << 8 | LLCSAP_ISONS);
2955			/* fall through */
2956
2957		default:
2958			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2959			    (bpf_int32)proto);
2960			/*NOTREACHED*/
2961			break;
2962		}
2963		break;
2964
2965	case DLT_IEEE802_11:
2966	case DLT_PRISM_HEADER:
2967	case DLT_IEEE802_11_RADIO_AVS:
2968	case DLT_IEEE802_11_RADIO:
2969	case DLT_PPI:
2970		/*
2971		 * Check that we have a data frame.
2972		 */
2973		b0 = gen_check_802_11_data_frame();
2974
2975		/*
2976		 * Now check for the specified link-layer type.
2977		 */
2978		b1 = gen_llc_linktype(proto);
2979		gen_and(b0, b1);
2980		return b1;
2981		/*NOTREACHED*/
2982		break;
2983
2984	case DLT_FDDI:
2985		/*
2986		 * XXX - check for asynchronous frames, as per RFC 1103.
2987		 */
2988		return gen_llc_linktype(proto);
2989		/*NOTREACHED*/
2990		break;
2991
2992	case DLT_IEEE802:
2993		/*
2994		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2995		 */
2996		return gen_llc_linktype(proto);
2997		/*NOTREACHED*/
2998		break;
2999
3000	case DLT_ATM_RFC1483:
3001	case DLT_ATM_CLIP:
3002	case DLT_IP_OVER_FC:
3003		return gen_llc_linktype(proto);
3004		/*NOTREACHED*/
3005		break;
3006
3007	case DLT_SUNATM:
3008		/*
3009		 * If "is_lane" is set, check for a LANE-encapsulated
3010		 * version of this protocol, otherwise check for an
3011		 * LLC-encapsulated version of this protocol.
3012		 *
3013		 * We assume LANE means Ethernet, not Token Ring.
3014		 */
3015		if (is_lane) {
3016			/*
3017			 * Check that the packet doesn't begin with an
3018			 * LE Control marker.  (We've already generated
3019			 * a test for LANE.)
3020			 */
3021			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3022			    0xFF00);
3023			gen_not(b0);
3024
3025			/*
3026			 * Now generate an Ethernet test.
3027			 */
3028			b1 = gen_ether_linktype(proto);
3029			gen_and(b0, b1);
3030			return b1;
3031		} else {
3032			/*
3033			 * Check for LLC encapsulation and then check the
3034			 * protocol.
3035			 */
3036			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3037			b1 = gen_llc_linktype(proto);
3038			gen_and(b0, b1);
3039			return b1;
3040		}
3041		/*NOTREACHED*/
3042		break;
3043
3044	case DLT_LINUX_SLL:
3045		return gen_linux_sll_linktype(proto);
3046		/*NOTREACHED*/
3047		break;
3048
3049	case DLT_SLIP:
3050	case DLT_SLIP_BSDOS:
3051	case DLT_RAW:
3052		/*
3053		 * These types don't provide any type field; packets
3054		 * are always IPv4 or IPv6.
3055		 *
3056		 * XXX - for IPv4, check for a version number of 4, and,
3057		 * for IPv6, check for a version number of 6?
3058		 */
3059		switch (proto) {
3060
3061		case ETHERTYPE_IP:
3062			/* Check for a version number of 4. */
3063			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3064
3065		case ETHERTYPE_IPV6:
3066			/* Check for a version number of 6. */
3067			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3068
3069		default:
3070			return gen_false();		/* always false */
3071		}
3072		/*NOTREACHED*/
3073		break;
3074
3075	case DLT_IPV4:
3076		/*
3077		 * Raw IPv4, so no type field.
3078		 */
3079		if (proto == ETHERTYPE_IP)
3080			return gen_true();		/* always true */
3081
3082		/* Checking for something other than IPv4; always false */
3083		return gen_false();
3084		/*NOTREACHED*/
3085		break;
3086
3087	case DLT_IPV6:
3088		/*
3089		 * Raw IPv6, so no type field.
3090		 */
3091		if (proto == ETHERTYPE_IPV6)
3092			return gen_true();		/* always true */
3093
3094		/* Checking for something other than IPv6; always false */
3095		return gen_false();
3096		/*NOTREACHED*/
3097		break;
3098
3099	case DLT_PPP:
3100	case DLT_PPP_PPPD:
3101	case DLT_PPP_SERIAL:
3102	case DLT_PPP_ETHER:
3103		/*
3104		 * We use Ethernet protocol types inside libpcap;
3105		 * map them to the corresponding PPP protocol types.
3106		 */
3107		proto = ethertype_to_ppptype(proto);
3108		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3109		/*NOTREACHED*/
3110		break;
3111
3112	case DLT_PPP_BSDOS:
3113		/*
3114		 * We use Ethernet protocol types inside libpcap;
3115		 * map them to the corresponding PPP protocol types.
3116		 */
3117		switch (proto) {
3118
3119		case ETHERTYPE_IP:
3120			/*
3121			 * Also check for Van Jacobson-compressed IP.
3122			 * XXX - do this for other forms of PPP?
3123			 */
3124			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3125			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3126			gen_or(b0, b1);
3127			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3128			gen_or(b1, b0);
3129			return b0;
3130
3131		default:
3132			proto = ethertype_to_ppptype(proto);
3133			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3134				(bpf_int32)proto);
3135		}
3136		/*NOTREACHED*/
3137		break;
3138
3139	case DLT_NULL:
3140	case DLT_LOOP:
3141	case DLT_ENC:
3142		/*
3143		 * For DLT_NULL, the link-layer header is a 32-bit
3144		 * word containing an AF_ value in *host* byte order,
3145		 * and for DLT_ENC, the link-layer header begins
3146		 * with a 32-bit work containing an AF_ value in
3147		 * host byte order.
3148		 *
3149		 * In addition, if we're reading a saved capture file,
3150		 * the host byte order in the capture may not be the
3151		 * same as the host byte order on this machine.
3152		 *
3153		 * For DLT_LOOP, the link-layer header is a 32-bit
3154		 * word containing an AF_ value in *network* byte order.
3155		 *
3156		 * XXX - AF_ values may, unfortunately, be platform-
3157		 * dependent; for example, FreeBSD's AF_INET6 is 24
3158		 * whilst NetBSD's and OpenBSD's is 26.
3159		 *
3160		 * This means that, when reading a capture file, just
3161		 * checking for our AF_INET6 value won't work if the
3162		 * capture file came from another OS.
3163		 */
3164		switch (proto) {
3165
3166		case ETHERTYPE_IP:
3167			proto = AF_INET;
3168			break;
3169
3170#ifdef INET6
3171		case ETHERTYPE_IPV6:
3172			proto = AF_INET6;
3173			break;
3174#endif
3175
3176		default:
3177			/*
3178			 * Not a type on which we support filtering.
3179			 * XXX - support those that have AF_ values
3180			 * #defined on this platform, at least?
3181			 */
3182			return gen_false();
3183		}
3184
3185		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3186			/*
3187			 * The AF_ value is in host byte order, but
3188			 * the BPF interpreter will convert it to
3189			 * network byte order.
3190			 *
3191			 * If this is a save file, and it's from a
3192			 * machine with the opposite byte order to
3193			 * ours, we byte-swap the AF_ value.
3194			 *
3195			 * Then we run it through "htonl()", and
3196			 * generate code to compare against the result.
3197			 */
3198			if (bpf_pcap->sf.rfile != NULL &&
3199			    bpf_pcap->sf.swapped)
3200				proto = SWAPLONG(proto);
3201			proto = htonl(proto);
3202		}
3203		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3204
3205#ifdef HAVE_NET_PFVAR_H
3206	case DLT_PFLOG:
3207		/*
3208		 * af field is host byte order in contrast to the rest of
3209		 * the packet.
3210		 */
3211		if (proto == ETHERTYPE_IP)
3212			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3213			    BPF_B, (bpf_int32)AF_INET));
3214		else if (proto == ETHERTYPE_IPV6)
3215			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3216			    BPF_B, (bpf_int32)AF_INET6));
3217		else
3218			return gen_false();
3219		/*NOTREACHED*/
3220		break;
3221#endif /* HAVE_NET_PFVAR_H */
3222
3223	case DLT_ARCNET:
3224	case DLT_ARCNET_LINUX:
3225		/*
3226		 * XXX should we check for first fragment if the protocol
3227		 * uses PHDS?
3228		 */
3229		switch (proto) {
3230
3231		default:
3232			return gen_false();
3233
3234		case ETHERTYPE_IPV6:
3235			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3236				(bpf_int32)ARCTYPE_INET6));
3237
3238		case ETHERTYPE_IP:
3239			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240				     (bpf_int32)ARCTYPE_IP);
3241			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3242				     (bpf_int32)ARCTYPE_IP_OLD);
3243			gen_or(b0, b1);
3244			return (b1);
3245
3246		case ETHERTYPE_ARP:
3247			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3248				     (bpf_int32)ARCTYPE_ARP);
3249			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3250				     (bpf_int32)ARCTYPE_ARP_OLD);
3251			gen_or(b0, b1);
3252			return (b1);
3253
3254		case ETHERTYPE_REVARP:
3255			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3256					(bpf_int32)ARCTYPE_REVARP));
3257
3258		case ETHERTYPE_ATALK:
3259			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3260					(bpf_int32)ARCTYPE_ATALK));
3261		}
3262		/*NOTREACHED*/
3263		break;
3264
3265	case DLT_LTALK:
3266		switch (proto) {
3267		case ETHERTYPE_ATALK:
3268			return gen_true();
3269		default:
3270			return gen_false();
3271		}
3272		/*NOTREACHED*/
3273		break;
3274
3275	case DLT_FRELAY:
3276		/*
3277		 * XXX - assumes a 2-byte Frame Relay header with
3278		 * DLCI and flags.  What if the address is longer?
3279		 */
3280		switch (proto) {
3281
3282		case ETHERTYPE_IP:
3283			/*
3284			 * Check for the special NLPID for IP.
3285			 */
3286			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3287
3288		case ETHERTYPE_IPV6:
3289			/*
3290			 * Check for the special NLPID for IPv6.
3291			 */
3292			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3293
3294		case LLCSAP_ISONS:
3295			/*
3296			 * Check for several OSI protocols.
3297			 *
3298			 * Frame Relay packets typically have an OSI
3299			 * NLPID at the beginning; we check for each
3300			 * of them.
3301			 *
3302			 * What we check for is the NLPID and a frame
3303			 * control field of UI, i.e. 0x03 followed
3304			 * by the NLPID.
3305			 */
3306			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3307			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3308			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3309			gen_or(b1, b2);
3310			gen_or(b0, b2);
3311			return b2;
3312
3313		default:
3314			return gen_false();
3315		}
3316		/*NOTREACHED*/
3317		break;
3318
3319	case DLT_MFR:
3320		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3321
3322        case DLT_JUNIPER_MFR:
3323        case DLT_JUNIPER_MLFR:
3324        case DLT_JUNIPER_MLPPP:
3325	case DLT_JUNIPER_ATM1:
3326	case DLT_JUNIPER_ATM2:
3327	case DLT_JUNIPER_PPPOE:
3328	case DLT_JUNIPER_PPPOE_ATM:
3329        case DLT_JUNIPER_GGSN:
3330        case DLT_JUNIPER_ES:
3331        case DLT_JUNIPER_MONITOR:
3332        case DLT_JUNIPER_SERVICES:
3333        case DLT_JUNIPER_ETHER:
3334        case DLT_JUNIPER_PPP:
3335        case DLT_JUNIPER_FRELAY:
3336        case DLT_JUNIPER_CHDLC:
3337        case DLT_JUNIPER_VP:
3338        case DLT_JUNIPER_ST:
3339        case DLT_JUNIPER_ISM:
3340        case DLT_JUNIPER_VS:
3341        case DLT_JUNIPER_SRX_E2E:
3342        case DLT_JUNIPER_FIBRECHANNEL:
3343	case DLT_JUNIPER_ATM_CEMIC:
3344
3345		/* just lets verify the magic number for now -
3346		 * on ATM we may have up to 6 different encapsulations on the wire
3347		 * and need a lot of heuristics to figure out that the payload
3348		 * might be;
3349		 *
3350		 * FIXME encapsulation specific BPF_ filters
3351		 */
3352		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3353
3354	case DLT_IPNET:
3355		return gen_ipnet_linktype(proto);
3356
3357	case DLT_LINUX_IRDA:
3358		bpf_error("IrDA link-layer type filtering not implemented");
3359
3360	case DLT_DOCSIS:
3361		bpf_error("DOCSIS link-layer type filtering not implemented");
3362
3363	case DLT_MTP2:
3364	case DLT_MTP2_WITH_PHDR:
3365		bpf_error("MTP2 link-layer type filtering not implemented");
3366
3367	case DLT_ERF:
3368		bpf_error("ERF link-layer type filtering not implemented");
3369
3370	case DLT_PFSYNC:
3371		bpf_error("PFSYNC link-layer type filtering not implemented");
3372
3373	case DLT_LINUX_LAPD:
3374		bpf_error("LAPD link-layer type filtering not implemented");
3375
3376	case DLT_USB:
3377	case DLT_USB_LINUX:
3378	case DLT_USB_LINUX_MMAPPED:
3379		bpf_error("USB link-layer type filtering not implemented");
3380
3381	case DLT_BLUETOOTH_HCI_H4:
3382	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3383		bpf_error("Bluetooth link-layer type filtering not implemented");
3384
3385	case DLT_CAN20B:
3386	case DLT_CAN_SOCKETCAN:
3387		bpf_error("CAN link-layer type filtering not implemented");
3388
3389	case DLT_IEEE802_15_4:
3390	case DLT_IEEE802_15_4_LINUX:
3391	case DLT_IEEE802_15_4_NONASK_PHY:
3392	case DLT_IEEE802_15_4_NOFCS:
3393		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3394
3395	case DLT_IEEE802_16_MAC_CPS_RADIO:
3396		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3397
3398	case DLT_SITA:
3399		bpf_error("SITA link-layer type filtering not implemented");
3400
3401	case DLT_RAIF1:
3402		bpf_error("RAIF1 link-layer type filtering not implemented");
3403
3404	case DLT_IPMB:
3405		bpf_error("IPMB link-layer type filtering not implemented");
3406
3407	case DLT_AX25_KISS:
3408		bpf_error("AX.25 link-layer type filtering not implemented");
3409	}
3410
3411	/*
3412	 * All the types that have no encapsulation should either be
3413	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3414	 * all packets are IP packets, or should be handled in some
3415	 * special case, if none of them are (if some are and some
3416	 * aren't, the lack of encapsulation is a problem, as we'd
3417	 * have to find some other way of determining the packet type).
3418	 *
3419	 * Therefore, if "off_linktype" is -1, there's an error.
3420	 */
3421	if (off_linktype == (u_int)-1)
3422		abort();
3423
3424	/*
3425	 * Any type not handled above should always have an Ethernet
3426	 * type at an offset of "off_linktype".
3427	 */
3428	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3429}
3430
3431/*
3432 * Check for an LLC SNAP packet with a given organization code and
3433 * protocol type; we check the entire contents of the 802.2 LLC and
3434 * snap headers, checking for DSAP and SSAP of SNAP and a control
3435 * field of 0x03 in the LLC header, and for the specified organization
3436 * code and protocol type in the SNAP header.
3437 */
3438static struct block *
3439gen_snap(orgcode, ptype)
3440	bpf_u_int32 orgcode;
3441	bpf_u_int32 ptype;
3442{
3443	u_char snapblock[8];
3444
3445	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3446	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3447	snapblock[2] = 0x03;		/* control = UI */
3448	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3449	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3450	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3451	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3452	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3453	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3454}
3455
3456/*
3457 * Generate code to match a particular packet type, for link-layer types
3458 * using 802.2 LLC headers.
3459 *
3460 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3461 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3462 *
3463 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3464 * value, if <= ETHERMTU.  We use that to determine whether to
3465 * match the DSAP or both DSAP and LSAP or to check the OUI and
3466 * protocol ID in a SNAP header.
3467 */
3468static struct block *
3469gen_llc_linktype(proto)
3470	int proto;
3471{
3472	/*
3473	 * XXX - handle token-ring variable-length header.
3474	 */
3475	switch (proto) {
3476
3477	case LLCSAP_IP:
3478	case LLCSAP_ISONS:
3479	case LLCSAP_NETBEUI:
3480		/*
3481		 * XXX - should we check both the DSAP and the
3482		 * SSAP, like this, or should we check just the
3483		 * DSAP, as we do for other types <= ETHERMTU
3484		 * (i.e., other SAP values)?
3485		 */
3486		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3487			     ((proto << 8) | proto));
3488
3489	case LLCSAP_IPX:
3490		/*
3491		 * XXX - are there ever SNAP frames for IPX on
3492		 * non-Ethernet 802.x networks?
3493		 */
3494		return gen_cmp(OR_MACPL, 0, BPF_B,
3495		    (bpf_int32)LLCSAP_IPX);
3496
3497	case ETHERTYPE_ATALK:
3498		/*
3499		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3500		 * SNAP packets with an organization code of
3501		 * 0x080007 (Apple, for Appletalk) and a protocol
3502		 * type of ETHERTYPE_ATALK (Appletalk).
3503		 *
3504		 * XXX - check for an organization code of
3505		 * encapsulated Ethernet as well?
3506		 */
3507		return gen_snap(0x080007, ETHERTYPE_ATALK);
3508
3509	default:
3510		/*
3511		 * XXX - we don't have to check for IPX 802.3
3512		 * here, but should we check for the IPX Ethertype?
3513		 */
3514		if (proto <= ETHERMTU) {
3515			/*
3516			 * This is an LLC SAP value, so check
3517			 * the DSAP.
3518			 */
3519			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3520		} else {
3521			/*
3522			 * This is an Ethernet type; we assume that it's
3523			 * unlikely that it'll appear in the right place
3524			 * at random, and therefore check only the
3525			 * location that would hold the Ethernet type
3526			 * in a SNAP frame with an organization code of
3527			 * 0x000000 (encapsulated Ethernet).
3528			 *
3529			 * XXX - if we were to check for the SNAP DSAP and
3530			 * LSAP, as per XXX, and were also to check for an
3531			 * organization code of 0x000000 (encapsulated
3532			 * Ethernet), we'd do
3533			 *
3534			 *	return gen_snap(0x000000, proto);
3535			 *
3536			 * here; for now, we don't, as per the above.
3537			 * I don't know whether it's worth the extra CPU
3538			 * time to do the right check or not.
