gencode.c revision 147897
1162674Spiso/*#define CHASE_CHAIN*/
2162674Spiso/*
3162674Spiso * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4162674Spiso *	The Regents of the University of California.  All rights reserved.
5162674Spiso *
6162674Spiso * Redistribution and use in source and binary forms, with or without
7162674Spiso * modification, are permitted provided that: (1) source code distributions
8162674Spiso * retain the above copyright notice and this paragraph in its entirety, (2)
9162674Spiso * distributions including binary code include the above copyright notice and
10162674Spiso * this paragraph in its entirety in the documentation or other materials
11162674Spiso * provided with the distribution, and (3) all advertising materials mentioning
12162674Spiso * features or use of this software display the following acknowledgement:
13162674Spiso * ``This product includes software developed by the University of California,
14162674Spiso * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15162674Spiso * the University nor the names of its contributors may be used to endorse
16162674Spiso * or promote products derived from this software without specific prior
17162674Spiso * written permission.
18162674Spiso * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19162674Spiso * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20162674Spiso * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21162674Spiso *
22162674Spiso * $FreeBSD: head/contrib/libpcap/gencode.c 147897 2005-07-11 03:43:25Z sam $
23162674Spiso */
24162674Spiso#ifndef lint
25162674Spisostatic const char rcsid[] _U_ =
26162674Spiso    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.221.2.24 2005/06/20 21:52:53 guy Exp $ (LBL)";
27162674Spiso#endif
28162674Spiso
29162674Spiso#ifdef HAVE_CONFIG_H
30162674Spiso#include "config.h"
31162674Spiso#endif
32162674Spiso
33162674Spiso#ifdef WIN32
34162674Spiso#include <pcap-stdinc.h>
35162674Spiso#else /* WIN32 */
36162674Spiso#include <sys/types.h>
37162674Spiso#include <sys/socket.h>
38162674Spiso#endif /* WIN32 */
39162674Spiso
40162674Spiso/*
41162674Spiso * XXX - why was this included even on UNIX?
42162674Spiso */
43162674Spiso#ifdef __MINGW32__
44162674Spiso#include "IP6_misc.h"
45162674Spiso#endif
46162674Spiso
47162674Spiso#ifndef WIN32
48162674Spiso
49162674Spiso#ifdef __NetBSD__
50162674Spiso#include <sys/param.h>
51162674Spiso#endif
52162674Spiso
53162674Spiso#include <netinet/in.h>
54162674Spiso
55162674Spiso#endif /* WIN32 */
56162674Spiso
57162674Spiso#include <stdlib.h>
58162674Spiso#include <string.h>
59162674Spiso#include <memory.h>
60162674Spiso#include <setjmp.h>
61162674Spiso#include <stdarg.h>
62162674Spiso
63162674Spiso#ifdef MSDOS
64162674Spiso#include "pcap-dos.h"
65162674Spiso#endif
66162674Spiso
67162674Spiso#include "pcap-int.h"
68162674Spiso
69162674Spiso#include "ethertype.h"
70162674Spiso#include "nlpid.h"
71162674Spiso#include "llc.h"
72162674Spiso#include "gencode.h"
73162674Spiso#include "atmuni31.h"
74162674Spiso#include "sunatmpos.h"
75162674Spiso#include "ppp.h"
76162674Spiso#include "sll.h"
77162674Spiso#include "arcnet.h"
78162674Spiso#include "pf.h"
79162674Spiso#ifndef offsetof
80162674Spiso#define offsetof(s, e) ((size_t)&((s *)0)->e)
81162674Spiso#endif
82162674Spiso#ifdef INET6
83162674Spiso#ifndef WIN32
84162674Spiso#include <netdb.h>	/* for "struct addrinfo" */
85162674Spiso#endif /* WIN32 */
86162674Spiso#endif /*INET6*/
87162674Spiso#include <pcap-namedb.h>
88162674Spiso
89162674Spiso#undef ETHERMTU
90162674Spiso#define ETHERMTU	1500
91162674Spiso
92162674Spiso#ifndef IPPROTO_SCTP
93162674Spiso#define IPPROTO_SCTP 132
94162674Spiso#endif
95162674Spiso
96162674Spiso#ifdef HAVE_OS_PROTO_H
97162674Spiso#include "os-proto.h"
98162674Spiso#endif
99162674Spiso
100162674Spiso#define JMP(c) ((c)|BPF_JMP|BPF_K)
101162674Spiso
102162674Spiso/* Locals */
103162674Spisostatic jmp_buf top_ctx;
104162674Spisostatic pcap_t *bpf_pcap;
105162674Spiso
106162674Spiso/* Hack for updating VLAN, MPLS offsets. */
107162674Spisostatic u_int	orig_linktype = -1U, orig_nl = -1U;
108162674Spiso
109162674Spiso/* XXX */
110162674Spiso#ifdef PCAP_FDDIPAD
111162674Spisostatic int	pcap_fddipad;
112162674Spiso#endif
113162674Spiso
114162674Spiso/* VARARGS */
115162674Spisovoid
116162674Spisobpf_error(const char *fmt, ...)
