gencode.c revision 172680
1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 *
22 * $FreeBSD: head/contrib/libpcap/gencode.c 172680 2007-10-16 02:07:55Z mlaier $
23 */
24#ifndef lint
25static const char rcsid[] _U_ =
26    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.221.2.53 2007/09/12 19:17:24 guy Exp $ (LBL)";
27#endif
28
29#ifdef HAVE_CONFIG_H
30#include "config.h"
31#endif
32
33#ifdef WIN32
34#include <pcap-stdinc.h>
35#else /* WIN32 */
36#include <sys/types.h>
37#include <sys/socket.h>
38#endif /* WIN32 */
39
40/*
41 * XXX - why was this included even on UNIX?
42 */
43#ifdef __MINGW32__
44#include "IP6_misc.h"
45#endif
46
47#ifndef WIN32
48
49#ifdef __NetBSD__
50#include <sys/param.h>
51#endif
52
53#include <netinet/in.h>
54
55#endif /* WIN32 */
56
57#include <stdlib.h>
58#include <string.h>
59#include <memory.h>
60#include <setjmp.h>
61#include <stdarg.h>
62
63#ifdef MSDOS
64#include "pcap-dos.h"
65#endif
66
67#include "pcap-int.h"
68
69#include "ethertype.h"
70#include "nlpid.h"
71#include "llc.h"
72#include "gencode.h"
73#include "atmuni31.h"
74#include "sunatmpos.h"
75#include "ppp.h"
76#include "sll.h"
77#include "arcnet.h"
78#ifdef HAVE_NET_PFVAR_H
79#include <sys/socket.h>
80#include <net/if.h>
81#include <net/pfvar.h>
82#include <net/if_pflog.h>
83#endif
84#ifndef offsetof
85#define offsetof(s, e) ((size_t)&((s *)0)->e)
86#endif
87#ifdef INET6
88#ifndef WIN32
89#include <netdb.h>	/* for "struct addrinfo" */
90#endif /* WIN32 */
91#endif /*INET6*/
92#include <pcap-namedb.h>
93
94#define ETHERMTU	1500
95
96#ifndef IPPROTO_SCTP
97#define IPPROTO_SCTP 132
98#endif
99
100#ifdef HAVE_OS_PROTO_H
101#include "os-proto.h"
102#endif
103
104#define JMP(c) ((c)|BPF_JMP|BPF_K)
105
106/* Locals */
107static jmp_buf top_ctx;
108static pcap_t *bpf_pcap;
109
110#ifdef WIN32
111/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
112static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
113#else
114static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
115#endif
116
117/* XXX */
118#ifdef PCAP_FDDIPAD
119static int	pcap_fddipad;
120#endif
121
122/* VARARGS */
123void
124bpf_error(const char *fmt, ...)
125{
126	va_list ap;
127
128	va_start(ap, fmt);
129	if (bpf_pcap != NULL)
130		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
131		    fmt, ap);
132	va_end(ap);
133	longjmp(top_ctx, 1);
134	/* NOTREACHED */
135}
136
137static void init_linktype(pcap_t *);
138
139static int alloc_reg(void);
140static void free_reg(int);
141
142static struct block *root;
143
144/*
145 * Value passed to gen_load_a() to indicate what the offset argument
146 * is relative to.
147 */
148enum e_offrel {
149	OR_PACKET,	/* relative to the beginning of the packet */
150	OR_LINK,	/* relative to the link-layer header */
151	OR_NET,		/* relative to the network-layer header */
152	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
153	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
154	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
155};
156
157/*
158 * We divy out chunks of memory rather than call malloc each time so
159 * we don't have to worry about leaking memory.  It's probably
160 * not a big deal if all this memory was wasted but if this ever
161 * goes into a library that would probably not be a good idea.
162 *
163 * XXX - this *is* in a library....
164 */
165#define NCHUNKS 16
166#define CHUNK0SIZE 1024
167struct chunk {
168	u_int n_left;
169	void *m;
170};
171
172static struct chunk chunks[NCHUNKS];
173static int cur_chunk;
174
175static void *newchunk(u_int);
176static void freechunks(void);
177static inline struct block *new_block(int);
178static inline struct slist *new_stmt(int);
179static struct block *gen_retblk(int);
180static inline void syntax(void);
181
182static void backpatch(struct block *, struct block *);
183static void merge(struct block *, struct block *);
184static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
185static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
186static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
187static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
188static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
189static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
190    bpf_u_int32);
191static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
192static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
193    bpf_u_int32, bpf_u_int32, int, bpf_int32);
194static struct slist *gen_load_llrel(u_int, u_int);
195static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
196static struct slist *gen_loadx_iphdrlen(void);
197static struct block *gen_uncond(int);
198static inline struct block *gen_true(void);
199static inline struct block *gen_false(void);
200static struct block *gen_ether_linktype(int);
201static struct block *gen_linux_sll_linktype(int);
202static void insert_radiotap_load_llprefixlen(struct block *);
203static void insert_ppi_load_llprefixlen(struct block *);
204static void insert_load_llprefixlen(struct block *);
205static struct slist *gen_llprefixlen(void);
206static struct block *gen_linktype(int);
207static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
208static struct block *gen_llc_linktype(int);
209static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
210#ifdef INET6
211static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
212#endif
213static struct block *gen_ahostop(const u_char *, int);
214static struct block *gen_ehostop(const u_char *, int);
215static struct block *gen_fhostop(const u_char *, int);
216static struct block *gen_thostop(const u_char *, int);
217static struct block *gen_wlanhostop(const u_char *, int);
218static struct block *gen_ipfchostop(const u_char *, int);
219static struct block *gen_dnhostop(bpf_u_int32, int);
220static struct block *gen_mpls_linktype(int);
221static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
222#ifdef INET6
223static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
224#endif
225#ifndef INET6
226static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
227#endif
228static struct block *gen_ipfrag(void);
229static struct block *gen_portatom(int, bpf_int32);
230static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
231#ifdef INET6
232static struct block *gen_portatom6(int, bpf_int32);
233static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
234#endif
235struct block *gen_portop(int, int, int);
236static struct block *gen_port(int, int, int);
237struct block *gen_portrangeop(int, int, int, int);
238static struct block *gen_portrange(int, int, int, int);
239#ifdef INET6
240struct block *gen_portop6(int, int, int);
241static struct block *gen_port6(int, int, int);
242struct block *gen_portrangeop6(int, int, int, int);
243static struct block *gen_portrange6(int, int, int, int);
244#endif
245static int lookup_proto(const char *, int);
246static struct block *gen_protochain(int, int, int);
247static struct block *gen_proto(int, int, int);
248static struct slist *xfer_to_x(struct arth *);
249static struct slist *xfer_to_a(struct arth *);
250static struct block *gen_mac_multicast(int);
251static struct block *gen_len(int, int);
252
253static struct block *gen_ppi_dlt_check(void);
254static struct block *gen_msg_abbrev(int type);
255
256static void *
257newchunk(n)
258	u_int n;
259{
260	struct chunk *cp;
261	int k;
262	size_t size;
263
264#ifndef __NetBSD__
265	/* XXX Round up to nearest long. */
266	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
267#else
268	/* XXX Round up to structure boundary. */
269	n = ALIGN(n);
270#endif
271
272	cp = &chunks[cur_chunk];
273	if (n > cp->n_left) {
274		++cp, k = ++cur_chunk;
275		if (k >= NCHUNKS)
276			bpf_error("out of memory");
277		size = CHUNK0SIZE << k;
278		cp->m = (void *)malloc(size);
279		if (cp->m == NULL)
280			bpf_error("out of memory");
281		memset((char *)cp->m, 0, size);
282		cp->n_left = size;
283		if (n > size)
284			bpf_error("out of memory");
285	}
286	cp->n_left -= n;
287	return (void *)((char *)cp->m + cp->n_left);
288}
289
290static void
291freechunks()
292{
293	int i;
294
295	cur_chunk = 0;
296	for (i = 0; i < NCHUNKS; ++i)
297		if (chunks[i].m != NULL) {
298			free(chunks[i].m);
299			chunks[i].m = NULL;
300		}
301}
302
303/*
304 * A strdup whose allocations are freed after code generation is over.
305 */
306char *
307sdup(s)
308	register const char *s;
309{
310	int n = strlen(s) + 1;
311	char *cp = newchunk(n);
312
313	strlcpy(cp, s, n);
314	return (cp);
315}
316
317static inline struct block *
318new_block(code)
319	int code;
320{
321	struct block *p;
322
323	p = (struct block *)newchunk(sizeof(*p));
324	p->s.code = code;
325	p->head = p;
326
327	return p;
328}
329
330static inline struct slist *
331new_stmt(code)
332	int code;
333{
334	struct slist *p;
335
336	p = (struct slist *)newchunk(sizeof(*p));
337	p->s.code = code;
338
339	return p;
340}
341
342static struct block *
343gen_retblk(v)
344	int v;
345{
346	struct block *b = new_block(BPF_RET|BPF_K);
347
348	b->s.k = v;
349	return b;
350}
351
352static inline void
353syntax()
354{
355	bpf_error("syntax error in filter expression");
356}
357
358static bpf_u_int32 netmask;
359static int snaplen;
360int no_optimize;
361
362int
363pcap_compile(pcap_t *p, struct bpf_program *program,
364	     const char *buf, int optimize, bpf_u_int32 mask)
365{
366	extern int n_errors;
367	const char * volatile xbuf = buf;
368	int len;
369
370	no_optimize = 0;
371	n_errors = 0;
372	root = NULL;
373	bpf_pcap = p;
374	if (setjmp(top_ctx)) {
375		lex_cleanup();
376		freechunks();
377		return (-1);
378	}
379
380	netmask = mask;
381
382	snaplen = pcap_snapshot(p);
383	if (snaplen == 0) {
384		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
385			 "snaplen of 0 rejects all packets");
386		return -1;
387	}
388
389	lex_init(xbuf ? xbuf : "");
390	init_linktype(p);
391	(void)pcap_parse();
392
393	if (n_errors)
394		syntax();
395
396	if (root == NULL)
397		root = gen_retblk(snaplen);
398
399	if (optimize && !no_optimize) {
400		bpf_optimize(&root);
401		if (root == NULL ||
402		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
403			bpf_error("expression rejects all packets");
404	}
405	program->bf_insns = icode_to_fcode(root, &len);
406	program->bf_len = len;
407
408	lex_cleanup();
409	freechunks();
410	return (0);
411}
412
413/*
414 * entry point for using the compiler with no pcap open
415 * pass in all the stuff that is needed explicitly instead.
416 */
417int
418pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
419		    struct bpf_program *program,
420	     const char *buf, int optimize, bpf_u_int32 mask)
421{
422	pcap_t *p;
423	int ret;
424
425	p = pcap_open_dead(linktype_arg, snaplen_arg);
426	if (p == NULL)
427		return (-1);
428	ret = pcap_compile(p, program, buf, optimize, mask);
429	pcap_close(p);
430	return (ret);
431}
432
433/*
434 * Clean up a "struct bpf_program" by freeing all the memory allocated
435 * in it.
436 */
437void
438pcap_freecode(struct bpf_program *program)
439{
440	program->bf_len = 0;
441	if (program->bf_insns != NULL) {
442		free((char *)program->bf_insns);
443		program->bf_insns = NULL;
444	}
445}
446
447/*
448 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
449 * which of the jt and jf fields has been resolved and which is a pointer
450 * back to another unresolved block (or nil).  At least one of the fields
451 * in each block is already resolved.
452 */
453static void
454backpatch(list, target)
455	struct block *list, *target;
456{
457	struct block *next;
458
459	while (list) {
460		if (!list->sense) {
461			next = JT(list);
462			JT(list) = target;
463		} else {
464			next = JF(list);
465			JF(list) = target;
466		}
467		list = next;
468	}
469}
470
471/*
472 * Merge the lists in b0 and b1, using the 'sense' field to indicate
473 * which of jt and jf is the link.
474 */
475static void
476merge(b0, b1)
477	struct block *b0, *b1;
478{
479	register struct block **p = &b0;
480
481	/* Find end of list. */
482	while (*p)
483		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
484
485	/* Concatenate the lists. */
486	*p = b1;
487}
488
489
490void
491finish_parse(p)
492	struct block *p;
493{
494	struct block *ppi_dlt_check;
495
496	ppi_dlt_check = gen_ppi_dlt_check();
497
498	if (ppi_dlt_check != NULL)
499	{
500		gen_and(ppi_dlt_check, p);
501	}
502
503	backpatch(p, gen_retblk(snaplen));
504	p->sense = !p->sense;
505	backpatch(p, gen_retblk(0));
506	root = p->head;
507
508	/*
509	 * Insert before the statements of the first (root) block any
510	 * statements needed to load the lengths of any variable-length
511	 * headers into registers.
512	 *
513	 * XXX - a fancier strategy would be to insert those before the
514	 * statements of all blocks that use those lengths and that
515	 * have no predecessors that use them, so that we only compute
516	 * the lengths if we need them.  There might be even better
517	 * approaches than that.  However, as we're currently only
518	 * handling variable-length radiotap headers, and as all
519	 * filtering expressions other than raw link[M:N] tests
520	 * require the length of that header, doing more for that
521	 * header length isn't really worth the effort.
522	 */
523
524	insert_load_llprefixlen(root);
525}
526
527void
528gen_and(b0, b1)
529	struct block *b0, *b1;
530{
531	backpatch(b0, b1->head);
532	b0->sense = !b0->sense;
533	b1->sense = !b1->sense;
534	merge(b1, b0);
535	b1->sense = !b1->sense;
536	b1->head = b0->head;
537}
538
539void
540gen_or(b0, b1)
541	struct block *b0, *b1;
542{
543	b0->sense = !b0->sense;
544	backpatch(b0, b1->head);
545	b0->sense = !b0->sense;
546	merge(b1, b0);
547	b1->head = b0->head;
548}
549
550void
551gen_not(b)
552	struct block *b;
553{
554	b->sense = !b->sense;
555}
556
557static struct block *
558gen_cmp(offrel, offset, size, v)
559	enum e_offrel offrel;
560	u_int offset, size;
561	bpf_int32 v;
562{
563	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
564}
565
566static struct block *
567gen_cmp_gt(offrel, offset, size, v)
568	enum e_offrel offrel;
569	u_int offset, size;
570	bpf_int32 v;
571{
572	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
573}
574
575static struct block *
576gen_cmp_ge(offrel, offset, size, v)
577	enum e_offrel offrel;
578	u_int offset, size;
579	bpf_int32 v;
580{
581	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
582}
583
584static struct block *
585gen_cmp_lt(offrel, offset, size, v)
586	enum e_offrel offrel;
587	u_int offset, size;
588	bpf_int32 v;
589{
590	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
591}
592
593static struct block *
594gen_cmp_le(offrel, offset, size, v)
595	enum e_offrel offrel;
596	u_int offset, size;
597	bpf_int32 v;
598{
599	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
600}
601
602static struct block *
603gen_mcmp(offrel, offset, size, v, mask)
604	enum e_offrel offrel;
605	u_int offset, size;
606	bpf_int32 v;
607	bpf_u_int32 mask;
608{
609	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
610}
611
612static struct block *
613gen_bcmp(offrel, offset, size, v)
614	enum e_offrel offrel;
615	register u_int offset, size;
616	register const u_char *v;
617{
618	register struct block *b, *tmp;
619
620	b = NULL;
621	while (size >= 4) {
622		register const u_char *p = &v[size - 4];
623		bpf_int32 w = ((bpf_int32)p[0] << 24) |
624		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
625
626		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
627		if (b != NULL)
628			gen_and(b, tmp);
629		b = tmp;
630		size -= 4;
631	}
632	while (size >= 2) {
633		register const u_char *p = &v[size - 2];
634		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
635
636		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
637		if (b != NULL)
638			gen_and(b, tmp);
639		b = tmp;
640		size -= 2;
641	}
642	if (size > 0) {
643		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
644		if (b != NULL)
645			gen_and(b, tmp);
646		b = tmp;
647	}
648	return b;
649}
650
651/*
652 * AND the field of size "size" at offset "offset" relative to the header
653 * specified by "offrel" with "mask", and compare it with the value "v"
654 * with the test specified by "jtype"; if "reverse" is true, the test
655 * should test the opposite of "jtype".
656 */
657static struct block *
658gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
659	enum e_offrel offrel;
660	bpf_int32 v;
661	bpf_u_int32 offset, size, mask, jtype;
662	int reverse;
663{
664	struct slist *s, *s2;
665	struct block *b;
666
667	s = gen_load_a(offrel, offset, size);
668
669	if (mask != 0xffffffff) {
670		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
671		s2->s.k = mask;
672		sappend(s, s2);
673	}
674
675	b = new_block(JMP(jtype));
676	b->stmts = s;
677	b->s.k = v;
678	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
679		gen_not(b);
680	return b;
681}
682
683/*
684 * Various code constructs need to know the layout of the data link
685 * layer.  These variables give the necessary offsets from the beginning
686 * of the packet data.
687 *
688 * If the link layer has variable_length headers, the offsets are offsets
689 * from the end of the link-link-layer header, and "reg_ll_size" is
690 * the register number for a register containing the length of the
691 * link-layer header.  Otherwise, "reg_ll_size" is -1.
692 */
693static int reg_ll_size;
694
695/*
696 * This is the offset of the beginning of the link-layer header from
697 * the beginning of the raw packet data.
698 *
699 * It's usually 0, except for 802.11 with a fixed-length radio header.
700 * (For 802.11 with a variable-length radio header, we have to generate
701 * code to compute that offset; off_ll is 0 in that case.)
702 */
703static u_int off_ll;
704
705/*
706 * This is the offset of the beginning of the MAC-layer header.
707 * It's usually 0, except for ATM LANE, where it's the offset, relative
708 * to the beginning of the raw packet data, of the Ethernet header.
709 */
710static u_int off_mac;
711
712/*
713 * "off_linktype" is the offset to information in the link-layer header
714 * giving the packet type.  This offset is relative to the beginning
715 * of the link-layer header (i.e., it doesn't include off_ll).
716 *
717 * For Ethernet, it's the offset of the Ethernet type field.
718 *
719 * For link-layer types that always use 802.2 headers, it's the
720 * offset of the LLC header.
721 *
722 * For PPP, it's the offset of the PPP type field.
723 *
724 * For Cisco HDLC, it's the offset of the CHDLC type field.
725 *
726 * For BSD loopback, it's the offset of the AF_ value.
727 *
728 * For Linux cooked sockets, it's the offset of the type field.
729 *
730 * It's set to -1 for no encapsulation, in which case, IP is assumed.
731 */
732static u_int off_linktype;
733
734/*
735 * TRUE if the link layer includes an ATM pseudo-header.
736 */
737static int is_atm = 0;
738
739/*
740 * TRUE if "lane" appeared in the filter; it causes us to generate
741 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
742 */
743static int is_lane = 0;
744
745/*
746 * These are offsets for the ATM pseudo-header.
747 */
748static u_int off_vpi;
749static u_int off_vci;
750static u_int off_proto;
751
752/*
753 * These are offsets for the MTP2 fields.
754 */
755static u_int off_li;
756
757/*
758 * These are offsets for the MTP3 fields.
759 */
760static u_int off_sio;
761static u_int off_opc;
762static u_int off_dpc;
763static u_int off_sls;
764
765/*
766 * This is the offset of the first byte after the ATM pseudo_header,
767 * or -1 if there is no ATM pseudo-header.
768 */
769static u_int off_payload;
770
771/*
772 * These are offsets to the beginning of the network-layer header.
773 * They are relative to the beginning of the link-layer header (i.e.,
774 * they don't include off_ll).
775 *
776 * If the link layer never uses 802.2 LLC:
777 *
778 *	"off_nl" and "off_nl_nosnap" are the same.
779 *
780 * If the link layer always uses 802.2 LLC:
781 *
782 *	"off_nl" is the offset if there's a SNAP header following
783 *	the 802.2 header;
784 *
785 *	"off_nl_nosnap" is the offset if there's no SNAP header.
786 *
787 * If the link layer is Ethernet:
788 *
789 *	"off_nl" is the offset if the packet is an Ethernet II packet
790 *	(we assume no 802.3+802.2+SNAP);
791 *
792 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
793 *	with an 802.2 header following it.
794 */
795static u_int off_nl;
796static u_int off_nl_nosnap;
797
798static int linktype;
799
800static void
801init_linktype(p)
802	pcap_t *p;
803{
804	linktype = pcap_datalink(p);
805#ifdef PCAP_FDDIPAD
806	pcap_fddipad = p->fddipad;
807#endif
808
809	/*
810	 * Assume it's not raw ATM with a pseudo-header, for now.
811	 */
812	off_mac = 0;
813	is_atm = 0;
814	is_lane = 0;
815	off_vpi = -1;
816	off_vci = -1;
817	off_proto = -1;
818	off_payload = -1;
819
820	/*
821	 * And assume we're not doing SS7.
822	 */
823	off_li = -1;
824	off_sio = -1;
825	off_opc = -1;
826	off_dpc = -1;
827	off_sls = -1;
828
829	/*
830	 * Also assume it's not 802.11 with a fixed-length radio header.
831	 */
832	off_ll = 0;
833
834	orig_linktype = -1;
835	orig_nl = -1;
836        label_stack_depth = 0;
837
838	reg_ll_size = -1;
839
840	switch (linktype) {
841
842	case DLT_ARCNET:
843		off_linktype = 2;
844		off_nl = 6;		/* XXX in reality, variable! */
845		off_nl_nosnap = 6;	/* no 802.2 LLC */
846		return;
847
848	case DLT_ARCNET_LINUX:
849		off_linktype = 4;
850		off_nl = 8;		/* XXX in reality, variable! */
851		off_nl_nosnap = 8;	/* no 802.2 LLC */
852		return;
853
854	case DLT_EN10MB:
855		off_linktype = 12;
856		off_nl = 14;		/* Ethernet II */
857		off_nl_nosnap = 17;	/* 802.3+802.2 */
858		return;
859
860	case DLT_SLIP:
861		/*
862		 * SLIP doesn't have a link level type.  The 16 byte
863		 * header is hacked into our SLIP driver.
864		 */
865		off_linktype = -1;
866		off_nl = 16;
867		off_nl_nosnap = 16;	/* no 802.2 LLC */
868		return;
869
870	case DLT_SLIP_BSDOS:
871		/* XXX this may be the same as the DLT_PPP_BSDOS case */
872		off_linktype = -1;
873		/* XXX end */
874		off_nl = 24;
875		off_nl_nosnap = 24;	/* no 802.2 LLC */
876		return;
877
878	case DLT_NULL:
879	case DLT_LOOP:
880		off_linktype = 0;
881		off_nl = 4;
882		off_nl_nosnap = 4;	/* no 802.2 LLC */
883		return;
884
885	case DLT_ENC:
886		off_linktype = 0;
887		off_nl = 12;
888		off_nl_nosnap = 12;	/* no 802.2 LLC */
889		return;
890
891	case DLT_PPP:
892	case DLT_PPP_PPPD:
893	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
894	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
895		off_linktype = 2;
896		off_nl = 4;
897		off_nl_nosnap = 4;	/* no 802.2 LLC */
898		return;
899
900	case DLT_PPP_ETHER:
901		/*
902		 * This does no include the Ethernet header, and
903		 * only covers session state.
904		 */
905		off_linktype = 6;
906		off_nl = 8;
907		off_nl_nosnap = 8;	/* no 802.2 LLC */
908		return;
909
910	case DLT_PPP_BSDOS:
911		off_linktype = 5;
912		off_nl = 24;
913		off_nl_nosnap = 24;	/* no 802.2 LLC */
914		return;
915
916	case DLT_FDDI:
917		/*
918		 * FDDI doesn't really have a link-level type field.
919		 * We set "off_linktype" to the offset of the LLC header.
920		 *
921		 * To check for Ethernet types, we assume that SSAP = SNAP
922		 * is being used and pick out the encapsulated Ethernet type.
923		 * XXX - should we generate code to check for SNAP?
924		 */
925		off_linktype = 13;
926#ifdef PCAP_FDDIPAD
927		off_linktype += pcap_fddipad;
928#endif
929		off_nl = 21;		/* FDDI+802.2+SNAP */
930		off_nl_nosnap = 16;	/* FDDI+802.2 */
931#ifdef PCAP_FDDIPAD
932		off_nl += pcap_fddipad;
933		off_nl_nosnap += pcap_fddipad;
934#endif
935		return;
936
937	case DLT_IEEE802:
938		/*
939		 * Token Ring doesn't really have a link-level type field.
940		 * We set "off_linktype" to the offset of the LLC header.
941		 *
942		 * To check for Ethernet types, we assume that SSAP = SNAP
943		 * is being used and pick out the encapsulated Ethernet type.
944		 * XXX - should we generate code to check for SNAP?
945		 *
946		 * XXX - the header is actually variable-length.
947		 * Some various Linux patched versions gave 38
948		 * as "off_linktype" and 40 as "off_nl"; however,
949		 * if a token ring packet has *no* routing
950		 * information, i.e. is not source-routed, the correct
951		 * values are 20 and 22, as they are in the vanilla code.
952		 *
953		 * A packet is source-routed iff the uppermost bit
954		 * of the first byte of the source address, at an
955		 * offset of 8, has the uppermost bit set.  If the
956		 * packet is source-routed, the total number of bytes
957		 * of routing information is 2 plus bits 0x1F00 of
958		 * the 16-bit value at an offset of 14 (shifted right
959		 * 8 - figure out which byte that is).
960		 */
961		off_linktype = 14;
962		off_nl = 22;		/* Token Ring+802.2+SNAP */
963		off_nl_nosnap = 17;	/* Token Ring+802.2 */
964		return;
965
966	case DLT_IEEE802_11:
967		/*
968		 * 802.11 doesn't really have a link-level type field.
969		 * We set "off_linktype" to the offset of the LLC header.
970		 *
971		 * To check for Ethernet types, we assume that SSAP = SNAP
972		 * is being used and pick out the encapsulated Ethernet type.
973		 * XXX - should we generate code to check for SNAP?
974		 *
975		 * XXX - the header is actually variable-length.  We
976		 * assume a 24-byte link-layer header, as appears in
977		 * data frames in networks with no bridges.  If the
978		 * fromds and tods 802.11 header bits are both set,
979		 * it's actually supposed to be 30 bytes.
980		 */
981		off_linktype = 24;
982		off_nl = 32;		/* 802.11+802.2+SNAP */
983		off_nl_nosnap = 27;	/* 802.11+802.2 */
984		return;
985
986	case DLT_PRISM_HEADER:
987		/*
988		 * Same as 802.11, but with an additional header before
989		 * the 802.11 header, containing a bunch of additional
990		 * information including radio-level information.
991		 *
992		 * The header is 144 bytes long.
993		 *
994		 * XXX - same variable-length header problem; at least
995		 * the Prism header is fixed-length.