3539			 */
3540			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3541		}
3542	}
3543}
3544
3545static struct block *
3546gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3547	bpf_u_int32 addr;
3548	bpf_u_int32 mask;
3549	int dir, proto;
3550	u_int src_off, dst_off;
3551{
3552	struct block *b0, *b1;
3553	u_int offset;
3554
3555	switch (dir) {
3556
3557	case Q_SRC:
3558		offset = src_off;
3559		break;
3560
3561	case Q_DST:
3562		offset = dst_off;
3563		break;
3564
3565	case Q_AND:
3566		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3567		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3568		gen_and(b0, b1);
3569		return b1;
3570
3571	case Q_OR:
3572	case Q_DEFAULT:
3573		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3574		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3575		gen_or(b0, b1);
3576		return b1;
3577
3578	default:
3579		abort();
3580	}
3581	b0 = gen_linktype(proto);
3582	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3583	gen_and(b0, b1);
3584	return b1;
3585}
3586
3587#ifdef INET6
3588static struct block *
3589gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3590	struct in6_addr *addr;
3591	struct in6_addr *mask;
3592	int dir, proto;
3593	u_int src_off, dst_off;
3594{
3595	struct block *b0, *b1;
3596	u_int offset;
3597	u_int32_t *a, *m;
3598
3599	switch (dir) {
3600
3601	case Q_SRC:
3602		offset = src_off;
3603		break;
3604
3605	case Q_DST:
3606		offset = dst_off;
3607		break;
3608
3609	case Q_AND:
3610		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3611		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3612		gen_and(b0, b1);
3613		return b1;
3614
3615	case Q_OR:
3616	case Q_DEFAULT:
3617		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3618		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3619		gen_or(b0, b1);
3620		return b1;
3621
3622	default:
3623		abort();
3624	}
3625	/* this order is important */
3626	a = (u_int32_t *)addr;
3627	m = (u_int32_t *)mask;
3628	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3629	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3630	gen_and(b0, b1);
3631	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3632	gen_and(b0, b1);
3633	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3634	gen_and(b0, b1);
3635	b0 = gen_linktype(proto);
3636	gen_and(b0, b1);
3637	return b1;
3638}
3639#endif
3640
3641static struct block *
3642gen_ehostop(eaddr, dir)
3643	register const u_char *eaddr;
3644	register int dir;
3645{
3646	register struct block *b0, *b1;
3647
3648	switch (dir) {
3649	case Q_SRC:
3650		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3651
3652	case Q_DST:
3653		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3654
3655	case Q_AND:
3656		b0 = gen_ehostop(eaddr, Q_SRC);
3657		b1 = gen_ehostop(eaddr, Q_DST);
3658		gen_and(b0, b1);
3659		return b1;
3660
3661	case Q_DEFAULT:
3662	case Q_OR:
3663		b0 = gen_ehostop(eaddr, Q_SRC);
3664		b1 = gen_ehostop(eaddr, Q_DST);
3665		gen_or(b0, b1);
3666		return b1;
3667
3668	case Q_ADDR1:
3669		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3670		break;
3671
3672	case Q_ADDR2:
3673		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3674		break;
3675
3676	case Q_ADDR3:
3677		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3678		break;
3679
3680	case Q_ADDR4:
3681		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3682		break;
3683
3684	case Q_RA:
3685		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3686		break;
3687
3688	case Q_TA:
3689		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3690		break;
3691	}
3692	abort();
3693	/* NOTREACHED */
3694}
3695
3696/*
3697 * Like gen_ehostop, but for DLT_FDDI
3698 */
3699static struct block *
3700gen_fhostop(eaddr, dir)
3701	register const u_char *eaddr;
3702	register int dir;
3703{
3704	struct block *b0, *b1;
3705
3706	switch (dir) {
3707	case Q_SRC:
3708#ifdef PCAP_FDDIPAD
3709		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3710#else
3711		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3712#endif
3713
3714	case Q_DST:
3715#ifdef PCAP_FDDIPAD
3716		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3717#else
3718		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3719#endif
3720
3721	case Q_AND:
3722		b0 = gen_fhostop(eaddr, Q_SRC);
3723		b1 = gen_fhostop(eaddr, Q_DST);
3724		gen_and(b0, b1);
3725		return b1;
3726
3727	case Q_DEFAULT:
3728	case Q_OR:
3729		b0 = gen_fhostop(eaddr, Q_SRC);
3730		b1 = gen_fhostop(eaddr, Q_DST);
3731		gen_or(b0, b1);
3732		return b1;
3733
3734	case Q_ADDR1:
3735		bpf_error("'addr1' is only supported on 802.11");
3736		break;
3737
3738	case Q_ADDR2:
3739		bpf_error("'addr2' is only supported on 802.11");
3740		break;
3741
3742	case Q_ADDR3:
3743		bpf_error("'addr3' is only supported on 802.11");
3744		break;
3745
3746	case Q_ADDR4:
3747		bpf_error("'addr4' is only supported on 802.11");
3748		break;
3749
3750	case Q_RA:
3751		bpf_error("'ra' is only supported on 802.11");
3752		break;
3753
3754	case Q_TA:
3755		bpf_error("'ta' is only supported on 802.11");
3756		break;
3757	}
3758	abort();
3759	/* NOTREACHED */
3760}
3761
3762/*
3763 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3764 */
3765static struct block *
3766gen_thostop(eaddr, dir)
3767	register const u_char *eaddr;
3768	register int dir;
3769{
3770	register struct block *b0, *b1;
3771
3772	switch (dir) {
3773	case Q_SRC:
3774		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3775
3776	case Q_DST:
3777		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3778
3779	case Q_AND:
3780		b0 = gen_thostop(eaddr, Q_SRC);
3781		b1 = gen_thostop(eaddr, Q_DST);
3782		gen_and(b0, b1);
3783		return b1;
3784
3785	case Q_DEFAULT:
3786	case Q_OR:
3787		b0 = gen_thostop(eaddr, Q_SRC);
3788		b1 = gen_thostop(eaddr, Q_DST);
3789		gen_or(b0, b1);
3790		return b1;
3791
3792	case Q_ADDR1:
3793		bpf_error("'addr1' is only supported on 802.11");
3794		break;
3795
3796	case Q_ADDR2:
3797		bpf_error("'addr2' is only supported on 802.11");
3798		break;
3799
3800	case Q_ADDR3:
3801		bpf_error("'addr3' is only supported on 802.11");
3802		break;
3803
3804	case Q_ADDR4:
3805		bpf_error("'addr4' is only supported on 802.11");
3806		break;
3807
3808	case Q_RA:
3809		bpf_error("'ra' is only supported on 802.11");
3810		break;
3811
3812	case Q_TA:
3813		bpf_error("'ta' is only supported on 802.11");
3814		break;
3815	}
3816	abort();
3817	/* NOTREACHED */
3818}
3819
3820/*
3821 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3822 * various 802.11 + radio headers.
3823 */
3824static struct block *
3825gen_wlanhostop(eaddr, dir)
3826	register const u_char *eaddr;
3827	register int dir;
3828{
3829	register struct block *b0, *b1, *b2;
3830	register struct slist *s;
3831
3832#ifdef ENABLE_WLAN_FILTERING_PATCH
3833	/*
3834	 * TODO GV 20070613
3835	 * We need to disable the optimizer because the optimizer is buggy
3836	 * and wipes out some LD instructions generated by the below
3837	 * code to validate the Frame Control bits
3838	 */
3839	no_optimize = 1;
3840#endif /* ENABLE_WLAN_FILTERING_PATCH */
3841
3842	switch (dir) {
3843	case Q_SRC:
3844		/*
3845		 * Oh, yuk.
3846		 *
3847		 *	For control frames, there is no SA.
3848		 *
3849		 *	For management frames, SA is at an
3850		 *	offset of 10 from the beginning of
3851		 *	the packet.
3852		 *
3853		 *	For data frames, SA is at an offset
3854		 *	of 10 from the beginning of the packet
3855		 *	if From DS is clear, at an offset of
3856		 *	16 from the beginning of the packet
3857		 *	if From DS is set and To DS is clear,
3858		 *	and an offset of 24 from the beginning
3859		 *	of the packet if From DS is set and To DS
3860		 *	is set.
3861		 */
3862
3863		/*
3864		 * Generate the tests to be done for data frames
3865		 * with From DS set.
3866		 *
3867		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3868		 */
3869		s = gen_load_a(OR_LINK, 1, BPF_B);
3870		b1 = new_block(JMP(BPF_JSET));
3871		b1->s.k = 0x01;	/* To DS */
3872		b1->stmts = s;
3873
3874		/*
3875		 * If To DS is set, the SA is at 24.
3876		 */
3877		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3878		gen_and(b1, b0);
3879
3880		/*
3881		 * Now, check for To DS not set, i.e. check
3882		 * "!(link[1] & 0x01)".
3883		 */
3884		s = gen_load_a(OR_LINK, 1, BPF_B);
3885		b2 = new_block(JMP(BPF_JSET));
3886		b2->s.k = 0x01;	/* To DS */
3887		b2->stmts = s;
3888		gen_not(b2);
3889
3890		/*
3891		 * If To DS is not set, the SA is at 16.
3892		 */
3893		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3894		gen_and(b2, b1);
3895
3896		/*
3897		 * Now OR together the last two checks.  That gives
3898		 * the complete set of checks for data frames with
3899		 * From DS set.
3900		 */
3901		gen_or(b1, b0);
3902
3903		/*
3904		 * Now check for From DS being set, and AND that with
3905		 * the ORed-together checks.
3906		 */
3907		s = gen_load_a(OR_LINK, 1, BPF_B);
3908		b1 = new_block(JMP(BPF_JSET));
3909		b1->s.k = 0x02;	/* From DS */
3910		b1->stmts = s;
3911		gen_and(b1, b0);
3912
3913		/*
3914		 * Now check for data frames with From DS not set.
3915		 */
3916		s = gen_load_a(OR_LINK, 1, BPF_B);
3917		b2 = new_block(JMP(BPF_JSET));
3918		b2->s.k = 0x02;	/* From DS */
3919		b2->stmts = s;
3920		gen_not(b2);
3921
3922		/*
3923		 * If From DS isn't set, the SA is at 10.
3924		 */
3925		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3926		gen_and(b2, b1);
3927
3928		/*
3929		 * Now OR together the checks for data frames with
3930		 * From DS not set and for data frames with From DS
3931		 * set; that gives the checks done for data frames.
3932		 */
3933		gen_or(b1, b0);
3934
3935		/*
3936		 * Now check for a data frame.
3937		 * I.e, check "link[0] & 0x08".
3938		 */
3939		s = gen_load_a(OR_LINK, 0, BPF_B);
3940		b1 = new_block(JMP(BPF_JSET));
3941		b1->s.k = 0x08;
3942		b1->stmts = s;
3943
3944		/*
3945		 * AND that with the checks done for data frames.
3946		 */
3947		gen_and(b1, b0);
3948
3949		/*
3950		 * If the high-order bit of the type value is 0, this
3951		 * is a management frame.
3952		 * I.e, check "!(link[0] & 0x08)".
3953		 */
3954		s = gen_load_a(OR_LINK, 0, BPF_B);
3955		b2 = new_block(JMP(BPF_JSET));
3956		b2->s.k = 0x08;
3957		b2->stmts = s;
3958		gen_not(b2);
3959
3960		/*
3961		 * For management frames, the SA is at 10.
3962		 */
3963		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3964		gen_and(b2, b1);
3965
3966		/*
3967		 * OR that with the checks done for data frames.
3968		 * That gives the checks done for management and
3969		 * data frames.
3970		 */
3971		gen_or(b1, b0);
3972
3973		/*
3974		 * If the low-order bit of the type value is 1,
3975		 * this is either a control frame or a frame
3976		 * with a reserved type, and thus not a
3977		 * frame with an SA.
3978		 *
3979		 * I.e., check "!(link[0] & 0x04)".
3980		 */
3981		s = gen_load_a(OR_LINK, 0, BPF_B);
3982		b1 = new_block(JMP(BPF_JSET));
3983		b1->s.k = 0x04;
3984		b1->stmts = s;
3985		gen_not(b1);
3986
3987		/*
3988		 * AND that with the checks for data and management
3989		 * frames.
3990		 */
3991		gen_and(b1, b0);
3992		return b0;
3993
3994	case Q_DST:
3995		/*
3996		 * Oh, yuk.
3997		 *
3998		 *	For control frames, there is no DA.
3999		 *
4000		 *	For management frames, DA is at an
4001		 *	offset of 4 from the beginning of
4002		 *	the packet.
4003		 *
4004		 *	For data frames, DA is at an offset
4005		 *	of 4 from the beginning of the packet
4006		 *	if To DS is clear and at an offset of
4007		 *	16 from the beginning of the packet
4008		 *	if To DS is set.
4009		 */
4010
4011		/*
4012		 * Generate the tests to be done for data frames.
4013		 *
4014		 * First, check for To DS set, i.e. "link[1] & 0x01".
4015		 */
4016		s = gen_load_a(OR_LINK, 1, BPF_B);
4017		b1 = new_block(JMP(BPF_JSET));
4018		b1->s.k = 0x01;	/* To DS */
4019		b1->stmts = s;
4020
4021		/*
4022		 * If To DS is set, the DA is at 16.
4023		 */
4024		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4025		gen_and(b1, b0);
4026
4027		/*
4028		 * Now, check for To DS not set, i.e. check
4029		 * "!(link[1] & 0x01)".
4030		 */
4031		s = gen_load_a(OR_LINK, 1, BPF_B);
4032		b2 = new_block(JMP(BPF_JSET));
4033		b2->s.k = 0x01;	/* To DS */
4034		b2->stmts = s;
4035		gen_not(b2);
4036
4037		/*
4038		 * If To DS is not set, the DA is at 4.
4039		 */
4040		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4041		gen_and(b2, b1);
4042
4043		/*
4044		 * Now OR together the last two checks.  That gives
4045		 * the complete set of checks for data frames.
4046		 */
4047		gen_or(b1, b0);
4048
4049		/*
4050		 * Now check for a data frame.
4051		 * I.e, check "link[0] & 0x08".
4052		 */
4053		s = gen_load_a(OR_LINK, 0, BPF_B);
4054		b1 = new_block(JMP(BPF_JSET));
4055		b1->s.k = 0x08;
4056		b1->stmts = s;
4057
4058		/*
4059		 * AND that with the checks done for data frames.
4060		 */
4061		gen_and(b1, b0);
4062
4063		/*
4064		 * If the high-order bit of the type value is 0, this
4065		 * is a management frame.
4066		 * I.e, check "!(link[0] & 0x08)".
4067		 */
4068		s = gen_load_a(OR_LINK, 0, BPF_B);
4069		b2 = new_block(JMP(BPF_JSET));
4070		b2->s.k = 0x08;
4071		b2->stmts = s;
4072		gen_not(b2);
4073
4074		/*
4075		 * For management frames, the DA is at 4.
4076		 */
4077		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4078		gen_and(b2, b1);
4079
4080		/*
4081		 * OR that with the checks done for data frames.
4082		 * That gives the checks done for management and
4083		 * data frames.
4084		 */
4085		gen_or(b1, b0);
4086
4087		/*
4088		 * If the low-order bit of the type value is 1,
4089		 * this is either a control frame or a frame
4090		 * with a reserved type, and thus not a
4091		 * frame with an SA.
4092		 *
4093		 * I.e., check "!(link[0] & 0x04)".
4094		 */
4095		s = gen_load_a(OR_LINK, 0, BPF_B);
4096		b1 = new_block(JMP(BPF_JSET));
4097		b1->s.k = 0x04;
4098		b1->stmts = s;
4099		gen_not(b1);
4100
4101		/*
4102		 * AND that with the checks for data and management
4103		 * frames.
4104		 */
4105		gen_and(b1, b0);
4106		return b0;
4107
4108	case Q_RA:
4109		/*
4110		 * Not present in management frames; addr1 in other
4111		 * frames.
4112		 */
4113
4114		/*
4115		 * If the high-order bit of the type value is 0, this
4116		 * is a management frame.
4117		 * I.e, check "(link[0] & 0x08)".
4118		 */
4119		s = gen_load_a(OR_LINK, 0, BPF_B);
4120		b1 = new_block(JMP(BPF_JSET));
4121		b1->s.k = 0x08;
4122		b1->stmts = s;
4123
4124		/*
4125		 * Check addr1.
4126		 */
4127		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4128
4129		/*
4130		 * AND that with the check of addr1.
4131		 */
4132		gen_and(b1, b0);
4133		return (b0);
4134
4135	case Q_TA:
4136		/*
4137		 * Not present in management frames; addr2, if present,
4138		 * in other frames.
4139		 */
4140
4141		/*
4142		 * Not present in CTS or ACK control frames.
4143		 */
4144		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4145			IEEE80211_FC0_TYPE_MASK);
4146		gen_not(b0);
4147		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4148			IEEE80211_FC0_SUBTYPE_MASK);
4149		gen_not(b1);
4150		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4151			IEEE80211_FC0_SUBTYPE_MASK);
4152		gen_not(b2);
4153		gen_and(b1, b2);
4154		gen_or(b0, b2);
4155
4156		/*
4157		 * If the high-order bit of the type value is 0, this
4158		 * is a management frame.
4159		 * I.e, check "(link[0] & 0x08)".
4160		 */
4161		s = gen_load_a(OR_LINK, 0, BPF_B);
4162		b1 = new_block(JMP(BPF_JSET));
4163		b1->s.k = 0x08;
4164		b1->stmts = s;
4165
4166		/*
4167		 * AND that with the check for frames other than
4168		 * CTS and ACK frames.
4169		 */
4170		gen_and(b1, b2);
4171
4172		/*
4173		 * Check addr2.
4174		 */
4175		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4176		gen_and(b2, b1);
4177		return b1;
4178
4179	/*
4180	 * XXX - add BSSID keyword?
4181	 */
4182	case Q_ADDR1:
4183		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4184
4185	case Q_ADDR2:
4186		/*
4187		 * Not present in CTS or ACK control frames.
4188		 */
4189		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4190			IEEE80211_FC0_TYPE_MASK);
4191		gen_not(b0);
4192		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4193			IEEE80211_FC0_SUBTYPE_MASK);
4194		gen_not(b1);
4195		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4196			IEEE80211_FC0_SUBTYPE_MASK);
4197		gen_not(b2);
4198		gen_and(b1, b2);
4199		gen_or(b0, b2);
4200		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4201		gen_and(b2, b1);
4202		return b1;
4203
4204	case Q_ADDR3:
4205		/*
4206		 * Not present in control frames.
4207		 */
4208		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4209			IEEE80211_FC0_TYPE_MASK);
4210		gen_not(b0);
4211		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4212		gen_and(b0, b1);
4213		return b1;
4214
4215	case Q_ADDR4:
4216		/*
4217		 * Present only if the direction mask has both "From DS"
4218		 * and "To DS" set.  Neither control frames nor management
4219		 * frames should have both of those set, so we don't
4220		 * check the frame type.
4221		 */
4222		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4223			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4224		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4225		gen_and(b0, b1);
4226		return b1;
4227
4228	case Q_AND:
4229		b0 = gen_wlanhostop(eaddr, Q_SRC);
4230		b1 = gen_wlanhostop(eaddr, Q_DST);
4231		gen_and(b0, b1);
4232		return b1;
4233
4234	case Q_DEFAULT:
4235	case Q_OR:
4236		b0 = gen_wlanhostop(eaddr, Q_SRC);
4237		b1 = gen_wlanhostop(eaddr, Q_DST);
4238		gen_or(b0, b1);
4239		return b1;
4240	}
4241	abort();
4242	/* NOTREACHED */
4243}
4244
4245/*
4246 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4247 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4248 * as the RFC states.)
4249 */
4250static struct block *
4251gen_ipfchostop(eaddr, dir)
4252	register const u_char *eaddr;
4253	register int dir;
4254{
4255	register struct block *b0, *b1;
4256
4257	switch (dir) {
4258	case Q_SRC:
4259		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4260
4261	case Q_DST:
4262		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4263
4264	case Q_AND:
4265		b0 = gen_ipfchostop(eaddr, Q_SRC);
4266		b1 = gen_ipfchostop(eaddr, Q_DST);
4267		gen_and(b0, b1);
4268		return b1;
4269
4270	case Q_DEFAULT:
4271	case Q_OR:
4272		b0 = gen_ipfchostop(eaddr, Q_SRC);
4273		b1 = gen_ipfchostop(eaddr, Q_DST);
4274		gen_or(b0, b1);
4275		return b1;
4276
4277	case Q_ADDR1:
4278		bpf_error("'addr1' is only supported on 802.11");
4279		break;
4280
4281	case Q_ADDR2:
4282		bpf_error("'addr2' is only supported on 802.11");
4283		break;
4284
4285	case Q_ADDR3:
4286		bpf_error("'addr3' is only supported on 802.11");
4287		break;
4288
4289	case Q_ADDR4:
4290		bpf_error("'addr4' is only supported on 802.11");
4291		break;
4292
4293	case Q_RA:
4294		bpf_error("'ra' is only supported on 802.11");
4295		break;
4296
4297	case Q_TA:
4298		bpf_error("'ta' is only supported on 802.11");
4299		break;
4300	}
4301	abort();
4302	/* NOTREACHED */
4303}
4304
4305/*
4306 * This is quite tricky because there may be pad bytes in front of the
4307 * DECNET header, and then there are two possible data packet formats that
4308 * carry both src and dst addresses, plus 5 packet types in a format that
4309 * carries only the src node, plus 2 types that use a different format and
4310 * also carry just the src node.
4311 *
4312 * Yuck.
4313 *
4314 * Instead of doing those all right, we just look for data packets with
4315 * 0 or 1 bytes of padding.  If you want to look at other packets, that
4316 * will require a lot more hacking.
4317 *
4318 * To add support for filtering on DECNET "areas" (network numbers)
4319 * one would want to add a "mask" argument to this routine.  That would
4320 * make the filter even more inefficient, although one could be clever
4321 * and not generate masking instructions if the mask is 0xFFFF.