117162674Spiso{
118162674Spiso	va_list ap;
119162674Spiso
120162674Spiso	va_start(ap, fmt);
121162674Spiso	if (bpf_pcap != NULL)
122162674Spiso		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
123162674Spiso		    fmt, ap);
124162674Spiso	va_end(ap);
125162674Spiso	longjmp(top_ctx, 1);
126162674Spiso	/* NOTREACHED */
127162674Spiso}
128162674Spiso
129162674Spisostatic void init_linktype(pcap_t *);
130162674Spiso
131162674Spisostatic int alloc_reg(void);
132162674Spisostatic void free_reg(int);
133162674Spiso
134162674Spisostatic struct block *root;
135162674Spiso
136162674Spiso/*
137162674Spiso * Value passed to gen_load_a() to indicate what the offset argument
138162674Spiso * is relative to.
139162674Spiso */
140162674Spisoenum e_offrel {
141162674Spiso	OR_PACKET,	/* relative to the beginning of the packet */
142162674Spiso	OR_LINK,	/* relative to the link-layer header */
143162674Spiso	OR_NET,		/* relative to the network-layer header */
144162674Spiso	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
145162674Spiso	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
146162674Spiso	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
147162674Spiso};
148162674Spiso
149162674Spiso/*
150162674Spiso * We divy out chunks of memory rather than call malloc each time so
151162674Spiso * we don't have to worry about leaking memory.  It's probably
152162674Spiso * not a big deal if all this memory was wasted but if this ever
153162674Spiso * goes into a library that would probably not be a good idea.
154162674Spiso *
155162674Spiso * XXX - this *is* in a library....
156162674Spiso */
157162674Spiso#define NCHUNKS 16
158#define CHUNK0SIZE 1024
159struct chunk {
160	u_int n_left;
161	void *m;
162};
163
164static struct chunk chunks[NCHUNKS];
165static int cur_chunk;
166
167static void *newchunk(u_int);
168static void freechunks(void);
169static inline struct block *new_block(int);
170static inline struct slist *new_stmt(int);
171static struct block *gen_retblk(int);
172static inline void syntax(void);
173
174static void backpatch(struct block *, struct block *);
175static void merge(struct block *, struct block *);
176static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
177static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
178static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
179static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
180static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
181static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
182    bpf_u_int32);
183static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
184static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
185    bpf_u_int32, bpf_u_int32, int, bpf_int32);
186static struct slist *gen_load_llrel(u_int, u_int);
187static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
188static struct slist *gen_loadx_iphdrlen(void);
189static struct block *gen_uncond(int);
190static inline struct block *gen_true(void);
191static inline struct block *gen_false(void);
192static struct block *gen_ether_linktype(int);
193static struct block *gen_linux_sll_linktype(int);
194static void insert_radiotap_load_llprefixlen(struct block *);
195static void insert_load_llprefixlen(struct block *);
196static struct slist *gen_llprefixlen(void);
197static struct block *gen_linktype(int);
198static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
199static struct block *gen_llc_linktype(int);
200static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
201#ifdef INET6
202static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
203#endif
204static struct block *gen_ahostop(const u_char *, int);
205static struct block *gen_ehostop(const u_char *, int);
206static struct block *gen_fhostop(const u_char *, int);
207static struct block *gen_thostop(const u_char *, int);
208static struct block *gen_wlanhostop(const u_char *, int);
209static struct block *gen_ipfchostop(const u_char *, int);
210static struct block *gen_dnhostop(bpf_u_int32, int);
211static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int);
212#ifdef INET6
213static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int);
214#endif
215#ifndef INET6
216static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
217#endif
218static struct block *gen_ipfrag(void);
219static struct block *gen_portatom(int, bpf_int32);
220static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
221#ifdef INET6
222static struct block *gen_portatom6(int, bpf_int32);
223static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
224#endif
225struct block *gen_portop(int, int, int);
226static struct block *gen_port(int, int, int);
227struct block *gen_portrangeop(int, int, int, int);