996		 */
997		off_ll = 144;
998		off_linktype = 24;
999		off_nl = 32;	/* Prism+802.11+802.2+SNAP */
1000		off_nl_nosnap = 27;	/* Prism+802.11+802.2 */
1001		return;
1002
1003	case DLT_IEEE802_11_RADIO_AVS:
1004		/*
1005		 * Same as 802.11, but with an additional header before
1006		 * the 802.11 header, containing a bunch of additional
1007		 * information including radio-level information.
1008		 *
1009		 * The header is 64 bytes long, at least in its
1010		 * current incarnation.
1011		 *
1012		 * XXX - same variable-length header problem, only
1013		 * more so; this header is also variable-length,
1014		 * with the length being the 32-bit big-endian
1015		 * number at an offset of 4 from the beginning
1016		 * of the radio header.  We should handle that the
1017		 * same way we handle the length at the beginning
1018		 * of the radiotap header.
1019		 *
1020		 * XXX - in Linux, do any drivers that supply an AVS
1021		 * header supply a link-layer type other than
1022		 * ARPHRD_IEEE80211_PRISM?  If so, we should map that
1023		 * to DLT_IEEE802_11_RADIO_AVS; if not, or if there are
1024		 * any drivers that supply an AVS header but supply
1025		 * an ARPHRD value of ARPHRD_IEEE80211_PRISM, we'll
1026		 * have to check the header in the generated code to
1027		 * determine whether it's Prism or AVS.
1028		 */
1029		off_ll = 64;
1030		off_linktype = 24;
1031		off_nl = 32;		/* Radio+802.11+802.2+SNAP */
1032		off_nl_nosnap = 27;	/* Radio+802.11+802.2 */
1033		return;
1034
1035
1036		/*
1037		 * At the moment we treat PPI as normal Radiotap encoded
1038		 * packets. The difference is in the function that generates
1039		 * the code at the beginning to compute the header length.
1040		 * Since this code generator of PPI supports bare 802.11
1041		 * encapsulation only (i.e. the encapsulated DLT should be
1042		 * DLT_IEEE802_11) we generate code to check for this too.
1043		 */
1044	case DLT_PPI:
1045	case DLT_IEEE802_11_RADIO:
1046		/*
1047		 * Same as 802.11, but with an additional header before
1048		 * the 802.11 header, containing a bunch of additional
1049		 * information including radio-level information.
1050		 *
1051		 * The radiotap header is variable length, and we
1052		 * generate code to compute its length and store it
1053		 * in a register.  These offsets are relative to the
1054		 * beginning of the 802.11 header.
1055		 */
1056		off_linktype = 24;
1057		off_nl = 32;		/* 802.11+802.2+SNAP */
1058		off_nl_nosnap = 27;	/* 802.11+802.2 */
1059		return;
1060
1061	case DLT_ATM_RFC1483:
1062	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1063		/*
1064		 * assume routed, non-ISO PDUs
1065		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1066		 *
1067		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1068		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1069		 * latter would presumably be treated the way PPPoE
1070		 * should be, so you can do "pppoe and udp port 2049"
1071		 * or "pppoa and tcp port 80" and have it check for
1072		 * PPPo{A,E} and a PPP protocol of IP and....
1073		 */
1074		off_linktype = 0;
1075		off_nl = 8;		/* 802.2+SNAP */
1076		off_nl_nosnap = 3;	/* 802.2 */
1077		return;
1078
1079	case DLT_SUNATM:
1080		/*
1081		 * Full Frontal ATM; you get AALn PDUs with an ATM
1082		 * pseudo-header.
1083		 */
1084		is_atm = 1;
1085		off_vpi = SUNATM_VPI_POS;
1086		off_vci = SUNATM_VCI_POS;
1087		off_proto = PROTO_POS;
1088		off_mac = -1;	/* LLC-encapsulated, so no MAC-layer header */
1089		off_payload = SUNATM_PKT_BEGIN_POS;
1090		off_linktype = off_payload;
1091		off_nl = off_payload+8;		/* 802.2+SNAP */
1092		off_nl_nosnap = off_payload+3;	/* 802.2 */
1093		return;
1094
1095	case DLT_RAW:
1096		off_linktype = -1;
1097		off_nl = 0;
1098		off_nl_nosnap = 0;	/* no 802.2 LLC */
1099		return;
1100
1101	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1102		off_linktype = 14;
1103		off_nl = 16;
1104		off_nl_nosnap = 16;	/* no 802.2 LLC */
1105		return;
1106
1107	case DLT_LTALK:
1108		/*
1109		 * LocalTalk does have a 1-byte type field in the LLAP header,
1110		 * but really it just indicates whether there is a "short" or
1111		 * "long" DDP packet following.
1112		 */
1113		off_linktype = -1;
1114		off_nl = 0;
1115		off_nl_nosnap = 0;	/* no 802.2 LLC */
1116		return;
1117
1118	case DLT_IP_OVER_FC:
1119		/*
1120		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1121		 * link-level type field.  We set "off_linktype" to the
1122		 * offset of the LLC header.
1123		 *
1124		 * To check for Ethernet types, we assume that SSAP = SNAP
1125		 * is being used and pick out the encapsulated Ethernet type.
1126		 * XXX - should we generate code to check for SNAP? RFC
1127		 * 2625 says SNAP should be used.
1128		 */
1129		off_linktype = 16;
1130		off_nl = 24;		/* IPFC+802.2+SNAP */
1131		off_nl_nosnap = 19;	/* IPFC+802.2 */
1132		return;
1133
1134	case DLT_FRELAY:
1135		/*
1136		 * XXX - we should set this to handle SNAP-encapsulated
1137		 * frames (NLPID of 0x80).
1138		 */
1139		off_linktype = -1;
1140		off_nl = 0;
1141		off_nl_nosnap = 0;	/* no 802.2 LLC */
1142		return;
1143
1144                /*
1145                 * the only BPF-interesting FRF.16 frames are non-control frames;
1146                 * Frame Relay has a variable length link-layer
1147                 * so lets start with offset 4 for now and increments later on (FIXME);
1148                 */
1149	case DLT_MFR:
1150		off_linktype = -1;
1151		off_nl = 4;
1152		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1153		return;
1154
1155	case DLT_APPLE_IP_OVER_IEEE1394:
1156		off_linktype = 16;
1157		off_nl = 18;
1158		off_nl_nosnap = 18;	/* no 802.2 LLC */
1159		return;
1160
1161	case DLT_LINUX_IRDA:
1162		/*
1163		 * Currently, only raw "link[N:M]" filtering is supported.
1164		 */
1165		off_linktype = -1;
1166		off_nl = -1;
1167		off_nl_nosnap = -1;
1168		return;
1169
1170	case DLT_DOCSIS:
1171		/*
1172		 * Currently, only raw "link[N:M]" filtering is supported.
1173		 */
1174		off_linktype = -1;
1175		off_nl = -1;
1176		off_nl_nosnap = -1;
1177		return;
1178
1179	case DLT_SYMANTEC_FIREWALL:
1180		off_linktype = 6;
1181		off_nl = 44;		/* Ethernet II */
1182		off_nl_nosnap = 44;	/* XXX - what does it do with 802.3 packets? */
1183		return;
1184
1185#ifdef HAVE_NET_PFVAR_H
1186	case DLT_PFLOG:
1187		off_linktype = 0;
1188		off_nl = PFLOG_HDRLEN;
1189		off_nl_nosnap = PFLOG_HDRLEN;	/* no 802.2 LLC */
1190		return;
1191#endif
1192
1193        case DLT_JUNIPER_MFR:
1194        case DLT_JUNIPER_MLFR:
1195        case DLT_JUNIPER_MLPPP:
1196        case DLT_JUNIPER_PPP:
1197        case DLT_JUNIPER_CHDLC:
1198        case DLT_JUNIPER_FRELAY:
1199                off_linktype = 4;
1200		off_nl = 4;
1201		off_nl_nosnap = -1;	/* no 802.2 LLC */
1202                return;
1203
1204	case DLT_JUNIPER_ATM1:
1205		off_linktype = 4; /* in reality variable between 4-8 */
1206		off_nl = 4;
1207		off_nl_nosnap = 14;
1208		return;
1209
1210	case DLT_JUNIPER_ATM2:
1211		off_linktype = 8; /* in reality variable between 8-12 */
1212		off_nl = 8;
1213		off_nl_nosnap = 18;
1214		return;
1215
1216		/* frames captured on a Juniper PPPoE service PIC
1217		 * contain raw ethernet frames */
1218	case DLT_JUNIPER_PPPOE:
1219        case DLT_JUNIPER_ETHER:
1220		off_linktype = 16;
1221		off_nl = 18;		/* Ethernet II */
1222		off_nl_nosnap = 21;	/* 802.3+802.2 */
1223		return;
1224
1225	case DLT_JUNIPER_PPPOE_ATM:
1226		off_linktype = 4;
1227		off_nl = 6;
1228		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1229		return;
1230
1231	case DLT_JUNIPER_GGSN:
1232		off_linktype = 6;
1233		off_nl = 12;
1234		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1235		return;
1236
1237	case DLT_JUNIPER_ES:
1238		off_linktype = 6;
1239		off_nl = -1;		/* not really a network layer but raw IP adresses */
1240		off_nl_nosnap = -1;	/* no 802.2 LLC */
1241		return;
1242
1243	case DLT_JUNIPER_MONITOR:
1244		off_linktype = 12;
1245		off_nl = 12;		/* raw IP/IP6 header */
1246		off_nl_nosnap = -1;	/* no 802.2 LLC */
1247		return;
1248
1249	case DLT_JUNIPER_SERVICES:
1250		off_linktype = 12;
1251		off_nl = -1;		/* L3 proto location dep. on cookie type */
1252		off_nl_nosnap = -1;	/* no 802.2 LLC */
1253		return;
1254
1255	case DLT_JUNIPER_VP:
1256		off_linktype = 18;
1257		off_nl = -1;
1258		off_nl_nosnap = -1;
1259		return;
1260
1261	case DLT_MTP2:
1262		off_li = 2;
1263		off_sio = 3;
1264		off_opc = 4;
1265		off_dpc = 4;
1266		off_sls = 7;
1267		off_linktype = -1;
1268		off_nl = -1;
1269		off_nl_nosnap = -1;
1270		return;
1271
1272	case DLT_MTP2_WITH_PHDR:
1273		off_li = 6;
1274		off_sio = 7;
1275		off_opc = 8;
1276		off_dpc = 8;
1277		off_sls = 11;
1278		off_linktype = -1;
1279		off_nl = -1;
1280		off_nl_nosnap = -1;
1281		return;
1282
1283#ifdef DLT_PFSYNC
1284	case DLT_PFSYNC:
1285		off_linktype = -1;
1286		off_nl = 4;
1287		off_nl_nosnap = 4;
1288		return;
1289#endif
1290
1291	case DLT_LINUX_LAPD:
1292		/*
1293		 * Currently, only raw "link[N:M]" filtering is supported.
1294		 */
1295		off_linktype = -1;
1296		off_nl = -1;
1297		off_nl_nosnap = -1;
1298		return;
1299
1300	case DLT_USB:
1301		/*
1302		 * Currently, only raw "link[N:M]" filtering is supported.
1303		 */
1304		off_linktype = -1;
1305		off_nl = -1;
1306		off_nl_nosnap = -1;
1307		return;
1308
1309	case DLT_BLUETOOTH_HCI_H4:
1310		/*
1311		 * Currently, only raw "link[N:M]" filtering is supported.
1312		 */
1313		off_linktype = -1;
1314		off_nl = -1;
1315		off_nl_nosnap = -1;
1316		return;
1317	}
1318	bpf_error("unknown data link type %d", linktype);
1319	/* NOTREACHED */
1320}
1321
1322/*
1323 * Load a value relative to the beginning of the link-layer header.
1324 * The link-layer header doesn't necessarily begin at the beginning
1325 * of the packet data; there might be a variable-length prefix containing
1326 * radio information.
1327 */
1328static struct slist *
1329gen_load_llrel(offset, size)
1330	u_int offset, size;
1331{
1332	struct slist *s, *s2;
1333
1334	s = gen_llprefixlen();
1335
1336	/*
1337	 * If "s" is non-null, it has code to arrange that the X register
1338	 * contains the length of the prefix preceding the link-layer
1339	 * header.
1340	 *
1341	 * Otherwise, the length of the prefix preceding the link-layer
1342	 * header is "off_ll".
1343	 */
1344	if (s != NULL) {
1345		/*
1346		 * There's a variable-length prefix preceding the
1347		 * link-layer header.  "s" points to a list of statements
1348		 * that put the length of that prefix into the X register.
1349		 * do an indirect load, to use the X register as an offset.
1350		 */
1351		s2 = new_stmt(BPF_LD|BPF_IND|size);
1352		s2->s.k = offset;
1353		sappend(s, s2);
1354	} else {
1355		/*
1356		 * There is no variable-length header preceding the
1357		 * link-layer header; add in off_ll, which, if there's
1358		 * a fixed-length header preceding the link-layer header,
1359		 * is the length of that header.
1360		 */
1361		s = new_stmt(BPF_LD|BPF_ABS|size);
1362		s->s.k = offset + off_ll;
1363	}
1364	return s;
1365}
1366
1367
1368/*
1369 * Load a value relative to the beginning of the specified header.
1370 */
1371static struct slist *
1372gen_load_a(offrel, offset, size)
1373	enum e_offrel offrel;
1374	u_int offset, size;
1375{
1376	struct slist *s, *s2;
1377
1378	switch (offrel) {
1379
1380	case OR_PACKET:
1381                s = new_stmt(BPF_LD|BPF_ABS|size);
1382                s->s.k = offset;
1383		break;
1384
1385	case OR_LINK:
1386		s = gen_load_llrel(offset, size);
1387		break;
1388
1389	case OR_NET:
1390		s = gen_load_llrel(off_nl + offset, size);
1391		break;
1392
1393	case OR_NET_NOSNAP:
1394		s = gen_load_llrel(off_nl_nosnap + offset, size);
1395		break;
1396
1397	case OR_TRAN_IPV4:
1398		/*
1399		 * Load the X register with the length of the IPv4 header
1400		 * (plus the offset of the link-layer header, if it's
1401		 * preceded by a variable-length header such as a radio
1402		 * header), in bytes.
1403		 */
1404		s = gen_loadx_iphdrlen();
1405
1406		/*
1407		 * Load the item at {offset of the link-layer header} +
1408		 * {offset, relative to the start of the link-layer
1409		 * header, of the IPv4 header} + {length of the IPv4 header} +
1410		 * {specified offset}.
1411		 *
1412		 * (If the link-layer is variable-length, it's included
1413		 * in the value in the X register, and off_ll is 0.)
1414		 */
1415		s2 = new_stmt(BPF_LD|BPF_IND|size);
1416		s2->s.k = off_ll + off_nl + offset;
1417		sappend(s, s2);
1418		break;
1419
1420	case OR_TRAN_IPV6:
1421		s = gen_load_llrel(off_nl + 40 + offset, size);
1422		break;
1423
1424	default:
1425		abort();
1426		return NULL;
1427	}
1428	return s;
1429}
1430
1431/*
1432 * Generate code to load into the X register the sum of the length of
1433 * the IPv4 header and any variable-length header preceding the link-layer
1434 * header.
1435 */
1436static struct slist *
1437gen_loadx_iphdrlen()
1438{
1439	struct slist *s, *s2;
1440
1441	s = gen_llprefixlen();
1442	if (s != NULL) {
1443		/*
1444		 * There's a variable-length prefix preceding the
1445		 * link-layer header.  "s" points to a list of statements
1446		 * that put the length of that prefix into the X register.
1447		 * The 4*([k]&0xf) addressing mode can't be used, as we
1448		 * don't have a constant offset, so we have to load the
1449		 * value in question into the A register and add to it
1450		 * the value from the X register.
1451		 */
1452		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1453		s2->s.k = off_nl;
1454		sappend(s, s2);
1455		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1456		s2->s.k = 0xf;
1457		sappend(s, s2);
1458		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1459		s2->s.k = 2;
1460		sappend(s, s2);
1461
1462		/*
1463		 * The A register now contains the length of the
1464		 * IP header.  We need to add to it the length
1465		 * of the prefix preceding the link-layer
1466		 * header, which is still in the X register, and
1467		 * move the result into the X register.
1468		 */
1469		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1470		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1471	} else {
1472		/*
1473		 * There is no variable-length header preceding the
1474		 * link-layer header; add in off_ll, which, if there's
1475		 * a fixed-length header preceding the link-layer header,
1476		 * is the length of that header.
1477		 */
1478		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1479		s->s.k = off_ll + off_nl;
1480	}
1481	return s;
1482}
1483
1484static struct block *
1485gen_uncond(rsense)
1486	int rsense;
1487{
1488	struct block *b;
1489	struct slist *s;
1490
1491	s = new_stmt(BPF_LD|BPF_IMM);
1492	s->s.k = !rsense;
1493	b = new_block(JMP(BPF_JEQ));
1494	b->stmts = s;
1495
1496	return b;
1497}
1498
1499static inline struct block *
1500gen_true()
1501{
1502	return gen_uncond(1);
1503}
1504
1505static inline struct block *
1506gen_false()
1507{
1508	return gen_uncond(0);
1509}
1510
1511/*
1512 * Byte-swap a 32-bit number.
1513 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1514 * big-endian platforms.)
1515 */
1516#define	SWAPLONG(y) \
1517((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1518
1519/*
1520 * Generate code to match a particular packet type.
1521 *
1522 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1523 * value, if <= ETHERMTU.  We use that to determine whether to
1524 * match the type/length field or to check the type/length field for
1525 * a value <= ETHERMTU to see whether it's a type field and then do
1526 * the appropriate test.
1527 */
1528static struct block *
1529gen_ether_linktype(proto)
1530	register int proto;
1531{
1532	struct block *b0, *b1;
1533
1534	switch (proto) {
1535
1536	case LLCSAP_ISONS:
1537	case LLCSAP_IP:
1538	case LLCSAP_NETBEUI:
1539		/*
1540		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1541		 * so we check the DSAP and SSAP.
1542		 *
1543		 * LLCSAP_IP checks for IP-over-802.2, rather
1544		 * than IP-over-Ethernet or IP-over-SNAP.
1545		 *
1546		 * XXX - should we check both the DSAP and the
1547		 * SSAP, like this, or should we check just the
1548		 * DSAP, as we do for other types <= ETHERMTU
1549		 * (i.e., other SAP values)?
1550		 */
1551		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1552		gen_not(b0);
1553		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1554			     ((proto << 8) | proto));
1555		gen_and(b0, b1);
1556		return b1;
1557
1558	case LLCSAP_IPX:
1559		/*
1560		 * Check for;
1561		 *
1562		 *	Ethernet_II frames, which are Ethernet
1563		 *	frames with a frame type of ETHERTYPE_IPX;
1564		 *
1565		 *	Ethernet_802.3 frames, which are 802.3
1566		 *	frames (i.e., the type/length field is
1567		 *	a length field, <= ETHERMTU, rather than
1568		 *	a type field) with the first two bytes
1569		 *	after the Ethernet/802.3 header being
1570		 *	0xFFFF;
1571		 *
1572		 *	Ethernet_802.2 frames, which are 802.3
1573		 *	frames with an 802.2 LLC header and
1574		 *	with the IPX LSAP as the DSAP in the LLC
1575		 *	header;
1576		 *
1577		 *	Ethernet_SNAP frames, which are 802.3
1578		 *	frames with an LLC header and a SNAP
1579		 *	header and with an OUI of 0x000000
1580		 *	(encapsulated Ethernet) and a protocol
1581		 *	ID of ETHERTYPE_IPX in the SNAP header.
1582		 *
1583		 * XXX - should we generate the same code both
1584		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1585		 */
1586
1587		/*
1588		 * This generates code to check both for the
1589		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1590		 */
1591		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1592		    (bpf_int32)LLCSAP_IPX);
1593		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H,
1594		    (bpf_int32)0xFFFF);
1595		gen_or(b0, b1);
1596
1597		/*
1598		 * Now we add code to check for SNAP frames with
1599		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1600		 */
1601		b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
1602		gen_or(b0, b1);
1603
1604		/*
1605		 * Now we generate code to check for 802.3
1606		 * frames in general.
1607		 */
1608		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1609		gen_not(b0);
1610
1611		/*
1612		 * Now add the check for 802.3 frames before the
1613		 * check for Ethernet_802.2 and Ethernet_802.3,
1614		 * as those checks should only be done on 802.3
1615		 * frames, not on Ethernet frames.
1616		 */
1617		gen_and(b0, b1);
1618
1619		/*
1620		 * Now add the check for Ethernet_II frames, and
1621		 * do that before checking for the other frame
1622		 * types.
1623		 */
1624		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1625		    (bpf_int32)ETHERTYPE_IPX);
1626		gen_or(b0, b1);
1627		return b1;
1628
1629	case ETHERTYPE_ATALK:
1630	case ETHERTYPE_AARP:
1631		/*
1632		 * EtherTalk (AppleTalk protocols on Ethernet link
1633		 * layer) may use 802.2 encapsulation.
1634		 */
1635
1636		/*
1637		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1638		 * we check for an Ethernet type field less than
1639		 * 1500, which means it's an 802.3 length field.
1640		 */
1641		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1642		gen_not(b0);
1643
1644		/*
1645		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1646		 * SNAP packets with an organization code of
1647		 * 0x080007 (Apple, for Appletalk) and a protocol
1648		 * type of ETHERTYPE_ATALK (Appletalk).
1649		 *
1650		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1651		 * SNAP packets with an organization code of
1652		 * 0x000000 (encapsulated Ethernet) and a protocol
1653		 * type of ETHERTYPE_AARP (Appletalk ARP).
1654		 */
1655		if (proto == ETHERTYPE_ATALK)
1656			b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
1657		else	/* proto == ETHERTYPE_AARP */
1658			b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
1659		gen_and(b0, b1);
1660
1661		/*
1662		 * Check for Ethernet encapsulation (Ethertalk
1663		 * phase 1?); we just check for the Ethernet
1664		 * protocol type.
1665		 */
1666		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1667
1668		gen_or(b0, b1);
1669		return b1;
1670
1671	default:
1672		if (proto <= ETHERMTU) {
1673			/*
1674			 * This is an LLC SAP value, so the frames
1675			 * that match would be 802.2 frames.
1676			 * Check that the frame is an 802.2 frame
1677			 * (i.e., that the length/type field is
1678			 * a length field, <= ETHERMTU) and
1679			 * then check the DSAP.
1680			 */
1681			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1682			gen_not(b0);
1683			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1684			    (bpf_int32)proto);
1685			gen_and(b0, b1);
1686			return b1;
1687		} else {
1688			/*
1689			 * This is an Ethernet type, so compare
1690			 * the length/type field with it (if
1691			 * the frame is an 802.2 frame, the length
1692			 * field will be <= ETHERMTU, and, as
1693			 * "proto" is > ETHERMTU, this test
1694			 * will fail and the frame won't match,
1695			 * which is what we want).
1696			 */
1697			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1698			    (bpf_int32)proto);
1699		}
1700	}
1701}
1702
1703/*
1704 * Generate code to match a particular packet type.
1705 *
1706 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1707 * value, if <= ETHERMTU.  We use that to determine whether to
1708 * match the type field or to check the type field for the special
1709 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1710 */
1711static struct block *
1712gen_linux_sll_linktype(proto)
1713	register int proto;
1714{
1715	struct block *b0, *b1;
1716
1717	switch (proto) {
1718
1719	case LLCSAP_ISONS:
1720	case LLCSAP_IP:
1721	case LLCSAP_NETBEUI:
1722		/*
1723		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1724		 * so we check the DSAP and SSAP.
1725		 *
1726		 * LLCSAP_IP checks for IP-over-802.2, rather
1727		 * than IP-over-Ethernet or IP-over-SNAP.
1728		 *
1729		 * XXX - should we check both the DSAP and the
1730		 * SSAP, like this, or should we check just the
1731		 * DSAP, as we do for other types <= ETHERMTU
1732		 * (i.e., other SAP values)?
1733		 */
1734		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1735		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1736			     ((proto << 8) | proto));
1737		gen_and(b0, b1);
1738		return b1;
1739
1740	case LLCSAP_IPX:
1741		/*
1742		 *	Ethernet_II frames, which are Ethernet
1743		 *	frames with a frame type of ETHERTYPE_IPX;
1744		 *
1745		 *	Ethernet_802.3 frames, which have a frame
1746		 *	type of LINUX_SLL_P_802_3;
1747		 *
1748		 *	Ethernet_802.2 frames, which are 802.3
1749		 *	frames with an 802.2 LLC header (i.e, have
1750		 *	a frame type of LINUX_SLL_P_802_2) and
1751		 *	with the IPX LSAP as the DSAP in the LLC
1752		 *	header;
1753		 *
1754		 *	Ethernet_SNAP frames, which are 802.3
1755		 *	frames with an LLC header and a SNAP
1756		 *	header and with an OUI of 0x000000
1757		 *	(encapsulated Ethernet) and a protocol
1758		 *	ID of ETHERTYPE_IPX in the SNAP header.
1759		 *
1760		 * First, do the checks on LINUX_SLL_P_802_2
1761		 * frames; generate the check for either
1762		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1763		 * then put a check for LINUX_SLL_P_802_2 frames
1764		 * before it.
1765		 */
1766		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1767		    (bpf_int32)LLCSAP_IPX);
1768		b1 = gen_snap(0x000000, ETHERTYPE_IPX,
1769		    off_linktype + 2);
1770		gen_or(b0, b1);
1771		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1772		gen_and(b0, b1);
1773
1774		/*
1775		 * Now check for 802.3 frames and OR that with
1776		 * the previous test.
1777		 */
1778		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1779		gen_or(b0, b1);
1780
1781		/*
1782		 * Now add the check for Ethernet_II frames, and
1783		 * do that before checking for the other frame
1784		 * types.
1785		 */
1786		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1787		    (bpf_int32)ETHERTYPE_IPX);
1788		gen_or(b0, b1);
1789		return b1;
1790
1791	case ETHERTYPE_ATALK:
1792	case ETHERTYPE_AARP:
1793		/*
1794		 * EtherTalk (AppleTalk protocols on Ethernet link
1795		 * layer) may use 802.2 encapsulation.
1796		 */
1797
1798		/*
1799		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1800		 * we check for the 802.2 protocol type in the
1801		 * "Ethernet type" field.
1802		 */
1803		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1804
1805		/*
1806		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1807		 * SNAP packets with an organization code of
1808		 * 0x080007 (Apple, for Appletalk) and a protocol
1809		 * type of ETHERTYPE_ATALK (Appletalk).
1810		 *
1811		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1812		 * SNAP packets with an organization code of
1813		 * 0x000000 (encapsulated Ethernet) and a protocol
1814		 * type of ETHERTYPE_AARP (Appletalk ARP).