4322 */
4323static struct block *
4324gen_dnhostop(addr, dir)
4325	bpf_u_int32 addr;
4326	int dir;
4327{
4328	struct block *b0, *b1, *b2, *tmp;
4329	u_int offset_lh;	/* offset if long header is received */
4330	u_int offset_sh;	/* offset if short header is received */
4331
4332	switch (dir) {
4333
4334	case Q_DST:
4335		offset_sh = 1;	/* follows flags */
4336		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4337		break;
4338
4339	case Q_SRC:
4340		offset_sh = 3;	/* follows flags, dstnode */
4341		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4342		break;
4343
4344	case Q_AND:
4345		/* Inefficient because we do our Calvinball dance twice */
4346		b0 = gen_dnhostop(addr, Q_SRC);
4347		b1 = gen_dnhostop(addr, Q_DST);
4348		gen_and(b0, b1);
4349		return b1;
4350
4351	case Q_OR:
4352	case Q_DEFAULT:
4353		/* Inefficient because we do our Calvinball dance twice */
4354		b0 = gen_dnhostop(addr, Q_SRC);
4355		b1 = gen_dnhostop(addr, Q_DST);
4356		gen_or(b0, b1);
4357		return b1;
4358
4359	case Q_ISO:
4360		bpf_error("ISO host filtering not implemented");
4361
4362	default:
4363		abort();
4364	}
4365	b0 = gen_linktype(ETHERTYPE_DN);
4366	/* Check for pad = 1, long header case */
4367	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4368	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4369	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4370	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4371	gen_and(tmp, b1);
4372	/* Check for pad = 0, long header case */
4373	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4374	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4375	gen_and(tmp, b2);
4376	gen_or(b2, b1);
4377	/* Check for pad = 1, short header case */
4378	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4379	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4380	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4381	gen_and(tmp, b2);
4382	gen_or(b2, b1);
4383	/* Check for pad = 0, short header case */
4384	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4385	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4386	gen_and(tmp, b2);
4387	gen_or(b2, b1);
4388
4389	/* Combine with test for linktype */
4390	gen_and(b0, b1);
4391	return b1;
4392}
4393
4394/*
4395 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4396 * test the bottom-of-stack bit, and then check the version number
4397 * field in the IP header.
4398 */
4399static struct block *
4400gen_mpls_linktype(proto)
4401	int proto;
4402{
4403	struct block *b0, *b1;
4404
4405        switch (proto) {
4406
4407        case Q_IP:
4408                /* match the bottom-of-stack bit */
4409                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4410                /* match the IPv4 version number */
4411                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4412                gen_and(b0, b1);
4413                return b1;
4414
4415       case Q_IPV6:
4416                /* match the bottom-of-stack bit */
4417                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4418                /* match the IPv4 version number */
4419                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4420                gen_and(b0, b1);
4421                return b1;
4422
4423       default:
4424                abort();
4425        }
4426}
4427
4428static struct block *
4429gen_host(addr, mask, proto, dir, type)
4430	bpf_u_int32 addr;
4431	bpf_u_int32 mask;
4432	int proto;
4433	int dir;
4434	int type;
4435{
4436	struct block *b0, *b1;
4437	const char *typestr;
4438
4439	if (type == Q_NET)
4440		typestr = "net";
4441	else
4442		typestr = "host";
4443
4444	switch (proto) {
4445
4446	case Q_DEFAULT:
4447		b0 = gen_host(addr, mask, Q_IP, dir, type);
4448		/*
4449		 * Only check for non-IPv4 addresses if we're not
4450		 * checking MPLS-encapsulated packets.
4451		 */
4452		if (label_stack_depth == 0) {
4453			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4454			gen_or(b0, b1);
4455			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4456			gen_or(b1, b0);
4457		}
4458		return b0;
4459
4460	case Q_IP:
4461		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4462
4463	case Q_RARP:
4464		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4465
4466	case Q_ARP:
4467		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4468
4469	case Q_TCP:
4470		bpf_error("'tcp' modifier applied to %s", typestr);
4471
4472	case Q_SCTP:
4473		bpf_error("'sctp' modifier applied to %s", typestr);
4474
4475	case Q_UDP:
4476		bpf_error("'udp' modifier applied to %s", typestr);
4477
4478	case Q_ICMP:
4479		bpf_error("'icmp' modifier applied to %s", typestr);
4480
4481	case Q_IGMP:
4482		bpf_error("'igmp' modifier applied to %s", typestr);
4483
4484	case Q_IGRP:
4485		bpf_error("'igrp' modifier applied to %s", typestr);
4486
4487	case Q_PIM:
4488		bpf_error("'pim' modifier applied to %s", typestr);
4489
4490	case Q_VRRP:
4491		bpf_error("'vrrp' modifier applied to %s", typestr);
4492
4493	case Q_CARP:
4494		bpf_error("'carp' modifier applied to %s", typestr);
4495
4496	case Q_ATALK:
4497		bpf_error("ATALK host filtering not implemented");
4498
4499	case Q_AARP:
4500		bpf_error("AARP host filtering not implemented");
4501
4502	case Q_DECNET:
4503		return gen_dnhostop(addr, dir);
4504
4505	case Q_SCA:
4506		bpf_error("SCA host filtering not implemented");
4507
4508	case Q_LAT:
4509		bpf_error("LAT host filtering not implemented");
4510
4511	case Q_MOPDL:
4512		bpf_error("MOPDL host filtering not implemented");
4513
4514	case Q_MOPRC:
4515		bpf_error("MOPRC host filtering not implemented");
4516
4517	case Q_IPV6:
4518		bpf_error("'ip6' modifier applied to ip host");
4519
4520	case Q_ICMPV6:
4521		bpf_error("'icmp6' modifier applied to %s", typestr);
4522
4523	case Q_AH:
4524		bpf_error("'ah' modifier applied to %s", typestr);
4525
4526	case Q_ESP:
4527		bpf_error("'esp' modifier applied to %s", typestr);
4528
4529	case Q_ISO:
4530		bpf_error("ISO host filtering not implemented");
4531
4532	case Q_ESIS:
4533		bpf_error("'esis' modifier applied to %s", typestr);
4534
4535	case Q_ISIS:
4536		bpf_error("'isis' modifier applied to %s", typestr);
4537
4538	case Q_CLNP:
4539		bpf_error("'clnp' modifier applied to %s", typestr);
4540
4541	case Q_STP:
4542		bpf_error("'stp' modifier applied to %s", typestr);
4543
4544	case Q_IPX:
4545		bpf_error("IPX host filtering not implemented");
4546
4547	case Q_NETBEUI:
4548		bpf_error("'netbeui' modifier applied to %s", typestr);
4549
4550	case Q_RADIO:
4551		bpf_error("'radio' modifier applied to %s", typestr);
4552
4553	default:
4554		abort();
4555	}
4556	/* NOTREACHED */
4557}
4558
4559#ifdef INET6
4560static struct block *
4561gen_host6(addr, mask, proto, dir, type)
4562	struct in6_addr *addr;
4563	struct in6_addr *mask;
4564	int proto;
4565	int dir;
4566	int type;
4567{
4568	const char *typestr;
4569
4570	if (type == Q_NET)
4571		typestr = "net";
4572	else
4573		typestr = "host";
4574
4575	switch (proto) {
4576
4577	case Q_DEFAULT:
4578		return gen_host6(addr, mask, Q_IPV6, dir, type);
4579
4580	case Q_IP:
4581		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4582
4583	case Q_RARP:
4584		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4585
4586	case Q_ARP:
4587		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4588
4589	case Q_SCTP:
4590		bpf_error("'sctp' modifier applied to %s", typestr);
4591
4592	case Q_TCP:
4593		bpf_error("'tcp' modifier applied to %s", typestr);
4594
4595	case Q_UDP:
4596		bpf_error("'udp' modifier applied to %s", typestr);
4597
4598	case Q_ICMP:
4599		bpf_error("'icmp' modifier applied to %s", typestr);
4600
4601	case Q_IGMP:
4602		bpf_error("'igmp' modifier applied to %s", typestr);
4603
4604	case Q_IGRP:
4605		bpf_error("'igrp' modifier applied to %s", typestr);
4606
4607	case Q_PIM:
4608		bpf_error("'pim' modifier applied to %s", typestr);
4609
4610	case Q_VRRP:
4611		bpf_error("'vrrp' modifier applied to %s", typestr);
4612
4613	case Q_CARP:
4614		bpf_error("'carp' modifier applied to %s", typestr);
4615
4616	case Q_ATALK:
4617		bpf_error("ATALK host filtering not implemented");
4618
4619	case Q_AARP:
4620		bpf_error("AARP host filtering not implemented");
4621
4622	case Q_DECNET:
4623		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4624
4625	case Q_SCA:
4626		bpf_error("SCA host filtering not implemented");
4627
4628	case Q_LAT:
4629		bpf_error("LAT host filtering not implemented");
4630
4631	case Q_MOPDL:
4632		bpf_error("MOPDL host filtering not implemented");
4633
4634	case Q_MOPRC:
4635		bpf_error("MOPRC host filtering not implemented");
4636
4637	case Q_IPV6:
4638		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4639
4640	case Q_ICMPV6:
4641		bpf_error("'icmp6' modifier applied to %s", typestr);
4642
4643	case Q_AH:
4644		bpf_error("'ah' modifier applied to %s", typestr);
4645
4646	case Q_ESP:
4647		bpf_error("'esp' modifier applied to %s", typestr);
4648
4649	case Q_ISO:
4650		bpf_error("ISO host filtering not implemented");
4651
4652	case Q_ESIS:
4653		bpf_error("'esis' modifier applied to %s", typestr);
4654
4655	case Q_ISIS:
4656		bpf_error("'isis' modifier applied to %s", typestr);
4657
4658	case Q_CLNP:
4659		bpf_error("'clnp' modifier applied to %s", typestr);
4660
4661	case Q_STP:
4662		bpf_error("'stp' modifier applied to %s", typestr);
4663
4664	case Q_IPX:
4665		bpf_error("IPX host filtering not implemented");
4666
4667	case Q_NETBEUI:
4668		bpf_error("'netbeui' modifier applied to %s", typestr);
4669
4670	case Q_RADIO:
4671		bpf_error("'radio' modifier applied to %s", typestr);
4672
4673	default:
4674		abort();
4675	}
4676	/* NOTREACHED */
4677}
4678#endif
4679
4680#ifndef INET6
4681static struct block *
4682gen_gateway(eaddr, alist, proto, dir)
4683	const u_char *eaddr;
4684	bpf_u_int32 **alist;
4685	int proto;
4686	int dir;
4687{
4688	struct block *b0, *b1, *tmp;
4689
4690	if (dir != 0)
4691		bpf_error("direction applied to 'gateway'");
4692
4693	switch (proto) {
4694	case Q_DEFAULT:
4695	case Q_IP:
4696	case Q_ARP:
4697	case Q_RARP:
4698		switch (linktype) {
4699		case DLT_EN10MB:
4700		case DLT_NETANALYZER:
4701		case DLT_NETANALYZER_TRANSPARENT:
4702			b0 = gen_ehostop(eaddr, Q_OR);
4703			break;
4704		case DLT_FDDI:
4705			b0 = gen_fhostop(eaddr, Q_OR);
4706			break;
4707		case DLT_IEEE802:
4708			b0 = gen_thostop(eaddr, Q_OR);
4709			break;
4710		case DLT_IEEE802_11:
4711		case DLT_PRISM_HEADER:
4712		case DLT_IEEE802_11_RADIO_AVS:
4713		case DLT_IEEE802_11_RADIO:
4714		case DLT_PPI:
4715			b0 = gen_wlanhostop(eaddr, Q_OR);
4716			break;
4717		case DLT_SUNATM:
4718			if (!is_lane)
4719				bpf_error(
4720				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4721			/*
4722			 * Check that the packet doesn't begin with an
4723			 * LE Control marker.  (We've already generated
4724			 * a test for LANE.)
4725			 */
4726			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4727			    BPF_H, 0xFF00);
4728			gen_not(b1);
4729
4730			/*
4731			 * Now check the MAC address.
4732			 */
4733			b0 = gen_ehostop(eaddr, Q_OR);
4734			gen_and(b1, b0);
4735			break;
4736		case DLT_IP_OVER_FC:
4737			b0 = gen_ipfchostop(eaddr, Q_OR);
4738			break;
4739		default:
4740			bpf_error(
4741			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4742		}
4743		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4744		while (*alist) {
4745			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4746			    Q_HOST);
4747			gen_or(b1, tmp);
4748			b1 = tmp;
4749		}
4750		gen_not(b1);
4751		gen_and(b0, b1);
4752		return b1;
4753	}
4754	bpf_error("illegal modifier of 'gateway'");
4755	/* NOTREACHED */
4756}
4757#endif
4758
4759struct block *
4760gen_proto_abbrev(proto)
4761	int proto;
4762{
4763	struct block *b0;
4764	struct block *b1;
4765
4766	switch (proto) {
4767
4768	case Q_SCTP:
4769		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4770		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4771		gen_or(b0, b1);
4772		break;
4773
4774	case Q_TCP:
4775		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4776		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4777		gen_or(b0, b1);
4778		break;
4779
4780	case Q_UDP:
4781		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4782		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4783		gen_or(b0, b1);
4784		break;
4785
4786	case Q_ICMP:
4787		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4788		break;
4789
4790#ifndef	IPPROTO_IGMP
4791#define	IPPROTO_IGMP	2
4792#endif
4793
4794	case Q_IGMP:
4795		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4796		break;
4797
4798#ifndef	IPPROTO_IGRP
4799#define	IPPROTO_IGRP	9
4800#endif
4801	case Q_IGRP:
4802		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4803		break;
4804
4805#ifndef IPPROTO_PIM
4806#define IPPROTO_PIM	103
4807#endif
4808
4809	case Q_PIM:
4810		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4811		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4812		gen_or(b0, b1);
4813		break;
4814
4815#ifndef IPPROTO_VRRP
4816#define IPPROTO_VRRP	112
4817#endif
4818
4819	case Q_VRRP:
4820		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4821		break;
4822
4823#ifndef IPPROTO_CARP
4824#define IPPROTO_CARP	112
4825#endif
4826
4827	case Q_CARP:
4828		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4829		break;
4830
4831	case Q_IP:
4832		b1 =  gen_linktype(ETHERTYPE_IP);
4833		break;
4834
4835	case Q_ARP:
4836		b1 =  gen_linktype(ETHERTYPE_ARP);
4837		break;
4838
4839	case Q_RARP:
4840		b1 =  gen_linktype(ETHERTYPE_REVARP);
4841		break;
4842
4843	case Q_LINK:
4844		bpf_error("link layer applied in wrong context");
4845
4846	case Q_ATALK:
4847		b1 =  gen_linktype(ETHERTYPE_ATALK);
4848		break;
4849
4850	case Q_AARP:
4851		b1 =  gen_linktype(ETHERTYPE_AARP);
4852		break;
4853
4854	case Q_DECNET:
4855		b1 =  gen_linktype(ETHERTYPE_DN);
4856		break;
4857
4858	case Q_SCA:
4859		b1 =  gen_linktype(ETHERTYPE_SCA);
4860		break;
4861
4862	case Q_LAT:
4863		b1 =  gen_linktype(ETHERTYPE_LAT);
4864		break;
4865
4866	case Q_MOPDL:
4867		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4868		break;
4869
4870	case Q_MOPRC:
4871		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4872		break;
4873
4874	case Q_IPV6:
4875		b1 = gen_linktype(ETHERTYPE_IPV6);
4876		break;
4877
4878#ifndef IPPROTO_ICMPV6
4879#define IPPROTO_ICMPV6	58
4880#endif
4881	case Q_ICMPV6:
4882		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4883		break;
4884
4885#ifndef IPPROTO_AH
4886#define IPPROTO_AH	51
4887#endif
4888	case Q_AH:
4889		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4890		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4891		gen_or(b0, b1);
4892		break;
4893
4894#ifndef IPPROTO_ESP
4895#define IPPROTO_ESP	50
4896#endif
4897	case Q_ESP:
4898		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4899		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4900		gen_or(b0, b1);
4901		break;
4902
4903	case Q_ISO:
4904		b1 = gen_linktype(LLCSAP_ISONS);
4905		break;
4906
4907	case Q_ESIS:
4908		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4909		break;
4910
4911	case Q_ISIS:
4912		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4913		break;
4914
4915	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4916		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4917		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4918		gen_or(b0, b1);
4919		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4920		gen_or(b0, b1);
4921		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4922		gen_or(b0, b1);
4923		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4924		gen_or(b0, b1);
4925		break;
4926
4927	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4928		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4929		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4930		gen_or(b0, b1);
4931		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4932		gen_or(b0, b1);
4933		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4934		gen_or(b0, b1);
4935		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4936		gen_or(b0, b1);
4937		break;
4938
4939	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4940		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4941		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4942		gen_or(b0, b1);
4943		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4944		gen_or(b0, b1);
4945		break;
4946
4947	case Q_ISIS_LSP:
4948		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4949		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4950		gen_or(b0, b1);
4951		break;
4952
4953	case Q_ISIS_SNP:
4954		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4955		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4956		gen_or(b0, b1);
4957		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4958		gen_or(b0, b1);
4959		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4960		gen_or(b0, b1);
4961		break;
4962
4963	case Q_ISIS_CSNP:
4964		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4965		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4966		gen_or(b0, b1);
4967		break;
4968
4969	case Q_ISIS_PSNP:
4970		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4971		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4972		gen_or(b0, b1);
4973		break;
4974
4975	case Q_CLNP:
4976		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4977		break;
4978
4979	case Q_STP:
4980		b1 = gen_linktype(LLCSAP_8021D);
4981		break;
4982
4983	case Q_IPX:
4984		b1 = gen_linktype(LLCSAP_IPX);
4985		break;
4986
4987	case Q_NETBEUI:
4988		b1 = gen_linktype(LLCSAP_NETBEUI);
4989		break;
4990
4991	case Q_RADIO:
4992		bpf_error("'radio' is not a valid protocol type");
4993
4994	default:
4995		abort();
4996	}
4997	return b1;
4998}
4999
5000static struct block *
5001gen_ipfrag()
5002{
5003	struct slist *s;
5004	struct block *b;
5005
5006	/* not IPv4 frag other than the first frag */
5007	s = gen_load_a(OR_NET, 6, BPF_H);
5008	b = new_block(JMP(BPF_JSET));
5009	b->s.k = 0x1fff;
5010	b->stmts = s;
5011	gen_not(b);
5012
5013	return b;
5014}
5015
5016/*
5017 * Generate a comparison to a port value in the transport-layer header
5018 * at the specified offset from the beginning of that header.
5019 *
5020 * XXX - this handles a variable-length prefix preceding the link-layer
5021 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5022 * variable-length link-layer headers (such as Token Ring or 802.11
5023 * headers).
5024 */
5025static struct block *
5026gen_portatom(off, v)
5027	int off;
5028	bpf_int32 v;
5029{
5030	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5031}
5032
5033static struct block *
5034gen_portatom6(off, v)
5035	int off;
5036	bpf_int32 v;
5037{
5038	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5039}
5040
5041struct block *
5042gen_portop(port, proto, dir)
5043	int port, proto, dir;
5044{
5045	struct block *b0, *b1, *tmp;
5046
5047	/* ip proto 'proto' and not a fragment other than the first fragment */
5048	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5049	b0 = gen_ipfrag();
5050	gen_and(tmp, b0);
5051
5052	switch (dir) {
5053	case Q_SRC:
5054		b1 = gen_portatom(0, (bpf_int32)port);
5055		break;
5056
5057	case Q_DST:
5058		b1 = gen_portatom(2, (bpf_int32)port);
5059		break;
5060
5061	case Q_OR:
5062	case Q_DEFAULT:
5063		tmp = gen_portatom(0, (bpf_int32)port);
5064		b1 = gen_portatom(2, (bpf_int32)port);
5065		gen_or(tmp, b1);
5066		break;
5067
5068	case Q_AND:
5069		tmp = gen_portatom(0, (bpf_int32)port);
5070		b1 = gen_portatom(2, (bpf_int32)port);
5071		gen_and(tmp, b1);
5072		break;
5073
5074	default:
5075		abort();
5076	}
5077	gen_and(b0, b1);
5078
5079	return b1;
5080}
5081
5082static struct block *
5083gen_port(port, ip_proto, dir)
5084	int port;
5085	int ip_proto;
5086	int dir;
5087{
5088	struct block *b0, *b1, *tmp;
5089
5090	/*
5091	 * ether proto ip
5092	 *
5093	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5094	 * not LLC encapsulation with LLCSAP_IP.
5095	 *
5096	 * For IEEE 802 networks - which includes 802.5 token ring
5097	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5098	 * says that SNAP encapsulation is used, not LLC encapsulation
5099	 * with LLCSAP_IP.
5100	 *
5101	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5102	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5103	 * encapsulation with LLCSAP_IP.
5104	 *
5105	 * So we always check for ETHERTYPE_IP.
5106	 */
5107	b0 =  gen_linktype(ETHERTYPE_IP);
5108
5109	switch (ip_proto) {
5110	case IPPROTO_UDP:
5111	case IPPROTO_TCP:
5112	case IPPROTO_SCTP:
5113		b1 = gen_portop(port, ip_proto, dir);
5114		break;
5115
5116	case PROTO_UNDEF:
5117		tmp = gen_portop(port, IPPROTO_TCP, dir);
5118		b1 = gen_portop(port, IPPROTO_UDP, dir);
5119		gen_or(tmp, b1);
5120		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5121		gen_or(tmp, b1);
5122		break;
5123
5124	default:
5125		abort();
5126	}
5127	gen_and(b0, b1);
5128	return b1;
5129}
5130
5131struct block *
5132gen_portop6(port, proto, dir)
5133	int port, proto, dir;
5134{
5135	struct block *b0, *b1, *tmp;
5136
5137	/* ip6 proto 'proto' */
5138	/* XXX - catch the first fragment of a fragmented packet? */
5139	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5140
5141	switch (dir) {
5142	case Q_SRC:
5143		b1 = gen_portatom6(0, (bpf_int32)port);
5144		break;
5145
5146	case Q_DST:
5147		b1 = gen_portatom6(2, (bpf_int32)port);
5148		break;
5149
5150	case Q_OR:
5151	case Q_DEFAULT:
5152		tmp = gen_portatom6(0, (bpf_int32)port);
5153		b1 = gen_portatom6(2, (bpf_int32)port);
5154		gen_or(tmp, b1);
5155		break;
5156
5157	case Q_AND:
5158		tmp = gen_portatom6(0, (bpf_int32)port);
5159		b1 = gen_portatom6(2, (bpf_int32)port);
5160		gen_and(tmp, b1);
5161		break;
5162
5163	default:
5164		abort();
5165	}
5166	gen_and(b0, b1);
5167
5168	return b1;
5169}
5170
5171static struct block *
5172gen_port6(port, ip_proto, dir)
5173	int port;
5174	int ip_proto;
5175	int dir;
5176{
5177	struct block *b0, *b1, *tmp;
5178
5179	/* link proto ip6 */
5180	b0 =  gen_linktype(ETHERTYPE_IPV6);
5181
5182	switch (ip_proto) {
5183	case IPPROTO_UDP:
5184	case IPPROTO_TCP:
5185	case IPPROTO_SCTP:
5186		b1 = gen_portop6(port, ip_proto, dir);
5187		break;
5188
5189	case PROTO_UNDEF:
5190		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5191		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5192		gen_or(tmp, b1);
5193		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5194		gen_or(tmp, b1);
5195		break;
5196
5197	default:
5198		abort();
5199	}
5200	gen_and(b0, b1);
5201	return b1;
5202}
5203
5204/* gen_portrange code */
5205static struct block *
5206gen_portrangeatom(off, v1, v2)
5207	int off;
5208	bpf_int32 v1, v2;
5209{
5210	struct block *b1, *b2;
5211
5212	if (v1 > v2) {
5213		/*
5214		 * Reverse the order of the ports, so v1 is the lower one.
5215		 */
5216		bpf_int32 vtemp;
5217
5218		vtemp = v1;
5219		v1 = v2;
5220		v2 = vtemp;
5221	}
5222
5223	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5224	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5225
5226	gen_and(b1, b2);
5227
5228	return b2;
5229}
5230
5231struct block *
5232gen_portrangeop(port1, port2, proto, dir)
5233	int port1, port2;
5234	int proto;
5235	int dir;
5236{
5237	struct block *b0, *b1, *tmp;
5238
5239	/* ip proto 'proto' and not a fragment other than the first fragment */
5240	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5241	b0 = gen_ipfrag();
5242	gen_and(tmp, b0);
5243
5244	switch (dir) {
5245	case Q_SRC:
5246		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5247		break;
5248
5249	case Q_DST:
5250		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5251		break;
5252
5253	case Q_OR:
5254	case Q_DEFAULT:
5255		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5256		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5257		gen_or(tmp, b1);
5258		break;
5259
5260	case Q_AND:
5261		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5262		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5263		gen_and(tmp, b1);
5264		break;
5265
5266	default:
5267		abort();
5268	}
5269	gen_and(b0, b1);
5270
5271	return b1;
5272}
5273
5274static struct block *
5275gen_portrange(port1, port2, ip_proto, dir)
5276	int port1, port2;
5277	int ip_proto;
5278	int dir;
5279{
5280	struct block *b0, *b1, *tmp;
5281
5282	/* link proto ip */
5283	b0 =  gen_linktype(ETHERTYPE_IP);
5284
5285	switch (ip_proto) {
5286	case IPPROTO_UDP:
5287	case IPPROTO_TCP:
5288	case IPPROTO_SCTP:
5289		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5290		break;
5291
5292	case PROTO_UNDEF:
5293		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5294		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5295		gen_or(tmp, b1);
5296		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5297		gen_or(tmp, b1);
5298		break;
5299
5300	default:
5301		abort();
5302	}
5303	gen_and(b0, b1);
5304	return b1;
5305}
5306
5307static struct block *
5308gen_portrangeatom6(off, v1, v2)
5309	int off;
5310	bpf_int32 v1, v2;
5311{
5312	struct block *b1, *b2;
5313
5314	if (v1 > v2) {
5315		/*
5316		 * Reverse the order of the ports, so v1 is the lower one.
5317		 */
5318		bpf_int32 vtemp;
5319
5320		vtemp = v1;
5321		v1 = v2;
5322		v2 = vtemp;
5323	}
5324
5325	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5326	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5327
5328	gen_and(b1, b2);
5329
5330	return b2;
5331}
5332
5333struct block *
5334gen_portrangeop6(port1, port2, proto, dir)
5335	int port1, port2;
5336	int proto;
5337	int dir;
5338{
5339	struct block *b0, *b1, *tmp;
5340
5341	/* ip6 proto 'proto' */
5342	/* XXX - catch the first fragment of a fragmented packet? */
5343	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5344
5345	switch (dir) {
5346	case Q_SRC:
5347		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5348		break;
5349
5350	case Q_DST:
5351		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5352		break;
5353
5354	case Q_OR:
5355	case Q_DEFAULT:
5356		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5357		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5358		gen_or(tmp, b1);
5359		break;
5360
5361	case Q_AND:
5362		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5363		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5364		gen_and(tmp, b1);
5365		break;
5366
5367	default:
5368		abort();
5369	}
5370	gen_and(b0, b1);
5371
5372	return b1;
5373}
5374
5375static struct block *
5376gen_portrange6(port1, port2, ip_proto, dir)
5377	int port1, port2;
5378	int ip_proto;
5379	int dir;
5380{
5381	struct block *b0, *b1, *tmp;
5382
5383	/* link proto ip6 */
5384	b0 =  gen_linktype(ETHERTYPE_IPV6);
5385
5386	switch (ip_proto) {
5387	case IPPROTO_UDP:
5388	case IPPROTO_TCP:
5389	case IPPROTO_SCTP:
5390		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5391		break;
5392
5393	case PROTO_UNDEF:
5394		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5395		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5396		gen_or(tmp, b1);
5397		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5398		gen_or(tmp, b1);
5399		break;
5400
5401	default:
5402		abort();
5403	}
5404	gen_and(b0, b1);
5405	return b1;
5406}
5407
5408static int
5409lookup_proto(name, proto)
5410	register const char *name;
5411	register int proto;
5412{
5413	register int v;
5414
5415	switch (proto) {
5416
5417	case Q_DEFAULT:
5418	case Q_IP:
5419	case Q_IPV6:
5420		v = pcap_nametoproto(name);
5421		if (v == PROTO_UNDEF)
5422			bpf_error("unknown ip proto '%s'", name);
5423		break;
5424
5425	case Q_LINK:
5426		/* XXX should look up h/w protocol type based on linktype */
5427		v = pcap_nametoeproto(name);
5428		if (v == PROTO_UNDEF) {
5429			v = pcap_nametollc(name);
5430			if (v == PROTO_UNDEF)
5431				bpf_error("unknown ether proto '%s'", name);
5432		}
5433		break;
5434
5435	case Q_ISO:
5436		if (strcmp(name, "esis") == 0)
5437			v = ISO9542_ESIS;
5438		else if (strcmp(name, "isis") == 0)
5439			v = ISO10589_ISIS;
5440		else if (strcmp(name, "clnp") == 0)
5441			v = ISO8473_CLNP;
5442		else
5443			bpf_error("unknown osi proto '%s'", name);
5444		break;
5445
5446	default:
5447		v = PROTO_UNDEF;
5448		break;
5449	}
5450	return v;
5451}
5452
5453#if 0
5454struct stmt *
5455gen_joinsp(s, n)
5456	struct stmt **s;
5457	int n;
5458{
5459	return NULL;
5460}
5461#endif
5462
5463static struct block *
5464gen_protochain(v, proto, dir)
5465	int v;
5466	int proto;
5467	int dir;
5468{
5469#ifdef NO_PROTOCHAIN
5470	return gen_proto(v, proto, dir);
5471#else
5472	struct block *b0, *b;
5473	struct slist *s[100];
5474	int fix2, fix3, fix4, fix5;
5475	int ahcheck, again, end;
5476	int i, max;
5477	int reg2 = alloc_reg();
5478
5479	memset(s, 0, sizeof(s));
5480	fix2 = fix3 = fix4 = fix5 = 0;
5481
5482	switch (proto) {
5483	case Q_IP:
5484	case Q_IPV6:
5485		break;
5486	case Q_DEFAULT:
5487		b0 = gen_protochain(v, Q_IP, dir);
5488		b = gen_protochain(v, Q_IPV6, dir);
5489		gen_or(b0, b);
5490		return b;
5491	default:
5492		bpf_error("bad protocol applied for 'protochain'");
5493		/*NOTREACHED*/
5494	}
5495
5496	/*
5497	 * We don't handle variable-length prefixes before the link-layer
5498	 * header, or variable-length link-layer headers, here yet.
5499	 * We might want to add BPF instructions to do the protochain
5500	 * work, to simplify that and, on platforms that have a BPF
5501	 * interpreter with the new instructions, let the filtering
5502	 * be done in the kernel.  (We already require a modified BPF
5503	 * engine to do the protochain stuff, to support backward
5504	 * branches, and backward branch support is unlikely to appear
5505	 * in kernel BPF engines.)
5506	 */
5507	switch (linktype) {
5508
5509	case DLT_IEEE802_11:
5510	case DLT_PRISM_HEADER:
5511	case DLT_IEEE802_11_RADIO_AVS:
5512	case DLT_IEEE802_11_RADIO:
5513	case DLT_PPI:
5514		bpf_error("'protochain' not supported with 802.11");
5515	}
5516
5517	no_optimize = 1; /*this code is not compatible with optimzer yet */
5518
5519	/*
5520	 * s[0] is a dummy entry to protect other BPF insn from damage
5521	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5522	 * hard to find interdependency made by jump table fixup.
5523	 */
5524	i = 0;
5525	s[i] = new_stmt(0);	/*dummy*/
5526	i++;
5527
5528	switch (proto) {
5529	case Q_IP:
5530		b0 = gen_linktype(ETHERTYPE_IP);
5531
5532		/* A = ip->ip_p */
5533		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5534		s[i]->s.k = off_macpl + off_nl + 9;
5535		i++;
5536		/* X = ip->ip_hl << 2 */
5537		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5538		s[i]->s.k = off_macpl + off_nl;
5539		i++;
5540		break;
5541
5542	case Q_IPV6:
5543		b0 = gen_linktype(ETHERTYPE_IPV6);
5544
5545		/* A = ip6->ip_nxt */
5546		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5547		s[i]->s.k = off_macpl + off_nl + 6;
5548		i++;
5549		/* X = sizeof(struct ip6_hdr) */
5550		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5551		s[i]->s.k = 40;
5552		i++;
5553		break;
5554
5555	default:
5556		bpf_error("unsupported proto to gen_protochain");
5557		/*NOTREACHED*/
5558	}
5559
5560	/* again: if (A == v) goto end; else fall through; */
5561	again = i;
5562	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5563	s[i]->s.k = v;
5564	s[i]->s.jt = NULL;		/*later*/
5565	s[i]->s.jf = NULL;		/*update in next stmt*/
5566	fix5 = i;
5567	i++;
5568
5569#ifndef IPPROTO_NONE
5570#define IPPROTO_NONE	59
5571#endif
5572	/* if (A == IPPROTO_NONE) goto end */
5573	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5574	s[i]->s.jt = NULL;	/*later*/
5575	s[i]->s.jf = NULL;	/*update in next stmt*/
5576	s[i]->s.k = IPPROTO_NONE;
5577	s[fix5]->s.jf = s[i];
5578	fix2 = i;
5579	i++;
5580
5581	if (proto == Q_IPV6) {
5582		int v6start, v6end, v6advance, j;
5583
5584		v6start = i;
5585		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5586		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5587		s[i]->s.jt = NULL;	/*later*/
5588		s[i]->s.jf = NULL;	/*update in next stmt*/
5589		s[i]->s.k = IPPROTO_HOPOPTS;
5590		s[fix2]->s.jf = s[i];
5591		i++;
5592		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5593		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5594		s[i]->s.jt = NULL;	/*later*/
5595		s[i]->s.jf = NULL;	/*update in next stmt*/
5596		s[i]->s.k = IPPROTO_DSTOPTS;
5597		i++;
5598		/* if (A == IPPROTO_ROUTING) goto v6advance */
5599		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5600		s[i]->s.jt = NULL;	/*later*/
5601		s[i]->s.jf = NULL;	/*update in next stmt*/
5602		s[i]->s.k = IPPROTO_ROUTING;
5603		i++;
5604		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5605		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5606		s[i]->s.jt = NULL;	/*later*/
5607		s[i]->s.jf = NULL;	/*later*/
5608		s[i]->s.k = IPPROTO_FRAGMENT;
5609		fix3 = i;
5610		v6end = i;
5611		i++;
5612
5613		/* v6advance: */
5614		v6advance = i;
5615
5616		/*
5617		 * in short,
5618		 * A = P[X + packet head];
5619		 * X = X + (P[X + packet head + 1] + 1) * 8;
5620		 */
5621		/* A = P[X + packet head] */
5622		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5623		s[i]->s.k = off_macpl + off_nl;
5624		i++;
5625		/* MEM[reg2] = A */
5626		s[i] = new_stmt(BPF_ST);
5627		s[i]->s.k = reg2;
5628		i++;
5629		/* A = P[X + packet head + 1]; */
5630		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5631		s[i]->s.k = off_macpl + off_nl + 1;
5632		i++;
5633		/* A += 1 */
5634		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5635		s[i]->s.k = 1;
5636		i++;
5637		/* A *= 8 */
5638		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5639		s[i]->s.k = 8;
5640		i++;
5641		/* A += X */
5642		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5643		s[i]->s.k = 0;
5644		i++;
5645		/* X = A; */
5646		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5647		i++;
5648		/* A = MEM[reg2] */
5649		s[i] = new_stmt(BPF_LD|BPF_MEM);
5650		s[i]->s.k = reg2;
5651		i++;
5652
5653		/* goto again; (must use BPF_JA for backward jump) */
5654		s[i] = new_stmt(BPF_JMP|BPF_JA);
5655		s[i]->s.k = again - i - 1;
5656		s[i - 1]->s.jf = s[i];
5657		i++;
5658
5659		/* fixup */
5660		for (j = v6start; j <= v6end; j++)
5661			s[j]->s.jt = s[v6advance];
5662	} else {
5663		/* nop */
5664		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5665		s[i]->s.k = 0;
5666		s[fix2]->s.jf = s[i];
5667		i++;
5668	}
5669
5670	/* ahcheck: */
5671	ahcheck = i;
5672	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5673	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5674	s[i]->s.jt = NULL;	/*later*/
5675	s[i]->s.jf = NULL;	/*later*/
5676	s[i]->s.k = IPPROTO_AH;
5677	if (fix3)
5678		s[fix3]->s.jf = s[ahcheck];
5679	fix4 = i;
5680	i++;
5681
5682	/*
5683	 * in short,
5684	 * A = P[X];
5685	 * X = X + (P[X + 1] + 2) * 4;
5686	 */
5687	/* A = X */
5688	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5689	i++;
5690	/* A = P[X + packet head]; */
5691	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5692	s[i]->s.k = off_macpl + off_nl;
5693	i++;
5694	/* MEM[reg2] = A */
5695	s[i] = new_stmt(BPF_ST);
5696	s[i]->s.k = reg2;
5697	i++;
5698	/* A = X */
5699	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5700	i++;
5701	/* A += 1 */
5702	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5703	s[i]->s.k = 1;
5704	i++;
5705	/* X = A */
5706	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5707	i++;
5708	/* A = P[X + packet head] */
5709	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5710	s[i]->s.k = off_macpl + off_nl;
5711	i++;
5712	/* A += 2 */
5713	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5714	s[i]->s.k = 2;
5715	i++;
5716	/* A *= 4 */
5717	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5718	s[i]->s.k = 4;
5719	i++;
5720	/* X = A; */
5721	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5722	i++;
5723	/* A = MEM[reg2] */
5724	s[i] = new_stmt(BPF_LD|BPF_MEM);
5725	s[i]->s.k = reg2;
5726	i++;
5727
5728	/* goto again; (must use BPF_JA for backward jump) */
5729	s[i] = new_stmt(BPF_JMP|BPF_JA);
5730	s[i]->s.k = again - i - 1;
5731	i++;
5732
5733	/* end: nop */
5734	end = i;
5735	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5736	s[i]->s.k = 0;
5737	s[fix2]->s.jt = s[end];
5738	s[fix4]->s.jf = s[end];
5739	s[fix5]->s.jt = s[end];
5740	i++;
5741
5742	/*
5743	 * make slist chain
5744	 */
5745	max = i;
5746	for (i = 0; i < max - 1; i++)
5747		s[i]->next = s[i + 1];
5748	s[max - 1]->next = NULL;
5749
5750	/*
5751	 * emit final check
5752	 */
5753	b = new_block(JMP(BPF_JEQ));
5754	b->stmts = s[1];	/*remember, s[0] is dummy*/
5755	b->s.k = v;
5756
5757	free_reg(reg2);
5758
5759	gen_and(b0, b);
5760	return b;
5761#endif
5762}
5763
5764static struct block *
5765gen_check_802_11_data_frame()
5766{
5767	struct slist *s;
5768	struct block *b0, *b1;
5769
5770	/*
5771	 * A data frame has the 0x08 bit (b3) in the frame control field set
5772	 * and the 0x04 bit (b2) clear.
5773	 */
5774	s = gen_load_a(OR_LINK, 0, BPF_B);
5775	b0 = new_block(JMP(BPF_JSET));
5776	b0->s.k = 0x08;
5777	b0->stmts = s;
5778
5779	s = gen_load_a(OR_LINK, 0, BPF_B);
5780	b1 = new_block(JMP(BPF_JSET));
5781	b1->s.k = 0x04;
5782	b1->stmts = s;
5783	gen_not(b1);
5784
5785	gen_and(b1, b0);
5786
5787	return b0;
5788}
5789
5790/*
5791 * Generate code that checks whether the packet is a packet for protocol
5792 * <proto> and whether the type field in that protocol's header has
5793 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5794 * IP packet and checks the protocol number in the IP header against <v>.
5795 *
5796 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5797 * against Q_IP and Q_IPV6.
5798 */
5799static struct block *
5800gen_proto(v, proto, dir)
5801	int v;
5802	int proto;
5803	int dir;
5804{
5805	struct block *b0, *b1;
5806#ifndef CHASE_CHAIN
5807	struct block *b2;
5808#endif
5809
5810	if (dir != Q_DEFAULT)
5811		bpf_error("direction applied to 'proto'");
5812
5813	switch (proto) {
5814	case Q_DEFAULT:
5815		b0 = gen_proto(v, Q_IP, dir);
5816		b1 = gen_proto(v, Q_IPV6, dir);
5817		gen_or(b0, b1);
5818		return b1;
5819
5820	case Q_IP:
5821		/*
5822		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5823		 * not LLC encapsulation with LLCSAP_IP.