1815		 */
1816		if (proto == ETHERTYPE_ATALK)
1817			b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
1818			    off_linktype + 2);
1819		else	/* proto == ETHERTYPE_AARP */
1820			b1 = gen_snap(0x000000, ETHERTYPE_AARP,
1821			    off_linktype + 2);
1822		gen_and(b0, b1);
1823
1824		/*
1825		 * Check for Ethernet encapsulation (Ethertalk
1826		 * phase 1?); we just check for the Ethernet
1827		 * protocol type.
1828		 */
1829		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1830
1831		gen_or(b0, b1);
1832		return b1;
1833
1834	default:
1835		if (proto <= ETHERMTU) {
1836			/*
1837			 * This is an LLC SAP value, so the frames
1838			 * that match would be 802.2 frames.
1839			 * Check for the 802.2 protocol type
1840			 * in the "Ethernet type" field, and
1841			 * then check the DSAP.
1842			 */
1843			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1844			    LINUX_SLL_P_802_2);
1845			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1846			     (bpf_int32)proto);
1847			gen_and(b0, b1);
1848			return b1;
1849		} else {
1850			/*
1851			 * This is an Ethernet type, so compare
1852			 * the length/type field with it (if
1853			 * the frame is an 802.2 frame, the length
1854			 * field will be <= ETHERMTU, and, as
1855			 * "proto" is > ETHERMTU, this test
1856			 * will fail and the frame won't match,
1857			 * which is what we want).
1858			 */
1859			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1860			    (bpf_int32)proto);
1861		}
1862	}
1863}
1864
1865static void
1866insert_radiotap_load_llprefixlen(b)
1867	struct block *b;
1868{
1869	struct slist *s1, *s2;
1870
1871	/*
1872	 * Prepend to the statements in this block code to load the
1873	 * length of the radiotap header into the register assigned
1874	 * to hold that length, if one has been assigned.
1875	 */
1876	if (reg_ll_size != -1) {
1877		/*
1878		 * The 2 bytes at offsets of 2 and 3 from the beginning
1879		 * of the radiotap header are the length of the radiotap
1880		 * header; unfortunately, it's little-endian, so we have
1881		 * to load it a byte at a time and construct the value.
1882		 */
1883
1884		/*
1885		 * Load the high-order byte, at an offset of 3, shift it
1886		 * left a byte, and put the result in the X register.
1887		 */
1888		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1889		s1->s.k = 3;
1890		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1891		sappend(s1, s2);
1892		s2->s.k = 8;
1893		s2 = new_stmt(BPF_MISC|BPF_TAX);
1894		sappend(s1, s2);
1895
1896		/*
1897		 * Load the next byte, at an offset of 2, and OR the
1898		 * value from the X register into it.
1899		 */
1900		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1901		sappend(s1, s2);
1902		s2->s.k = 2;
1903		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1904		sappend(s1, s2);
1905
1906		/*
1907		 * Now allocate a register to hold that value and store
1908		 * it.
1909		 */
1910		s2 = new_stmt(BPF_ST);
1911		s2->s.k = reg_ll_size;
1912		sappend(s1, s2);
1913
1914		/*
1915		 * Now move it into the X register.
1916		 */
1917		s2 = new_stmt(BPF_MISC|BPF_TAX);
1918		sappend(s1, s2);
1919
1920		/*
1921		 * Now append all the existing statements in this
1922		 * block to these statements.
1923		 */
1924		sappend(s1, b->stmts);
1925		b->stmts = s1;
1926	}
1927}
1928
1929/*
1930 * At the moment we treat PPI as normal Radiotap encoded
1931 * packets. The difference is in the function that generates
1932 * the code at the beginning to compute the header length.
1933 * Since this code generator of PPI supports bare 802.11
1934 * encapsulation only (i.e. the encapsulated DLT should be
1935 * DLT_IEEE802_11) we generate code to check for this too.
1936 */
1937static void
1938insert_ppi_load_llprefixlen(b)
1939	struct block *b;
1940{
1941	struct slist *s1, *s2;
1942
1943	/*
1944	 * Prepend to the statements in this block code to load the
1945	 * length of the radiotap header into the register assigned
1946	 * to hold that length, if one has been assigned.
1947	 */
1948	if (reg_ll_size != -1) {
1949	    /*
1950		 * The 2 bytes at offsets of 2 and 3 from the beginning
1951		 * of the radiotap header are the length of the radiotap
1952		 * header; unfortunately, it's little-endian, so we have
1953		 * to load it a byte at a time and construct the value.
1954		 */
1955
1956		/*
1957		 * Load the high-order byte, at an offset of 3, shift it
1958		 * left a byte, and put the result in the X register.
1959		 */
1960		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1961		s1->s.k = 3;
1962		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1963		sappend(s1, s2);
1964		s2->s.k = 8;
1965		s2 = new_stmt(BPF_MISC|BPF_TAX);
1966		sappend(s1, s2);
1967
1968		/*
1969		 * Load the next byte, at an offset of 2, and OR the
1970		 * value from the X register into it.
1971		 */
1972		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1973		sappend(s1, s2);
1974		s2->s.k = 2;
1975		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1976		sappend(s1, s2);
1977
1978		/*
1979		 * Now allocate a register to hold that value and store
1980		 * it.
1981		 */
1982		s2 = new_stmt(BPF_ST);
1983		s2->s.k = reg_ll_size;
1984		sappend(s1, s2);
1985
1986		/*
1987		 * Now move it into the X register.
1988		 */
1989		s2 = new_stmt(BPF_MISC|BPF_TAX);
1990		sappend(s1, s2);
1991
1992		/*
1993		 * Now append all the existing statements in this
1994		 * block to these statements.
1995		 */
1996		sappend(s1, b->stmts);
1997		b->stmts = s1;
1998
1999	}
2000}
2001
2002static struct block *
2003gen_ppi_dlt_check(void)
2004{
2005	struct slist *s_load_dlt;
2006	struct block *b;
2007
2008	if (linktype == DLT_PPI)
2009	{
2010		/* Create the statements that check for the DLT
2011		 */
2012		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2013		s_load_dlt->s.k = 4;
2014
2015		b = new_block(JMP(BPF_JEQ));
2016
2017		b->stmts = s_load_dlt;
2018		b->s.k = SWAPLONG(DLT_IEEE802_11);
2019	}
2020	else
2021	{
2022		b = NULL;
2023	}
2024
2025	return b;
2026}
2027
2028static void
2029insert_load_llprefixlen(b)
2030	struct block *b;
2031{
2032	switch (linktype) {
2033
2034	/*
2035	 * At the moment we treat PPI as normal Radiotap encoded
2036	 * packets. The difference is in the function that generates
2037	 * the code at the beginning to compute the header length.
2038	 * Since this code generator of PPI supports bare 802.11
2039	 * encapsulation only (i.e. the encapsulated DLT should be
2040	 * DLT_IEEE802_11) we generate code to check for this too.
2041	 */
2042	case DLT_PPI:
2043		insert_ppi_load_llprefixlen(b);
2044		break;
2045
2046	case DLT_IEEE802_11_RADIO:
2047		insert_radiotap_load_llprefixlen(b);
2048		break;
2049	}
2050}
2051
2052
2053static struct slist *
2054gen_radiotap_llprefixlen(void)
2055{
2056	struct slist *s;
2057
2058	if (reg_ll_size == -1) {
2059		/*
2060		 * We haven't yet assigned a register for the length
2061		 * of the radiotap header; allocate one.
2062		 */
2063		reg_ll_size = alloc_reg();
2064	}
2065
2066	/*
2067	 * Load the register containing the radiotap length
2068	 * into the X register.
2069	 */
2070	s = new_stmt(BPF_LDX|BPF_MEM);
2071	s->s.k = reg_ll_size;
2072	return s;
2073}
2074
2075/*
2076 * At the moment we treat PPI as normal Radiotap encoded
2077 * packets. The difference is in the function that generates
2078 * the code at the beginning to compute the header length.
2079 * Since this code generator of PPI supports bare 802.11
2080 * encapsulation only (i.e. the encapsulated DLT should be
2081 * DLT_IEEE802_11) we generate code to check for this too.
2082 */
2083static struct slist *
2084gen_ppi_llprefixlen(void)
2085{
2086	struct slist *s;
2087
2088	if (reg_ll_size == -1) {
2089		/*
2090		 * We haven't yet assigned a register for the length
2091		 * of the radiotap header; allocate one.
2092		 */
2093		reg_ll_size = alloc_reg();
2094	}
2095
2096	/*
2097	 * Load the register containing the radiotap length
2098	 * into the X register.
2099	 */
2100	s = new_stmt(BPF_LDX|BPF_MEM);
2101	s->s.k = reg_ll_size;
2102	return s;
2103}
2104
2105
2106
2107/*
2108 * Generate code to compute the link-layer header length, if necessary,
2109 * putting it into the X register, and to return either a pointer to a
2110 * "struct slist" for the list of statements in that code, or NULL if
2111 * no code is necessary.
2112 */
2113static struct slist *
2114gen_llprefixlen(void)
2115{
2116	switch (linktype) {
2117
2118	case DLT_PPI:
2119		return gen_ppi_llprefixlen();
2120
2121
2122	case DLT_IEEE802_11_RADIO:
2123		return gen_radiotap_llprefixlen();
2124
2125	default:
2126		return NULL;
2127	}
2128}
2129
2130/*
2131 * Generate code to match a particular packet type by matching the
2132 * link-layer type field or fields in the 802.2 LLC header.
2133 *
2134 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2135 * value, if <= ETHERMTU.
2136 */
2137static struct block *
2138gen_linktype(proto)
2139	register int proto;
2140{
2141	struct block *b0, *b1, *b2;
2142
2143	/* are we checking MPLS-encapsulated packets? */
2144	if (label_stack_depth > 0) {
2145		switch (proto) {
2146		case ETHERTYPE_IP:
2147		case PPP_IP:
2148		/* FIXME add other L3 proto IDs */
2149			return gen_mpls_linktype(Q_IP);
2150
2151		case ETHERTYPE_IPV6:
2152		case PPP_IPV6:
2153		/* FIXME add other L3 proto IDs */
2154			return gen_mpls_linktype(Q_IPV6);
2155
2156		default:
2157			bpf_error("unsupported protocol over mpls");
2158			/* NOTREACHED */
2159		}
2160	}
2161
2162	switch (linktype) {
2163
2164	case DLT_EN10MB:
2165		return gen_ether_linktype(proto);
2166		/*NOTREACHED*/
2167		break;
2168
2169	case DLT_C_HDLC:
2170		switch (proto) {
2171
2172		case LLCSAP_ISONS:
2173			proto = (proto << 8 | LLCSAP_ISONS);
2174			/* fall through */
2175
2176		default:
2177			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2178			    (bpf_int32)proto);
2179			/*NOTREACHED*/
2180			break;
2181		}
2182		break;
2183
2184	case DLT_PPI:
2185	case DLT_FDDI:
2186	case DLT_IEEE802:
2187	case DLT_IEEE802_11:
2188	case DLT_IEEE802_11_RADIO_AVS:
2189	case DLT_IEEE802_11_RADIO:
2190	case DLT_PRISM_HEADER:
2191	case DLT_ATM_RFC1483:
2192	case DLT_ATM_CLIP:
2193	case DLT_IP_OVER_FC:
2194		return gen_llc_linktype(proto);
2195		/*NOTREACHED*/
2196		break;
2197
2198	case DLT_SUNATM:
2199		/*
2200		 * If "is_lane" is set, check for a LANE-encapsulated
2201		 * version of this protocol, otherwise check for an
2202		 * LLC-encapsulated version of this protocol.
2203		 *
2204		 * We assume LANE means Ethernet, not Token Ring.
2205		 */
2206		if (is_lane) {
2207			/*
2208			 * Check that the packet doesn't begin with an
2209			 * LE Control marker.  (We've already generated
2210			 * a test for LANE.)
2211			 */
2212			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
2213			    0xFF00);
2214			gen_not(b0);
2215
2216			/*
2217			 * Now generate an Ethernet test.
2218			 */
2219			b1 = gen_ether_linktype(proto);
2220			gen_and(b0, b1);
2221			return b1;
2222		} else {
2223			/*
2224			 * Check for LLC encapsulation and then check the
2225			 * protocol.
2226			 */
2227			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
2228			b1 = gen_llc_linktype(proto);
2229			gen_and(b0, b1);
2230			return b1;
2231		}
2232		/*NOTREACHED*/
2233		break;
2234
2235	case DLT_LINUX_SLL:
2236		return gen_linux_sll_linktype(proto);
2237		/*NOTREACHED*/
2238		break;
2239
2240	case DLT_SLIP:
2241	case DLT_SLIP_BSDOS:
2242	case DLT_RAW:
2243		/*
2244		 * These types don't provide any type field; packets
2245		 * are always IPv4 or IPv6.
2246		 *
2247		 * XXX - for IPv4, check for a version number of 4, and,
2248		 * for IPv6, check for a version number of 6?
2249		 */
2250		switch (proto) {
2251
2252		case ETHERTYPE_IP:
2253			/* Check for a version number of 4. */
2254			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
2255#ifdef INET6
2256		case ETHERTYPE_IPV6:
2257			/* Check for a version number of 6. */
2258			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
2259#endif
2260
2261		default:
2262			return gen_false();		/* always false */
2263		}
2264		/*NOTREACHED*/
2265		break;
2266
2267	case DLT_PPP:
2268	case DLT_PPP_PPPD:
2269	case DLT_PPP_SERIAL:
2270	case DLT_PPP_ETHER:
2271		/*
2272		 * We use Ethernet protocol types inside libpcap;
2273		 * map them to the corresponding PPP protocol types.
2274		 */
2275		switch (proto) {
2276
2277		case ETHERTYPE_IP:
2278			proto = PPP_IP;
2279			break;
2280
2281#ifdef INET6
2282		case ETHERTYPE_IPV6:
2283			proto = PPP_IPV6;
2284			break;
2285#endif
2286
2287		case ETHERTYPE_DN:
2288			proto = PPP_DECNET;
2289			break;
2290
2291		case ETHERTYPE_ATALK:
2292			proto = PPP_APPLE;
2293			break;
2294
2295		case ETHERTYPE_NS:
2296			proto = PPP_NS;
2297			break;
2298
2299		case LLCSAP_ISONS:
2300			proto = PPP_OSI;
2301			break;
2302
2303		case LLCSAP_8021D:
2304			/*
2305			 * I'm assuming the "Bridging PDU"s that go
2306			 * over PPP are Spanning Tree Protocol
2307			 * Bridging PDUs.
2308			 */
2309			proto = PPP_BRPDU;
2310			break;
2311
2312		case LLCSAP_IPX:
2313			proto = PPP_IPX;
2314			break;
2315		}
2316		break;
2317
2318	case DLT_PPP_BSDOS:
2319		/*
2320		 * We use Ethernet protocol types inside libpcap;
2321		 * map them to the corresponding PPP protocol types.
2322		 */
2323		switch (proto) {
2324
2325		case ETHERTYPE_IP:
2326			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
2327			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
2328			gen_or(b0, b1);
2329			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
2330			gen_or(b1, b0);
2331			return b0;
2332
2333#ifdef INET6
2334		case ETHERTYPE_IPV6:
2335			proto = PPP_IPV6;
2336			/* more to go? */
2337			break;
2338#endif
2339
2340		case ETHERTYPE_DN:
2341			proto = PPP_DECNET;
2342			break;
2343
2344		case ETHERTYPE_ATALK:
2345			proto = PPP_APPLE;
2346			break;
2347
2348		case ETHERTYPE_NS:
2349			proto = PPP_NS;
2350			break;
2351
2352		case LLCSAP_ISONS:
2353			proto = PPP_OSI;
2354			break;
2355
2356		case LLCSAP_8021D:
2357			/*
2358			 * I'm assuming the "Bridging PDU"s that go
2359			 * over PPP are Spanning Tree Protocol
2360			 * Bridging PDUs.
2361			 */
2362			proto = PPP_BRPDU;
2363			break;
2364
2365		case LLCSAP_IPX:
2366			proto = PPP_IPX;
2367			break;
2368		}
2369		break;
2370
2371	case DLT_NULL:
2372	case DLT_LOOP:
2373	case DLT_ENC:
2374		/*
2375		 * For DLT_NULL, the link-layer header is a 32-bit
2376		 * word containing an AF_ value in *host* byte order,
2377		 * and for DLT_ENC, the link-layer header begins
2378		 * with a 32-bit work containing an AF_ value in
2379		 * host byte order.
2380		 *
2381		 * In addition, if we're reading a saved capture file,
2382		 * the host byte order in the capture may not be the
2383		 * same as the host byte order on this machine.
2384		 *
2385		 * For DLT_LOOP, the link-layer header is a 32-bit
2386		 * word containing an AF_ value in *network* byte order.
2387		 *
2388		 * XXX - AF_ values may, unfortunately, be platform-
2389		 * dependent; for example, FreeBSD's AF_INET6 is 24
2390		 * whilst NetBSD's and OpenBSD's is 26.
2391		 *
2392		 * This means that, when reading a capture file, just
2393		 * checking for our AF_INET6 value won't work if the
2394		 * capture file came from another OS.
2395		 */
2396		switch (proto) {
2397
2398		case ETHERTYPE_IP:
2399			proto = AF_INET;
2400			break;
2401
2402#ifdef INET6
2403		case ETHERTYPE_IPV6:
2404			proto = AF_INET6;
2405			break;
2406#endif
2407
2408		default:
2409			/*
2410			 * Not a type on which we support filtering.
2411			 * XXX - support those that have AF_ values
2412			 * #defined on this platform, at least?
2413			 */
2414			return gen_false();
2415		}
2416
2417		if (linktype == DLT_NULL || linktype == DLT_ENC) {
2418			/*
2419			 * The AF_ value is in host byte order, but
2420			 * the BPF interpreter will convert it to
2421			 * network byte order.
2422			 *
2423			 * If this is a save file, and it's from a
2424			 * machine with the opposite byte order to
2425			 * ours, we byte-swap the AF_ value.
2426			 *
2427			 * Then we run it through "htonl()", and
2428			 * generate code to compare against the result.
2429			 */
2430			if (bpf_pcap->sf.rfile != NULL &&
2431			    bpf_pcap->sf.swapped)
2432				proto = SWAPLONG(proto);
2433			proto = htonl(proto);
2434		}
2435		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
2436
2437#ifdef HAVE_NET_PFVAR_H
2438	case DLT_PFLOG:
2439		/*
2440		 * af field is host byte order in contrast to the rest of
2441		 * the packet.
2442		 */
2443		if (proto == ETHERTYPE_IP)
2444			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2445			    BPF_B, (bpf_int32)AF_INET));
2446#ifdef INET6
2447		else if (proto == ETHERTYPE_IPV6)
2448			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2449			    BPF_B, (bpf_int32)AF_INET6));
2450#endif /* INET6 */
2451		else
2452			return gen_false();
2453		/*NOTREACHED*/
2454		break;
2455#endif /* HAVE_NET_PFVAR_H */
2456
2457	case DLT_ARCNET:
2458	case DLT_ARCNET_LINUX:
2459		/*
2460		 * XXX should we check for first fragment if the protocol
2461		 * uses PHDS?
2462		 */
2463		switch (proto) {
2464
2465		default:
2466			return gen_false();
2467
2468#ifdef INET6
2469		case ETHERTYPE_IPV6:
2470			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2471				(bpf_int32)ARCTYPE_INET6));
2472#endif /* INET6 */
2473
2474		case ETHERTYPE_IP:
2475			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2476				     (bpf_int32)ARCTYPE_IP);
2477			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2478				     (bpf_int32)ARCTYPE_IP_OLD);
2479			gen_or(b0, b1);
2480			return (b1);
2481
2482		case ETHERTYPE_ARP:
2483			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2484				     (bpf_int32)ARCTYPE_ARP);
2485			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2486				     (bpf_int32)ARCTYPE_ARP_OLD);
2487			gen_or(b0, b1);
2488			return (b1);
2489
2490		case ETHERTYPE_REVARP:
2491			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2492					(bpf_int32)ARCTYPE_REVARP));
2493
2494		case ETHERTYPE_ATALK:
2495			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2496					(bpf_int32)ARCTYPE_ATALK));
2497		}
2498		/*NOTREACHED*/
2499		break;
2500
2501	case DLT_LTALK:
2502		switch (proto) {
2503		case ETHERTYPE_ATALK:
2504			return gen_true();
2505		default:
2506			return gen_false();
2507		}
2508		/*NOTREACHED*/
2509		break;
2510
2511	case DLT_FRELAY:
2512		/*
2513		 * XXX - assumes a 2-byte Frame Relay header with
2514		 * DLCI and flags.  What if the address is longer?
2515		 */
2516		switch (proto) {
2517
2518		case ETHERTYPE_IP:
2519			/*
2520			 * Check for the special NLPID for IP.
2521			 */
2522			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
2523
2524#ifdef INET6
2525		case ETHERTYPE_IPV6:
2526			/*
2527			 * Check for the special NLPID for IPv6.
2528			 */
2529			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
2530#endif
2531
2532		case LLCSAP_ISONS:
2533			/*
2534			 * Check for several OSI protocols.
2535			 *
2536			 * Frame Relay packets typically have an OSI
2537			 * NLPID at the beginning; we check for each
2538			 * of them.
2539			 *
2540			 * What we check for is the NLPID and a frame
2541			 * control field of UI, i.e. 0x03 followed
2542			 * by the NLPID.
2543			 */
2544			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
2545			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
2546			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
2547			gen_or(b1, b2);
2548			gen_or(b0, b2);
2549			return b2;
2550
2551		default:
2552			return gen_false();
2553		}
2554		/*NOTREACHED*/
2555		break;
2556
2557        case DLT_JUNIPER_MFR:
2558        case DLT_JUNIPER_MLFR:
2559        case DLT_JUNIPER_MLPPP:
2560	case DLT_JUNIPER_ATM1:
2561	case DLT_JUNIPER_ATM2:
2562	case DLT_JUNIPER_PPPOE:
2563	case DLT_JUNIPER_PPPOE_ATM:
2564        case DLT_JUNIPER_GGSN:
2565        case DLT_JUNIPER_ES:
2566        case DLT_JUNIPER_MONITOR:
2567        case DLT_JUNIPER_SERVICES:
2568        case DLT_JUNIPER_ETHER:
2569        case DLT_JUNIPER_PPP:
2570        case DLT_JUNIPER_FRELAY:
2571        case DLT_JUNIPER_CHDLC:
2572        case DLT_JUNIPER_VP:
2573		/* just lets verify the magic number for now -
2574		 * on ATM we may have up to 6 different encapsulations on the wire
2575		 * and need a lot of heuristics to figure out that the payload
2576		 * might be;
2577		 *
2578		 * FIXME encapsulation specific BPF_ filters
2579		 */
2580		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
2581
2582	case DLT_LINUX_IRDA:
2583		bpf_error("IrDA link-layer type filtering not implemented");
2584
2585	case DLT_DOCSIS:
2586		bpf_error("DOCSIS link-layer type filtering not implemented");
2587
2588	case DLT_LINUX_LAPD:
2589		bpf_error("LAPD link-layer type filtering not implemented");
2590	}
2591
2592	/*
2593	 * All the types that have no encapsulation should either be
2594	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
2595	 * all packets are IP packets, or should be handled in some
2596	 * special case, if none of them are (if some are and some
2597	 * aren't, the lack of encapsulation is a problem, as we'd
2598	 * have to find some other way of determining the packet type).
2599	 *
2600	 * Therefore, if "off_linktype" is -1, there's an error.
2601	 */
2602	if (off_linktype == (u_int)-1)
2603		abort();
2604
2605	/*
2606	 * Any type not handled above should always have an Ethernet
2607	 * type at an offset of "off_linktype".  (PPP is partially
2608	 * handled above - the protocol type is mapped from the
2609	 * Ethernet and LLC types we use internally to the corresponding
2610	 * PPP type - but the PPP type is always specified by a value
2611	 * at "off_linktype", so we don't have to do the code generation
2612	 * above.)
2613	 */
2614	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2615}
2616
2617/*
2618 * Check for an LLC SNAP packet with a given organization code and
2619 * protocol type; we check the entire contents of the 802.2 LLC and
2620 * snap headers, checking for DSAP and SSAP of SNAP and a control
2621 * field of 0x03 in the LLC header, and for the specified organization
2622 * code and protocol type in the SNAP header.
2623 */
2624static struct block *
2625gen_snap(orgcode, ptype, offset)
2626	bpf_u_int32 orgcode;
2627	bpf_u_int32 ptype;
2628	u_int offset;
2629{
2630	u_char snapblock[8];
2631
2632	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
2633	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
2634	snapblock[2] = 0x03;		/* control = UI */
2635	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
2636	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
2637	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
2638	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
2639	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
2640	return gen_bcmp(OR_LINK, offset, 8, snapblock);
2641}
2642
2643/*
2644 * Generate code to match a particular packet type, for link-layer types
2645 * using 802.2 LLC headers.
2646 *
2647 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
2648 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
2649 *
2650 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2651 * value, if <= ETHERMTU.  We use that to determine whether to
2652 * match the DSAP or both DSAP and LSAP or to check the OUI and
2653 * protocol ID in a SNAP header.
2654 */
2655static struct block *
2656gen_llc_linktype(proto)
2657	int proto;
2658{
2659	/*
2660	 * XXX - handle token-ring variable-length header.
2661	 */
2662	switch (proto) {
2663
2664	case LLCSAP_IP:
2665	case LLCSAP_ISONS:
2666	case LLCSAP_NETBEUI:
2667		/*
2668		 * XXX - should we check both the DSAP and the
2669		 * SSAP, like this, or should we check just the
2670		 * DSAP, as we do for other types <= ETHERMTU
2671		 * (i.e., other SAP values)?
2672		 */
2673		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_u_int32)
2674			     ((proto << 8) | proto));
2675
2676	case LLCSAP_IPX:
2677		/*
2678		 * XXX - are there ever SNAP frames for IPX on
2679		 * non-Ethernet 802.x networks?
2680		 */
2681		return gen_cmp(OR_LINK, off_linktype, BPF_B,
2682		    (bpf_int32)LLCSAP_IPX);
2683
2684	case ETHERTYPE_ATALK:
2685		/*
2686		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2687		 * SNAP packets with an organization code of
2688		 * 0x080007 (Apple, for Appletalk) and a protocol
2689		 * type of ETHERTYPE_ATALK (Appletalk).
2690		 *
2691		 * XXX - check for an organization code of
2692		 * encapsulated Ethernet as well?
2693		 */
2694		return gen_snap(0x080007, ETHERTYPE_ATALK, off_linktype);
2695
2696	default:
2697		/*
2698		 * XXX - we don't have to check for IPX 802.3
2699		 * here, but should we check for the IPX Ethertype?
2700		 */
2701		if (proto <= ETHERMTU) {
2702			/*
2703			 * This is an LLC SAP value, so check
2704			 * the DSAP.
2705			 */
2706			return gen_cmp(OR_LINK, off_linktype, BPF_B,
2707			    (bpf_int32)proto);
2708		} else {
2709			/*
2710			 * This is an Ethernet type; we assume that it's
2711			 * unlikely that it'll appear in the right place
2712			 * at random, and therefore check only the
2713			 * location that would hold the Ethernet type
2714			 * in a SNAP frame with an organization code of
2715			 * 0x000000 (encapsulated Ethernet).
2716			 *
2717			 * XXX - if we were to check for the SNAP DSAP and
2718			 * LSAP, as per XXX, and were also to check for an
2719			 * organization code of 0x000000 (encapsulated
2720			 * Ethernet), we'd do
2721			 *
2722			 *	return gen_snap(0x000000, proto,
2723			 *	    off_linktype);
2724			 *
2725			 * here; for now, we don't, as per the above.
2726			 * I don't know whether it's worth the extra CPU
2727			 * time to do the right check or not.
2728			 */
2729			return gen_cmp(OR_LINK, off_linktype+6, BPF_H,
2730			    (bpf_int32)proto);
2731		}
2732	}
2733}
2734
2735static struct block *
2736gen_hostop(addr, mask, dir, proto, src_off, dst_off)
2737	bpf_u_int32 addr;
2738	bpf_u_int32 mask;
2739	int dir, proto;
2740	u_int src_off, dst_off;
2741{
2742	struct block *b0, *b1;
2743	u_int offset;
2744
2745	switch (dir) {
2746
2747	case Q_SRC:
2748		offset = src_off;
2749		break;
2750
2751	case Q_DST:
2752		offset = dst_off;
2753		break;
2754
2755	case Q_AND:
2756		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2757		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2758		gen_and(b0, b1);
2759		return b1;
2760
2761	case Q_OR:
2762	case Q_DEFAULT:
2763		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2764		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2765		gen_or(b0, b1);
2766		return b1;
2767
2768	default:
2769		abort();
2770	}
2771	b0 = gen_linktype(proto);
2772	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
2773	gen_and(b0, b1);
2774	return b1;
2775}
2776
2777#ifdef INET6
2778static struct block *
2779gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
2780	struct in6_addr *addr;
2781	struct in6_addr *mask;
2782	int dir, proto;
2783	u_int src_off, dst_off;
2784{
2785	struct block *b0, *b1;
2786	u_int offset;
2787	u_int32_t *a, *m;
2788
2789	switch (dir) {
2790
2791	case Q_SRC:
2792		offset = src_off;
2793		break;
2794
2795	case Q_DST:
2796		offset = dst_off;
2797		break;
2798
2799	case Q_AND:
2800		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2801		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2802		gen_and(b0, b1);
2803		return b1;
2804
2805	case Q_OR:
2806	case Q_DEFAULT:
2807		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2808		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2809		gen_or(b0, b1);
2810		return b1;
2811
2812	default:
2813		abort();
2814	}
2815	/* this order is important */
2816	a = (u_int32_t *)addr;
2817	m = (u_int32_t *)mask;
2818	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
2819	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
2820	gen_and(b0, b1);
2821	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
2822	gen_and(b0, b1);
2823	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
2824	gen_and(b0, b1);
2825	b0 = gen_linktype(proto);
2826	gen_and(b0, b1);
2827	return b1;
2828}
2829#endif /*INET6*/
2830
2831static struct block *
2832gen_ehostop(eaddr, dir)
2833	register const u_char *eaddr;
2834	register int dir;
2835{
2836	register struct block *b0, *b1;
2837
2838	switch (dir) {
2839	case Q_SRC:
2840		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
2841
2842	case Q_DST:
2843		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
2844
2845	case Q_AND:
2846		b0 = gen_ehostop(eaddr, Q_SRC);
2847		b1 = gen_ehostop(eaddr, Q_DST);
2848		gen_and(b0, b1);
2849		return b1;
2850
2851	case Q_DEFAULT:
2852	case Q_OR:
2853		b0 = gen_ehostop(eaddr, Q_SRC);
2854		b1 = gen_ehostop(eaddr, Q_DST);
2855		gen_or(b0, b1);
2856		return b1;
2857	}
2858	abort();
2859	/* NOTREACHED */
2860}
2861
2862/*
2863 * Like gen_ehostop, but for DLT_FDDI
2864 */
2865static struct block *
2866gen_fhostop(eaddr, dir)
2867	register const u_char *eaddr;
2868	register int dir;
2869{
2870	struct block *b0, *b1;
2871
2872	switch (dir) {
2873	case Q_SRC:
2874#ifdef PCAP_FDDIPAD
2875		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
2876#else
2877		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
2878#endif
2879
2880	case Q_DST:
2881#ifdef PCAP_FDDIPAD
2882		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
2883#else
2884		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
2885#endif
2886
2887	case Q_AND:
2888		b0 = gen_fhostop(eaddr, Q_SRC);
2889		b1 = gen_fhostop(eaddr, Q_DST);
2890		gen_and(b0, b1);
2891		return b1;
2892
2893	case Q_DEFAULT:
2894	case Q_OR:
2895		b0 = gen_fhostop(eaddr, Q_SRC);
2896		b1 = gen_fhostop(eaddr, Q_DST);
2897		gen_or(b0, b1);
2898		return b1;
2899	}
2900	abort();
2901	/* NOTREACHED */
2902}
2903
2904/*
2905 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2906 */
2907static struct block *
2908gen_thostop(eaddr, dir)
2909	register const u_char *eaddr;
2910	register int dir;
2911{
2912	register struct block *b0, *b1;
2913
2914	switch (dir) {
2915	case Q_SRC:
2916		return gen_bcmp(OR_LINK, 8, 6, eaddr);
2917
2918	case Q_DST:
2919		return gen_bcmp(OR_LINK, 2, 6, eaddr);
2920
2921	case Q_AND:
2922		b0 = gen_thostop(eaddr, Q_SRC);
2923		b1 = gen_thostop(eaddr, Q_DST);
2924		gen_and(b0, b1);
2925		return b1;
2926
2927	case Q_DEFAULT:
2928	case Q_OR:
2929		b0 = gen_thostop(eaddr, Q_SRC);
2930		b1 = gen_thostop(eaddr, Q_DST);
2931		gen_or(b0, b1);
2932		return b1;
2933	}
2934	abort();
2935	/* NOTREACHED */
2936}
2937
2938/*
2939 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2940 */
2941static struct block *
2942gen_wlanhostop(eaddr, dir)
2943	register const u_char *eaddr;
2944	register int dir;
2945{
2946	register struct block *b0, *b1, *b2;
2947	register struct slist *s;
2948
2949	switch (dir) {
2950	case Q_SRC:
2951		/*
2952		 * Oh, yuk.
2953		 *
2954		 *	For control frames, there is no SA.
2955		 *
2956		 *	For management frames, SA is at an
2957		 *	offset of 10 from the beginning of
2958		 *	the packet.
2959		 *
2960		 *	For data frames, SA is at an offset
2961		 *	of 10 from the beginning of the packet
2962		 *	if From DS is clear, at an offset of
2963		 *	16 from the beginning of the packet
2964		 *	if From DS is set and To DS is clear,
2965		 *	and an offset of 24 from the beginning
2966		 *	of the packet if From DS is set and To DS
2967		 *	is set.
2968		 */
2969
2970		/*
2971		 * Generate the tests to be done for data frames
2972		 * with From DS set.
2973		 *
2974		 * First, check for To DS set, i.e. check "link[1] & 0x01".
2975		 */
2976		s = gen_load_a(OR_LINK, 1, BPF_B);
2977		b1 = new_block(JMP(BPF_JSET));
2978		b1->s.k = 0x01;	/* To DS */
2979		b1->stmts = s;
2980
2981		/*
2982		 * If To DS is set, the SA is at 24.
2983		 */
2984		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
2985		gen_and(b1, b0);
2986
2987		/*
2988		 * Now, check for To DS not set, i.e. check
2989		 * "!(link[1] & 0x01)".
2990		 */
2991		s = gen_load_a(OR_LINK, 1, BPF_B);
2992		b2 = new_block(JMP(BPF_JSET));
2993		b2->s.k = 0x01;	/* To DS */
2994		b2->stmts = s;
2995		gen_not(b2);
2996
2997		/*
2998		 * If To DS is not set, the SA is at 16.
2999		 */
3000		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3001		gen_and(b2, b1);
3002
3003		/*
3004		 * Now OR together the last two checks.  That gives
3005		 * the complete set of checks for data frames with
3006		 * From DS set.
3007		 */
3008		gen_or(b1, b0);
3009
3010		/*
3011		 * Now check for From DS being set, and AND that with
3012		 * the ORed-together checks.
3013		 */
3014		s = gen_load_a(OR_LINK, 1, BPF_B);
3015		b1 = new_block(JMP(BPF_JSET));
3016		b1->s.k = 0x02;	/* From DS */
3017		b1->stmts = s;
3018		gen_and(b1, b0);
3019
3020		/*
3021		 * Now check for data frames with From DS not set.
3022		 */
3023		s = gen_load_a(OR_LINK, 1, BPF_B);
3024		b2 = new_block(JMP(BPF_JSET));
3025		b2->s.k = 0x02;	/* From DS */
3026		b2->stmts = s;
3027		gen_not(b2);
3028
3029		/*
3030		 * If From DS isn't set, the SA is at 10.
3031		 */
3032		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3033		gen_and(b2, b1);
3034
3035		/*
3036		 * Now OR together the checks for data frames with
3037		 * From DS not set and for data frames with From DS
3038		 * set; that gives the checks done for data frames.
3039		 */
3040		gen_or(b1, b0);
3041
3042		/*
3043		 * Now check for a data frame.
3044		 * I.e, check "link[0] & 0x08".
3045		 */
3046		gen_load_a(OR_LINK, 0, BPF_B);
3047		b1 = new_block(JMP(BPF_JSET));
3048		b1->s.k = 0x08;
3049		b1->stmts = s;
3050
3051		/*
3052		 * AND that with the checks done for data frames.
3053		 */
3054		gen_and(b1, b0);
3055
3056		/*
3057		 * If the high-order bit of the type value is 0, this
3058		 * is a management frame.
3059		 * I.e, check "!(link[0] & 0x08)".
3060		 */
3061		s = gen_load_a(OR_LINK, 0, BPF_B);
3062		b2 = new_block(JMP(BPF_JSET));
3063		b2->s.k = 0x08;
3064		b2->stmts = s;
3065		gen_not(b2);
3066
3067		/*
3068		 * For management frames, the SA is at 10.
3069		 */
3070		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3071		gen_and(b2, b1);
3072
3073		/*
3074		 * OR that with the checks done for data frames.
3075		 * That gives the checks done for management and
3076		 * data frames.
3077		 */
3078		gen_or(b1, b0);
3079
3080		/*
3081		 * If the low-order bit of the type value is 1,
3082		 * this is either a control frame or a frame
3083		 * with a reserved type, and thus not a
3084		 * frame with an SA.
3085		 *
3086		 * I.e., check "!(link[0] & 0x04)".
3087		 */
3088		s = gen_load_a(OR_LINK, 0, BPF_B);
3089		b1 = new_block(JMP(BPF_JSET));
3090		b1->s.k = 0x04;
3091		b1->stmts = s;
3092		gen_not(b1);
3093
3094		/*
3095		 * AND that with the checks for data and management
3096		 * frames.
3097		 */
3098		gen_and(b1, b0);
3099		return b0;
3100
3101	case Q_DST:
3102		/*
3103		 * Oh, yuk.
3104		 *
3105		 *	For control frames, there is no DA.
3106		 *
3107		 *	For management frames, DA is at an
3108		 *	offset of 4 from the beginning of
3109		 *	the packet.
3110		 *
3111		 *	For data frames, DA is at an offset
3112		 *	of 4 from the beginning of the packet
3113		 *	if To DS is clear and at an offset of
3114		 *	16 from the beginning of the packet
3115		 *	if To DS is set.
3116		 */
3117
3118		/*
3119		 * Generate the tests to be done for data frames.
3120		 *
3121		 * First, check for To DS set, i.e. "link[1] & 0x01".
3122		 */
3123		s = gen_load_a(OR_LINK, 1, BPF_B);
3124		b1 = new_block(JMP(BPF_JSET));
3125		b1->s.k = 0x01;	/* To DS */
3126		b1->stmts = s;
3127
3128		/*
3129		 * If To DS is set, the DA is at 16.
3130		 */
3131		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3132		gen_and(b1, b0);
3133
3134		/*
3135		 * Now, check for To DS not set, i.e. check
3136		 * "!(link[1] & 0x01)".
3137		 */
3138		s = gen_load_a(OR_LINK, 1, BPF_B);
3139		b2 = new_block(JMP(BPF_JSET));
3140		b2->s.k = 0x01;	/* To DS */
3141		b2->stmts = s;
3142		gen_not(b2);
3143
3144		/*
3145		 * If To DS is not set, the DA is at 4.
3146		 */
3147		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3148		gen_and(b2, b1);
3149
3150		/*
3151		 * Now OR together the last two checks.  That gives
3152		 * the complete set of checks for data frames.
3153		 */
3154		gen_or(b1, b0);
3155
3156		/*
3157		 * Now check for a data frame.
3158		 * I.e, check "link[0] & 0x08".
3159		 */
3160		s = gen_load_a(OR_LINK, 0, BPF_B);
3161		b1 = new_block(JMP(BPF_JSET));
3162		b1->s.k = 0x08;
3163		b1->stmts = s;
3164
3165		/*
3166		 * AND that with the checks done for data frames.
3167		 */
3168		gen_and(b1, b0);
3169
3170		/*
3171		 * If the high-order bit of the type value is 0, this
3172		 * is a management frame.
3173		 * I.e, check "!(link[0] & 0x08)".
3174		 */
3175		s = gen_load_a(OR_LINK, 0, BPF_B);
3176		b2 = new_block(JMP(BPF_JSET));
3177		b2->s.k = 0x08;
3178		b2->stmts = s;
3179		gen_not(b2);
3180
3181		/*
3182		 * For management frames, the DA is at 4.
3183		 */
3184		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
3185		gen_and(b2, b1);
3186
3187		/*
3188		 * OR that with the checks done for data frames.
3189		 * That gives the checks done for management and
3190		 * data frames.
3191		 */
3192		gen_or(b1, b0);
3193
3194		/*
3195		 * If the low-order bit of the type value is 1,
3196		 * this is either a control frame or a frame
3197		 * with a reserved type, and thus not a
3198		 * frame with an SA.
3199		 *
3200		 * I.e., check "!(link[0] & 0x04)".
3201		 */
3202		s = gen_load_a(OR_LINK, 0, BPF_B);
3203		b1 = new_block(JMP(BPF_JSET));
3204		b1->s.k = 0x04;
3205		b1->stmts = s;
3206		gen_not(b1);
3207
3208		/*
3209		 * AND that with the checks for data and management
3210		 * frames.
3211		 */
3212		gen_and(b1, b0);
3213		return b0;
3214
3215	case Q_AND:
3216		b0 = gen_wlanhostop(eaddr, Q_SRC);
3217		b1 = gen_wlanhostop(eaddr, Q_DST);
3218		gen_and(b0, b1);
3219		return b1;
3220
3221	case Q_DEFAULT:
3222	case Q_OR:
3223		b0 = gen_wlanhostop(eaddr, Q_SRC);
3224		b1 = gen_wlanhostop(eaddr, Q_DST);
3225		gen_or(b0, b1);
3226		return b1;
3227	}
3228	abort();
3229	/* NOTREACHED */
3230}
3231
3232/*
3233 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
3234 * (We assume that the addresses are IEEE 48-bit MAC addresses,
3235 * as the RFC states.)
3236 */
3237static struct block *
3238gen_ipfchostop(eaddr, dir)
3239	register const u_char *eaddr;
3240	register int dir;
3241{
3242	register struct block *b0, *b1;
3243
3244	switch (dir) {
3245	case Q_SRC:
3246		return gen_bcmp(OR_LINK, 10, 6, eaddr);
3247
3248	case Q_DST:
3249		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3250
3251	case Q_AND:
3252		b0 = gen_ipfchostop(eaddr, Q_SRC);
3253		b1 = gen_ipfchostop(eaddr, Q_DST);
3254		gen_and(b0, b1);
3255		return b1;
3256
3257	case Q_DEFAULT:
3258	case Q_OR:
3259		b0 = gen_ipfchostop(eaddr, Q_SRC);
3260		b1 = gen_ipfchostop(eaddr, Q_DST);
3261		gen_or(b0, b1);
3262		return b1;
3263	}
3264	abort();
3265	/* NOTREACHED */
3266}
3267
3268/*
3269 * This is quite tricky because there may be pad bytes in front of the
3270 * DECNET header, and then there are two possible data packet formats that
3271 * carry both src and dst addresses, plus 5 packet types in a format that
3272 * carries only the src node, plus 2 types that use a different format and
3273 * also carry just the src node.
3274 *
3275 * Yuck.
3276 *
3277 * Instead of doing those all right, we just look for data packets with
3278 * 0 or 1 bytes of padding.  If you want to look at other packets, that
3279 * will require a lot more hacking.
3280 *
3281 * To add support for filtering on DECNET "areas" (network numbers)
3282 * one would want to add a "mask" argument to this routine.  That would
3283 * make the filter even more inefficient, although one could be clever
3284 * and not generate masking instructions if the mask is 0xFFFF.
3285 */
3286static struct block *
3287gen_dnhostop(addr, dir)
3288	bpf_u_int32 addr;
3289	int dir;
3290{
3291	struct block *b0, *b1, *b2, *tmp;
3292	u_int offset_lh;	/* offset if long header is received */
3293	u_int offset_sh;	/* offset if short header is received */
3294
3295	switch (dir) {
3296
3297	case Q_DST:
3298		offset_sh = 1;	/* follows flags */
3299		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
3300		break;
3301
3302	case Q_SRC:
3303		offset_sh = 3;	/* follows flags, dstnode */
3304		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
3305		break;
3306
3307	case Q_AND:
3308		/* Inefficient because we do our Calvinball dance twice */
3309		b0 = gen_dnhostop(addr, Q_SRC);
3310		b1 = gen_dnhostop(addr, Q_DST);
3311		gen_and(b0, b1);
3312		return b1;
3313
3314	case Q_OR:
3315	case Q_DEFAULT:
3316		/* Inefficient because we do our Calvinball dance twice */
3317		b0 = gen_dnhostop(addr, Q_SRC);
3318		b1 = gen_dnhostop(addr, Q_DST);
3319		gen_or(b0, b1);
3320		return b1;
3321
3322	case Q_ISO:
3323		bpf_error("ISO host filtering not implemented");
3324
3325	default:
3326		abort();
3327	}
3328	b0 = gen_linktype(ETHERTYPE_DN);
3329	/* Check for pad = 1, long header case */
3330	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3331	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
3332	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
3333	    BPF_H, (bpf_int32)ntohs((u_short)addr));
3334	gen_and(tmp, b1);
3335	/* Check for pad = 0, long header case */
3336	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
3337	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
3338	gen_and(tmp, b2);
3339	gen_or(b2, b1);
3340	/* Check for pad = 1, short header case */
3341	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3342	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
3343	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
3344	gen_and(tmp, b2);
3345	gen_or(b2, b1);
3346	/* Check for pad = 0, short header case */
3347	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
3348	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
3349	gen_and(tmp, b2);
3350	gen_or(b2, b1);
3351
3352	/* Combine with test for linktype */
3353	gen_and(b0, b1);
3354	return b1;
3355}
3356
3357/*
3358 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
3359 * test the bottom-of-stack bit, and then check the version number
3360 * field in the IP header.
3361 */
3362static struct block *
3363gen_mpls_linktype(proto)
3364	int proto;
3365{
3366	struct block *b0, *b1;
3367
3368        switch (proto) {
3369
3370        case Q_IP:
3371                /* match the bottom-of-stack bit */
3372                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
3373                /* match the IPv4 version number */
3374                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
3375                gen_and(b0, b1);
3376                return b1;
3377
3378       case Q_IPV6:
3379                /* match the bottom-of-stack bit */
3380                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
3381                /* match the IPv4 version number */
3382                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
3383                gen_and(b0, b1);
3384                return b1;
3385
3386       default:
3387                abort();
3388        }
3389}
3390
3391static struct block *
3392gen_host(addr, mask, proto, dir, type)
3393	bpf_u_int32 addr;
3394	bpf_u_int32 mask;
3395	int proto;
3396	int dir;
3397	int type;
3398{
3399	struct block *b0, *b1;
3400	const char *typestr;
3401
3402	if (type == Q_NET)
3403		typestr = "net";
3404	else
3405		typestr = "host";
3406
3407	switch (proto) {
3408
3409	case Q_DEFAULT:
3410		b0 = gen_host(addr, mask, Q_IP, dir, type);
3411		/*
3412		 * Only check for non-IPv4 addresses if we're not
3413		 * checking MPLS-encapsulated packets.
3414		 */
3415		if (label_stack_depth == 0) {
3416			b1 = gen_host(addr, mask, Q_ARP, dir, type);
3417			gen_or(b0, b1);
3418			b0 = gen_host(addr, mask, Q_RARP, dir, type);
3419			gen_or(b1, b0);
3420		}
3421		return b0;
3422
3423	case Q_IP:
3424		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
3425
3426	case Q_RARP:
3427		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
3428
3429	case Q_ARP:
3430		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
3431
3432	case Q_TCP:
3433		bpf_error("'tcp' modifier applied to %s", typestr);
3434
3435	case Q_SCTP:
3436		bpf_error("'sctp' modifier applied to %s", typestr);
3437
3438	case Q_UDP:
3439		bpf_error("'udp' modifier applied to %s", typestr);
3440
3441	case Q_ICMP:
3442		bpf_error("'icmp' modifier applied to %s", typestr);
3443
3444	case Q_IGMP:
3445		bpf_error("'igmp' modifier applied to %s", typestr);
3446
3447	case Q_IGRP:
3448		bpf_error("'igrp' modifier applied to %s", typestr);
3449
3450	case Q_PIM:
3451		bpf_error("'pim' modifier applied to %s", typestr);
3452
3453	case Q_VRRP:
3454		bpf_error("'vrrp' modifier applied to %s", typestr);
3455
3456	case Q_ATALK:
3457		bpf_error("ATALK host filtering not implemented");
3458
3459	case Q_AARP:
3460		bpf_error("AARP host filtering not implemented");
3461
3462	case Q_DECNET:
3463		return gen_dnhostop(addr, dir);
3464
3465	case Q_SCA:
3466		bpf_error("SCA host filtering not implemented");
3467
3468	case Q_LAT:
3469		bpf_error("LAT host filtering not implemented");
3470
3471	case Q_MOPDL:
3472		bpf_error("MOPDL host filtering not implemented");
3473
3474	case Q_MOPRC:
3475		bpf_error("MOPRC host filtering not implemented");
3476
3477#ifdef INET6
3478	case Q_IPV6:
3479		bpf_error("'ip6' modifier applied to ip host");
3480
3481	case Q_ICMPV6:
3482		bpf_error("'icmp6' modifier applied to %s", typestr);
3483#endif /* INET6 */
3484
3485	case Q_AH:
3486		bpf_error("'ah' modifier applied to %s", typestr);
3487
3488	case Q_ESP:
3489		bpf_error("'esp' modifier applied to %s", typestr);
3490
3491	case Q_ISO:
3492		bpf_error("ISO host filtering not implemented");
3493
3494	case Q_ESIS:
3495		bpf_error("'esis' modifier applied to %s", typestr);
3496
3497	case Q_ISIS:
3498		bpf_error("'isis' modifier applied to %s", typestr);
3499
3500	case Q_CLNP:
3501		bpf_error("'clnp' modifier applied to %s", typestr);
3502
3503	case Q_STP:
3504		bpf_error("'stp' modifier applied to %s", typestr);
3505
3506	case Q_IPX:
3507		bpf_error("IPX host filtering not implemented");
3508
3509	case Q_NETBEUI:
3510		bpf_error("'netbeui' modifier applied to %s", typestr);
3511
3512	case Q_RADIO:
3513		bpf_error("'radio' modifier applied to %s", typestr);
3514
3515	default:
3516		abort();
3517	}
3518	/* NOTREACHED */
3519}
3520
3521#ifdef INET6
3522static struct block *
3523gen_host6(addr, mask, proto, dir, type)
3524	struct in6_addr *addr;
3525	struct in6_addr *mask;
3526	int proto;
3527	int dir;
3528	int type;
3529{
3530	const char *typestr;
3531
3532	if (type == Q_NET)
3533		typestr = "net";
3534	else
3535		typestr = "host";
3536
3537	switch (proto) {
3538
3539	case Q_DEFAULT:
3540		return gen_host6(addr, mask, Q_IPV6, dir, type);
3541
3542	case Q_IP:
3543		bpf_error("'ip' modifier applied to ip6 %s", typestr);
3544
3545	case Q_RARP:
3546		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
3547
3548	case Q_ARP:
3549		bpf_error("'arp' modifier applied to ip6 %s", typestr);
3550
3551	case Q_SCTP:
3552		bpf_error("'sctp' modifier applied to %s", typestr);
3553
3554	case Q_TCP:
3555		bpf_error("'tcp' modifier applied to %s", typestr);
3556
3557	case Q_UDP:
3558		bpf_error("'udp' modifier applied to %s", typestr);
3559
3560	case Q_ICMP:
3561		bpf_error("'icmp' modifier applied to %s", typestr);
3562
3563	case Q_IGMP:
3564		bpf_error("'igmp' modifier applied to %s", typestr);
3565
3566	case Q_IGRP:
3567		bpf_error("'igrp' modifier applied to %s", typestr);
3568
3569	case Q_PIM:
3570		bpf_error("'pim' modifier applied to %s", typestr);
3571
3572	case Q_VRRP:
3573		bpf_error("'vrrp' modifier applied to %s", typestr);
3574
3575	case Q_ATALK:
3576		bpf_error("ATALK host filtering not implemented");
3577
3578	case Q_AARP:
3579		bpf_error("AARP host filtering not implemented");
3580
3581	case Q_DECNET:
3582		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
3583
3584	case Q_SCA:
3585		bpf_error("SCA host filtering not implemented");
3586
3587	case Q_LAT:
3588		bpf_error("LAT host filtering not implemented");
3589
3590	case Q_MOPDL:
3591		bpf_error("MOPDL host filtering not implemented");
3592
3593	case Q_MOPRC:
3594		bpf_error("MOPRC host filtering not implemented");
3595
3596	case Q_IPV6:
3597		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
3598
3599	case Q_ICMPV6:
3600		bpf_error("'icmp6' modifier applied to %s", typestr);
3601
3602	case Q_AH:
3603		bpf_error("'ah' modifier applied to %s", typestr);
3604
3605	case Q_ESP:
3606		bpf_error("'esp' modifier applied to %s", typestr);
3607
3608	case Q_ISO:
3609		bpf_error("ISO host filtering not implemented");
3610
3611	case Q_ESIS:
3612		bpf_error("'esis' modifier applied to %s", typestr);
3613
3614	case Q_ISIS:
3615		bpf_error("'isis' modifier applied to %s", typestr);
3616
3617	case Q_CLNP:
3618		bpf_error("'clnp' modifier applied to %s", typestr);
3619
3620	case Q_STP:
3621		bpf_error("'stp' modifier applied to %s", typestr);
3622
3623	case Q_IPX:
3624		bpf_error("IPX host filtering not implemented");
3625
3626	case Q_NETBEUI:
3627		bpf_error("'netbeui' modifier applied to %s", typestr);
3628
3629	case Q_RADIO:
3630		bpf_error("'radio' modifier applied to %s", typestr);
3631
3632	default:
3633		abort();
3634	}
3635	/* NOTREACHED */
3636}
3637#endif /*INET6*/
3638
3639#ifndef INET6
3640static struct block *
3641gen_gateway(eaddr, alist, proto, dir)
3642	const u_char *eaddr;
3643	bpf_u_int32 **alist;
3644	int proto;
3645	int dir;
3646{
3647	struct block *b0, *b1, *tmp;
3648
3649	if (dir != 0)
3650		bpf_error("direction applied to 'gateway'");
3651
3652	switch (proto) {
3653	case Q_DEFAULT:
3654	case Q_IP:
3655	case Q_ARP:
3656	case Q_RARP:
3657                switch (linktype) {
3658                case DLT_EN10MB:
3659                    b0 = gen_ehostop(eaddr, Q_OR);
3660                    break;
3661                case DLT_FDDI:
3662                    b0 = gen_fhostop(eaddr, Q_OR);
3663                    break;
3664		case DLT_IEEE802:
3665                    b0 = gen_thostop(eaddr, Q_OR);
3666                    break;
3667		case DLT_IEEE802_11:
3668		case DLT_IEEE802_11_RADIO_AVS:
3669		case DLT_PPI:
3670		case DLT_IEEE802_11_RADIO:
3671		case DLT_PRISM_HEADER:
3672                    b0 = gen_wlanhostop(eaddr, Q_OR);
3673                    break;
3674                case DLT_SUNATM:
3675                    if (is_lane) {
3676			/*
3677			 * Check that the packet doesn't begin with an
3678			 * LE Control marker.  (We've already generated
3679			 * a test for LANE.)