5824		 *
5825		 * For IEEE 802 networks - which includes 802.5 token ring
5826		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5827		 * says that SNAP encapsulation is used, not LLC encapsulation
5828		 * with LLCSAP_IP.
5829		 *
5830		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5831		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5832		 * encapsulation with LLCSAP_IP.
5833		 *
5834		 * So we always check for ETHERTYPE_IP.
5835		 */
5836		b0 = gen_linktype(ETHERTYPE_IP);
5837#ifndef CHASE_CHAIN
5838		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5839#else
5840		b1 = gen_protochain(v, Q_IP);
5841#endif
5842		gen_and(b0, b1);
5843		return b1;
5844
5845	case Q_ISO:
5846		switch (linktype) {
5847
5848		case DLT_FRELAY:
5849			/*
5850			 * Frame Relay packets typically have an OSI
5851			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5852			 * generates code to check for all the OSI
5853			 * NLPIDs, so calling it and then adding a check
5854			 * for the particular NLPID for which we're
5855			 * looking is bogus, as we can just check for
5856			 * the NLPID.
5857			 *
5858			 * What we check for is the NLPID and a frame
5859			 * control field value of UI, i.e. 0x03 followed
5860			 * by the NLPID.
5861			 *
5862			 * XXX - assumes a 2-byte Frame Relay header with
5863			 * DLCI and flags.  What if the address is longer?
5864			 *
5865			 * XXX - what about SNAP-encapsulated frames?
5866			 */
5867			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5868			/*NOTREACHED*/
5869			break;
5870
5871		case DLT_C_HDLC:
5872			/*
5873			 * Cisco uses an Ethertype lookalike - for OSI,
5874			 * it's 0xfefe.
5875			 */
5876			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5877			/* OSI in C-HDLC is stuffed with a fudge byte */
5878			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5879			gen_and(b0, b1);
5880			return b1;
5881
5882		default:
5883			b0 = gen_linktype(LLCSAP_ISONS);
5884			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5885			gen_and(b0, b1);
5886			return b1;
5887		}
5888
5889	case Q_ISIS:
5890		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5891		/*
5892		 * 4 is the offset of the PDU type relative to the IS-IS
5893		 * header.
5894		 */
5895		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5896		gen_and(b0, b1);
5897		return b1;
5898
5899	case Q_ARP:
5900		bpf_error("arp does not encapsulate another protocol");
5901		/* NOTREACHED */
5902
5903	case Q_RARP:
5904		bpf_error("rarp does not encapsulate another protocol");
5905		/* NOTREACHED */
5906
5907	case Q_ATALK:
5908		bpf_error("atalk encapsulation is not specifiable");
5909		/* NOTREACHED */
5910
5911	case Q_DECNET:
5912		bpf_error("decnet encapsulation is not specifiable");
5913		/* NOTREACHED */
5914
5915	case Q_SCA:
5916		bpf_error("sca does not encapsulate another protocol");
5917		/* NOTREACHED */
5918
5919	case Q_LAT:
5920		bpf_error("lat does not encapsulate another protocol");
5921		/* NOTREACHED */
5922
5923	case Q_MOPRC:
5924		bpf_error("moprc does not encapsulate another protocol");
5925		/* NOTREACHED */
5926
5927	case Q_MOPDL:
5928		bpf_error("mopdl does not encapsulate another protocol");
5929		/* NOTREACHED */
5930
5931	case Q_LINK:
5932		return gen_linktype(v);
5933
5934	case Q_UDP:
5935		bpf_error("'udp proto' is bogus");
5936		/* NOTREACHED */
5937
5938	case Q_TCP:
5939		bpf_error("'tcp proto' is bogus");
5940		/* NOTREACHED */
5941
5942	case Q_SCTP:
5943		bpf_error("'sctp proto' is bogus");
5944		/* NOTREACHED */
5945
5946	case Q_ICMP:
5947		bpf_error("'icmp proto' is bogus");
5948		/* NOTREACHED */
5949
5950	case Q_IGMP:
5951		bpf_error("'igmp proto' is bogus");
5952		/* NOTREACHED */
5953
5954	case Q_IGRP:
5955		bpf_error("'igrp proto' is bogus");
5956		/* NOTREACHED */
5957
5958	case Q_PIM:
5959		bpf_error("'pim proto' is bogus");
5960		/* NOTREACHED */
5961
5962	case Q_VRRP:
5963		bpf_error("'vrrp proto' is bogus");
5964		/* NOTREACHED */
5965
5966	case Q_CARP:
5967		bpf_error("'carp proto' is bogus");
5968		/* NOTREACHED */
5969
5970	case Q_IPV6:
5971		b0 = gen_linktype(ETHERTYPE_IPV6);
5972#ifndef CHASE_CHAIN
5973		/*
5974		 * Also check for a fragment header before the final
5975		 * header.
5976		 */
5977		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5978		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5979		gen_and(b2, b1);
5980		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5981		gen_or(b2, b1);
5982#else
5983		b1 = gen_protochain(v, Q_IPV6);
5984#endif
5985		gen_and(b0, b1);
5986		return b1;
5987
5988	case Q_ICMPV6:
5989		bpf_error("'icmp6 proto' is bogus");
5990
5991	case Q_AH:
5992		bpf_error("'ah proto' is bogus");
5993
5994	case Q_ESP:
5995		bpf_error("'ah proto' is bogus");
5996
5997	case Q_STP:
5998		bpf_error("'stp proto' is bogus");
5999
6000	case Q_IPX:
6001		bpf_error("'ipx proto' is bogus");
6002
6003	case Q_NETBEUI:
6004		bpf_error("'netbeui proto' is bogus");
6005
6006	case Q_RADIO:
6007		bpf_error("'radio proto' is bogus");
6008
6009	default:
6010		abort();
6011		/* NOTREACHED */
6012	}
6013	/* NOTREACHED */
6014}
6015
6016struct block *
6017gen_scode(name, q)
6018	register const char *name;
6019	struct qual q;
6020{
6021	int proto = q.proto;
6022	int dir = q.dir;
6023	int tproto;
6024	u_char *eaddr;
6025	bpf_u_int32 mask, addr;
6026#ifndef INET6
6027	bpf_u_int32 **alist;
6028#else
6029	int tproto6;
6030	struct sockaddr_in *sin4;
6031	struct sockaddr_in6 *sin6;
6032	struct addrinfo *res, *res0;
6033	struct in6_addr mask128;
6034#endif /*INET6*/
6035	struct block *b, *tmp;
6036	int port, real_proto;
6037	int port1, port2;
6038
6039	switch (q.addr) {
6040
6041	case Q_NET:
6042		addr = pcap_nametonetaddr(name);
6043		if (addr == 0)
6044			bpf_error("unknown network '%s'", name);
6045		/* Left justify network addr and calculate its network mask */
6046		mask = 0xffffffff;
6047		while (addr && (addr & 0xff000000) == 0) {
6048			addr <<= 8;
6049			mask <<= 8;
6050		}
6051		return gen_host(addr, mask, proto, dir, q.addr);
6052
6053	case Q_DEFAULT:
6054	case Q_HOST:
6055		if (proto == Q_LINK) {
6056			switch (linktype) {
6057
6058			case DLT_EN10MB:
6059			case DLT_NETANALYZER:
6060			case DLT_NETANALYZER_TRANSPARENT:
6061				eaddr = pcap_ether_hostton(name);
6062				if (eaddr == NULL)
6063					bpf_error(
6064					    "unknown ether host '%s'", name);
6065				b = gen_ehostop(eaddr, dir);
6066				free(eaddr);
6067				return b;
6068
6069			case DLT_FDDI:
6070				eaddr = pcap_ether_hostton(name);
6071				if (eaddr == NULL)
6072					bpf_error(
6073					    "unknown FDDI host '%s'", name);
6074				b = gen_fhostop(eaddr, dir);
6075				free(eaddr);
6076				return b;
6077
6078			case DLT_IEEE802:
6079				eaddr = pcap_ether_hostton(name);
6080				if (eaddr == NULL)
6081					bpf_error(
6082					    "unknown token ring host '%s'", name);
6083				b = gen_thostop(eaddr, dir);
6084				free(eaddr);
6085				return b;
6086
6087			case DLT_IEEE802_11:
6088			case DLT_PRISM_HEADER:
6089			case DLT_IEEE802_11_RADIO_AVS:
6090			case DLT_IEEE802_11_RADIO:
6091			case DLT_PPI:
6092				eaddr = pcap_ether_hostton(name);
6093				if (eaddr == NULL)
6094					bpf_error(
6095					    "unknown 802.11 host '%s'", name);
6096				b = gen_wlanhostop(eaddr, dir);
6097				free(eaddr);
6098				return b;
6099
6100			case DLT_IP_OVER_FC:
6101				eaddr = pcap_ether_hostton(name);
6102				if (eaddr == NULL)
6103					bpf_error(
6104					    "unknown Fibre Channel host '%s'", name);
6105				b = gen_ipfchostop(eaddr, dir);
6106				free(eaddr);
6107				return b;
6108
6109			case DLT_SUNATM:
6110				if (!is_lane)
6111					break;
6112
6113				/*
6114				 * Check that the packet doesn't begin
6115				 * with an LE Control marker.  (We've
6116				 * already generated a test for LANE.)
6117				 */
6118				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6119				    BPF_H, 0xFF00);
6120				gen_not(tmp);
6121
6122				eaddr = pcap_ether_hostton(name);
6123				if (eaddr == NULL)
6124					bpf_error(
6125					    "unknown ether host '%s'", name);
6126				b = gen_ehostop(eaddr, dir);
6127				gen_and(tmp, b);
6128				free(eaddr);
6129				return b;
6130			}
6131
6132			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6133		} else if (proto == Q_DECNET) {
6134			unsigned short dn_addr = __pcap_nametodnaddr(name);
6135			/*
6136			 * I don't think DECNET hosts can be multihomed, so
6137			 * there is no need to build up a list of addresses
6138			 */
6139			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6140		} else {
6141#ifndef INET6
6142			alist = pcap_nametoaddr(name);
6143			if (alist == NULL || *alist == NULL)
6144				bpf_error("unknown host '%s'", name);
6145			tproto = proto;
6146			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6147				tproto = Q_IP;
6148			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6149			while (*alist) {
6150				tmp = gen_host(**alist++, 0xffffffff,
6151					       tproto, dir, q.addr);
6152				gen_or(b, tmp);
6153				b = tmp;
6154			}
6155			return b;
6156#else
6157			memset(&mask128, 0xff, sizeof(mask128));
6158			res0 = res = pcap_nametoaddrinfo(name);
6159			if (res == NULL)
6160				bpf_error("unknown host '%s'", name);
6161			ai = res;
6162			b = tmp = NULL;
6163			tproto = tproto6 = proto;
6164			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6165				tproto = Q_IP;
6166				tproto6 = Q_IPV6;
6167			}
6168			for (res = res0; res; res = res->ai_next) {
6169				switch (res->ai_family) {
6170				case AF_INET:
6171					if (tproto == Q_IPV6)
6172						continue;
6173
6174					sin4 = (struct sockaddr_in *)
6175						res->ai_addr;
6176					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6177						0xffffffff, tproto, dir, q.addr);
6178					break;
6179				case AF_INET6:
6180					if (tproto6 == Q_IP)
6181						continue;
6182
6183					sin6 = (struct sockaddr_in6 *)
6184						res->ai_addr;
6185					tmp = gen_host6(&sin6->sin6_addr,
6186						&mask128, tproto6, dir, q.addr);
6187					break;
6188				default:
6189					continue;
6190				}
6191				if (b)
6192					gen_or(b, tmp);
6193				b = tmp;
6194			}
6195			ai = NULL;
6196			freeaddrinfo(res0);
6197			if (b == NULL) {
6198				bpf_error("unknown host '%s'%s", name,
6199				    (proto == Q_DEFAULT)
6200					? ""
6201					: " for specified address family");
6202			}
6203			return b;
6204#endif /*INET6*/
6205		}
6206
6207	case Q_PORT:
6208		if (proto != Q_DEFAULT &&
6209		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6210			bpf_error("illegal qualifier of 'port'");
6211		if (pcap_nametoport(name, &port, &real_proto) == 0)
6212			bpf_error("unknown port '%s'", name);
6213		if (proto == Q_UDP) {
6214			if (real_proto == IPPROTO_TCP)
6215				bpf_error("port '%s' is tcp", name);
6216			else if (real_proto == IPPROTO_SCTP)
6217				bpf_error("port '%s' is sctp", name);
6218			else
6219				/* override PROTO_UNDEF */
6220				real_proto = IPPROTO_UDP;
6221		}
6222		if (proto == Q_TCP) {
6223			if (real_proto == IPPROTO_UDP)
6224				bpf_error("port '%s' is udp", name);
6225
6226			else if (real_proto == IPPROTO_SCTP)
6227				bpf_error("port '%s' is sctp", name);
6228			else
6229				/* override PROTO_UNDEF */
6230				real_proto = IPPROTO_TCP;
6231		}
6232		if (proto == Q_SCTP) {
6233			if (real_proto == IPPROTO_UDP)
6234				bpf_error("port '%s' is udp", name);
6235
6236			else if (real_proto == IPPROTO_TCP)
6237				bpf_error("port '%s' is tcp", name);
6238			else
6239				/* override PROTO_UNDEF */
6240				real_proto = IPPROTO_SCTP;
6241		}
6242		if (port < 0)
6243			bpf_error("illegal port number %d < 0", port);
6244		if (port > 65535)
6245			bpf_error("illegal port number %d > 65535", port);
6246		b = gen_port(port, real_proto, dir);
6247		gen_or(gen_port6(port, real_proto, dir), b);
6248		return b;
6249
6250	case Q_PORTRANGE:
6251		if (proto != Q_DEFAULT &&
6252		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6253			bpf_error("illegal qualifier of 'portrange'");
6254		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6255			bpf_error("unknown port in range '%s'", name);
6256		if (proto == Q_UDP) {
6257			if (real_proto == IPPROTO_TCP)
6258				bpf_error("port in range '%s' is tcp", name);
6259			else if (real_proto == IPPROTO_SCTP)
6260				bpf_error("port in range '%s' is sctp", name);
6261			else
6262				/* override PROTO_UNDEF */
6263				real_proto = IPPROTO_UDP;
6264		}
6265		if (proto == Q_TCP) {
6266			if (real_proto == IPPROTO_UDP)
6267				bpf_error("port in range '%s' is udp", name);
6268			else if (real_proto == IPPROTO_SCTP)
6269				bpf_error("port in range '%s' is sctp", name);
6270			else
6271				/* override PROTO_UNDEF */
6272				real_proto = IPPROTO_TCP;
6273		}
6274		if (proto == Q_SCTP) {
6275			if (real_proto == IPPROTO_UDP)
6276				bpf_error("port in range '%s' is udp", name);
6277			else if (real_proto == IPPROTO_TCP)
6278				bpf_error("port in range '%s' is tcp", name);
6279			else
6280				/* override PROTO_UNDEF */
6281				real_proto = IPPROTO_SCTP;
6282		}
6283		if (port1 < 0)
6284			bpf_error("illegal port number %d < 0", port1);
6285		if (port1 > 65535)
6286			bpf_error("illegal port number %d > 65535", port1);
6287		if (port2 < 0)
6288			bpf_error("illegal port number %d < 0", port2);
6289		if (port2 > 65535)
6290			bpf_error("illegal port number %d > 65535", port2);
6291
6292		b = gen_portrange(port1, port2, real_proto, dir);
6293		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6294		return b;
6295
6296	case Q_GATEWAY:
6297#ifndef INET6
6298		eaddr = pcap_ether_hostton(name);
6299		if (eaddr == NULL)
6300			bpf_error("unknown ether host: %s", name);
6301
6302		alist = pcap_nametoaddr(name);
6303		if (alist == NULL || *alist == NULL)
6304			bpf_error("unknown host '%s'", name);
6305		b = gen_gateway(eaddr, alist, proto, dir);
6306		free(eaddr);
6307		return b;
6308#else
6309		bpf_error("'gateway' not supported in this configuration");
6310#endif /*INET6*/
6311
6312	case Q_PROTO:
6313		real_proto = lookup_proto(name, proto);
6314		if (real_proto >= 0)
6315			return gen_proto(real_proto, proto, dir);
6316		else
6317			bpf_error("unknown protocol: %s", name);
6318
6319	case Q_PROTOCHAIN:
6320		real_proto = lookup_proto(name, proto);
6321		if (real_proto >= 0)
6322			return gen_protochain(real_proto, proto, dir);
6323		else
6324			bpf_error("unknown protocol: %s", name);
6325
6326	case Q_UNDEF:
6327		syntax();
6328		/* NOTREACHED */
6329	}
6330	abort();
6331	/* NOTREACHED */
6332}
6333
6334struct block *
6335gen_mcode(s1, s2, masklen, q)
6336	register const char *s1, *s2;
6337	register int masklen;
6338	struct qual q;
6339{
6340	register int nlen, mlen;
6341	bpf_u_int32 n, m;
6342
6343	nlen = __pcap_atoin(s1, &n);
6344	/* Promote short ipaddr */
6345	n <<= 32 - nlen;
6346
6347	if (s2 != NULL) {
6348		mlen = __pcap_atoin(s2, &m);
6349		/* Promote short ipaddr */
6350		m <<= 32 - mlen;
6351		if ((n & ~m) != 0)
6352			bpf_error("non-network bits set in \"%s mask %s\"",
6353			    s1, s2);
6354	} else {
6355		/* Convert mask len to mask */
6356		if (masklen > 32)
6357			bpf_error("mask length must be <= 32");
6358		if (masklen == 0) {
6359			/*
6360			 * X << 32 is not guaranteed by C to be 0; it's
6361			 * undefined.
6362			 */
6363			m = 0;
6364		} else
6365			m = 0xffffffff << (32 - masklen);
6366		if ((n & ~m) != 0)
6367			bpf_error("non-network bits set in \"%s/%d\"",
6368			    s1, masklen);
6369	}
6370
6371	switch (q.addr) {
6372
6373	case Q_NET:
6374		return gen_host(n, m, q.proto, q.dir, q.addr);
6375
6376	default:
6377		bpf_error("Mask syntax for networks only");
6378		/* NOTREACHED */
6379	}
6380	/* NOTREACHED */
6381	return NULL;
6382}
6383
6384struct block *
6385gen_ncode(s, v, q)
6386	register const char *s;
6387	bpf_u_int32 v;
6388	struct qual q;
6389{
6390	bpf_u_int32 mask;
6391	int proto = q.proto;
6392	int dir = q.dir;
6393	register int vlen;
6394
6395	if (s == NULL)
6396		vlen = 32;
6397	else if (q.proto == Q_DECNET)
6398		vlen = __pcap_atodn(s, &v);
6399	else
6400		vlen = __pcap_atoin(s, &v);
6401
6402	switch (q.addr) {
6403
6404	case Q_DEFAULT:
6405	case Q_HOST:
6406	case Q_NET:
6407		if (proto == Q_DECNET)
6408			return gen_host(v, 0, proto, dir, q.addr);
6409		else if (proto == Q_LINK) {
6410			bpf_error("illegal link layer address");
6411		} else {
6412			mask = 0xffffffff;
6413			if (s == NULL && q.addr == Q_NET) {
6414				/* Promote short net number */
6415				while (v && (v & 0xff000000) == 0) {
6416					v <<= 8;
6417					mask <<= 8;
6418				}
6419			} else {
6420				/* Promote short ipaddr */
6421				v <<= 32 - vlen;
6422				mask <<= 32 - vlen;
6423			}
6424			return gen_host(v, mask, proto, dir, q.addr);
6425		}
6426
6427	case Q_PORT:
6428		if (proto == Q_UDP)
6429			proto = IPPROTO_UDP;
6430		else if (proto == Q_TCP)
6431			proto = IPPROTO_TCP;
6432		else if (proto == Q_SCTP)
6433			proto = IPPROTO_SCTP;
6434		else if (proto == Q_DEFAULT)
6435			proto = PROTO_UNDEF;
6436		else
6437			bpf_error("illegal qualifier of 'port'");
6438
6439		if (v > 65535)
6440			bpf_error("illegal port number %u > 65535", v);
6441
6442	    {
6443		struct block *b;
6444		b = gen_port((int)v, proto, dir);
6445		gen_or(gen_port6((int)v, proto, dir), b);
6446		return b;
6447	    }
6448
6449	case Q_PORTRANGE:
6450		if (proto == Q_UDP)
6451			proto = IPPROTO_UDP;
6452		else if (proto == Q_TCP)
6453			proto = IPPROTO_TCP;
6454		else if (proto == Q_SCTP)
6455			proto = IPPROTO_SCTP;
6456		else if (proto == Q_DEFAULT)
6457			proto = PROTO_UNDEF;
6458		else
6459			bpf_error("illegal qualifier of 'portrange'");
6460
6461		if (v > 65535)
6462			bpf_error("illegal port number %u > 65535", v);
6463
6464	    {
6465		struct block *b;
6466		b = gen_portrange((int)v, (int)v, proto, dir);
6467		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6468		return b;
6469	    }
6470
6471	case Q_GATEWAY:
6472		bpf_error("'gateway' requires a name");
6473		/* NOTREACHED */
6474
6475	case Q_PROTO:
6476		return gen_proto((int)v, proto, dir);
6477
6478	case Q_PROTOCHAIN:
6479		return gen_protochain((int)v, proto, dir);
6480
6481	case Q_UNDEF:
6482		syntax();
6483		/* NOTREACHED */
6484
6485	default:
6486		abort();
6487		/* NOTREACHED */
6488	}
6489	/* NOTREACHED */
6490}
6491
6492#ifdef INET6
6493struct block *
6494gen_mcode6(s1, s2, masklen, q)
6495	register const char *s1, *s2;
6496	register int masklen;
6497	struct qual q;
6498{
6499	struct addrinfo *res;
6500	struct in6_addr *addr;
6501	struct in6_addr mask;
6502	struct block *b;
6503	u_int32_t *a, *m;
6504
6505	if (s2)
6506		bpf_error("no mask %s supported", s2);
6507
6508	res = pcap_nametoaddrinfo(s1);
6509	if (!res)
6510		bpf_error("invalid ip6 address %s", s1);
6511	ai = res;
6512	if (res->ai_next)
6513		bpf_error("%s resolved to multiple address", s1);
6514	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6515
6516	if (sizeof(mask) * 8 < masklen)
6517		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6518	memset(&mask, 0, sizeof(mask));
6519	memset(&mask, 0xff, masklen / 8);
6520	if (masklen % 8) {
6521		mask.s6_addr[masklen / 8] =
6522			(0xff << (8 - masklen % 8)) & 0xff;
6523	}
6524
6525	a = (u_int32_t *)addr;
6526	m = (u_int32_t *)&mask;
6527	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6528	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6529		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6530	}
6531
6532	switch (q.addr) {
6533
6534	case Q_DEFAULT:
6535	case Q_HOST:
6536		if (masklen != 128)
6537			bpf_error("Mask syntax for networks only");
6538		/* FALLTHROUGH */
6539
6540	case Q_NET:
6541		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6542		ai = NULL;
6543		freeaddrinfo(res);
6544		return b;
6545
6546	default:
6547		bpf_error("invalid qualifier against IPv6 address");
6548		/* NOTREACHED */
6549	}
6550	return NULL;
6551}
6552#endif /*INET6*/
6553
6554struct block *
6555gen_ecode(eaddr, q)
6556	register const u_char *eaddr;
6557	struct qual q;
6558{
6559	struct block *b, *tmp;
6560
6561	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6562		switch (linktype) {
6563		case DLT_EN10MB:
6564		case DLT_NETANALYZER:
6565		case DLT_NETANALYZER_TRANSPARENT:
6566			return gen_ehostop(eaddr, (int)q.dir);
6567		case DLT_FDDI:
6568			return gen_fhostop(eaddr, (int)q.dir);
6569		case DLT_IEEE802:
6570			return gen_thostop(eaddr, (int)q.dir);
6571		case DLT_IEEE802_11:
6572		case DLT_PRISM_HEADER:
6573		case DLT_IEEE802_11_RADIO_AVS:
6574		case DLT_IEEE802_11_RADIO:
6575		case DLT_PPI:
6576			return gen_wlanhostop(eaddr, (int)q.dir);
6577		case DLT_SUNATM:
6578			if (is_lane) {
6579				/*
6580				 * Check that the packet doesn't begin with an
6581				 * LE Control marker.  (We've already generated
6582				 * a test for LANE.)
6583				 */
6584				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6585					0xFF00);
6586				gen_not(tmp);
6587
6588				/*
6589				 * Now check the MAC address.
6590				 */
6591				b = gen_ehostop(eaddr, (int)q.dir);
6592				gen_and(tmp, b);
6593				return b;
6594			}
6595			break;
6596		case DLT_IP_OVER_FC:
6597			return gen_ipfchostop(eaddr, (int)q.dir);
6598		default:
6599			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6600			break;
6601		}
6602	}
6603	bpf_error("ethernet address used in non-ether expression");
6604	/* NOTREACHED */
6605	return NULL;
6606}
6607
6608void
6609sappend(s0, s1)
6610	struct slist *s0, *s1;
6611{
6612	/*
6613	 * This is definitely not the best way to do this, but the
6614	 * lists will rarely get long.
6615	 */
6616	while (s0->next)
6617		s0 = s0->next;
6618	s0->next = s1;
6619}
6620
6621static struct slist *
6622xfer_to_x(a)
6623	struct arth *a;
6624{
6625	struct slist *s;
6626
6627	s = new_stmt(BPF_LDX|BPF_MEM);
6628	s->s.k = a->regno;
6629	return s;
6630}
6631
6632static struct slist *
6633xfer_to_a(a)
6634	struct arth *a;
6635{
6636	struct slist *s;
6637
6638	s = new_stmt(BPF_LD|BPF_MEM);
6639	s->s.k = a->regno;
6640	return s;
6641}
6642
6643/*
6644 * Modify "index" to use the value stored into its register as an
6645 * offset relative to the beginning of the header for the protocol
6646 * "proto", and allocate a register and put an item "size" bytes long
6647 * (1, 2, or 4) at that offset into that register, making it the register
6648 * for "index".
6649 */
6650struct arth *
6651gen_load(proto, inst, size)
6652	int proto;
6653	struct arth *inst;
6654	int size;
6655{
6656	struct slist *s, *tmp;
6657	struct block *b;
6658	int regno = alloc_reg();
6659
6660	free_reg(inst->regno);
6661	switch (size) {
6662
6663	default:
6664		bpf_error("data size must be 1, 2, or 4");
6665
6666	case 1:
6667		size = BPF_B;
6668		break;
6669
6670	case 2:
6671		size = BPF_H;
6672		break;
6673
6674	case 4:
6675		size = BPF_W;
6676		break;
6677	}
6678	switch (proto) {
6679	default:
6680		bpf_error("unsupported index operation");
6681
6682	case Q_RADIO:
6683		/*
6684		 * The offset is relative to the beginning of the packet
6685		 * data, if we have a radio header.  (If we don't, this
6686		 * is an error.)
6687		 */
6688		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6689		    linktype != DLT_IEEE802_11_RADIO &&
6690		    linktype != DLT_PRISM_HEADER)
6691			bpf_error("radio information not present in capture");
6692
6693		/*
6694		 * Load into the X register the offset computed into the
6695		 * register specified by "index".
6696		 */
6697		s = xfer_to_x(inst);
6698
6699		/*
6700		 * Load the item at that offset.
6701		 */
6702		tmp = new_stmt(BPF_LD|BPF_IND|size);
6703		sappend(s, tmp);
6704		sappend(inst->s, s);
6705		break;
6706
6707	case Q_LINK:
6708		/*
6709		 * The offset is relative to the beginning of
6710		 * the link-layer header.
6711		 *
6712		 * XXX - what about ATM LANE?  Should the index be
6713		 * relative to the beginning of the AAL5 frame, so
6714		 * that 0 refers to the beginning of the LE Control
6715		 * field, or relative to the beginning of the LAN
6716		 * frame, so that 0 refers, for Ethernet LANE, to
6717		 * the beginning of the destination address?
6718		 */
6719		s = gen_llprefixlen();
6720
6721		/*
6722		 * If "s" is non-null, it has code to arrange that the
6723		 * X register contains the length of the prefix preceding
6724		 * the link-layer header.  Add to it the offset computed
6725		 * into the register specified by "index", and move that
6726		 * into the X register.  Otherwise, just load into the X
6727		 * register the offset computed into the register specified
6728		 * by "index".
6729		 */
6730		if (s != NULL) {
6731			sappend(s, xfer_to_a(inst));
6732			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6733			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6734		} else
6735			s = xfer_to_x(inst);
6736
6737		/*
6738		 * Load the item at the sum of the offset we've put in the
6739		 * X register and the offset of the start of the link
6740		 * layer header (which is 0 if the radio header is
6741		 * variable-length; that header length is what we put
6742		 * into the X register and then added to the index).
6743		 */
6744		tmp = new_stmt(BPF_LD|BPF_IND|size);
6745		tmp->s.k = off_ll;
6746		sappend(s, tmp);
6747		sappend(inst->s, s);
6748		break;
6749
6750	case Q_IP:
6751	case Q_ARP:
6752	case Q_RARP:
6753	case Q_ATALK:
6754	case Q_DECNET:
6755	case Q_SCA:
6756	case Q_LAT:
6757	case Q_MOPRC:
6758	case Q_MOPDL:
6759	case Q_IPV6:
6760		/*
6761		 * The offset is relative to the beginning of
6762		 * the network-layer header.
6763		 * XXX - are there any cases where we want
6764		 * off_nl_nosnap?
6765		 */
6766		s = gen_off_macpl();
6767
6768		/*
6769		 * If "s" is non-null, it has code to arrange that the
6770		 * X register contains the offset of the MAC-layer
6771		 * payload.  Add to it the offset computed into the
6772		 * register specified by "index", and move that into
6773		 * the X register.  Otherwise, just load into the X
6774		 * register the offset computed into the register specified
6775		 * by "index".
6776		 */
6777		if (s != NULL) {
6778			sappend(s, xfer_to_a(inst));
6779			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6780			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6781		} else
6782			s = xfer_to_x(inst);
6783
6784		/*
6785		 * Load the item at the sum of the offset we've put in the
6786		 * X register, the offset of the start of the network
6787		 * layer header from the beginning of the MAC-layer
6788		 * payload, and the purported offset of the start of the
6789		 * MAC-layer payload (which might be 0 if there's a
6790		 * variable-length prefix before the link-layer header
6791		 * or the link-layer header itself is variable-length;
6792		 * the variable-length offset of the start of the
6793		 * MAC-layer payload is what we put into the X register
6794		 * and then added to the index).
6795		 */
6796		tmp = new_stmt(BPF_LD|BPF_IND|size);
6797		tmp->s.k = off_macpl + off_nl;
6798		sappend(s, tmp);
6799		sappend(inst->s, s);
6800
6801		/*
6802		 * Do the computation only if the packet contains
6803		 * the protocol in question.
6804		 */
6805		b = gen_proto_abbrev(proto);
6806		if (inst->b)
6807			gen_and(inst->b, b);
6808		inst->b = b;
6809		break;
6810
6811	case Q_SCTP:
6812	case Q_TCP:
6813	case Q_UDP:
6814	case Q_ICMP:
6815	case Q_IGMP:
6816	case Q_IGRP:
6817	case Q_PIM:
6818	case Q_VRRP:
6819	case Q_CARP:
6820		/*
6821		 * The offset is relative to the beginning of
6822		 * the transport-layer header.
6823		 *
6824		 * Load the X register with the length of the IPv4 header
6825		 * (plus the offset of the link-layer header, if it's
6826		 * a variable-length header), in bytes.
6827		 *
6828		 * XXX - are there any cases where we want
6829		 * off_nl_nosnap?
6830		 * XXX - we should, if we're built with
6831		 * IPv6 support, generate code to load either
6832		 * IPv4, IPv6, or both, as appropriate.
6833		 */
6834		s = gen_loadx_iphdrlen();
6835
6836		/*
6837		 * The X register now contains the sum of the length
6838		 * of any variable-length header preceding the link-layer
6839		 * header, any variable-length link-layer header, and the
6840		 * length of the network-layer header.
6841		 *
6842		 * Load into the A register the offset relative to
6843		 * the beginning of the transport layer header,
6844		 * add the X register to that, move that to the
6845		 * X register, and load with an offset from the
6846		 * X register equal to the offset of the network
6847		 * layer header relative to the beginning of
6848		 * the MAC-layer payload plus the fixed-length
6849		 * portion of the offset of the MAC-layer payload
6850		 * from the beginning of the raw packet data.
6851		 */
6852		sappend(s, xfer_to_a(inst));
6853		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6854		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6855		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6856		tmp->s.k = off_macpl + off_nl;
6857		sappend(inst->s, s);
6858
6859		/*
6860		 * Do the computation only if the packet contains
6861		 * the protocol in question - which is true only
6862		 * if this is an IP datagram and is the first or
6863		 * only fragment of that datagram.
6864		 */
6865		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6866		if (inst->b)
6867			gen_and(inst->b, b);
6868		gen_and(gen_proto_abbrev(Q_IP), b);
6869		inst->b = b;
6870		break;
6871	case Q_ICMPV6:
6872		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6873		/*NOTREACHED*/
6874	}
6875	inst->regno = regno;
6876	s = new_stmt(BPF_ST);
6877	s->s.k = regno;
6878	sappend(inst->s, s);
6879
6880	return inst;
6881}
6882
6883struct block *
6884gen_relation(code, a0, a1, reversed)
6885	int code;
6886	struct arth *a0, *a1;
6887	int reversed;
6888{
6889	struct slist *s0, *s1, *s2;
6890	struct block *b, *tmp;
6891
6892	s0 = xfer_to_x(a1);
6893	s1 = xfer_to_a(a0);
6894	if (code == BPF_JEQ) {
6895		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6896		b = new_block(JMP(code));
6897		sappend(s1, s2);
6898	}
6899	else
6900		b = new_block(BPF_JMP|code|BPF_X);
6901	if (reversed)
6902		gen_not(b);
6903
6904	sappend(s0, s1);
6905	sappend(a1->s, s0);
6906	sappend(a0->s, a1->s);
6907
6908	b->stmts = a0->s;
6909
6910	free_reg(a0->regno);
6911	free_reg(a1->regno);
6912
6913	/* 'and' together protocol checks */
6914	if (a0->b) {
6915		if (a1->b) {
6916			gen_and(a0->b, tmp = a1->b);
6917		}
6918		else
6919			tmp = a0->b;
6920	} else
6921		tmp = a1->b;
6922
6923	if (tmp)
6924		gen_and(tmp, b);
6925
6926	return b;
6927}
6928
6929struct arth *
6930gen_loadlen()
6931{
6932	int regno = alloc_reg();
6933	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6934	struct slist *s;
6935
6936	s = new_stmt(BPF_LD|BPF_LEN);
6937	s->next = new_stmt(BPF_ST);
6938	s->next->s.k = regno;
6939	a->s = s;
6940	a->regno = regno;
6941
6942	return a;
6943}
6944
6945struct arth *
6946gen_loadi(val)
6947	int val;
6948{
6949	struct arth *a;
6950	struct slist *s;
6951	int reg;
6952
6953	a = (struct arth *)newchunk(sizeof(*a));
6954
6955	reg = alloc_reg();
6956
6957	s = new_stmt(BPF_LD|BPF_IMM);
6958	s->s.k = val;
6959	s->next = new_stmt(BPF_ST);
6960	s->next->s.k = reg;
6961	a->s = s;
6962	a->regno = reg;
6963
6964	return a;
6965}
6966
6967struct arth *
6968gen_neg(a)
6969	struct arth *a;
6970{
6971	struct slist *s;
6972
6973	s = xfer_to_a(a);
6974	sappend(a->s, s);
6975	s = new_stmt(BPF_ALU|BPF_NEG);
6976	s->s.k = 0;
6977	sappend(a->s, s);
6978	s = new_stmt(BPF_ST);
6979	s->s.k = a->regno;
6980	sappend(a->s, s);
6981
6982	return a;
6983}
6984
6985struct arth *
6986gen_arth(code, a0, a1)
6987	int code;
6988	struct arth *a0, *a1;
6989{
6990	struct slist *s0, *s1, *s2;
6991
6992	s0 = xfer_to_x(a1);
6993	s1 = xfer_to_a(a0);
6994	s2 = new_stmt(BPF_ALU|BPF_X|code);
6995
6996	sappend(s1, s2);
6997	sappend(s0, s1);
6998	sappend(a1->s, s0);
6999	sappend(a0->s, a1->s);
7000
7001	free_reg(a0->regno);
7002	free_reg(a1->regno);
7003
7004	s0 = new_stmt(BPF_ST);
7005	a0->regno = s0->s.k = alloc_reg();
7006	sappend(a0->s, s0);
7007
7008	return a0;
7009}
7010
7011/*
7012 * Here we handle simple allocation of the scratch registers.
7013 * If too many registers are alloc'd, the allocator punts.
7014 */
7015static int regused[BPF_MEMWORDS];
7016static int curreg;
7017
7018/*
7019 * Initialize the table of used registers and the current register.
7020 */
7021static void
7022init_regs()
7023{
7024	curreg = 0;
7025	memset(regused, 0, sizeof regused);
7026}
7027
7028/*
7029 * Return the next free register.
7030 */
7031static int
7032alloc_reg()
7033{
7034	int n = BPF_MEMWORDS;
7035
7036	while (--n >= 0) {
7037		if (regused[curreg])
7038			curreg = (curreg + 1) % BPF_MEMWORDS;
7039		else {
7040			regused[curreg] = 1;
7041			return curreg;
7042		}
7043	}
7044	bpf_error("too many registers needed to evaluate expression");
7045	/* NOTREACHED */
7046	return 0;
7047}
7048
7049/*
7050 * Return a register to the table so it can
7051 * be used later.
7052 */
7053static void
7054free_reg(n)
7055	int n;
7056{
7057	regused[n] = 0;
7058}
7059
7060static struct block *
7061gen_len(jmp, n)
7062	int jmp, n;
7063{
7064	struct slist *s;
7065	struct block *b;
7066
7067	s = new_stmt(BPF_LD|BPF_LEN);
7068	b = new_block(JMP(jmp));
7069	b->stmts = s;
7070	b->s.k = n;
7071
7072	return b;
7073}
7074
7075struct block *
7076gen_greater(n)
7077	int n;
7078{
7079	return gen_len(BPF_JGE, n);
7080}
7081
7082/*
7083 * Actually, this is less than or equal.
7084 */
7085struct block *
7086gen_less(n)
7087	int n;
7088{
7089	struct block *b;
7090
7091	b = gen_len(BPF_JGT, n);
7092	gen_not(b);
7093
7094	return b;
7095}
7096
7097/*
7098 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7099 * the beginning of the link-layer header.
7100 * XXX - that means you can't test values in the radiotap header, but
7101 * as that header is difficult if not impossible to parse generally
7102 * without a loop, that might not be a severe problem.  A new keyword
7103 * "radio" could be added for that, although what you'd really want
7104 * would be a way of testing particular radio header values, which
7105 * would generate code appropriate to the radio header in question.