3680			 */
3681			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3682			    0xFF00);
3683			gen_not(b1);
3684
3685			/*
3686			 * Now check the MAC address.
3687			 */
3688			b0 = gen_ehostop(eaddr, Q_OR);
3689			gen_and(b1, b0);
3690                    }
3691                    break;
3692		case DLT_IP_OVER_FC:
3693                    b0 = gen_ipfchostop(eaddr, Q_OR);
3694                    break;
3695                default:
3696                    bpf_error(
3697			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
3698                }
3699		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
3700		while (*alist) {
3701			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
3702			    Q_HOST);
3703			gen_or(b1, tmp);
3704			b1 = tmp;
3705		}
3706		gen_not(b1);
3707		gen_and(b0, b1);
3708		return b1;
3709	}
3710	bpf_error("illegal modifier of 'gateway'");
3711	/* NOTREACHED */
3712}
3713#endif
3714
3715struct block *
3716gen_proto_abbrev(proto)
3717	int proto;
3718{
3719	struct block *b0;
3720	struct block *b1;
3721
3722	switch (proto) {
3723
3724	case Q_SCTP:
3725		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
3726#ifdef INET6
3727		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
3728		gen_or(b0, b1);
3729#endif
3730		break;
3731
3732	case Q_TCP:
3733		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
3734#ifdef INET6
3735		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
3736		gen_or(b0, b1);
3737#endif
3738		break;
3739
3740	case Q_UDP:
3741		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
3742#ifdef INET6
3743		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
3744		gen_or(b0, b1);
3745#endif
3746		break;
3747
3748	case Q_ICMP:
3749		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
3750		break;
3751
3752#ifndef	IPPROTO_IGMP
3753#define	IPPROTO_IGMP	2
3754#endif
3755
3756	case Q_IGMP:
3757		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
3758		break;
3759
3760#ifndef	IPPROTO_IGRP
3761#define	IPPROTO_IGRP	9
3762#endif
3763	case Q_IGRP:
3764		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
3765		break;
3766
3767#ifndef IPPROTO_PIM
3768#define IPPROTO_PIM	103
3769#endif
3770
3771	case Q_PIM:
3772		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
3773#ifdef INET6
3774		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
3775		gen_or(b0, b1);
3776#endif
3777		break;
3778
3779#ifndef IPPROTO_VRRP
3780#define IPPROTO_VRRP	112
3781#endif
3782
3783	case Q_VRRP:
3784		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
3785		break;
3786
3787	case Q_IP:
3788		b1 =  gen_linktype(ETHERTYPE_IP);
3789		break;
3790
3791	case Q_ARP:
3792		b1 =  gen_linktype(ETHERTYPE_ARP);
3793		break;
3794
3795	case Q_RARP:
3796		b1 =  gen_linktype(ETHERTYPE_REVARP);
3797		break;
3798
3799	case Q_LINK:
3800		bpf_error("link layer applied in wrong context");
3801
3802	case Q_ATALK:
3803		b1 =  gen_linktype(ETHERTYPE_ATALK);
3804		break;
3805
3806	case Q_AARP:
3807		b1 =  gen_linktype(ETHERTYPE_AARP);
3808		break;
3809
3810	case Q_DECNET:
3811		b1 =  gen_linktype(ETHERTYPE_DN);
3812		break;
3813
3814	case Q_SCA:
3815		b1 =  gen_linktype(ETHERTYPE_SCA);
3816		break;
3817
3818	case Q_LAT:
3819		b1 =  gen_linktype(ETHERTYPE_LAT);
3820		break;
3821
3822	case Q_MOPDL:
3823		b1 =  gen_linktype(ETHERTYPE_MOPDL);
3824		break;
3825
3826	case Q_MOPRC:
3827		b1 =  gen_linktype(ETHERTYPE_MOPRC);
3828		break;
3829
3830#ifdef INET6
3831	case Q_IPV6:
3832		b1 = gen_linktype(ETHERTYPE_IPV6);
3833		break;
3834
3835#ifndef IPPROTO_ICMPV6
3836#define IPPROTO_ICMPV6	58
3837#endif
3838	case Q_ICMPV6:
3839		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
3840		break;
3841#endif /* INET6 */
3842
3843#ifndef IPPROTO_AH
3844#define IPPROTO_AH	51
3845#endif
3846	case Q_AH:
3847		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
3848#ifdef INET6
3849		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
3850		gen_or(b0, b1);
3851#endif
3852		break;
3853
3854#ifndef IPPROTO_ESP
3855#define IPPROTO_ESP	50
3856#endif
3857	case Q_ESP:
3858		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
3859#ifdef INET6
3860		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
3861		gen_or(b0, b1);
3862#endif
3863		break;
3864
3865	case Q_ISO:
3866		b1 = gen_linktype(LLCSAP_ISONS);
3867		break;
3868
3869	case Q_ESIS:
3870		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
3871		break;
3872
3873	case Q_ISIS:
3874		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
3875		break;
3876
3877	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
3878		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3879		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3880		gen_or(b0, b1);
3881		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3882		gen_or(b0, b1);
3883		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3884		gen_or(b0, b1);
3885		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3886		gen_or(b0, b1);
3887		break;
3888
3889	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
3890		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3891		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3892		gen_or(b0, b1);
3893		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3894		gen_or(b0, b1);
3895		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3896		gen_or(b0, b1);
3897		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3898		gen_or(b0, b1);
3899		break;
3900
3901	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
3902		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3903		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3904		gen_or(b0, b1);
3905		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
3906		gen_or(b0, b1);
3907		break;
3908
3909	case Q_ISIS_LSP:
3910		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3911		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3912		gen_or(b0, b1);
3913		break;
3914
3915	case Q_ISIS_SNP:
3916		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3917		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3918		gen_or(b0, b1);
3919		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3920		gen_or(b0, b1);
3921		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3922		gen_or(b0, b1);
3923		break;
3924
3925	case Q_ISIS_CSNP:
3926		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3927		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3928		gen_or(b0, b1);
3929		break;
3930
3931	case Q_ISIS_PSNP:
3932		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3933		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3934		gen_or(b0, b1);
3935		break;
3936
3937	case Q_CLNP:
3938		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
3939		break;
3940
3941	case Q_STP:
3942		b1 = gen_linktype(LLCSAP_8021D);
3943		break;
3944
3945	case Q_IPX:
3946		b1 = gen_linktype(LLCSAP_IPX);
3947		break;
3948
3949	case Q_NETBEUI:
3950		b1 = gen_linktype(LLCSAP_NETBEUI);
3951		break;
3952
3953	case Q_RADIO:
3954		bpf_error("'radio' is not a valid protocol type");
3955
3956	default:
3957		abort();
3958	}
3959	return b1;
3960}
3961
3962static struct block *
3963gen_ipfrag()
3964{
3965	struct slist *s;
3966	struct block *b;
3967
3968	/* not ip frag */
3969	s = gen_load_a(OR_NET, 6, BPF_H);
3970	b = new_block(JMP(BPF_JSET));
3971	b->s.k = 0x1fff;
3972	b->stmts = s;
3973	gen_not(b);
3974
3975	return b;
3976}
3977
3978/*
3979 * Generate a comparison to a port value in the transport-layer header
3980 * at the specified offset from the beginning of that header.
3981 *
3982 * XXX - this handles a variable-length prefix preceding the link-layer
3983 * header, such as the radiotap or AVS radio prefix, but doesn't handle
3984 * variable-length link-layer headers (such as Token Ring or 802.11
3985 * headers).
3986 */
3987static struct block *
3988gen_portatom(off, v)
3989	int off;
3990	bpf_int32 v;
3991{
3992	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
3993}
3994
3995#ifdef INET6
3996static struct block *
3997gen_portatom6(off, v)
3998	int off;
3999	bpf_int32 v;
4000{
4001	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
4002}
4003#endif/*INET6*/
4004
4005struct block *
4006gen_portop(port, proto, dir)
4007	int port, proto, dir;
4008{
4009	struct block *b0, *b1, *tmp;
4010
4011	/* ip proto 'proto' */
4012	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4013	b0 = gen_ipfrag();
4014	gen_and(tmp, b0);
4015
4016	switch (dir) {
4017	case Q_SRC:
4018		b1 = gen_portatom(0, (bpf_int32)port);
4019		break;
4020
4021	case Q_DST:
4022		b1 = gen_portatom(2, (bpf_int32)port);
4023		break;
4024
4025	case Q_OR:
4026	case Q_DEFAULT:
4027		tmp = gen_portatom(0, (bpf_int32)port);
4028		b1 = gen_portatom(2, (bpf_int32)port);
4029		gen_or(tmp, b1);
4030		break;
4031
4032	case Q_AND:
4033		tmp = gen_portatom(0, (bpf_int32)port);
4034		b1 = gen_portatom(2, (bpf_int32)port);
4035		gen_and(tmp, b1);
4036		break;
4037
4038	default:
4039		abort();
4040	}
4041	gen_and(b0, b1);
4042
4043	return b1;
4044}
4045
4046static struct block *
4047gen_port(port, ip_proto, dir)
4048	int port;
4049	int ip_proto;
4050	int dir;
4051{
4052	struct block *b0, *b1, *tmp;
4053
4054	/*
4055	 * ether proto ip
4056	 *
4057	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4058	 * not LLC encapsulation with LLCSAP_IP.
4059	 *
4060	 * For IEEE 802 networks - which includes 802.5 token ring
4061	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4062	 * says that SNAP encapsulation is used, not LLC encapsulation
4063	 * with LLCSAP_IP.
4064	 *
4065	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4066	 * RFC 2225 say that SNAP encapsulation is used, not LLC
4067	 * encapsulation with LLCSAP_IP.
4068	 *
4069	 * So we always check for ETHERTYPE_IP.
4070	 */
4071	b0 =  gen_linktype(ETHERTYPE_IP);
4072
4073	switch (ip_proto) {
4074	case IPPROTO_UDP:
4075	case IPPROTO_TCP:
4076	case IPPROTO_SCTP:
4077		b1 = gen_portop(port, ip_proto, dir);
4078		break;
4079
4080	case PROTO_UNDEF:
4081		tmp = gen_portop(port, IPPROTO_TCP, dir);
4082		b1 = gen_portop(port, IPPROTO_UDP, dir);
4083		gen_or(tmp, b1);
4084		tmp = gen_portop(port, IPPROTO_SCTP, dir);
4085		gen_or(tmp, b1);
4086		break;
4087
4088	default:
4089		abort();
4090	}
4091	gen_and(b0, b1);
4092	return b1;
4093}
4094
4095#ifdef INET6
4096struct block *
4097gen_portop6(port, proto, dir)
4098	int port, proto, dir;
4099{
4100	struct block *b0, *b1, *tmp;
4101
4102	/* ip6 proto 'proto' */
4103	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4104
4105	switch (dir) {
4106	case Q_SRC:
4107		b1 = gen_portatom6(0, (bpf_int32)port);
4108		break;
4109
4110	case Q_DST:
4111		b1 = gen_portatom6(2, (bpf_int32)port);
4112		break;
4113
4114	case Q_OR:
4115	case Q_DEFAULT:
4116		tmp = gen_portatom6(0, (bpf_int32)port);
4117		b1 = gen_portatom6(2, (bpf_int32)port);
4118		gen_or(tmp, b1);
4119		break;
4120
4121	case Q_AND:
4122		tmp = gen_portatom6(0, (bpf_int32)port);
4123		b1 = gen_portatom6(2, (bpf_int32)port);
4124		gen_and(tmp, b1);
4125		break;
4126
4127	default:
4128		abort();
4129	}
4130	gen_and(b0, b1);
4131
4132	return b1;
4133}
4134
4135static struct block *
4136gen_port6(port, ip_proto, dir)
4137	int port;
4138	int ip_proto;
4139	int dir;
4140{
4141	struct block *b0, *b1, *tmp;
4142
4143	/* link proto ip6 */
4144	b0 =  gen_linktype(ETHERTYPE_IPV6);
4145
4146	switch (ip_proto) {
4147	case IPPROTO_UDP:
4148	case IPPROTO_TCP:
4149	case IPPROTO_SCTP:
4150		b1 = gen_portop6(port, ip_proto, dir);
4151		break;
4152
4153	case PROTO_UNDEF:
4154		tmp = gen_portop6(port, IPPROTO_TCP, dir);
4155		b1 = gen_portop6(port, IPPROTO_UDP, dir);
4156		gen_or(tmp, b1);
4157		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
4158		gen_or(tmp, b1);
4159		break;
4160
4161	default:
4162		abort();
4163	}
4164	gen_and(b0, b1);
4165	return b1;
4166}
4167#endif /* INET6 */
4168
4169/* gen_portrange code */
4170static struct block *
4171gen_portrangeatom(off, v1, v2)
4172	int off;
4173	bpf_int32 v1, v2;
4174{
4175	struct block *b1, *b2;
4176
4177	if (v1 > v2) {
4178		/*
4179		 * Reverse the order of the ports, so v1 is the lower one.
4180		 */
4181		bpf_int32 vtemp;
4182
4183		vtemp = v1;
4184		v1 = v2;
4185		v2 = vtemp;
4186	}
4187
4188	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
4189	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
4190
4191	gen_and(b1, b2);
4192
4193	return b2;
4194}
4195
4196struct block *
4197gen_portrangeop(port1, port2, proto, dir)
4198	int port1, port2;
4199	int proto;
4200	int dir;
4201{
4202	struct block *b0, *b1, *tmp;
4203
4204	/* ip proto 'proto' */
4205	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
4206	b0 = gen_ipfrag();
4207	gen_and(tmp, b0);
4208
4209	switch (dir) {
4210	case Q_SRC:
4211		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
4212		break;
4213
4214	case Q_DST:
4215		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
4216		break;
4217
4218	case Q_OR:
4219	case Q_DEFAULT:
4220		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
4221		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
4222		gen_or(tmp, b1);
4223		break;
4224
4225	case Q_AND:
4226		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
4227		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
4228		gen_and(tmp, b1);
4229		break;
4230
4231	default:
4232		abort();
4233	}
4234	gen_and(b0, b1);
4235
4236	return b1;
4237}
4238
4239static struct block *
4240gen_portrange(port1, port2, ip_proto, dir)
4241	int port1, port2;
4242	int ip_proto;
4243	int dir;
4244{
4245	struct block *b0, *b1, *tmp;
4246
4247	/* link proto ip */
4248	b0 =  gen_linktype(ETHERTYPE_IP);
4249
4250	switch (ip_proto) {
4251	case IPPROTO_UDP:
4252	case IPPROTO_TCP:
4253	case IPPROTO_SCTP:
4254		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
4255		break;
4256
4257	case PROTO_UNDEF:
4258		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
4259		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
4260		gen_or(tmp, b1);
4261		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
4262		gen_or(tmp, b1);
4263		break;
4264
4265	default:
4266		abort();
4267	}
4268	gen_and(b0, b1);
4269	return b1;
4270}
4271
4272#ifdef INET6
4273static struct block *
4274gen_portrangeatom6(off, v1, v2)
4275	int off;
4276	bpf_int32 v1, v2;
4277{
4278	struct block *b1, *b2;
4279
4280	if (v1 > v2) {
4281		/*
4282		 * Reverse the order of the ports, so v1 is the lower one.
4283		 */
4284		bpf_int32 vtemp;
4285
4286		vtemp = v1;
4287		v1 = v2;
4288		v2 = vtemp;
4289	}
4290
4291	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
4292	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
4293
4294	gen_and(b1, b2);
4295
4296	return b2;
4297}
4298
4299struct block *
4300gen_portrangeop6(port1, port2, proto, dir)
4301	int port1, port2;
4302	int proto;
4303	int dir;
4304{
4305	struct block *b0, *b1, *tmp;
4306
4307	/* ip6 proto 'proto' */
4308	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
4309
4310	switch (dir) {
4311	case Q_SRC:
4312		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
4313		break;
4314
4315	case Q_DST:
4316		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
4317		break;
4318
4319	case Q_OR:
4320	case Q_DEFAULT:
4321		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
4322		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
4323		gen_or(tmp, b1);
4324		break;
4325
4326	case Q_AND:
4327		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
4328		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
4329		gen_and(tmp, b1);
4330		break;
4331
4332	default:
4333		abort();
4334	}
4335	gen_and(b0, b1);
4336
4337	return b1;
4338}
4339
4340static struct block *
4341gen_portrange6(port1, port2, ip_proto, dir)
4342	int port1, port2;
4343	int ip_proto;
4344	int dir;
4345{
4346	struct block *b0, *b1, *tmp;
4347
4348	/* link proto ip6 */
4349	b0 =  gen_linktype(ETHERTYPE_IPV6);
4350
4351	switch (ip_proto) {
4352	case IPPROTO_UDP:
4353	case IPPROTO_TCP:
4354	case IPPROTO_SCTP:
4355		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
4356		break;
4357
4358	case PROTO_UNDEF:
4359		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
4360		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
4361		gen_or(tmp, b1);
4362		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
4363		gen_or(tmp, b1);
4364		break;
4365
4366	default:
4367		abort();
4368	}
4369	gen_and(b0, b1);
4370	return b1;
4371}
4372#endif /* INET6 */
4373
4374static int
4375lookup_proto(name, proto)
4376	register const char *name;
4377	register int proto;
4378{
4379	register int v;
4380
4381	switch (proto) {
4382
4383	case Q_DEFAULT:
4384	case Q_IP:
4385	case Q_IPV6:
4386		v = pcap_nametoproto(name);
4387		if (v == PROTO_UNDEF)
4388			bpf_error("unknown ip proto '%s'", name);
4389		break;
4390
4391	case Q_LINK:
4392		/* XXX should look up h/w protocol type based on linktype */
4393		v = pcap_nametoeproto(name);
4394		if (v == PROTO_UNDEF) {
4395			v = pcap_nametollc(name);
4396			if (v == PROTO_UNDEF)
4397				bpf_error("unknown ether proto '%s'", name);
4398		}
4399		break;
4400
4401	case Q_ISO:
4402		if (strcmp(name, "esis") == 0)
4403			v = ISO9542_ESIS;
4404		else if (strcmp(name, "isis") == 0)
4405			v = ISO10589_ISIS;
4406		else if (strcmp(name, "clnp") == 0)
4407			v = ISO8473_CLNP;
4408		else
4409			bpf_error("unknown osi proto '%s'", name);
4410		break;
4411
4412	default:
4413		v = PROTO_UNDEF;
4414		break;
4415	}
4416	return v;
4417}
4418
4419#if 0
4420struct stmt *
4421gen_joinsp(s, n)
4422	struct stmt **s;
4423	int n;
4424{
4425	return NULL;
4426}
4427#endif
4428
4429static struct block *
4430gen_protochain(v, proto, dir)
4431	int v;
4432	int proto;
4433	int dir;
4434{
4435#ifdef NO_PROTOCHAIN
4436	return gen_proto(v, proto, dir);
4437#else
4438	struct block *b0, *b;
4439	struct slist *s[100];
4440	int fix2, fix3, fix4, fix5;
4441	int ahcheck, again, end;
4442	int i, max;
4443	int reg2 = alloc_reg();
4444
4445	memset(s, 0, sizeof(s));
4446	fix2 = fix3 = fix4 = fix5 = 0;
4447
4448	switch (proto) {
4449	case Q_IP:
4450	case Q_IPV6:
4451		break;
4452	case Q_DEFAULT:
4453		b0 = gen_protochain(v, Q_IP, dir);
4454		b = gen_protochain(v, Q_IPV6, dir);
4455		gen_or(b0, b);
4456		return b;
4457	default:
4458		bpf_error("bad protocol applied for 'protochain'");
4459		/*NOTREACHED*/
4460	}
4461
4462	/*
4463	 * We don't handle variable-length radiotap here headers yet.
4464	 * We might want to add BPF instructions to do the protochain
4465	 * work, to simplify that and, on platforms that have a BPF
4466	 * interpreter with the new instructions, let the filtering
4467	 * be done in the kernel.  (We already require a modified BPF
4468	 * engine to do the protochain stuff, to support backward
4469	 * branches, and backward branch support is unlikely to appear
4470	 * in kernel BPF engines.)
4471	 */
4472	if (linktype == DLT_IEEE802_11_RADIO)
4473		bpf_error("'protochain' not supported with radiotap headers");
4474
4475	if (linktype == DLT_PPI)
4476		bpf_error("'protochain' not supported with PPI headers");
4477
4478	no_optimize = 1; /*this code is not compatible with optimzer yet */
4479
4480	/*
4481	 * s[0] is a dummy entry to protect other BPF insn from damage
4482	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
4483	 * hard to find interdependency made by jump table fixup.
4484	 */
4485	i = 0;
4486	s[i] = new_stmt(0);	/*dummy*/
4487	i++;
4488
4489	switch (proto) {
4490	case Q_IP:
4491		b0 = gen_linktype(ETHERTYPE_IP);
4492
4493		/* A = ip->ip_p */
4494		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4495		s[i]->s.k = off_ll + off_nl + 9;
4496		i++;
4497		/* X = ip->ip_hl << 2 */
4498		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
4499		s[i]->s.k = off_ll + off_nl;
4500		i++;
4501		break;
4502#ifdef INET6
4503	case Q_IPV6:
4504		b0 = gen_linktype(ETHERTYPE_IPV6);
4505
4506		/* A = ip6->ip_nxt */
4507		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4508		s[i]->s.k = off_ll + off_nl + 6;
4509		i++;
4510		/* X = sizeof(struct ip6_hdr) */
4511		s[i] = new_stmt(BPF_LDX|BPF_IMM);
4512		s[i]->s.k = 40;
4513		i++;
4514		break;
4515#endif
4516	default:
4517		bpf_error("unsupported proto to gen_protochain");
4518		/*NOTREACHED*/
4519	}
4520
4521	/* again: if (A == v) goto end; else fall through; */
4522	again = i;
4523	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4524	s[i]->s.k = v;
4525	s[i]->s.jt = NULL;		/*later*/
4526	s[i]->s.jf = NULL;		/*update in next stmt*/
4527	fix5 = i;
4528	i++;
4529
4530#ifndef IPPROTO_NONE
4531#define IPPROTO_NONE	59
4532#endif
4533	/* if (A == IPPROTO_NONE) goto end */
4534	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4535	s[i]->s.jt = NULL;	/*later*/
4536	s[i]->s.jf = NULL;	/*update in next stmt*/
4537	s[i]->s.k = IPPROTO_NONE;
4538	s[fix5]->s.jf = s[i];
4539	fix2 = i;
4540	i++;
4541
4542#ifdef INET6
4543	if (proto == Q_IPV6) {
4544		int v6start, v6end, v6advance, j;
4545
4546		v6start = i;
4547		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
4548		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4549		s[i]->s.jt = NULL;	/*later*/
4550		s[i]->s.jf = NULL;	/*update in next stmt*/
4551		s[i]->s.k = IPPROTO_HOPOPTS;
4552		s[fix2]->s.jf = s[i];
4553		i++;
4554		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
4555		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4556		s[i]->s.jt = NULL;	/*later*/
4557		s[i]->s.jf = NULL;	/*update in next stmt*/
4558		s[i]->s.k = IPPROTO_DSTOPTS;
4559		i++;
4560		/* if (A == IPPROTO_ROUTING) goto v6advance */
4561		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4562		s[i]->s.jt = NULL;	/*later*/
4563		s[i]->s.jf = NULL;	/*update in next stmt*/
4564		s[i]->s.k = IPPROTO_ROUTING;
4565		i++;
4566		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
4567		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4568		s[i]->s.jt = NULL;	/*later*/
4569		s[i]->s.jf = NULL;	/*later*/
4570		s[i]->s.k = IPPROTO_FRAGMENT;
4571		fix3 = i;
4572		v6end = i;
4573		i++;
4574
4575		/* v6advance: */
4576		v6advance = i;
4577
4578		/*
4579		 * in short,
4580		 * A = P[X];
4581		 * X = X + (P[X + 1] + 1) * 8;
4582		 */
4583		/* A = X */
4584		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4585		i++;
4586		/* A = P[X + packet head] */
4587		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4588		s[i]->s.k = off_ll + off_nl;
4589		i++;
4590		/* MEM[reg2] = A */
4591		s[i] = new_stmt(BPF_ST);
4592		s[i]->s.k = reg2;
4593		i++;
4594		/* A = X */
4595		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4596		i++;
4597		/* A += 1 */
4598		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4599		s[i]->s.k = 1;
4600		i++;
4601		/* X = A */
4602		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4603		i++;
4604		/* A = P[X + packet head]; */
4605		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4606		s[i]->s.k = off_ll + off_nl;
4607		i++;
4608		/* A += 1 */
4609		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4610		s[i]->s.k = 1;
4611		i++;
4612		/* A *= 8 */
4613		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4614		s[i]->s.k = 8;
4615		i++;
4616		/* X = A; */
4617		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4618		i++;
4619		/* A = MEM[reg2] */
4620		s[i] = new_stmt(BPF_LD|BPF_MEM);
4621		s[i]->s.k = reg2;
4622		i++;
4623
4624		/* goto again; (must use BPF_JA for backward jump) */
4625		s[i] = new_stmt(BPF_JMP|BPF_JA);
4626		s[i]->s.k = again - i - 1;
4627		s[i - 1]->s.jf = s[i];
4628		i++;
4629
4630		/* fixup */
4631		for (j = v6start; j <= v6end; j++)
4632			s[j]->s.jt = s[v6advance];
4633	} else
4634#endif
4635	{
4636		/* nop */
4637		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4638		s[i]->s.k = 0;
4639		s[fix2]->s.jf = s[i];
4640		i++;
4641	}
4642
4643	/* ahcheck: */
4644	ahcheck = i;
4645	/* if (A == IPPROTO_AH) then fall through; else goto end; */
4646	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4647	s[i]->s.jt = NULL;	/*later*/
4648	s[i]->s.jf = NULL;	/*later*/
4649	s[i]->s.k = IPPROTO_AH;
4650	if (fix3)
4651		s[fix3]->s.jf = s[ahcheck];
4652	fix4 = i;
4653	i++;
4654
4655	/*
4656	 * in short,
4657	 * A = P[X];
4658	 * X = X + (P[X + 1] + 2) * 4;
4659	 */
4660	/* A = X */
4661	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4662	i++;
4663	/* A = P[X + packet head]; */
4664	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4665	s[i]->s.k = off_ll + off_nl;
4666	i++;
4667	/* MEM[reg2] = A */
4668	s[i] = new_stmt(BPF_ST);
4669	s[i]->s.k = reg2;
4670	i++;
4671	/* A = X */
4672	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4673	i++;
4674	/* A += 1 */
4675	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4676	s[i]->s.k = 1;
4677	i++;
4678	/* X = A */
4679	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4680	i++;
4681	/* A = P[X + packet head] */
4682	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4683	s[i]->s.k = off_ll + off_nl;
4684	i++;
4685	/* A += 2 */
4686	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4687	s[i]->s.k = 2;
4688	i++;
4689	/* A *= 4 */
4690	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4691	s[i]->s.k = 4;
4692	i++;
4693	/* X = A; */
4694	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4695	i++;
4696	/* A = MEM[reg2] */
4697	s[i] = new_stmt(BPF_LD|BPF_MEM);
4698	s[i]->s.k = reg2;
4699	i++;
4700
4701	/* goto again; (must use BPF_JA for backward jump) */
4702	s[i] = new_stmt(BPF_JMP|BPF_JA);
4703	s[i]->s.k = again - i - 1;
4704	i++;
4705
4706	/* end: nop */
4707	end = i;
4708	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4709	s[i]->s.k = 0;
4710	s[fix2]->s.jt = s[end];
4711	s[fix4]->s.jf = s[end];
4712	s[fix5]->s.jt = s[end];
4713	i++;
4714
4715	/*
4716	 * make slist chain
4717	 */
4718	max = i;
4719	for (i = 0; i < max - 1; i++)
4720		s[i]->next = s[i + 1];
4721	s[max - 1]->next = NULL;
4722
4723	/*
4724	 * emit final check
4725	 */
4726	b = new_block(JMP(BPF_JEQ));
4727	b->stmts = s[1];	/*remember, s[0] is dummy*/
4728	b->s.k = v;
4729
4730	free_reg(reg2);
4731
4732	gen_and(b0, b);
4733	return b;
4734#endif
4735}
4736
4737
4738/*
4739 * Generate code that checks whether the packet is a packet for protocol
4740 * <proto> and whether the type field in that protocol's header has
4741 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
4742 * IP packet and checks the protocol number in the IP header against <v>.
4743 *
4744 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
4745 * against Q_IP and Q_IPV6.
4746 */
4747static struct block *
4748gen_proto(v, proto, dir)
4749	int v;
4750	int proto;
4751	int dir;
4752{
4753	struct block *b0, *b1;
4754
4755	if (dir != Q_DEFAULT)
4756		bpf_error("direction applied to 'proto'");
4757
4758	switch (proto) {
4759	case Q_DEFAULT:
4760#ifdef INET6
4761		b0 = gen_proto(v, Q_IP, dir);
4762		b1 = gen_proto(v, Q_IPV6, dir);
4763		gen_or(b0, b1);
4764		return b1;
4765#else
4766		/*FALLTHROUGH*/
4767#endif
4768	case Q_IP:
4769		/*
4770		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4771		 * not LLC encapsulation with LLCSAP_IP.
4772		 *
4773		 * For IEEE 802 networks - which includes 802.5 token ring
4774		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4775		 * says that SNAP encapsulation is used, not LLC encapsulation
4776		 * with LLCSAP_IP.
4777		 *
4778		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4779		 * RFC 2225 say that SNAP encapsulation is used, not LLC
4780		 * encapsulation with LLCSAP_IP.
4781		 *
4782		 * So we always check for ETHERTYPE_IP.
4783		 */
4784		b0 = gen_linktype(ETHERTYPE_IP);
4785#ifndef CHASE_CHAIN
4786		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
4787#else
4788		b1 = gen_protochain(v, Q_IP);
4789#endif
4790		gen_and(b0, b1);
4791		return b1;
4792
4793	case Q_ISO:
4794		switch (linktype) {
4795
4796		case DLT_FRELAY:
4797			/*
4798			 * Frame Relay packets typically have an OSI
4799			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
4800			 * generates code to check for all the OSI
4801			 * NLPIDs, so calling it and then adding a check
4802			 * for the particular NLPID for which we're
4803			 * looking is bogus, as we can just check for
4804			 * the NLPID.
4805			 *
4806			 * What we check for is the NLPID and a frame
4807			 * control field value of UI, i.e. 0x03 followed
4808			 * by the NLPID.
4809			 *
4810			 * XXX - assumes a 2-byte Frame Relay header with
4811			 * DLCI and flags.  What if the address is longer?
4812			 *
4813			 * XXX - what about SNAP-encapsulated frames?
4814			 */
4815			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
4816			/*NOTREACHED*/
4817			break;
4818
4819		case DLT_C_HDLC:
4820			/*
4821			 * Cisco uses an Ethertype lookalike - for OSI,
4822			 * it's 0xfefe.
4823			 */
4824			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
4825			/* OSI in C-HDLC is stuffed with a fudge byte */
4826			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
4827			gen_and(b0, b1);
4828			return b1;
4829
4830		default:
4831			b0 = gen_linktype(LLCSAP_ISONS);
4832			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
4833			gen_and(b0, b1);
4834			return b1;
4835		}
4836
4837	case Q_ISIS:
4838		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4839		/*
4840		 * 4 is the offset of the PDU type relative to the IS-IS
4841		 * header.
4842		 */
4843		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
4844		gen_and(b0, b1);
4845		return b1;
4846
4847	case Q_ARP:
4848		bpf_error("arp does not encapsulate another protocol");
4849		/* NOTREACHED */
4850
4851	case Q_RARP:
4852		bpf_error("rarp does not encapsulate another protocol");
4853		/* NOTREACHED */
4854
4855	case Q_ATALK:
4856		bpf_error("atalk encapsulation is not specifiable");
4857		/* NOTREACHED */
4858
4859	case Q_DECNET:
4860		bpf_error("decnet encapsulation is not specifiable");
4861		/* NOTREACHED */
4862
4863	case Q_SCA:
4864		bpf_error("sca does not encapsulate another protocol");
4865		/* NOTREACHED */
4866
4867	case Q_LAT:
4868		bpf_error("lat does not encapsulate another protocol");
4869		/* NOTREACHED */
4870
4871	case Q_MOPRC:
4872		bpf_error("moprc does not encapsulate another protocol");
4873		/* NOTREACHED */
4874
4875	case Q_MOPDL:
4876		bpf_error("mopdl does not encapsulate another protocol");
4877		/* NOTREACHED */
4878
4879	case Q_LINK:
4880		return gen_linktype(v);
4881
4882	case Q_UDP:
4883		bpf_error("'udp proto' is bogus");
4884		/* NOTREACHED */
4885
4886	case Q_TCP:
4887		bpf_error("'tcp proto' is bogus");
4888		/* NOTREACHED */
4889
4890	case Q_SCTP:
4891		bpf_error("'sctp proto' is bogus");
4892		/* NOTREACHED */
4893
4894	case Q_ICMP:
4895		bpf_error("'icmp proto' is bogus");
4896		/* NOTREACHED */
4897
4898	case Q_IGMP:
4899		bpf_error("'igmp proto' is bogus");
4900		/* NOTREACHED */
4901
4902	case Q_IGRP:
4903		bpf_error("'igrp proto' is bogus");
4904		/* NOTREACHED */
4905
4906	case Q_PIM:
4907		bpf_error("'pim proto' is bogus");
4908		/* NOTREACHED */
4909
4910	case Q_VRRP:
4911		bpf_error("'vrrp proto' is bogus");
4912		/* NOTREACHED */
4913
4914#ifdef INET6
4915	case Q_IPV6:
4916		b0 = gen_linktype(ETHERTYPE_IPV6);
4917#ifndef CHASE_CHAIN
4918		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
4919#else
4920		b1 = gen_protochain(v, Q_IPV6);
4921#endif
4922		gen_and(b0, b1);
4923		return b1;
4924
4925	case Q_ICMPV6:
4926		bpf_error("'icmp6 proto' is bogus");
4927#endif /* INET6 */
4928
4929	case Q_AH:
4930		bpf_error("'ah proto' is bogus");
4931
4932	case Q_ESP:
4933		bpf_error("'ah proto' is bogus");
4934
4935	case Q_STP:
4936		bpf_error("'stp proto' is bogus");
4937
4938	case Q_IPX:
4939		bpf_error("'ipx proto' is bogus");
4940
4941	case Q_NETBEUI:
4942		bpf_error("'netbeui proto' is bogus");
4943
4944	case Q_RADIO:
4945		bpf_error("'radio proto' is bogus");
4946
4947	default:
4948		abort();
4949		/* NOTREACHED */
4950	}
4951	/* NOTREACHED */
4952}
4953
4954struct block *
4955gen_scode(name, q)
4956	register const char *name;
4957	struct qual q;
4958{
4959	int proto = q.proto;
4960	int dir = q.dir;
4961	int tproto;
4962	u_char *eaddr;
4963	bpf_u_int32 mask, addr;
4964#ifndef INET6
4965	bpf_u_int32 **alist;
4966#else
4967	int tproto6;
4968	struct sockaddr_in *sin4;
4969	struct sockaddr_in6 *sin6;
4970	struct addrinfo *res, *res0;
4971	struct in6_addr mask128;
4972#endif /*INET6*/
4973	struct block *b, *tmp;
4974	int port, real_proto;
4975	int port1, port2;
4976
4977	switch (q.addr) {
4978
4979	case Q_NET:
4980		addr = pcap_nametonetaddr(name);
4981		if (addr == 0)
4982			bpf_error("unknown network '%s'", name);
4983		/* Left justify network addr and calculate its network mask */
4984		mask = 0xffffffff;
4985		while (addr && (addr & 0xff000000) == 0) {
4986			addr <<= 8;
4987			mask <<= 8;
4988		}
4989		return gen_host(addr, mask, proto, dir, q.addr);
4990
4991	case Q_DEFAULT:
4992	case Q_HOST:
4993		if (proto == Q_LINK) {
4994			switch (linktype) {
4995
4996			case DLT_EN10MB:
4997				eaddr = pcap_ether_hostton(name);
4998				if (eaddr == NULL)
4999					bpf_error(
5000					    "unknown ether host '%s'", name);
5001				b = gen_ehostop(eaddr, dir);
5002				free(eaddr);
5003				return b;
5004
5005			case DLT_FDDI:
5006				eaddr = pcap_ether_hostton(name);
5007				if (eaddr == NULL)
5008					bpf_error(
5009					    "unknown FDDI host '%s'", name);
5010				b = gen_fhostop(eaddr, dir);
5011				free(eaddr);
5012				return b;
5013
5014			case DLT_IEEE802:
5015				eaddr = pcap_ether_hostton(name);
5016				if (eaddr == NULL)
5017					bpf_error(
5018					    "unknown token ring host '%s'", name);
5019				b = gen_thostop(eaddr, dir);
5020				free(eaddr);
5021				return b;
5022
5023			case DLT_IEEE802_11:
5024			case DLT_IEEE802_11_RADIO_AVS:
5025			case DLT_IEEE802_11_RADIO:
5026			case DLT_PRISM_HEADER:
5027			case DLT_PPI:
5028				eaddr = pcap_ether_hostton(name);
5029				if (eaddr == NULL)
5030					bpf_error(
5031					    "unknown 802.11 host '%s'", name);
5032				b = gen_wlanhostop(eaddr, dir);
5033				free(eaddr);
5034				return b;
5035
5036			case DLT_IP_OVER_FC:
5037				eaddr = pcap_ether_hostton(name);
5038				if (eaddr == NULL)
5039					bpf_error(
5040					    "unknown Fibre Channel host '%s'", name);
5041				b = gen_ipfchostop(eaddr, dir);
5042				free(eaddr);
5043				return b;
5044
5045			case DLT_SUNATM:
5046				if (!is_lane)
5047					break;
5048
5049				/*
5050				 * Check that the packet doesn't begin
5051				 * with an LE Control marker.  (We've
5052				 * already generated a test for LANE.)
5053				 */
5054				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
5055				    BPF_H, 0xFF00);
5056				gen_not(tmp);
5057
5058				eaddr = pcap_ether_hostton(name);
5059				if (eaddr == NULL)
5060					bpf_error(
5061					    "unknown ether host '%s'", name);
5062				b = gen_ehostop(eaddr, dir);
5063				gen_and(tmp, b);
5064				free(eaddr);
5065				return b;
5066			}
5067
5068			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
5069		} else if (proto == Q_DECNET) {
5070			unsigned short dn_addr = __pcap_nametodnaddr(name);
5071			/*
5072			 * I don't think DECNET hosts can be multihomed, so
5073			 * there is no need to build up a list of addresses
5074			 */
5075			return (gen_host(dn_addr, 0, proto, dir, q.addr));
5076		} else {
5077#ifndef INET6
5078			alist = pcap_nametoaddr(name);
5079			if (alist == NULL || *alist == NULL)
5080				bpf_error("unknown host '%s'", name);
5081			tproto = proto;
5082			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
5083				tproto = Q_IP;
5084			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
5085			while (*alist) {
5086				tmp = gen_host(**alist++, 0xffffffff,
5087					       tproto, dir, q.addr);
5088				gen_or(b, tmp);
5089				b = tmp;
5090			}
5091			return b;
5092#else
5093			memset(&mask128, 0xff, sizeof(mask128));
5094			res0 = res = pcap_nametoaddrinfo(name);
5095			if (res == NULL)
5096				bpf_error("unknown host '%s'", name);
5097			b = tmp = NULL;
5098			tproto = tproto6 = proto;
5099			if (off_linktype == -1 && tproto == Q_DEFAULT) {
5100				tproto = Q_IP;
5101				tproto6 = Q_IPV6;
5102			}
5103			for (res = res0; res; res = res->ai_next) {
5104				switch (res->ai_family) {
5105				case AF_INET:
5106					if (tproto == Q_IPV6)
5107						continue;
5108
5109					sin4 = (struct sockaddr_in *)
5110						res->ai_addr;
5111					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
5112						0xffffffff, tproto, dir, q.addr);
5113					break;
5114				case AF_INET6:
5115					if (tproto6 == Q_IP)
5116						continue;
5117
5118					sin6 = (struct sockaddr_in6 *)
5119						res->ai_addr;
5120					tmp = gen_host6(&sin6->sin6_addr,
5121						&mask128, tproto6, dir, q.addr);
5122					break;
5123				default:
5124					continue;
5125				}
5126				if (b)
5127					gen_or(b, tmp);
5128				b = tmp;
5129			}
5130			freeaddrinfo(res0);
5131			if (b == NULL) {
5132				bpf_error("unknown host '%s'%s", name,
5133				    (proto == Q_DEFAULT)
5134					? ""
5135					: " for specified address family");
5136			}
5137			return b;
5138#endif /*INET6*/
5139		}
5140
5141	case Q_PORT:
5142		if (proto != Q_DEFAULT &&
5143		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
5144			bpf_error("illegal qualifier of 'port'");
5145		if (pcap_nametoport(name, &port, &real_proto) == 0)
5146			bpf_error("unknown port '%s'", name);
5147		if (proto == Q_UDP) {
5148			if (real_proto == IPPROTO_TCP)
5149				bpf_error("port '%s' is tcp", name);
5150			else if (real_proto == IPPROTO_SCTP)
5151				bpf_error("port '%s' is sctp", name);
5152			else
5153				/* override PROTO_UNDEF */
5154				real_proto = IPPROTO_UDP;
5155		}
5156		if (proto == Q_TCP) {
5157			if (real_proto == IPPROTO_UDP)
5158				bpf_error("port '%s' is udp", name);
5159
5160			else if (real_proto == IPPROTO_SCTP)
5161				bpf_error("port '%s' is sctp", name);
5162			else
5163				/* override PROTO_UNDEF */
5164				real_proto = IPPROTO_TCP;
5165		}
5166		if (proto == Q_SCTP) {
5167			if (real_proto == IPPROTO_UDP)
5168				bpf_error("port '%s' is udp", name);
5169
5170			else if (real_proto == IPPROTO_TCP)
5171				bpf_error("port '%s' is tcp", name);
5172			else
5173				/* override PROTO_UNDEF */
5174				real_proto = IPPROTO_SCTP;
5175		}
5176#ifndef INET6
5177		return gen_port(port, real_proto, dir);
5178#else
5179		b = gen_port(port, real_proto, dir);
5180		gen_or(gen_port6(port, real_proto, dir), b);
5181		return b;
5182#endif /* INET6 */
5183
5184	case Q_PORTRANGE:
5185		if (proto != Q_DEFAULT &&
5186		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
5187			bpf_error("illegal qualifier of 'portrange'");
5188		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
5189			bpf_error("unknown port in range '%s'", name);
5190		if (proto == Q_UDP) {
5191			if (real_proto == IPPROTO_TCP)
5192				bpf_error("port in range '%s' is tcp", name);
5193			else if (real_proto == IPPROTO_SCTP)
5194				bpf_error("port in range '%s' is sctp", name);
5195			else
5196				/* override PROTO_UNDEF */
5197				real_proto = IPPROTO_UDP;
5198		}
5199		if (proto == Q_TCP) {
5200			if (real_proto == IPPROTO_UDP)
5201				bpf_error("port in range '%s' is udp", name);
5202			else if (real_proto == IPPROTO_SCTP)
5203				bpf_error("port in range '%s' is sctp", name);
5204			else
5205				/* override PROTO_UNDEF */
5206				real_proto = IPPROTO_TCP;
5207		}
5208		if (proto == Q_SCTP) {
5209			if (real_proto == IPPROTO_UDP)
5210				bpf_error("port in range '%s' is udp", name);
5211			else if (real_proto == IPPROTO_TCP)
5212				bpf_error("port in range '%s' is tcp", name);
5213			else
5214				/* override PROTO_UNDEF */
5215				real_proto = IPPROTO_SCTP;
5216		}
5217#ifndef INET6
5218		return gen_portrange(port1, port2, real_proto, dir);
5219#else
5220		b = gen_portrange(port1, port2, real_proto, dir);
5221		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
5222		return b;
5223#endif /* INET6 */
5224
5225	case Q_GATEWAY:
5226#ifndef INET6
5227		eaddr = pcap_ether_hostton(name);
5228		if (eaddr == NULL)
5229			bpf_error("unknown ether host: %s", name);
5230
5231		alist = pcap_nametoaddr(name);
5232		if (alist == NULL || *alist == NULL)
5233			bpf_error("unknown host '%s'", name);
5234		b = gen_gateway(eaddr, alist, proto, dir);
5235		free(eaddr);
5236		return b;
5237#else
5238		bpf_error("'gateway' not supported in this configuration");
5239#endif /*INET6*/
5240
5241	case Q_PROTO:
5242		real_proto = lookup_proto(name, proto);
5243		if (real_proto >= 0)
5244			return gen_proto(real_proto, proto, dir);
5245		else
5246			bpf_error("unknown protocol: %s", name);
5247
5248	case Q_PROTOCHAIN:
5249		real_proto = lookup_proto(name, proto);
5250		if (real_proto >= 0)
5251			return gen_protochain(real_proto, proto, dir);
5252		else
5253			bpf_error("unknown protocol: %s", name);
5254
5255
5256	case Q_UNDEF:
5257		syntax();
5258		/* NOTREACHED */
5259	}
5260	abort();
5261	/* NOTREACHED */
5262}
5263
5264struct block *
5265gen_mcode(s1, s2, masklen, q)
5266	register const char *s1, *s2;
5267	register int masklen;
5268	struct qual q;
5269{
5270	register int nlen, mlen;
5271	bpf_u_int32 n, m;
5272
5273	nlen = __pcap_atoin(s1, &n);
5274	/* Promote short ipaddr */
5275	n <<= 32 - nlen;
5276
5277	if (s2 != NULL) {
5278		mlen = __pcap_atoin(s2, &m);
5279		/* Promote short ipaddr */
5280		m <<= 32 - mlen;
5281		if ((n & ~m) != 0)
5282			bpf_error("non-network bits set in \"%s mask %s\"",
5283			    s1, s2);
5284	} else {
5285		/* Convert mask len to mask */
5286		if (masklen > 32)
5287			bpf_error("mask length must be <= 32");
5288		if (masklen == 0) {
5289			/*
5290			 * X << 32 is not guaranteed by C to be 0; it's
5291			 * undefined.
5292			 */
5293			m = 0;
5294		} else
5295			m = 0xffffffff << (32 - masklen);
5296		if ((n & ~m) != 0)
5297			bpf_error("non-network bits set in \"%s/%d\"",
5298			    s1, masklen);
5299	}
5300
5301	switch (q.addr) {
5302
5303	case Q_NET:
5304		return gen_host(n, m, q.proto, q.dir, q.addr);
5305
5306	default:
5307		bpf_error("Mask syntax for networks only");
5308		/* NOTREACHED */
5309	}
5310	/* NOTREACHED */
5311	return NULL;
5312}
5313
5314struct block *
5315gen_ncode(s, v, q)
5316	register const char *s;
5317	bpf_u_int32 v;
5318	struct qual q;
5319{
5320	bpf_u_int32 mask;
5321	int proto = q.proto;
5322	int dir = q.dir;
5323	register int vlen;
5324
5325	if (s == NULL)
5326		vlen = 32;
5327	else if (q.proto == Q_DECNET)
5328		vlen = __pcap_atodn(s, &v);
5329	else
5330		vlen = __pcap_atoin(s, &v);
5331
5332	switch (q.addr) {
5333
5334	case Q_DEFAULT:
5335	case Q_HOST:
5336	case Q_NET:
5337		if (proto == Q_DECNET)
5338			return gen_host(v, 0, proto, dir, q.addr);
5339		else if (proto == Q_LINK) {
5340			bpf_error("illegal link layer address");
5341		} else {
5342			mask = 0xffffffff;
5343			if (s == NULL && q.addr == Q_NET) {
5344				/* Promote short net number */
5345				while (v && (v & 0xff000000) == 0) {
5346					v <<= 8;
5347					mask <<= 8;
5348				}
5349			} else {
5350				/* Promote short ipaddr */
5351				v <<= 32 - vlen;
5352				mask <<= 32 - vlen;
5353			}
5354			return gen_host(v, mask, proto, dir, q.addr);
5355		}
5356
5357	case Q_PORT:
5358		if (proto == Q_UDP)
5359			proto = IPPROTO_UDP;
5360		else if (proto == Q_TCP)
5361			proto = IPPROTO_TCP;
5362		else if (proto == Q_SCTP)
5363			proto = IPPROTO_SCTP;
5364		else if (proto == Q_DEFAULT)
5365			proto = PROTO_UNDEF;
5366		else
5367			bpf_error("illegal qualifier of 'port'");
5368
5369#ifndef INET6
5370		return gen_port((int)v, proto, dir);
5371#else
5372	    {
5373		struct block *b;
5374		b = gen_port((int)v, proto, dir);
5375		gen_or(gen_port6((int)v, proto, dir), b);
5376		return b;
5377	    }
5378#endif /* INET6 */
5379
5380	case Q_PORTRANGE:
5381		if (proto == Q_UDP)
5382			proto = IPPROTO_UDP;
5383		else if (proto == Q_TCP)
5384			proto = IPPROTO_TCP;
5385		else if (proto == Q_SCTP)
5386			proto = IPPROTO_SCTP;
5387		else if (proto == Q_DEFAULT)
5388			proto = PROTO_UNDEF;
5389		else
5390			bpf_error("illegal qualifier of 'portrange'");
5391
5392#ifndef INET6
5393		return gen_portrange((int)v, (int)v, proto, dir);
5394#else
5395	    {
5396		struct block *b;
5397		b = gen_portrange((int)v, (int)v, proto, dir);
5398		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
5399		return b;
5400	    }
5401#endif /* INET6 */
5402
5403	case Q_GATEWAY:
5404		bpf_error("'gateway' requires a name");
5405		/* NOTREACHED */
5406
5407	case Q_PROTO:
5408		return gen_proto((int)v, proto, dir);
5409
5410	case Q_PROTOCHAIN:
5411		return gen_protochain((int)v, proto, dir);
5412
5413	case Q_UNDEF:
5414		syntax();
5415		/* NOTREACHED */
5416
5417	default:
5418		abort();
5419		/* NOTREACHED */
5420	}
5421	/* NOTREACHED */
5422}
5423
5424#ifdef INET6
5425struct block *
5426gen_mcode6(s1, s2, masklen, q)
5427	register const char *s1, *s2;
5428	register int masklen;
5429	struct qual q;
5430{
5431	struct addrinfo *res;
5432	struct in6_addr *addr;
5433	struct in6_addr mask;
5434	struct block *b;
5435	u_int32_t *a, *m;
5436
5437	if (s2)
5438		bpf_error("no mask %s supported", s2);
5439
5440	res = pcap_nametoaddrinfo(s1);
5441	if (!res)
5442		bpf_error("invalid ip6 address %s", s1);
5443	if (res->ai_next)
5444		bpf_error("%s resolved to multiple address", s1);
5445	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
5446
5447	if (sizeof(mask) * 8 < masklen)
5448		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
5449	memset(&mask, 0, sizeof(mask));
5450	memset(&mask, 0xff, masklen / 8);
5451	if (masklen % 8) {
5452		mask.s6_addr[masklen / 8] =
5453			(0xff << (8 - masklen % 8)) & 0xff;
5454	}
5455
5456	a = (u_int32_t *)addr;
5457	m = (u_int32_t *)&mask;
5458	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
5459	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
5460		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
5461	}
5462
5463	switch (q.addr) {
5464
5465	case Q_DEFAULT:
5466	case Q_HOST:
5467		if (masklen != 128)
5468			bpf_error("Mask syntax for networks only");
5469		/* FALLTHROUGH */
5470
5471	case Q_NET:
5472		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
5473		freeaddrinfo(res);
5474		return b;
5475
5476	default:
5477		bpf_error("invalid qualifier against IPv6 address");
5478		/* NOTREACHED */
5479	}
5480	return NULL;
5481}
5482#endif /*INET6*/
5483
5484struct block *
5485gen_ecode(eaddr, q)
5486	register const u_char *eaddr;
5487	struct qual q;
5488{
5489	struct block *b, *tmp;
5490
5491	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
5492            switch (linktype) {
5493            case DLT_EN10MB:
5494                return gen_ehostop(eaddr, (int)q.dir);
5495            case DLT_FDDI:
5496                return gen_fhostop(eaddr, (int)q.dir);
5497            case DLT_IEEE802:
5498                return gen_thostop(eaddr, (int)q.dir);
5499			case DLT_IEEE802_11:
5500			case DLT_IEEE802_11_RADIO_AVS:
5501			case DLT_IEEE802_11_RADIO:
5502			case DLT_PRISM_HEADER:
5503			case DLT_PPI:
5504				return gen_wlanhostop(eaddr, (int)q.dir);
5505			case DLT_SUNATM:
5506				if (is_lane) {
5507					/*
5508					 * Check that the packet doesn't begin with an
5509					 * LE Control marker.  (We've already generated
5510					 * a test for LANE.)