7106 */
7107struct block *
7108gen_byteop(op, idx, val)
7109	int op, idx, val;
7110{
7111	struct block *b;
7112	struct slist *s;
7113
7114	switch (op) {
7115	default:
7116		abort();
7117
7118	case '=':
7119		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7120
7121	case '<':
7122		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7123		return b;
7124
7125	case '>':
7126		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7127		return b;
7128
7129	case '|':
7130		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7131		break;
7132
7133	case '&':
7134		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7135		break;
7136	}
7137	s->s.k = val;
7138	b = new_block(JMP(BPF_JEQ));
7139	b->stmts = s;
7140	gen_not(b);
7141
7142	return b;
7143}
7144
7145static u_char abroadcast[] = { 0x0 };
7146
7147struct block *
7148gen_broadcast(proto)
7149	int proto;
7150{
7151	bpf_u_int32 hostmask;
7152	struct block *b0, *b1, *b2;
7153	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7154
7155	switch (proto) {
7156
7157	case Q_DEFAULT:
7158	case Q_LINK:
7159		switch (linktype) {
7160		case DLT_ARCNET:
7161		case DLT_ARCNET_LINUX:
7162			return gen_ahostop(abroadcast, Q_DST);
7163		case DLT_EN10MB:
7164		case DLT_NETANALYZER:
7165		case DLT_NETANALYZER_TRANSPARENT:
7166			return gen_ehostop(ebroadcast, Q_DST);
7167		case DLT_FDDI:
7168			return gen_fhostop(ebroadcast, Q_DST);
7169		case DLT_IEEE802:
7170			return gen_thostop(ebroadcast, Q_DST);
7171		case DLT_IEEE802_11:
7172		case DLT_PRISM_HEADER:
7173		case DLT_IEEE802_11_RADIO_AVS:
7174		case DLT_IEEE802_11_RADIO:
7175		case DLT_PPI:
7176			return gen_wlanhostop(ebroadcast, Q_DST);
7177		case DLT_IP_OVER_FC:
7178			return gen_ipfchostop(ebroadcast, Q_DST);
7179		case DLT_SUNATM:
7180			if (is_lane) {
7181				/*
7182				 * Check that the packet doesn't begin with an
7183				 * LE Control marker.  (We've already generated
7184				 * a test for LANE.)
7185				 */
7186				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7187				    BPF_H, 0xFF00);
7188				gen_not(b1);
7189
7190				/*
7191				 * Now check the MAC address.
7192				 */
7193				b0 = gen_ehostop(ebroadcast, Q_DST);
7194				gen_and(b1, b0);
7195				return b0;
7196			}
7197			break;
7198		default:
7199			bpf_error("not a broadcast link");
7200		}
7201		break;
7202
7203	case Q_IP:
7204		/*
7205		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7206		 * as an indication that we don't know the netmask, and fail
7207		 * in that case.
7208		 */
7209		if (netmask == PCAP_NETMASK_UNKNOWN)
7210			bpf_error("netmask not known, so 'ip broadcast' not supported");
7211		b0 = gen_linktype(ETHERTYPE_IP);
7212		hostmask = ~netmask;
7213		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7214		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7215			      (bpf_int32)(~0 & hostmask), hostmask);
7216		gen_or(b1, b2);
7217		gen_and(b0, b2);
7218		return b2;
7219	}
7220	bpf_error("only link-layer/IP broadcast filters supported");
7221	/* NOTREACHED */
7222	return NULL;
7223}
7224
7225/*
7226 * Generate code to test the low-order bit of a MAC address (that's
7227 * the bottom bit of the *first* byte).
7228 */
7229static struct block *
7230gen_mac_multicast(offset)
7231	int offset;
7232{
7233	register struct block *b0;
7234	register struct slist *s;
7235
7236	/* link[offset] & 1 != 0 */
7237	s = gen_load_a(OR_LINK, offset, BPF_B);
7238	b0 = new_block(JMP(BPF_JSET));
7239	b0->s.k = 1;
7240	b0->stmts = s;
7241	return b0;
7242}
7243
7244struct block *
7245gen_multicast(proto)
7246	int proto;
7247{
7248	register struct block *b0, *b1, *b2;
7249	register struct slist *s;
7250
7251	switch (proto) {
7252
7253	case Q_DEFAULT:
7254	case Q_LINK:
7255		switch (linktype) {
7256		case DLT_ARCNET:
7257		case DLT_ARCNET_LINUX:
7258			/* all ARCnet multicasts use the same address */
7259			return gen_ahostop(abroadcast, Q_DST);
7260		case DLT_EN10MB:
7261		case DLT_NETANALYZER:
7262		case DLT_NETANALYZER_TRANSPARENT:
7263			/* ether[0] & 1 != 0 */
7264			return gen_mac_multicast(0);
7265		case DLT_FDDI:
7266			/*
7267			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7268			 *
7269			 * XXX - was that referring to bit-order issues?
7270			 */
7271			/* fddi[1] & 1 != 0 */
7272			return gen_mac_multicast(1);
7273		case DLT_IEEE802:
7274			/* tr[2] & 1 != 0 */
7275			return gen_mac_multicast(2);
7276		case DLT_IEEE802_11:
7277		case DLT_PRISM_HEADER:
7278		case DLT_IEEE802_11_RADIO_AVS:
7279		case DLT_IEEE802_11_RADIO:
7280		case DLT_PPI:
7281			/*
7282			 * Oh, yuk.
7283			 *
7284			 *	For control frames, there is no DA.
7285			 *
7286			 *	For management frames, DA is at an
7287			 *	offset of 4 from the beginning of
7288			 *	the packet.
7289			 *
7290			 *	For data frames, DA is at an offset
7291			 *	of 4 from the beginning of the packet
7292			 *	if To DS is clear and at an offset of
7293			 *	16 from the beginning of the packet
7294			 *	if To DS is set.
7295			 */
7296
7297			/*
7298			 * Generate the tests to be done for data frames.
7299			 *
7300			 * First, check for To DS set, i.e. "link[1] & 0x01".
7301			 */
7302			s = gen_load_a(OR_LINK, 1, BPF_B);
7303			b1 = new_block(JMP(BPF_JSET));
7304			b1->s.k = 0x01;	/* To DS */
7305			b1->stmts = s;
7306
7307			/*
7308			 * If To DS is set, the DA is at 16.
7309			 */
7310			b0 = gen_mac_multicast(16);
7311			gen_and(b1, b0);
7312
7313			/*
7314			 * Now, check for To DS not set, i.e. check
7315			 * "!(link[1] & 0x01)".
7316			 */
7317			s = gen_load_a(OR_LINK, 1, BPF_B);
7318			b2 = new_block(JMP(BPF_JSET));
7319			b2->s.k = 0x01;	/* To DS */
7320			b2->stmts = s;
7321			gen_not(b2);
7322
7323			/*
7324			 * If To DS is not set, the DA is at 4.
7325			 */
7326			b1 = gen_mac_multicast(4);
7327			gen_and(b2, b1);
7328
7329			/*
7330			 * Now OR together the last two checks.  That gives
7331			 * the complete set of checks for data frames.
7332			 */
7333			gen_or(b1, b0);
7334
7335			/*
7336			 * Now check for a data frame.
7337			 * I.e, check "link[0] & 0x08".
7338			 */
7339			s = gen_load_a(OR_LINK, 0, BPF_B);
7340			b1 = new_block(JMP(BPF_JSET));
7341			b1->s.k = 0x08;
7342			b1->stmts = s;
7343
7344			/*
7345			 * AND that with the checks done for data frames.
7346			 */
7347			gen_and(b1, b0);
7348
7349			/*
7350			 * If the high-order bit of the type value is 0, this
7351			 * is a management frame.
7352			 * I.e, check "!(link[0] & 0x08)".
7353			 */
7354			s = gen_load_a(OR_LINK, 0, BPF_B);
7355			b2 = new_block(JMP(BPF_JSET));
7356			b2->s.k = 0x08;
7357			b2->stmts = s;
7358			gen_not(b2);
7359
7360			/*
7361			 * For management frames, the DA is at 4.
7362			 */
7363			b1 = gen_mac_multicast(4);
7364			gen_and(b2, b1);
7365
7366			/*
7367			 * OR that with the checks done for data frames.
7368			 * That gives the checks done for management and
7369			 * data frames.
7370			 */
7371			gen_or(b1, b0);
7372
7373			/*
7374			 * If the low-order bit of the type value is 1,
7375			 * this is either a control frame or a frame
7376			 * with a reserved type, and thus not a
7377			 * frame with an SA.
7378			 *
7379			 * I.e., check "!(link[0] & 0x04)".
7380			 */
7381			s = gen_load_a(OR_LINK, 0, BPF_B);
7382			b1 = new_block(JMP(BPF_JSET));
7383			b1->s.k = 0x04;
7384			b1->stmts = s;
7385			gen_not(b1);
7386
7387			/*
7388			 * AND that with the checks for data and management
7389			 * frames.
7390			 */
7391			gen_and(b1, b0);
7392			return b0;
7393		case DLT_IP_OVER_FC:
7394			b0 = gen_mac_multicast(2);
7395			return b0;
7396		case DLT_SUNATM:
7397			if (is_lane) {
7398				/*
7399				 * Check that the packet doesn't begin with an
7400				 * LE Control marker.  (We've already generated
7401				 * a test for LANE.)
7402				 */
7403				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7404				    BPF_H, 0xFF00);
7405				gen_not(b1);
7406
7407				/* ether[off_mac] & 1 != 0 */
7408				b0 = gen_mac_multicast(off_mac);
7409				gen_and(b1, b0);
7410				return b0;
7411			}
7412			break;
7413		default:
7414			break;
7415		}
7416		/* Link not known to support multicasts */
7417		break;
7418
7419	case Q_IP:
7420		b0 = gen_linktype(ETHERTYPE_IP);
7421		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7422		gen_and(b0, b1);
7423		return b1;
7424
7425	case Q_IPV6:
7426		b0 = gen_linktype(ETHERTYPE_IPV6);
7427		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7428		gen_and(b0, b1);
7429		return b1;
7430	}
7431	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7432	/* NOTREACHED */
7433	return NULL;
7434}
7435
7436/*
7437 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7438 * Outbound traffic is sent by this machine, while inbound traffic is
7439 * sent by a remote machine (and may include packets destined for a
7440 * unicast or multicast link-layer address we are not subscribing to).
7441 * These are the same definitions implemented by pcap_setdirection().
7442 * Capturing only unicast traffic destined for this host is probably
7443 * better accomplished using a higher-layer filter.
7444 */
7445struct block *
7446gen_inbound(dir)
7447	int dir;
7448{
7449	register struct block *b0;
7450
7451	/*
7452	 * Only some data link types support inbound/outbound qualifiers.
7453	 */
7454	switch (linktype) {
7455	case DLT_SLIP:
7456		b0 = gen_relation(BPF_JEQ,
7457			  gen_load(Q_LINK, gen_loadi(0), 1),
7458			  gen_loadi(0),
7459			  dir);
7460		break;
7461
7462	case DLT_IPNET:
7463		if (dir) {
7464			/* match outgoing packets */
7465			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7466		} else {
7467			/* match incoming packets */
7468			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7469		}
7470		break;
7471
7472	case DLT_LINUX_SLL:
7473		/* match outgoing packets */
7474		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7475		if (!dir) {
7476			/* to filter on inbound traffic, invert the match */
7477			gen_not(b0);
7478		}
7479		break;
7480
7481#ifdef HAVE_NET_PFVAR_H
7482	case DLT_PFLOG:
7483		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7484		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7485		break;
7486#endif
7487
7488	case DLT_PPP_PPPD:
7489		if (dir) {
7490			/* match outgoing packets */
7491			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7492		} else {
7493			/* match incoming packets */
7494			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7495		}
7496		break;
7497
7498        case DLT_JUNIPER_MFR:
7499        case DLT_JUNIPER_MLFR:
7500        case DLT_JUNIPER_MLPPP:
7501	case DLT_JUNIPER_ATM1:
7502	case DLT_JUNIPER_ATM2:
7503	case DLT_JUNIPER_PPPOE:
7504	case DLT_JUNIPER_PPPOE_ATM:
7505        case DLT_JUNIPER_GGSN:
7506        case DLT_JUNIPER_ES:
7507        case DLT_JUNIPER_MONITOR:
7508        case DLT_JUNIPER_SERVICES:
7509        case DLT_JUNIPER_ETHER:
7510        case DLT_JUNIPER_PPP:
7511        case DLT_JUNIPER_FRELAY:
7512        case DLT_JUNIPER_CHDLC:
7513        case DLT_JUNIPER_VP:
7514        case DLT_JUNIPER_ST:
7515        case DLT_JUNIPER_ISM:
7516        case DLT_JUNIPER_VS:
7517        case DLT_JUNIPER_SRX_E2E:
7518        case DLT_JUNIPER_FIBRECHANNEL:
7519	case DLT_JUNIPER_ATM_CEMIC:
7520
7521		/* juniper flags (including direction) are stored
7522		 * the byte after the 3-byte magic number */
7523		if (dir) {
7524			/* match outgoing packets */
7525			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7526		} else {
7527			/* match incoming packets */
7528			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7529		}
7530		break;
7531
7532	default:
7533		/*
7534		 * If we have packet meta-data indicating a direction,
7535		 * check it, otherwise give up as this link-layer type
7536		 * has nothing in the packet data.
7537		 */
7538#if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7539		/*
7540		 * We infer that this is Linux with PF_PACKET support.
7541		 * If this is a *live* capture, we can look at
7542		 * special meta-data in the filter expression;
7543		 * if it's a savefile, we can't.
7544		 */
7545		if (bpf_pcap->sf.rfile != NULL) {
7546			/* We have a FILE *, so this is a savefile */
7547			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7548			    linktype);
7549			b0 = NULL;
7550			/* NOTREACHED */
7551		}
7552		/* match outgoing packets */
7553		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7554		             PACKET_OUTGOING);
7555		if (!dir) {
7556			/* to filter on inbound traffic, invert the match */
7557			gen_not(b0);
7558		}
7559#else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7560		bpf_error("inbound/outbound not supported on linktype %d",
7561		    linktype);
7562		b0 = NULL;
7563		/* NOTREACHED */
7564#endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7565	}
7566	return (b0);
7567}
7568
7569#ifdef HAVE_NET_PFVAR_H
7570/* PF firewall log matched interface */
7571struct block *
7572gen_pf_ifname(const char *ifname)
7573{
7574	struct block *b0;
7575	u_int len, off;
7576
7577	if (linktype != DLT_PFLOG) {
7578		bpf_error("ifname supported only on PF linktype");
7579		/* NOTREACHED */
7580	}
7581	len = sizeof(((struct pfloghdr *)0)->ifname);
7582	off = offsetof(struct pfloghdr, ifname);
7583	if (strlen(ifname) >= len) {
7584		bpf_error("ifname interface names can only be %d characters",
7585		    len-1);
7586		/* NOTREACHED */
7587	}
7588	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7589	return (b0);
7590}
7591
7592/* PF firewall log ruleset name */
7593struct block *
7594gen_pf_ruleset(char *ruleset)
7595{
7596	struct block *b0;
7597
7598	if (linktype != DLT_PFLOG) {
7599		bpf_error("ruleset supported only on PF linktype");
7600		/* NOTREACHED */
7601	}
7602
7603	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7604		bpf_error("ruleset names can only be %ld characters",
7605		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7606		/* NOTREACHED */
7607	}
7608
7609	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7610	    strlen(ruleset), (const u_char *)ruleset);
7611	return (b0);
7612}
7613
7614/* PF firewall log rule number */
7615struct block *
7616gen_pf_rnr(int rnr)
7617{
7618	struct block *b0;
7619
7620	if (linktype != DLT_PFLOG) {
7621		bpf_error("rnr supported only on PF linktype");
7622		/* NOTREACHED */
7623	}
7624
7625	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7626		 (bpf_int32)rnr);
7627	return (b0);
7628}
7629
7630/* PF firewall log sub-rule number */
7631struct block *
7632gen_pf_srnr(int srnr)
7633{
7634	struct block *b0;
7635
7636	if (linktype != DLT_PFLOG) {
7637		bpf_error("srnr supported only on PF linktype");
7638		/* NOTREACHED */
7639	}
7640
7641	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7642	    (bpf_int32)srnr);
7643	return (b0);
7644}
7645
7646/* PF firewall log reason code */
7647struct block *
7648gen_pf_reason(int reason)
7649{
7650	struct block *b0;
7651
7652	if (linktype != DLT_PFLOG) {
7653		bpf_error("reason supported only on PF linktype");
7654		/* NOTREACHED */
7655	}
7656
7657	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7658	    (bpf_int32)reason);
7659	return (b0);
7660}
7661
7662/* PF firewall log action */
7663struct block *
7664gen_pf_action(int action)
7665{
7666	struct block *b0;
7667
7668	if (linktype != DLT_PFLOG) {
7669		bpf_error("action supported only on PF linktype");
7670		/* NOTREACHED */
7671	}
7672
7673	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7674	    (bpf_int32)action);
7675	return (b0);
7676}
7677#else /* !HAVE_NET_PFVAR_H */
7678struct block *
7679gen_pf_ifname(const char *ifname)
7680{
7681	bpf_error("libpcap was compiled without pf support");
7682	/* NOTREACHED */
7683	return (NULL);
7684}
7685
7686struct block *
7687gen_pf_ruleset(char *ruleset)
7688{
7689	bpf_error("libpcap was compiled on a machine without pf support");
7690	/* NOTREACHED */
7691	return (NULL);
7692}
7693
7694struct block *
7695gen_pf_rnr(int rnr)
7696{
7697	bpf_error("libpcap was compiled on a machine without pf support");
7698	/* NOTREACHED */
7699	return (NULL);
7700}
7701
7702struct block *
7703gen_pf_srnr(int srnr)
7704{
7705	bpf_error("libpcap was compiled on a machine without pf support");
7706	/* NOTREACHED */
7707	return (NULL);
7708}
7709
7710struct block *
7711gen_pf_reason(int reason)
7712{
7713	bpf_error("libpcap was compiled on a machine without pf support");
7714	/* NOTREACHED */
7715	return (NULL);
7716}
7717
7718struct block *
7719gen_pf_action(int action)
7720{
7721	bpf_error("libpcap was compiled on a machine without pf support");
7722	/* NOTREACHED */
7723	return (NULL);
7724}
7725#endif /* HAVE_NET_PFVAR_H */
7726
7727/* IEEE 802.11 wireless header */
7728struct block *
7729gen_p80211_type(int type, int mask)
7730{
7731	struct block *b0;
7732
7733	switch (linktype) {
7734
7735	case DLT_IEEE802_11:
7736	case DLT_PRISM_HEADER:
7737	case DLT_IEEE802_11_RADIO_AVS:
7738	case DLT_IEEE802_11_RADIO:
7739		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7740		    (bpf_int32)mask);
7741		break;
7742
7743	default:
7744		bpf_error("802.11 link-layer types supported only on 802.11");
7745		/* NOTREACHED */
7746	}
7747
7748	return (b0);
7749}
7750
7751struct block *
7752gen_p80211_fcdir(int fcdir)
7753{
7754	struct block *b0;
7755
7756	switch (linktype) {
7757
7758	case DLT_IEEE802_11:
7759	case DLT_PRISM_HEADER:
7760	case DLT_IEEE802_11_RADIO_AVS:
7761	case DLT_IEEE802_11_RADIO:
7762		break;
7763
7764	default:
7765		bpf_error("frame direction supported only with 802.11 headers");
7766		/* NOTREACHED */
7767	}
7768
7769	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7770		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7771
7772	return (b0);
7773}
7774
7775struct block *
7776gen_acode(eaddr, q)
7777	register const u_char *eaddr;
7778	struct qual q;
7779{
7780	switch (linktype) {
7781
7782	case DLT_ARCNET:
7783	case DLT_ARCNET_LINUX:
7784		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7785		    q.proto == Q_LINK)
7786			return (gen_ahostop(eaddr, (int)q.dir));
7787		else {
7788			bpf_error("ARCnet address used in non-arc expression");
7789			/* NOTREACHED */
7790		}
7791		break;
7792
7793	default:
7794		bpf_error("aid supported only on ARCnet");
7795		/* NOTREACHED */
7796	}
7797	bpf_error("ARCnet address used in non-arc expression");
7798	/* NOTREACHED */
7799	return NULL;
7800}
7801
7802static struct block *
7803gen_ahostop(eaddr, dir)
7804	register const u_char *eaddr;
7805	register int dir;
7806{
7807	register struct block *b0, *b1;
7808
7809	switch (dir) {
7810	/* src comes first, different from Ethernet */
7811	case Q_SRC:
7812		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7813
7814	case Q_DST:
7815		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7816
7817	case Q_AND:
7818		b0 = gen_ahostop(eaddr, Q_SRC);
7819		b1 = gen_ahostop(eaddr, Q_DST);
7820		gen_and(b0, b1);
7821		return b1;
7822
7823	case Q_DEFAULT:
7824	case Q_OR:
7825		b0 = gen_ahostop(eaddr, Q_SRC);
7826		b1 = gen_ahostop(eaddr, Q_DST);
7827		gen_or(b0, b1);
7828		return b1;
7829
7830	case Q_ADDR1:
7831		bpf_error("'addr1' is only supported on 802.11");
7832		break;
7833
7834	case Q_ADDR2:
7835		bpf_error("'addr2' is only supported on 802.11");
7836		break;
7837
7838	case Q_ADDR3:
7839		bpf_error("'addr3' is only supported on 802.11");
7840		break;
7841
7842	case Q_ADDR4:
7843		bpf_error("'addr4' is only supported on 802.11");
7844		break;
7845
7846	case Q_RA:
7847		bpf_error("'ra' is only supported on 802.11");
7848		break;
7849
7850	case Q_TA:
7851		bpf_error("'ta' is only supported on 802.11");
7852		break;
7853	}
7854	abort();
7855	/* NOTREACHED */
7856}
7857
7858/*
7859 * support IEEE 802.1Q VLAN trunk over ethernet
7860 */
7861struct block *
7862gen_vlan(vlan_num)
7863	int vlan_num;
7864{
7865	struct	block	*b0, *b1;
7866
7867	/* can't check for VLAN-encapsulated packets inside MPLS */
7868	if (label_stack_depth > 0)
7869		bpf_error("no VLAN match after MPLS");
7870
7871	/*
7872	 * Check for a VLAN packet, and then change the offsets to point
7873	 * to the type and data fields within the VLAN packet.  Just
7874	 * increment the offsets, so that we can support a hierarchy, e.g.