5511					 */
5512					tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5513						0xFF00);
5514					gen_not(tmp);
5515
5516					/*
5517					 * Now check the MAC address.
5518					 */
5519					b = gen_ehostop(eaddr, (int)q.dir);
5520					gen_and(tmp, b);
5521					return b;
5522				}
5523				break;
5524			case DLT_IP_OVER_FC:
5525                return gen_ipfchostop(eaddr, (int)q.dir);
5526            default:
5527				bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5528                break;
5529            }
5530	}
5531	bpf_error("ethernet address used in non-ether expression");
5532	/* NOTREACHED */
5533	return NULL;
5534}
5535
5536void
5537sappend(s0, s1)
5538	struct slist *s0, *s1;
5539{
5540	/*
5541	 * This is definitely not the best way to do this, but the
5542	 * lists will rarely get long.
5543	 */
5544	while (s0->next)
5545		s0 = s0->next;
5546	s0->next = s1;
5547}
5548
5549static struct slist *
5550xfer_to_x(a)
5551	struct arth *a;
5552{
5553	struct slist *s;
5554
5555	s = new_stmt(BPF_LDX|BPF_MEM);
5556	s->s.k = a->regno;
5557	return s;
5558}
5559
5560static struct slist *
5561xfer_to_a(a)
5562	struct arth *a;
5563{
5564	struct slist *s;
5565
5566	s = new_stmt(BPF_LD|BPF_MEM);
5567	s->s.k = a->regno;
5568	return s;
5569}
5570
5571/*
5572 * Modify "index" to use the value stored into its register as an
5573 * offset relative to the beginning of the header for the protocol
5574 * "proto", and allocate a register and put an item "size" bytes long
5575 * (1, 2, or 4) at that offset into that register, making it the register
5576 * for "index".
5577 */
5578struct arth *
5579gen_load(proto, inst, size)
5580	int proto;
5581	struct arth *inst;
5582	int size;
5583{
5584	struct slist *s, *tmp;
5585	struct block *b;
5586	int regno = alloc_reg();
5587
5588	free_reg(inst->regno);
5589	switch (size) {
5590
5591	default:
5592		bpf_error("data size must be 1, 2, or 4");
5593
5594	case 1:
5595		size = BPF_B;
5596		break;
5597
5598	case 2:
5599		size = BPF_H;
5600		break;
5601
5602	case 4:
5603		size = BPF_W;
5604		break;
5605	}
5606	switch (proto) {
5607	default:
5608		bpf_error("unsupported index operation");
5609
5610	case Q_RADIO:
5611		/*
5612		 * The offset is relative to the beginning of the packet
5613		 * data, if we have a radio header.  (If we don't, this
5614		 * is an error.)
5615		 */
5616		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
5617		    linktype != DLT_IEEE802_11_RADIO &&
5618		    linktype != DLT_PRISM_HEADER)
5619			bpf_error("radio information not present in capture");
5620
5621		/*
5622		 * Load into the X register the offset computed into the
5623		 * register specifed by "index".
5624		 */
5625		s = xfer_to_x(inst);
5626
5627		/*
5628		 * Load the item at that offset.
5629		 */
5630		tmp = new_stmt(BPF_LD|BPF_IND|size);
5631		sappend(s, tmp);
5632		sappend(inst->s, s);
5633		break;
5634
5635	case Q_LINK:
5636		/*
5637		 * The offset is relative to the beginning of
5638		 * the link-layer header.
5639		 *
5640		 * XXX - what about ATM LANE?  Should the index be
5641		 * relative to the beginning of the AAL5 frame, so
5642		 * that 0 refers to the beginning of the LE Control
5643		 * field, or relative to the beginning of the LAN
5644		 * frame, so that 0 refers, for Ethernet LANE, to
5645		 * the beginning of the destination address?
5646		 */
5647		s = gen_llprefixlen();
5648
5649		/*
5650		 * If "s" is non-null, it has code to arrange that the
5651		 * X register contains the length of the prefix preceding
5652		 * the link-layer header.  Add to it the offset computed
5653		 * into the register specified by "index", and move that
5654		 * into the X register.  Otherwise, just load into the X
5655		 * register the offset computed into the register specifed
5656		 * by "index".
5657		 */
5658		if (s != NULL) {
5659			sappend(s, xfer_to_a(inst));
5660			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5661			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5662		} else
5663			s = xfer_to_x(inst);
5664
5665		/*
5666		 * Load the item at the sum of the offset we've put in the
5667		 * X register and the offset of the start of the link
5668		 * layer header (which is 0 if the radio header is
5669		 * variable-length; that header length is what we put
5670		 * into the X register and then added to the index).
5671		 */
5672		tmp = new_stmt(BPF_LD|BPF_IND|size);
5673		tmp->s.k = off_ll;
5674		sappend(s, tmp);
5675		sappend(inst->s, s);
5676		break;
5677
5678	case Q_IP:
5679	case Q_ARP:
5680	case Q_RARP:
5681	case Q_ATALK:
5682	case Q_DECNET:
5683	case Q_SCA:
5684	case Q_LAT:
5685	case Q_MOPRC:
5686	case Q_MOPDL:
5687#ifdef INET6
5688	case Q_IPV6:
5689#endif
5690		/*
5691		 * The offset is relative to the beginning of
5692		 * the network-layer header.
5693		 * XXX - are there any cases where we want
5694		 * off_nl_nosnap?
5695		 */
5696		s = gen_llprefixlen();
5697
5698		/*
5699		 * If "s" is non-null, it has code to arrange that the
5700		 * X register contains the length of the prefix preceding
5701		 * the link-layer header.  Add to it the offset computed
5702		 * into the register specified by "index", and move that
5703		 * into the X register.  Otherwise, just load into the X
5704		 * register the offset computed into the register specifed
5705		 * by "index".
5706		 */
5707		if (s != NULL) {
5708			sappend(s, xfer_to_a(inst));
5709			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5710			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5711		} else
5712			s = xfer_to_x(inst);
5713
5714		/*
5715		 * Load the item at the sum of the offset we've put in the
5716		 * X register, the offset of the start of the network
5717		 * layer header, and the offset of the start of the link
5718		 * layer header (which is 0 if the radio header is
5719		 * variable-length; that header length is what we put
5720		 * into the X register and then added to the index).
5721		 */
5722		tmp = new_stmt(BPF_LD|BPF_IND|size);
5723		tmp->s.k = off_ll + off_nl;
5724		sappend(s, tmp);
5725		sappend(inst->s, s);
5726
5727		/*
5728		 * Do the computation only if the packet contains
5729		 * the protocol in question.
5730		 */
5731		b = gen_proto_abbrev(proto);
5732		if (inst->b)
5733			gen_and(inst->b, b);
5734		inst->b = b;
5735		break;
5736
5737	case Q_SCTP:
5738	case Q_TCP:
5739	case Q_UDP:
5740	case Q_ICMP:
5741	case Q_IGMP:
5742	case Q_IGRP:
5743	case Q_PIM:
5744	case Q_VRRP:
5745		/*
5746		 * The offset is relative to the beginning of
5747		 * the transport-layer header.
5748		 *
5749		 * Load the X register with the length of the IPv4 header
5750		 * (plus the offset of the link-layer header, if it's
5751		 * a variable-length header), in bytes.
5752		 *
5753		 * XXX - are there any cases where we want
5754		 * off_nl_nosnap?
5755		 * XXX - we should, if we're built with
5756		 * IPv6 support, generate code to load either
5757		 * IPv4, IPv6, or both, as appropriate.
5758		 */
5759		s = gen_loadx_iphdrlen();
5760
5761		/*
5762		 * The X register now contains the sum of the length
5763		 * of any variable-length header preceding the link-layer
5764		 * header and the length of the network-layer header.
5765		 * Load into the A register the offset relative to
5766		 * the beginning of the transport layer header,
5767		 * add the X register to that, move that to the
5768		 * X register, and load with an offset from the
5769		 * X register equal to the offset of the network
5770		 * layer header relative to the beginning of
5771		 * the link-layer header plus the length of any
5772		 * fixed-length header preceding the link-layer
5773		 * header.
5774		 */
5775		sappend(s, xfer_to_a(inst));
5776		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5777		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5778		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
5779		tmp->s.k = off_ll + off_nl;
5780		sappend(inst->s, s);
5781
5782		/*
5783		 * Do the computation only if the packet contains
5784		 * the protocol in question - which is true only
5785		 * if this is an IP datagram and is the first or
5786		 * only fragment of that datagram.
5787		 */
5788		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
5789		if (inst->b)
5790			gen_and(inst->b, b);
5791#ifdef INET6
5792		gen_and(gen_proto_abbrev(Q_IP), b);
5793#endif
5794		inst->b = b;
5795		break;
5796#ifdef INET6
5797	case Q_ICMPV6:
5798		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
5799		/*NOTREACHED*/
5800#endif
5801	}
5802	inst->regno = regno;
5803	s = new_stmt(BPF_ST);
5804	s->s.k = regno;
5805	sappend(inst->s, s);
5806
5807	return inst;
5808}
5809
5810struct block *
5811gen_relation(code, a0, a1, reversed)
5812	int code;
5813	struct arth *a0, *a1;
5814	int reversed;
5815{
5816	struct slist *s0, *s1, *s2;
5817	struct block *b, *tmp;
5818
5819	s0 = xfer_to_x(a1);
5820	s1 = xfer_to_a(a0);
5821	if (code == BPF_JEQ) {
5822		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
5823		b = new_block(JMP(code));
5824		sappend(s1, s2);
5825	}
5826	else
5827		b = new_block(BPF_JMP|code|BPF_X);
5828	if (reversed)
5829		gen_not(b);
5830
5831	sappend(s0, s1);
5832	sappend(a1->s, s0);
5833	sappend(a0->s, a1->s);
5834
5835	b->stmts = a0->s;
5836
5837	free_reg(a0->regno);
5838	free_reg(a1->regno);
5839
5840	/* 'and' together protocol checks */
5841	if (a0->b) {
5842		if (a1->b) {
5843			gen_and(a0->b, tmp = a1->b);
5844		}
5845		else
5846			tmp = a0->b;
5847	} else
5848		tmp = a1->b;
5849
5850	if (tmp)
5851		gen_and(tmp, b);
5852
5853	return b;
5854}
5855
5856struct arth *
5857gen_loadlen()
5858{
5859	int regno = alloc_reg();
5860	struct arth *a = (struct arth *)newchunk(sizeof(*a));
5861	struct slist *s;
5862
5863	s = new_stmt(BPF_LD|BPF_LEN);
5864	s->next = new_stmt(BPF_ST);
5865	s->next->s.k = regno;
5866	a->s = s;
5867	a->regno = regno;
5868
5869	return a;
5870}
5871
5872struct arth *
5873gen_loadi(val)
5874	int val;
5875{
5876	struct arth *a;
5877	struct slist *s;
5878	int reg;
5879
5880	a = (struct arth *)newchunk(sizeof(*a));
5881
5882	reg = alloc_reg();
5883
5884	s = new_stmt(BPF_LD|BPF_IMM);
5885	s->s.k = val;
5886	s->next = new_stmt(BPF_ST);
5887	s->next->s.k = reg;
5888	a->s = s;
5889	a->regno = reg;
5890
5891	return a;
5892}
5893
5894struct arth *
5895gen_neg(a)
5896	struct arth *a;
5897{
5898	struct slist *s;
5899
5900	s = xfer_to_a(a);
5901	sappend(a->s, s);
5902	s = new_stmt(BPF_ALU|BPF_NEG);
5903	s->s.k = 0;
5904	sappend(a->s, s);
5905	s = new_stmt(BPF_ST);
5906	s->s.k = a->regno;
5907	sappend(a->s, s);
5908
5909	return a;
5910}
5911
5912struct arth *
5913gen_arth(code, a0, a1)
5914	int code;
5915	struct arth *a0, *a1;
5916{
5917	struct slist *s0, *s1, *s2;
5918
5919	s0 = xfer_to_x(a1);
5920	s1 = xfer_to_a(a0);
5921	s2 = new_stmt(BPF_ALU|BPF_X|code);
5922
5923	sappend(s1, s2);
5924	sappend(s0, s1);
5925	sappend(a1->s, s0);
5926	sappend(a0->s, a1->s);
5927
5928	free_reg(a0->regno);
5929	free_reg(a1->regno);
5930
5931	s0 = new_stmt(BPF_ST);
5932	a0->regno = s0->s.k = alloc_reg();
5933	sappend(a0->s, s0);
5934
5935	return a0;
5936}
5937
5938/*
5939 * Here we handle simple allocation of the scratch registers.
5940 * If too many registers are alloc'd, the allocator punts.
5941 */
5942static int regused[BPF_MEMWORDS];
5943static int curreg;
5944
5945/*
5946 * Return the next free register.
5947 */
5948static int
5949alloc_reg()
5950{
5951	int n = BPF_MEMWORDS;
5952
5953	while (--n >= 0) {
5954		if (regused[curreg])
5955			curreg = (curreg + 1) % BPF_MEMWORDS;
5956		else {
5957			regused[curreg] = 1;
5958			return curreg;
5959		}
5960	}
5961	bpf_error("too many registers needed to evaluate expression");
5962	/* NOTREACHED */
5963	return 0;
5964}
5965
5966/*
5967 * Return a register to the table so it can
5968 * be used later.
5969 */
5970static void
5971free_reg(n)
5972	int n;
5973{
5974	regused[n] = 0;
5975}
5976
5977static struct block *
5978gen_len(jmp, n)
5979	int jmp, n;
5980{
5981	struct slist *s;
5982	struct block *b;
5983
5984	s = new_stmt(BPF_LD|BPF_LEN);
5985	b = new_block(JMP(jmp));
5986	b->stmts = s;
5987	b->s.k = n;
5988
5989	return b;
5990}
5991
5992struct block *
5993gen_greater(n)
5994	int n;
5995{
5996	return gen_len(BPF_JGE, n);
5997}
5998
5999/*
6000 * Actually, this is less than or equal.
6001 */
6002struct block *
6003gen_less(n)
6004	int n;
6005{
6006	struct block *b;
6007
6008	b = gen_len(BPF_JGT, n);
6009	gen_not(b);
6010
6011	return b;
6012}
6013
6014/*
6015 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
6016 * the beginning of the link-layer header.
6017 * XXX - that means you can't test values in the radiotap header, but
6018 * as that header is difficult if not impossible to parse generally
6019 * without a loop, that might not be a severe problem.  A new keyword
6020 * "radio" could be added for that, although what you'd really want
6021 * would be a way of testing particular radio header values, which
6022 * would generate code appropriate to the radio header in question.
6023 */
6024struct block *
6025gen_byteop(op, idx, val)
6026	int op, idx, val;
6027{
6028	struct block *b;
6029	struct slist *s;
6030
6031	switch (op) {
6032	default:
6033		abort();
6034
6035	case '=':
6036		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6037
6038	case '<':
6039		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6040		return b;
6041
6042	case '>':
6043		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
6044		return b;
6045
6046	case '|':
6047		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
6048		break;
6049
6050	case '&':
6051		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
6052		break;
6053	}
6054	s->s.k = val;
6055	b = new_block(JMP(BPF_JEQ));
6056	b->stmts = s;
6057	gen_not(b);
6058
6059	return b;
6060}
6061
6062static u_char abroadcast[] = { 0x0 };
6063
6064struct block *
6065gen_broadcast(proto)
6066	int proto;
6067{
6068	bpf_u_int32 hostmask;
6069	struct block *b0, *b1, *b2;
6070	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
6071
6072	switch (proto) {
6073
6074	case Q_DEFAULT:
6075	case Q_LINK:
6076                switch (linktype) {
6077                case DLT_ARCNET:
6078                case DLT_ARCNET_LINUX:
6079                    return gen_ahostop(abroadcast, Q_DST);
6080                case DLT_EN10MB:
6081                    return gen_ehostop(ebroadcast, Q_DST);
6082                case DLT_FDDI:
6083                    return gen_fhostop(ebroadcast, Q_DST);
6084                case DLT_IEEE802:
6085                    return gen_thostop(ebroadcast, Q_DST);
6086                case DLT_IEEE802_11:
6087                case DLT_IEEE802_11_RADIO_AVS:
6088                case DLT_IEEE802_11_RADIO:
6089				case DLT_PPI:
6090                case DLT_PRISM_HEADER:
6091                    return gen_wlanhostop(ebroadcast, Q_DST);
6092                case DLT_IP_OVER_FC:
6093                    return gen_ipfchostop(ebroadcast, Q_DST);
6094                case DLT_SUNATM:
6095                    if (is_lane) {
6096			/*
6097			 * Check that the packet doesn't begin with an
6098			 * LE Control marker.  (We've already generated
6099			 * a test for LANE.)
6100			 */
6101			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6102			    0xFF00);
6103			gen_not(b1);
6104
6105			/*
6106			 * Now check the MAC address.
6107			 */
6108			b0 = gen_ehostop(ebroadcast, Q_DST);
6109			gen_and(b1, b0);
6110			return b0;
6111                    }
6112                    break;
6113                default:
6114                    bpf_error("not a broadcast link");
6115                }
6116		break;
6117
6118	case Q_IP:
6119		b0 = gen_linktype(ETHERTYPE_IP);
6120		hostmask = ~netmask;
6121		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
6122		b2 = gen_mcmp(OR_NET, 16, BPF_W,
6123			      (bpf_int32)(~0 & hostmask), hostmask);
6124		gen_or(b1, b2);
6125		gen_and(b0, b2);
6126		return b2;
6127	}
6128	bpf_error("only link-layer/IP broadcast filters supported");
6129	/* NOTREACHED */
6130	return NULL;
6131}
6132
6133/*
6134 * Generate code to test the low-order bit of a MAC address (that's
6135 * the bottom bit of the *first* byte).
6136 */
6137static struct block *
6138gen_mac_multicast(offset)
6139	int offset;
6140{
6141	register struct block *b0;
6142	register struct slist *s;
6143
6144	/* link[offset] & 1 != 0 */
6145	s = gen_load_a(OR_LINK, offset, BPF_B);
6146	b0 = new_block(JMP(BPF_JSET));
6147	b0->s.k = 1;
6148	b0->stmts = s;
6149	return b0;
6150}
6151
6152struct block *
6153gen_multicast(proto)
6154	int proto;
6155{
6156	register struct block *b0, *b1, *b2;
6157	register struct slist *s;
6158
6159	switch (proto) {
6160
6161	case Q_DEFAULT:
6162	case Q_LINK:
6163                switch (linktype) {
6164                case DLT_ARCNET:
6165                case DLT_ARCNET_LINUX:
6166                    /* all ARCnet multicasts use the same address */
6167                    return gen_ahostop(abroadcast, Q_DST);
6168                case  DLT_EN10MB:
6169                    /* ether[0] & 1 != 0 */
6170                    return gen_mac_multicast(0);
6171                case DLT_FDDI:
6172                    /*
6173                     * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
6174                     *
6175                     * XXX - was that referring to bit-order issues?
6176                     */
6177                    /* fddi[1] & 1 != 0 */
6178                    return gen_mac_multicast(1);
6179                case DLT_IEEE802:
6180                    /* tr[2] & 1 != 0 */
6181                    return gen_mac_multicast(2);
6182                case DLT_IEEE802_11:
6183                case DLT_IEEE802_11_RADIO_AVS:
6184				case DLT_PPI:
6185                case DLT_IEEE802_11_RADIO:
6186                case DLT_PRISM_HEADER:
6187                    /*
6188                     * Oh, yuk.
6189                     *
6190                     *	For control frames, there is no DA.
6191                     *
6192                     *	For management frames, DA is at an
6193                     *	offset of 4 from the beginning of
6194                     *	the packet.
6195                     *
6196                     *	For data frames, DA is at an offset
6197                     *	of 4 from the beginning of the packet
6198                     *	if To DS is clear and at an offset of
6199                     *	16 from the beginning of the packet
6200                     *	if To DS is set.
6201                     */
6202
6203                    /*
6204                     * Generate the tests to be done for data frames.
6205                     *
6206                     * First, check for To DS set, i.e. "link[1] & 0x01".
6207                     */
6208                    s = gen_load_a(OR_LINK, 1, BPF_B);
6209                    b1 = new_block(JMP(BPF_JSET));
6210                    b1->s.k = 0x01;	/* To DS */
6211                    b1->stmts = s;
6212
6213                    /*
6214                     * If To DS is set, the DA is at 16.
6215                     */
6216                    b0 = gen_mac_multicast(16);
6217                    gen_and(b1, b0);
6218
6219                    /*
6220                     * Now, check for To DS not set, i.e. check
6221                     * "!(link[1] & 0x01)".
6222                     */
6223                    s = gen_load_a(OR_LINK, 1, BPF_B);
6224                    b2 = new_block(JMP(BPF_JSET));
6225                    b2->s.k = 0x01;	/* To DS */
6226                    b2->stmts = s;
6227                    gen_not(b2);
6228
6229                    /*
6230                     * If To DS is not set, the DA is at 4.
6231                     */
6232                    b1 = gen_mac_multicast(4);
6233                    gen_and(b2, b1);
6234
6235                    /*
6236                     * Now OR together the last two checks.  That gives
6237                     * the complete set of checks for data frames.
6238                     */
6239                    gen_or(b1, b0);
6240
6241                    /*
6242                     * Now check for a data frame.
6243                     * I.e, check "link[0] & 0x08".
6244                     */
6245                    s = gen_load_a(OR_LINK, 0, BPF_B);
6246                    b1 = new_block(JMP(BPF_JSET));
6247                    b1->s.k = 0x08;
6248                    b1->stmts = s;
6249
6250                    /*
6251                     * AND that with the checks done for data frames.
6252                     */
6253                    gen_and(b1, b0);
6254
6255                    /*
6256                     * If the high-order bit of the type value is 0, this
6257                     * is a management frame.
6258                     * I.e, check "!(link[0] & 0x08)".
6259                     */
6260                    s = gen_load_a(OR_LINK, 0, BPF_B);
6261                    b2 = new_block(JMP(BPF_JSET));
6262                    b2->s.k = 0x08;
6263                    b2->stmts = s;
6264                    gen_not(b2);
6265
6266                    /*
6267                     * For management frames, the DA is at 4.
6268                     */
6269                    b1 = gen_mac_multicast(4);
6270                    gen_and(b2, b1);
6271
6272                    /*
6273                     * OR that with the checks done for data frames.
6274                     * That gives the checks done for management and
6275                     * data frames.
6276                     */
6277                    gen_or(b1, b0);
6278
6279                    /*
6280                     * If the low-order bit of the type value is 1,
6281                     * this is either a control frame or a frame
6282                     * with a reserved type, and thus not a
6283                     * frame with an SA.
6284                     *
6285                     * I.e., check "!(link[0] & 0x04)".
6286                     */
6287                    s = gen_load_a(OR_LINK, 0, BPF_B);
6288                    b1 = new_block(JMP(BPF_JSET));
6289                    b1->s.k = 0x04;
6290                    b1->stmts = s;
6291                    gen_not(b1);
6292
6293                    /*
6294                     * AND that with the checks for data and management
6295                     * frames.
6296                     */
6297                    gen_and(b1, b0);
6298                    return b0;
6299                case DLT_IP_OVER_FC:
6300                    b0 = gen_mac_multicast(2);
6301                    return b0;
6302                case DLT_SUNATM:
6303                    if (is_lane) {
6304			/*
6305			 * Check that the packet doesn't begin with an
6306			 * LE Control marker.  (We've already generated
6307			 * a test for LANE.)
6308			 */
6309			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6310			    0xFF00);
6311			gen_not(b1);
6312
6313			/* ether[off_mac] & 1 != 0 */
6314			b0 = gen_mac_multicast(off_mac);
6315			gen_and(b1, b0);
6316			return b0;
6317                    }
6318                    break;
6319                default:
6320                    break;
6321                }
6322                /* Link not known to support multicasts */
6323                break;
6324
6325	case Q_IP:
6326		b0 = gen_linktype(ETHERTYPE_IP);
6327		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
6328		gen_and(b0, b1);
6329		return b1;
6330
6331#ifdef INET6
6332	case Q_IPV6:
6333		b0 = gen_linktype(ETHERTYPE_IPV6);
6334		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
6335		gen_and(b0, b1);
6336		return b1;
6337#endif /* INET6 */
6338	}
6339	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
6340	/* NOTREACHED */
6341	return NULL;
6342}
6343
6344/*
6345 * generate command for inbound/outbound.  It's here so we can
6346 * make it link-type specific.  'dir' = 0 implies "inbound",
6347 * = 1 implies "outbound".
6348 */
6349struct block *
6350gen_inbound(dir)
6351	int dir;
6352{
6353	register struct block *b0;
6354
6355	/*
6356	 * Only some data link types support inbound/outbound qualifiers.
6357	 */
6358	switch (linktype) {
6359	case DLT_SLIP:
6360		b0 = gen_relation(BPF_JEQ,
6361			  gen_load(Q_LINK, gen_loadi(0), 1),
6362			  gen_loadi(0),
6363			  dir);
6364		break;
6365
6366	case DLT_LINUX_SLL:
6367		if (dir) {
6368			/*
6369			 * Match packets sent by this machine.
6370			 */
6371			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
6372		} else {
6373			/*
6374			 * Match packets sent to this machine.
6375			 * (No broadcast or multicast packets, or
6376			 * packets sent to some other machine and
6377			 * received promiscuously.)