7875	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7876	 * VLAN 100.
7877	 *
7878	 * XXX - this is a bit of a kludge.  If we were to split the
7879	 * compiler into a parser that parses an expression and
7880	 * generates an expression tree, and a code generator that
7881	 * takes an expression tree (which could come from our
7882	 * parser or from some other parser) and generates BPF code,
7883	 * we could perhaps make the offsets parameters of routines
7884	 * and, in the handler for an "AND" node, pass to subnodes
7885	 * other than the VLAN node the adjusted offsets.
7886	 *
7887	 * This would mean that "vlan" would, instead of changing the
7888	 * behavior of *all* tests after it, change only the behavior
7889	 * of tests ANDed with it.  That would change the documented
7890	 * semantics of "vlan", which might break some expressions.
7891	 * However, it would mean that "(vlan and ip) or ip" would check
7892	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7893	 * checking only for VLAN-encapsulated IP, so that could still
7894	 * be considered worth doing; it wouldn't break expressions
7895	 * that are of the form "vlan and ..." or "vlan N and ...",
7896	 * which I suspect are the most common expressions involving
7897	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7898	 * would really want, now, as all the "or ..." tests would
7899	 * be done assuming a VLAN, even though the "or" could be viewed
7900	 * as meaning "or, if this isn't a VLAN packet...".
7901	 */
7902	orig_nl = off_nl;
7903
7904	switch (linktype) {
7905
7906	case DLT_EN10MB:
7907	case DLT_NETANALYZER:
7908	case DLT_NETANALYZER_TRANSPARENT:
7909		/* check for VLAN, including QinQ */
7910		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7911		    (bpf_int32)ETHERTYPE_8021Q);
7912		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7913		    (bpf_int32)ETHERTYPE_8021QINQ);
7914		gen_or(b0,b1);
7915		b0 = b1;
7916
7917		/* If a specific VLAN is requested, check VLAN id */
7918		if (vlan_num >= 0) {
7919			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7920			    (bpf_int32)vlan_num, 0x0fff);
7921			gen_and(b0, b1);
7922			b0 = b1;
7923		}
7924
7925		off_macpl += 4;
7926		off_linktype += 4;
7927#if 0
7928		off_nl_nosnap += 4;
7929		off_nl += 4;
7930#endif
7931		break;
7932
7933	default:
7934		bpf_error("no VLAN support for data link type %d",
7935		      linktype);
7936		/*NOTREACHED*/
7937	}
7938
7939	return (b0);
7940}
7941
7942/*
7943 * support for MPLS
7944 */
7945struct block *
7946gen_mpls(label_num)
7947	int label_num;
7948{
7949	struct	block	*b0,*b1;
7950
7951	/*
7952	 * Change the offsets to point to the type and data fields within
7953	 * the MPLS packet.  Just increment the offsets, so that we
7954	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7955	 * capture packets with an outer label of 100000 and an inner
7956	 * label of 1024.
7957	 *
7958	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7959	 */
7960        orig_nl = off_nl;
7961
7962        if (label_stack_depth > 0) {
7963            /* just match the bottom-of-stack bit clear */
7964            b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7965        } else {
7966            /*
7967             * Indicate that we're checking MPLS-encapsulated headers,
7968             * to make sure higher level code generators don't try to
7969             * match against IP-related protocols such as Q_ARP, Q_RARP
7970             * etc.
7971             */
7972            switch (linktype) {
7973
7974            case DLT_C_HDLC: /* fall through */
7975            case DLT_EN10MB:
7976            case DLT_NETANALYZER:
7977            case DLT_NETANALYZER_TRANSPARENT:
7978                    b0 = gen_linktype(ETHERTYPE_MPLS);
7979                    break;
7980
7981            case DLT_PPP:
7982                    b0 = gen_linktype(PPP_MPLS_UCAST);
7983                    break;
7984
7985                    /* FIXME add other DLT_s ...
7986                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
7987                     * leave it for now */
7988
7989            default:
7990                    bpf_error("no MPLS support for data link type %d",
7991                          linktype);
7992                    b0 = NULL;
7993                    /*NOTREACHED*/
7994                    break;
7995            }
7996        }
7997
7998	/* If a specific MPLS label is requested, check it */
7999	if (label_num >= 0) {
8000		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8001		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8002		    0xfffff000); /* only compare the first 20 bits */
8003		gen_and(b0, b1);
8004		b0 = b1;
8005	}
8006
8007        off_nl_nosnap += 4;
8008        off_nl += 4;
8009        label_stack_depth++;
8010	return (b0);
8011}
8012
8013/*
8014 * Support PPPOE discovery and session.
8015 */
8016struct block *
8017gen_pppoed()
8018{
8019	/* check for PPPoE discovery */
8020	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8021}
8022
8023struct block *
8024gen_pppoes()
8025{
8026	struct block *b0;
8027
8028	/*
8029	 * Test against the PPPoE session link-layer type.
8030	 */
8031	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8032
8033	/*
8034	 * Change the offsets to point to the type and data fields within
8035	 * the PPP packet, and note that this is PPPoE rather than
8036	 * raw PPP.
8037	 *
8038	 * XXX - this is a bit of a kludge.  If we were to split the
8039	 * compiler into a parser that parses an expression and
8040	 * generates an expression tree, and a code generator that
8041	 * takes an expression tree (which could come from our
8042	 * parser or from some other parser) and generates BPF code,
8043	 * we could perhaps make the offsets parameters of routines
8044	 * and, in the handler for an "AND" node, pass to subnodes
8045	 * other than the PPPoE node the adjusted offsets.
8046	 *
8047	 * This would mean that "pppoes" would, instead of changing the
8048	 * behavior of *all* tests after it, change only the behavior
8049	 * of tests ANDed with it.  That would change the documented
8050	 * semantics of "pppoes", which might break some expressions.
8051	 * However, it would mean that "(pppoes and ip) or ip" would check
8052	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8053	 * checking only for VLAN-encapsulated IP, so that could still
8054	 * be considered worth doing; it wouldn't break expressions
8055	 * that are of the form "pppoes and ..." which I suspect are the
8056	 * most common expressions involving "pppoes".  "pppoes or ..."
8057	 * doesn't necessarily do what the user would really want, now,
8058	 * as all the "or ..." tests would be done assuming PPPoE, even
8059	 * though the "or" could be viewed as meaning "or, if this isn't
8060	 * a PPPoE packet...".
8061	 */
8062	orig_linktype = off_linktype;	/* save original values */
8063	orig_nl = off_nl;
8064	is_pppoes = 1;
8065
8066	/*
8067	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8068	 * PPPoE header, followed by a PPP packet.
8069	 *
8070	 * There is no HDLC encapsulation for the PPP packet (it's
8071	 * encapsulated in PPPoES instead), so the link-layer type
8072	 * starts at the first byte of the PPP packet.  For PPPoE,
8073	 * that offset is relative to the beginning of the total
8074	 * link-layer payload, including any 802.2 LLC header, so
8075	 * it's 6 bytes past off_nl.
8076	 */
8077	off_linktype = off_nl + 6;
8078
8079	/*
8080	 * The network-layer offsets are relative to the beginning
8081	 * of the MAC-layer payload; that's past the 6-byte
8082	 * PPPoE header and the 2-byte PPP header.
8083	 */
8084	off_nl = 6+2;
8085	off_nl_nosnap = 6+2;
8086
8087	return b0;
8088}
8089
8090struct block *
8091gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8092	int atmfield;
8093	bpf_int32 jvalue;
8094	bpf_u_int32 jtype;
8095	int reverse;
8096{
8097	struct block *b0;
8098
8099	switch (atmfield) {
8100
8101	case A_VPI:
8102		if (!is_atm)
8103			bpf_error("'vpi' supported only on raw ATM");
8104		if (off_vpi == (u_int)-1)
8105			abort();
8106		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8107		    reverse, jvalue);
8108		break;
8109
8110	case A_VCI:
8111		if (!is_atm)
8112			bpf_error("'vci' supported only on raw ATM");
8113		if (off_vci == (u_int)-1)
8114			abort();
8115		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8116		    reverse, jvalue);
8117		break;
8118
8119	case A_PROTOTYPE:
8120		if (off_proto == (u_int)-1)
8121			abort();	/* XXX - this isn't on FreeBSD */
8122		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8123		    reverse, jvalue);
8124		break;
8125
8126	case A_MSGTYPE:
8127		if (off_payload == (u_int)-1)
8128			abort();
8129		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8130		    0xffffffff, jtype, reverse, jvalue);
8131		break;
8132
8133	case A_CALLREFTYPE:
8134		if (!is_atm)
8135			bpf_error("'callref' supported only on raw ATM");
8136		if (off_proto == (u_int)-1)
8137			abort();
8138		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8139		    jtype, reverse, jvalue);
8140		break;
8141
8142	default:
8143		abort();
8144	}
8145	return b0;
8146}
8147
8148struct block *
8149gen_atmtype_abbrev(type)
8150	int type;
8151{
8152	struct block *b0, *b1;
8153
8154	switch (type) {
8155
8156	case A_METAC:
8157		/* Get all packets in Meta signalling Circuit */
8158		if (!is_atm)
8159			bpf_error("'metac' supported only on raw ATM");
8160		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8161		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8162		gen_and(b0, b1);
8163		break;
8164
8165	case A_BCC:
8166		/* Get all packets in Broadcast Circuit*/
8167		if (!is_atm)
8168			bpf_error("'bcc' supported only on raw ATM");
8169		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8170		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8171		gen_and(b0, b1);
8172		break;
8173
8174	case A_OAMF4SC:
8175		/* Get all cells in Segment OAM F4 circuit*/
8176		if (!is_atm)
8177			bpf_error("'oam4sc' supported only on raw ATM");
8178		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8179		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8180		gen_and(b0, b1);
8181		break;
8182
8183	case A_OAMF4EC:
8184		/* Get all cells in End-to-End OAM F4 Circuit*/
8185		if (!is_atm)
8186			bpf_error("'oam4ec' supported only on raw ATM");
8187		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8188		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8189		gen_and(b0, b1);
8190		break;
8191
8192	case A_SC:
8193		/*  Get all packets in connection Signalling Circuit */
8194		if (!is_atm)
8195			bpf_error("'sc' supported only on raw ATM");
8196		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8197		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8198		gen_and(b0, b1);
8199		break;
8200
8201	case A_ILMIC:
8202		/* Get all packets in ILMI Circuit */
8203		if (!is_atm)
8204			bpf_error("'ilmic' supported only on raw ATM");
8205		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8206		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8207		gen_and(b0, b1);
8208		break;
8209
8210	case A_LANE:
8211		/* Get all LANE packets */
8212		if (!is_atm)
8213			bpf_error("'lane' supported only on raw ATM");
8214		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8215
8216		/*
8217		 * Arrange that all subsequent tests assume LANE
8218		 * rather than LLC-encapsulated packets, and set
8219		 * the offsets appropriately for LANE-encapsulated
8220		 * Ethernet.
8221		 *
8222		 * "off_mac" is the offset of the Ethernet header,
8223		 * which is 2 bytes past the ATM pseudo-header
8224		 * (skipping the pseudo-header and 2-byte LE Client
8225		 * field).  The other offsets are Ethernet offsets
8226		 * relative to "off_mac".
8227		 */
8228		is_lane = 1;
8229		off_mac = off_payload + 2;	/* MAC header */
8230		off_linktype = off_mac + 12;
8231		off_macpl = off_mac + 14;	/* Ethernet */
8232		off_nl = 0;			/* Ethernet II */
8233		off_nl_nosnap = 3;		/* 802.3+802.2 */
8234		break;
8235
8236	case A_LLC:
8237		/* Get all LLC-encapsulated packets */
8238		if (!is_atm)
8239			bpf_error("'llc' supported only on raw ATM");
8240		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8241		is_lane = 0;
8242		break;
8243
8244	default:
8245		abort();
8246	}
8247	return b1;
8248}
8249
8250/*
8251 * Filtering for MTP2 messages based on li value
8252 * FISU, length is null
8253 * LSSU, length is 1 or 2
8254 * MSU, length is 3 or more
8255 */
8256struct block *
8257gen_mtp2type_abbrev(type)
8258	int type;
8259{
8260	struct block *b0, *b1;
8261
8262	switch (type) {
8263
8264	case M_FISU:
8265		if ( (linktype != DLT_MTP2) &&
8266		     (linktype != DLT_ERF) &&
8267		     (linktype != DLT_MTP2_WITH_PHDR) )
8268			bpf_error("'fisu' supported only on MTP2");
8269		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8270		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8271		break;
8272
8273	case M_LSSU:
8274		if ( (linktype != DLT_MTP2) &&
8275		     (linktype != DLT_ERF) &&
8276		     (linktype != DLT_MTP2_WITH_PHDR) )
8277			bpf_error("'lssu' supported only on MTP2");
8278		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8279		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8280		gen_and(b1, b0);
8281		break;
8282
8283	case M_MSU:
8284		if ( (linktype != DLT_MTP2) &&
8285		     (linktype != DLT_ERF) &&
8286		     (linktype != DLT_MTP2_WITH_PHDR) )
8287			bpf_error("'msu' supported only on MTP2");
8288		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8289		break;
8290
8291	default:
8292		abort();
8293	}
8294	return b0;
8295}
8296
8297struct block *
8298gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8299	int mtp3field;
8300	bpf_u_int32 jvalue;
8301	bpf_u_int32 jtype;
8302	int reverse;
8303{
8304	struct block *b0;
8305	bpf_u_int32 val1 , val2 , val3;
8306
8307	switch (mtp3field) {
8308
8309	case M_SIO:
8310		if (off_sio == (u_int)-1)
8311			bpf_error("'sio' supported only on SS7");
8312		/* sio coded on 1 byte so max value 255 */
8313		if(jvalue > 255)
8314		        bpf_error("sio value %u too big; max value = 255",
8315		            jvalue);
8316		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8317		    (u_int)jtype, reverse, (u_int)jvalue);
8318		break;
8319
8320        case M_OPC:
8321	        if (off_opc == (u_int)-1)
8322			bpf_error("'opc' supported only on SS7");
8323		/* opc coded on 14 bits so max value 16383 */
8324		if (jvalue > 16383)
8325		        bpf_error("opc value %u too big; max value = 16383",
8326		            jvalue);
8327		/* the following instructions are made to convert jvalue
8328		 * to the form used to write opc in an ss7 message*/
8329		val1 = jvalue & 0x00003c00;
8330		val1 = val1 >>10;
8331		val2 = jvalue & 0x000003fc;
8332		val2 = val2 <<6;
8333		val3 = jvalue & 0x00000003;
8334		val3 = val3 <<22;
8335		jvalue = val1 + val2 + val3;
8336		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8337		    (u_int)jtype, reverse, (u_int)jvalue);
8338		break;
8339
8340	case M_DPC:
8341	        if (off_dpc == (u_int)-1)
8342			bpf_error("'dpc' supported only on SS7");
8343		/* dpc coded on 14 bits so max value 16383 */
8344		if (jvalue > 16383)
8345		        bpf_error("dpc value %u too big; max value = 16383",
8346		            jvalue);
8347		/* the following instructions are made to convert jvalue
8348		 * to the forme used to write dpc in an ss7 message*/
8349		val1 = jvalue & 0x000000ff;
8350		val1 = val1 << 24;
8351		val2 = jvalue & 0x00003f00;
8352		val2 = val2 << 8;
8353		jvalue = val1 + val2;
8354		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8355		    (u_int)jtype, reverse, (u_int)jvalue);
8356		break;
8357
8358	case M_SLS:
8359	        if (off_sls == (u_int)-1)
8360			bpf_error("'sls' supported only on SS7");
8361		/* sls coded on 4 bits so max value 15 */
8362		if (jvalue > 15)
8363		         bpf_error("sls value %u too big; max value = 15",
8364		             jvalue);
8365		/* the following instruction is made to convert jvalue
8366		 * to the forme used to write sls in an ss7 message*/
8367		jvalue = jvalue << 4;
8368		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8369		    (u_int)jtype,reverse, (u_int)jvalue);
8370		break;
8371
8372	default:
8373		abort();
8374	}
8375	return b0;
8376}
8377
8378static struct block *
8379gen_msg_abbrev(type)
8380	int type;
8381{
8382	struct block *b1;
8383
8384	/*
8385	 * Q.2931 signalling protocol messages for handling virtual circuits
8386	 * establishment and teardown
8387	 */
8388	switch (type) {
8389
8390	case A_SETUP:
8391		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8392		break;
8393
8394	case A_CALLPROCEED:
8395		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8396		break;
8397
8398	case A_CONNECT:
8399		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8400		break;
8401
8402	case A_CONNECTACK:
8403		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8404		break;
8405
8406	case A_RELEASE:
8407		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8408		break;
8409
8410	case A_RELEASE_DONE:
8411		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8412		break;
8413
8414	default:
8415		abort();
8416	}
8417	return b1;
8418}
8419
8420struct block *
8421gen_atmmulti_abbrev(type)
8422	int type;
8423{
8424	struct block *b0, *b1;
8425
8426	switch (type) {
8427
8428	case A_OAM:
8429		if (!is_atm)
8430			bpf_error("'oam' supported only on raw ATM");
8431		b1 = gen_atmmulti_abbrev(A_OAMF4);
8432		break;
8433
8434	case A_OAMF4:
8435		if (!is_atm)
8436			bpf_error("'oamf4' supported only on raw ATM");
8437		/* OAM F4 type */
8438		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8439		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8440		gen_or(b0, b1);
8441		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8442		gen_and(b0, b1);
8443		break;
8444
8445	case A_CONNECTMSG:
8446		/*
8447		 * Get Q.2931 signalling messages for switched
8448		 * virtual connection
8449		 */
8450		if (!is_atm)
8451			bpf_error("'connectmsg' supported only on raw ATM");
8452		b0 = gen_msg_abbrev(A_SETUP);
8453		b1 = gen_msg_abbrev(A_CALLPROCEED);
8454		gen_or(b0, b1);
8455		b0 = gen_msg_abbrev(A_CONNECT);
8456		gen_or(b0, b1);
8457		b0 = gen_msg_abbrev(A_CONNECTACK);
8458		gen_or(b0, b1);
8459		b0 = gen_msg_abbrev(A_RELEASE);
8460		gen_or(b0, b1);
8461		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8462		gen_or(b0, b1);
8463		b0 = gen_atmtype_abbrev(A_SC);
8464		gen_and(b0, b1);
8465		break;
8466
8467	case A_METACONNECT:
8468		if (!is_atm)
8469			bpf_error("'metaconnect' supported only on raw ATM");
8470		b0 = gen_msg_abbrev(A_SETUP);
8471		b1 = gen_msg_abbrev(A_CALLPROCEED);
8472		gen_or(b0, b1);
8473		b0 = gen_msg_abbrev(A_CONNECT);
8474		gen_or(b0, b1);
8475		b0 = gen_msg_abbrev(A_RELEASE);
8476		gen_or(b0, b1);
8477		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8478		gen_or(b0, b1);
8479		b0 = gen_atmtype_abbrev(A_METAC);
8480		gen_and(b0, b1);
8481		break;
8482
8483	default:
8484		abort();
8485	}
8486	return b1;
8487}
8488