6378			 *
6379			 * XXX - packets sent to other machines probably
6380			 * shouldn't be matched, but what about broadcast
6381			 * or multicast packets we received?
6382			 */
6383			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
6384		}
6385		break;
6386
6387#ifdef HAVE_NET_PFVAR_H
6388	case DLT_PFLOG:
6389		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
6390		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
6391		break;
6392#endif
6393
6394	case DLT_PPP_PPPD:
6395		if (dir) {
6396			/* match outgoing packets */
6397			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
6398		} else {
6399			/* match incoming packets */
6400			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
6401		}
6402		break;
6403
6404        case DLT_JUNIPER_MFR:
6405        case DLT_JUNIPER_MLFR:
6406        case DLT_JUNIPER_MLPPP:
6407	case DLT_JUNIPER_ATM1:
6408	case DLT_JUNIPER_ATM2:
6409	case DLT_JUNIPER_PPPOE:
6410	case DLT_JUNIPER_PPPOE_ATM:
6411        case DLT_JUNIPER_GGSN:
6412        case DLT_JUNIPER_ES:
6413        case DLT_JUNIPER_MONITOR:
6414        case DLT_JUNIPER_SERVICES:
6415        case DLT_JUNIPER_ETHER:
6416        case DLT_JUNIPER_PPP:
6417        case DLT_JUNIPER_FRELAY:
6418        case DLT_JUNIPER_CHDLC:
6419        case DLT_JUNIPER_VP:
6420		/* juniper flags (including direction) are stored
6421		 * the byte after the 3-byte magic number */
6422		if (dir) {
6423			/* match outgoing packets */
6424			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
6425		} else {
6426			/* match incoming packets */
6427			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
6428		}
6429	    break;
6430
6431	default:
6432		bpf_error("inbound/outbound not supported on linktype %d",
6433		    linktype);
6434		b0 = NULL;
6435		/* NOTREACHED */
6436	}
6437	return (b0);
6438}
6439
6440#ifdef HAVE_NET_PFVAR_H
6441/* PF firewall log matched interface */
6442struct block *
6443gen_pf_ifname(const char *ifname)
6444{
6445	struct block *b0;
6446	u_int len, off;
6447
6448	if (linktype == DLT_PFLOG) {
6449		len = sizeof(((struct pfloghdr *)0)->ifname);
6450		off = offsetof(struct pfloghdr, ifname);
6451	} else {
6452		bpf_error("ifname not supported on linktype 0x%x", linktype);
6453		/* NOTREACHED */
6454	}
6455	if (strlen(ifname) >= len) {
6456		bpf_error("ifname interface names can only be %d characters",
6457		    len-1);
6458		/* NOTREACHED */
6459	}
6460	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
6461	return (b0);
6462}
6463
6464/* PF firewall log ruleset name */
6465struct block *
6466gen_pf_ruleset(char *ruleset)
6467{
6468	struct block *b0;
6469
6470	if (linktype != DLT_PFLOG) {
6471		bpf_error("ruleset not supported on linktype 0x%x", linktype);
6472		/* NOTREACHED */
6473	}
6474	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
6475		bpf_error("ruleset names can only be %ld characters",
6476		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
6477		/* NOTREACHED */
6478	}
6479	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
6480	    strlen(ruleset), (const u_char *)ruleset);
6481	return (b0);
6482}
6483
6484/* PF firewall log rule number */
6485struct block *
6486gen_pf_rnr(int rnr)
6487{
6488	struct block *b0;
6489
6490	if (linktype == DLT_PFLOG) {
6491		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
6492			 (bpf_int32)rnr);
6493	} else {
6494		bpf_error("rnr not supported on linktype 0x%x", linktype);
6495		/* NOTREACHED */
6496	}
6497
6498	return (b0);
6499}
6500
6501/* PF firewall log sub-rule number */
6502struct block *
6503gen_pf_srnr(int srnr)
6504{
6505	struct block *b0;
6506
6507	if (linktype != DLT_PFLOG) {
6508		bpf_error("srnr not supported on linktype 0x%x", linktype);
6509		/* NOTREACHED */
6510	}
6511
6512	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
6513	    (bpf_int32)srnr);
6514	return (b0);
6515}
6516
6517/* PF firewall log reason code */
6518struct block *
6519gen_pf_reason(int reason)
6520{
6521	struct block *b0;
6522
6523	if (linktype == DLT_PFLOG) {
6524		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
6525		    (bpf_int32)reason);
6526	} else {
6527		bpf_error("reason not supported on linktype 0x%x", linktype);
6528		/* NOTREACHED */
6529	}
6530
6531	return (b0);
6532}
6533
6534/* PF firewall log action */
6535struct block *
6536gen_pf_action(int action)
6537{
6538	struct block *b0;
6539
6540	if (linktype == DLT_PFLOG) {
6541		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
6542		    (bpf_int32)action);
6543	} else {
6544		bpf_error("action not supported on linktype 0x%x", linktype);
6545		/* NOTREACHED */
6546	}
6547
6548	return (b0);
6549}
6550#else /* !HAVE_NET_PFVAR_H */
6551struct block *
6552gen_pf_ifname(const char *ifname)
6553{
6554	bpf_error("libpcap was compiled without pf support");
6555	/* NOTREACHED */
6556	return (NULL);
6557}
6558
6559struct block *
6560gen_pf_ruleset(char *ruleset)
6561{
6562	bpf_error("libpcap was compiled on a machine without pf support");
6563	/* NOTREACHED */
6564	return (NULL);
6565}
6566
6567struct block *
6568gen_pf_rnr(int rnr)
6569{
6570	bpf_error("libpcap was compiled on a machine without pf support");
6571	/* NOTREACHED */
6572	return (NULL);
6573}
6574
6575struct block *
6576gen_pf_srnr(int srnr)
6577{
6578	bpf_error("libpcap was compiled on a machine without pf support");
6579	/* NOTREACHED */
6580	return (NULL);
6581}
6582
6583struct block *
6584gen_pf_reason(int reason)
6585{
6586	bpf_error("libpcap was compiled on a machine without pf support");
6587	/* NOTREACHED */
6588	return (NULL);
6589}
6590
6591struct block *
6592gen_pf_action(int action)
6593{
6594	bpf_error("libpcap was compiled on a machine without pf support");
6595	/* NOTREACHED */
6596	return (NULL);
6597}
6598#endif /* HAVE_NET_PFVAR_H */
6599
6600struct block *
6601gen_acode(eaddr, q)
6602	register const u_char *eaddr;
6603	struct qual q;
6604{
6605	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6606		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
6607			return gen_ahostop(eaddr, (int)q.dir);
6608	}
6609	bpf_error("ARCnet address used in non-arc expression");
6610	/* NOTREACHED */
6611	return NULL;
6612}
6613
6614static struct block *
6615gen_ahostop(eaddr, dir)
6616	register const u_char *eaddr;
6617	register int dir;
6618{
6619	register struct block *b0, *b1;
6620
6621	switch (dir) {
6622	/* src comes first, different from Ethernet */
6623	case Q_SRC:
6624		return gen_bcmp(OR_LINK, 0, 1, eaddr);
6625
6626	case Q_DST:
6627		return gen_bcmp(OR_LINK, 1, 1, eaddr);
6628
6629	case Q_AND:
6630		b0 = gen_ahostop(eaddr, Q_SRC);
6631		b1 = gen_ahostop(eaddr, Q_DST);
6632		gen_and(b0, b1);
6633		return b1;
6634
6635	case Q_DEFAULT:
6636	case Q_OR:
6637		b0 = gen_ahostop(eaddr, Q_SRC);
6638		b1 = gen_ahostop(eaddr, Q_DST);
6639		gen_or(b0, b1);
6640		return b1;
6641	}
6642	abort();
6643	/* NOTREACHED */
6644}
6645
6646/*
6647 * support IEEE 802.1Q VLAN trunk over ethernet
6648 */
6649struct block *
6650gen_vlan(vlan_num)
6651	int vlan_num;
6652{
6653	struct	block	*b0, *b1;
6654
6655	/* can't check for VLAN-encapsulated packets inside MPLS */
6656	if (label_stack_depth > 0)
6657		bpf_error("no VLAN match after MPLS");
6658
6659	/*
6660	 * Change the offsets to point to the type and data fields within
6661	 * the VLAN packet.  Just increment the offsets, so that we
6662	 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
6663	 * capture VLAN 200 encapsulated within VLAN 100.
6664	 *
6665	 * XXX - this is a bit of a kludge.  If we were to split the
6666	 * compiler into a parser that parses an expression and
6667	 * generates an expression tree, and a code generator that
6668	 * takes an expression tree (which could come from our
6669	 * parser or from some other parser) and generates BPF code,
6670	 * we could perhaps make the offsets parameters of routines
6671	 * and, in the handler for an "AND" node, pass to subnodes
6672	 * other than the VLAN node the adjusted offsets.
6673	 *
6674	 * This would mean that "vlan" would, instead of changing the
6675	 * behavior of *all* tests after it, change only the behavior
6676	 * of tests ANDed with it.  That would change the documented
6677	 * semantics of "vlan", which might break some expressions.
6678	 * However, it would mean that "(vlan and ip) or ip" would check
6679	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6680	 * checking only for VLAN-encapsulated IP, so that could still
6681	 * be considered worth doing; it wouldn't break expressions
6682	 * that are of the form "vlan and ..." or "vlan N and ...",
6683	 * which I suspect are the most common expressions involving
6684	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
6685	 * would really want, now, as all the "or ..." tests would
6686	 * be done assuming a VLAN, even though the "or" could be viewed
6687	 * as meaning "or, if this isn't a VLAN packet...".
6688	 */
6689	orig_linktype = off_linktype;	/* save original values */
6690	orig_nl = off_nl;
6691
6692	switch (linktype) {
6693
6694	case DLT_EN10MB:
6695		off_linktype += 4;
6696		off_nl_nosnap += 4;
6697		off_nl += 4;
6698		break;
6699
6700	default:
6701		bpf_error("no VLAN support for data link type %d",
6702		      linktype);
6703		/*NOTREACHED*/
6704	}
6705
6706	/* check for VLAN */
6707	b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
6708
6709	/* If a specific VLAN is requested, check VLAN id */
6710	if (vlan_num >= 0) {
6711		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_H, (bpf_int32)vlan_num,
6712		    0x0fff);
6713		gen_and(b0, b1);
6714		b0 = b1;
6715	}
6716
6717	return (b0);
6718}
6719
6720/*
6721 * support for MPLS
6722 */
6723struct block *
6724gen_mpls(label_num)
6725	int label_num;
6726{
6727	struct	block	*b0,*b1;
6728
6729	/*
6730	 * Change the offsets to point to the type and data fields within
6731	 * the MPLS packet.  Just increment the offsets, so that we
6732	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
6733	 * capture packets with an outer label of 100000 and an inner
6734	 * label of 1024.
6735	 *
6736	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
6737	 */
6738        orig_nl = off_nl;
6739
6740        if (label_stack_depth > 0) {
6741            /* just match the bottom-of-stack bit clear */
6742            b0 = gen_mcmp(OR_LINK, orig_nl-2, BPF_B, 0, 0x01);
6743        } else {
6744            /*
6745             * Indicate that we're checking MPLS-encapsulated headers,
6746             * to make sure higher level code generators don't try to
6747             * match against IP-related protocols such as Q_ARP, Q_RARP
6748             * etc.
6749             */
6750            switch (linktype) {
6751
6752            case DLT_C_HDLC: /* fall through */
6753            case DLT_EN10MB:
6754                    b0 = gen_linktype(ETHERTYPE_MPLS);
6755                    break;
6756
6757            case DLT_PPP:
6758                    b0 = gen_linktype(PPP_MPLS_UCAST);
6759                    break;
6760
6761                    /* FIXME add other DLT_s ...
6762                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
6763                     * leave it for now */
6764
6765            default:
6766                    bpf_error("no MPLS support for data link type %d",
6767                          linktype);
6768                    b0 = NULL;
6769                    /*NOTREACHED*/
6770                    break;
6771            }
6772        }
6773
6774	/* If a specific MPLS label is requested, check it */
6775	if (label_num >= 0) {
6776		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
6777		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_W, (bpf_int32)label_num,
6778		    0xfffff000); /* only compare the first 20 bits */
6779		gen_and(b0, b1);
6780		b0 = b1;
6781	}
6782
6783        off_nl_nosnap += 4;
6784        off_nl += 4;
6785        label_stack_depth++;
6786	return (b0);
6787}
6788
6789/*
6790 * Support PPPOE discovery and session.
6791 */
6792struct block *
6793gen_pppoed()
6794{
6795	/* check for PPPoE discovery */
6796	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
6797}
6798
6799struct block *
6800gen_pppoes()
6801{
6802	struct block *b0;
6803
6804	/*
6805	 * Test against the PPPoE session link-layer type.
6806	 */
6807	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
6808
6809	/*
6810	 * Change the offsets to point to the type and data fields within
6811	 * the PPP packet.
6812	 *
6813	 * XXX - this is a bit of a kludge.  If we were to split the
6814	 * compiler into a parser that parses an expression and
6815	 * generates an expression tree, and a code generator that
6816	 * takes an expression tree (which could come from our
6817	 * parser or from some other parser) and generates BPF code,
6818	 * we could perhaps make the offsets parameters of routines
6819	 * and, in the handler for an "AND" node, pass to subnodes
6820	 * other than the PPPoE node the adjusted offsets.
6821	 *
6822	 * This would mean that "pppoes" would, instead of changing the
6823	 * behavior of *all* tests after it, change only the behavior
6824	 * of tests ANDed with it.  That would change the documented
6825	 * semantics of "pppoes", which might break some expressions.
6826	 * However, it would mean that "(pppoes and ip) or ip" would check
6827	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6828	 * checking only for VLAN-encapsulated IP, so that could still
6829	 * be considered worth doing; it wouldn't break expressions
6830	 * that are of the form "pppoes and ..." which I suspect are the
6831	 * most common expressions involving "pppoes".  "pppoes or ..."
6832	 * doesn't necessarily do what the user would really want, now,
6833	 * as all the "or ..." tests would be done assuming PPPoE, even
6834	 * though the "or" could be viewed as meaning "or, if this isn't
6835	 * a PPPoE packet...".
6836	 */
6837	orig_linktype = off_linktype;	/* save original values */
6838	orig_nl = off_nl;
6839
6840	/*
6841	 * The "network-layer" protocol is PPPoE, which has a 6-byte
6842	 * PPPoE header, followed by PPP payload, so we set the
6843	 * offsets to the network layer offset plus 6 bytes for
6844	 * the PPPoE header plus the values appropriate for PPP when
6845	 * encapsulated in Ethernet (which means there's no HDLC
6846	 * encapsulation).
6847	 */
6848	off_linktype = orig_nl + 6;
6849	off_nl = orig_nl + 6 + 2;
6850	off_nl_nosnap = orig_nl + 6 + 2;
6851
6852	/*
6853	 * Set the link-layer type to PPP, as all subsequent tests will
6854	 * be on the encapsulated PPP header.
6855	 */
6856	linktype = DLT_PPP;
6857
6858	return b0;
6859}
6860
6861struct block *
6862gen_atmfield_code(atmfield, jvalue, jtype, reverse)
6863	int atmfield;
6864	bpf_int32 jvalue;
6865	bpf_u_int32 jtype;
6866	int reverse;
6867{
6868	struct block *b0;
6869
6870	switch (atmfield) {
6871
6872	case A_VPI:
6873		if (!is_atm)
6874			bpf_error("'vpi' supported only on raw ATM");
6875		if (off_vpi == (u_int)-1)
6876			abort();
6877		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
6878		    reverse, jvalue);
6879		break;
6880
6881	case A_VCI:
6882		if (!is_atm)
6883			bpf_error("'vci' supported only on raw ATM");
6884		if (off_vci == (u_int)-1)
6885			abort();
6886		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
6887		    reverse, jvalue);
6888		break;
6889
6890	case A_PROTOTYPE:
6891		if (off_proto == (u_int)-1)
6892			abort();	/* XXX - this isn't on FreeBSD */
6893		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
6894		    reverse, jvalue);
6895		break;
6896
6897	case A_MSGTYPE:
6898		if (off_payload == (u_int)-1)
6899			abort();
6900		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
6901		    0xffffffff, jtype, reverse, jvalue);
6902		break;
6903
6904	case A_CALLREFTYPE:
6905		if (!is_atm)
6906			bpf_error("'callref' supported only on raw ATM");
6907		if (off_proto == (u_int)-1)
6908			abort();
6909		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
6910		    jtype, reverse, jvalue);
6911		break;
6912
6913	default:
6914		abort();
6915	}
6916	return b0;
6917}
6918
6919struct block *
6920gen_atmtype_abbrev(type)
6921	int type;
6922{
6923	struct block *b0, *b1;
6924
6925	switch (type) {
6926
6927	case A_METAC:
6928		/* Get all packets in Meta signalling Circuit */
6929		if (!is_atm)
6930			bpf_error("'metac' supported only on raw ATM");
6931		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6932		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
6933		gen_and(b0, b1);
6934		break;
6935
6936	case A_BCC:
6937		/* Get all packets in Broadcast Circuit*/
6938		if (!is_atm)
6939			bpf_error("'bcc' supported only on raw ATM");
6940		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6941		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
6942		gen_and(b0, b1);
6943		break;
6944
6945	case A_OAMF4SC:
6946		/* Get all cells in Segment OAM F4 circuit*/
6947		if (!is_atm)
6948			bpf_error("'oam4sc' supported only on raw ATM");
6949		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6950		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6951		gen_and(b0, b1);
6952		break;
6953
6954	case A_OAMF4EC:
6955		/* Get all cells in End-to-End OAM F4 Circuit*/
6956		if (!is_atm)
6957			bpf_error("'oam4ec' supported only on raw ATM");
6958		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6959		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6960		gen_and(b0, b1);
6961		break;
6962
6963	case A_SC:
6964		/*  Get all packets in connection Signalling Circuit */
6965		if (!is_atm)
6966			bpf_error("'sc' supported only on raw ATM");
6967		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6968		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
6969		gen_and(b0, b1);
6970		break;
6971
6972	case A_ILMIC:
6973		/* Get all packets in ILMI Circuit */
6974		if (!is_atm)
6975			bpf_error("'ilmic' supported only on raw ATM");
6976		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6977		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
6978		gen_and(b0, b1);
6979		break;
6980
6981	case A_LANE:
6982		/* Get all LANE packets */
6983		if (!is_atm)
6984			bpf_error("'lane' supported only on raw ATM");
6985		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
6986
6987		/*
6988		 * Arrange that all subsequent tests assume LANE
6989		 * rather than LLC-encapsulated packets, and set
6990		 * the offsets appropriately for LANE-encapsulated
6991		 * Ethernet.
6992		 *
6993		 * "off_mac" is the offset of the Ethernet header,
6994		 * which is 2 bytes past the ATM pseudo-header
6995		 * (skipping the pseudo-header and 2-byte LE Client
6996		 * field).  The other offsets are Ethernet offsets
6997		 * relative to "off_mac".
6998		 */
6999		is_lane = 1;
7000		off_mac = off_payload + 2;	/* MAC header */
7001		off_linktype = off_mac + 12;
7002		off_nl = off_mac + 14;		/* Ethernet II */
7003		off_nl_nosnap = off_mac + 17;	/* 802.3+802.2 */
7004		break;
7005
7006	case A_LLC:
7007		/* Get all LLC-encapsulated packets */
7008		if (!is_atm)
7009			bpf_error("'llc' supported only on raw ATM");
7010		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
7011		is_lane = 0;
7012		break;
7013
7014	default:
7015		abort();
7016	}
7017	return b1;
7018}
7019
7020/*
7021 * Filtering for MTP2 messages based on li value
7022 * FISU, length is null
7023 * LSSU, length is 1 or 2
7024 * MSU, length is 3 or more
7025 */
7026struct block *
7027gen_mtp2type_abbrev(type)
7028	int type;
7029{
7030	struct block *b0, *b1;
7031
7032	switch (type) {
7033
7034	case M_FISU:
7035		if ( (linktype != DLT_MTP2) &&
7036		     (linktype != DLT_MTP2_WITH_PHDR) )
7037			bpf_error("'fisu' supported only on MTP2");
7038		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
7039		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
7040		break;
7041
7042	case M_LSSU:
7043		if ( (linktype != DLT_MTP2) &&
7044		     (linktype != DLT_MTP2_WITH_PHDR) )
7045			bpf_error("'lssu' supported only on MTP2");
7046		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
7047		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
7048		gen_and(b1, b0);
7049		break;
7050
7051	case M_MSU:
7052		if ( (linktype != DLT_MTP2) &&
7053		     (linktype != DLT_MTP2_WITH_PHDR) )
7054			bpf_error("'msu' supported only on MTP2");
7055		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
7056		break;
7057
7058	default:
7059		abort();
7060	}
7061	return b0;
7062}
7063
7064struct block *
7065gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
7066	int mtp3field;
7067	bpf_u_int32 jvalue;
7068	bpf_u_int32 jtype;
7069	int reverse;
7070{
7071	struct block *b0;
7072	bpf_u_int32 val1 , val2 , val3;
7073
7074	switch (mtp3field) {
7075
7076	case M_SIO:
7077		if (off_sio == (u_int)-1)
7078			bpf_error("'sio' supported only on SS7");
7079		/* sio coded on 1 byte so max value 255 */
7080		if(jvalue > 255)
7081		        bpf_error("sio value %u too big; max value = 255",
7082		            jvalue);
7083		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
7084		    (u_int)jtype, reverse, (u_int)jvalue);
7085		break;
7086
7087        case M_OPC:
7088	        if (off_opc == (u_int)-1)
7089			bpf_error("'opc' supported only on SS7");
7090		/* opc coded on 14 bits so max value 16383 */
7091		if (jvalue > 16383)
7092		        bpf_error("opc value %u too big; max value = 16383",
7093		            jvalue);
7094		/* the following instructions are made to convert jvalue
7095		 * to the form used to write opc in an ss7 message*/
7096		val1 = jvalue & 0x00003c00;
7097		val1 = val1 >>10;
7098		val2 = jvalue & 0x000003fc;
7099		val2 = val2 <<6;
7100		val3 = jvalue & 0x00000003;
7101		val3 = val3 <<22;
7102		jvalue = val1 + val2 + val3;
7103		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
7104		    (u_int)jtype, reverse, (u_int)jvalue);
7105		break;
7106
7107	case M_DPC:
7108	        if (off_dpc == (u_int)-1)
7109			bpf_error("'dpc' supported only on SS7");
7110		/* dpc coded on 14 bits so max value 16383 */
7111		if (jvalue > 16383)
7112		        bpf_error("dpc value %u too big; max value = 16383",
7113		            jvalue);
7114		/* the following instructions are made to convert jvalue
7115		 * to the forme used to write dpc in an ss7 message*/
7116		val1 = jvalue & 0x000000ff;
7117		val1 = val1 << 24;
7118		val2 = jvalue & 0x00003f00;
7119		val2 = val2 << 8;
7120		jvalue = val1 + val2;
7121		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
7122		    (u_int)jtype, reverse, (u_int)jvalue);
7123		break;
7124
7125	case M_SLS:
7126	        if (off_sls == (u_int)-1)
7127			bpf_error("'sls' supported only on SS7");
7128		/* sls coded on 4 bits so max value 15 */
7129		if (jvalue > 15)
7130		         bpf_error("sls value %u too big; max value = 15",
7131		             jvalue);
7132		/* the following instruction is made to convert jvalue
7133		 * to the forme used to write sls in an ss7 message*/
7134		jvalue = jvalue << 4;
7135		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
7136		    (u_int)jtype,reverse, (u_int)jvalue);
7137		break;
7138
7139	default:
7140		abort();
7141	}
7142	return b0;
7143}
7144
7145static struct block *
7146gen_msg_abbrev(type)
7147	int type;
7148{
7149	struct block *b1;
7150
7151	/*
7152	 * Q.2931 signalling protocol messages for handling virtual circuits
7153	 * establishment and teardown
7154	 */
7155	switch (type) {
7156
7157	case A_SETUP:
7158		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
7159		break;
7160
7161	case A_CALLPROCEED:
7162		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
7163		break;
7164
7165	case A_CONNECT:
7166		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
7167		break;
7168
7169	case A_CONNECTACK:
7170		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
7171		break;
7172
7173	case A_RELEASE:
7174		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
7175		break;
7176
7177	case A_RELEASE_DONE:
7178		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
7179		break;
7180
7181	default:
7182		abort();
7183	}
7184	return b1;
7185}
7186
7187struct block *
7188gen_atmmulti_abbrev(type)
7189	int type;
7190{
7191	struct block *b0, *b1;
7192
7193	switch (type) {
7194
7195	case A_OAM:
7196		if (!is_atm)
7197			bpf_error("'oam' supported only on raw ATM");
7198		b1 = gen_atmmulti_abbrev(A_OAMF4);
7199		break;
7200
7201	case A_OAMF4:
7202		if (!is_atm)
7203			bpf_error("'oamf4' supported only on raw ATM");
7204		/* OAM F4 type */
7205		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
7206		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
7207		gen_or(b0, b1);
7208		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
7209		gen_and(b0, b1);
7210		break;
7211
7212	case A_CONNECTMSG:
7213		/*
7214		 * Get Q.2931 signalling messages for switched
7215		 * virtual connection
7216		 */
7217		if (!is_atm)
7218			bpf_error("'connectmsg' supported only on raw ATM");
7219		b0 = gen_msg_abbrev(A_SETUP);
7220		b1 = gen_msg_abbrev(A_CALLPROCEED);
7221		gen_or(b0, b1);
7222		b0 = gen_msg_abbrev(A_CONNECT);
7223		gen_or(b0, b1);
7224		b0 = gen_msg_abbrev(A_CONNECTACK);
7225		gen_or(b0, b1);
7226		b0 = gen_msg_abbrev(A_RELEASE);
7227		gen_or(b0, b1);
7228		b0 = gen_msg_abbrev(A_RELEASE_DONE);
7229		gen_or(b0, b1);
7230		b0 = gen_atmtype_abbrev(A_SC);
7231		gen_and(b0, b1);
7232		break;
7233
7234	case A_METACONNECT:
7235		if (!is_atm)
7236			bpf_error("'metaconnect' supported only on raw ATM");
7237		b0 = gen_msg_abbrev(A_SETUP);
7238		b1 = gen_msg_abbrev(A_CALLPROCEED);
7239		gen_or(b0, b1);
7240		b0 = gen_msg_abbrev(A_CONNECT);
7241		gen_or(b0, b1);
7242		b0 = gen_msg_abbrev(A_RELEASE);
7243		gen_or(b0, b1);
7244		b0 = gen_msg_abbrev(A_RELEASE_DONE);
7245		gen_or(b0, b1);
7246		b0 = gen_atmtype_abbrev(A_METAC);
7247		gen_and(b0, b1);
7248		break;
7249
7250	default:
7251		abort();
7252	}
7253	return b1;
7254}
7255