228static struct block *gen_portrange(int, int, int, int);
229#ifdef INET6
230struct block *gen_portop6(int, int, int);
231static struct block *gen_port6(int, int, int);
232struct block *gen_portrangeop6(int, int, int, int);
233static struct block *gen_portrange6(int, int, int, int);
234#endif
235static int lookup_proto(const char *, int);
236static struct block *gen_protochain(int, int, int);
237static struct block *gen_proto(int, int, int);
238static struct slist *xfer_to_x(struct arth *);
239static struct slist *xfer_to_a(struct arth *);
240static struct block *gen_mac_multicast(int);
241static struct block *gen_len(int, int);
242
243static struct block *gen_msg_abbrev(int type);
244
245static void *
246newchunk(n)
247	u_int n;
248{
249	struct chunk *cp;
250	int k;
251	size_t size;
252
253#ifndef __NetBSD__
254	/* XXX Round up to nearest long. */
255	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
256#else
257	/* XXX Round up to structure boundary. */
258	n = ALIGN(n);
259#endif
260
261	cp = &chunks[cur_chunk];
262	if (n > cp->n_left) {
263		++cp, k = ++cur_chunk;
264		if (k >= NCHUNKS)
265			bpf_error("out of memory");
266		size = CHUNK0SIZE << k;
267		cp->m = (void *)malloc(size);
268		if (cp->m == NULL)
269			bpf_error("out of memory");
270		memset((char *)cp->m, 0, size);
271		cp->n_left = size;
272		if (n > size)
273			bpf_error("out of memory");
274	}
275	cp->n_left -= n;
276	return (void *)((char *)cp->m + cp->n_left);
277}
278
279static void
280freechunks()
281{
282	int i;
283
284	cur_chunk = 0;
285	for (i = 0; i < NCHUNKS; ++i)
286		if (chunks[i].m != NULL) {
287			free(chunks[i].m);
288			chunks[i].m = NULL;
289		}
290}
291
292/*
293 * A strdup whose allocations are freed after code generation is over.
294 */
295char *
296sdup(s)
297	register const char *s;
298{
299	int n = strlen(s) + 1;
300	char *cp = newchunk(n);
301
302	strlcpy(cp, s, n);
303	return (cp);
304}
305
306static inline struct block *
307new_block(code)
308	int code;
309{
310	struct block *p;
311
312	p = (struct block *)newchunk(sizeof(*p));
313	p->s.code = code;
314	p->head = p;
315
316	return p;
317}
318
319static inline struct slist *
320new_stmt(code)
321	int code;
322{
323	struct slist *p;
324
325	p = (struct slist *)newchunk(sizeof(*p));
326	p->s.code = code;
327
328	return p;
329}
330
331static struct block *
332gen_retblk(v)
333	int v;
334{
335	struct block *b = new_block(BPF_RET|BPF_K);
336
337	b->s.k = v;
338	return b;
339}
340
341static inline void
342syntax()
343{
344	bpf_error("syntax error in filter expression");
345}
346
347static bpf_u_int32 netmask;
348static int snaplen;
349int no_optimize;
350
351int
352pcap_compile(pcap_t *p, struct bpf_program *program,
353	     char *buf, int optimize, bpf_u_int32 mask)
354{
355	extern int n_errors;
356	int len;
357
358	no_optimize = 0;
359	n_errors = 0;
360	root = NULL;
361	bpf_pcap = p;
362	if (setjmp(top_ctx)) {
363		lex_cleanup();
364		freechunks();
365		return (-1);
366	}
367
368	netmask = mask;
369
370	snaplen = pcap_snapshot(p);
371	if (snaplen == 0) {
372		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
373			 "snaplen of 0 rejects all packets");
374		return -1;
375	}
376
377	lex_init(buf ? buf : "");
378	init_linktype(p);
379	(void)pcap_parse();
380
381	if (n_errors)
382		syntax();
383
384	if (root == NULL)
385		root = gen_retblk(snaplen);
386
387	if (optimize && !no_optimize) {
388		bpf_optimize(&root);
389		if (root == NULL ||
390		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
391			bpf_error("expression rejects all packets");
392	}
393	program->bf_insns = icode_to_fcode(root, &len);
394	program->bf_len = len;
395
396	lex_cleanup();
397	freechunks();
398	return (0);
399}
400
401/*
402 * entry point for using the compiler with no pcap open
403 * pass in all the stuff that is needed explicitly instead.
404 */
405int
406pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
407		    struct bpf_program *program,
408	     char *buf, int optimize, bpf_u_int32 mask)
409{
410	pcap_t *p;
411	int ret;
412
413	p = pcap_open_dead(linktype_arg, snaplen_arg);
414	if (p == NULL)
415		return (-1);
416	ret = pcap_compile(p, program, buf, optimize, mask);
417	pcap_close(p);
418	return (ret);
419}
420
421/*
422 * Clean up a "struct bpf_program" by freeing all the memory allocated
423 * in it.
424 */
425void
426pcap_freecode(struct bpf_program *program)
427{
428	program->bf_len = 0;
429	if (program->bf_insns != NULL) {
430		free((char *)program->bf_insns);
431		program->bf_insns = NULL;
432	}
433}
434
435/*
436 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
437 * which of the jt and jf fields has been resolved and which is a pointer
438 * back to another unresolved block (or nil).  At least one of the fields
439 * in each block is already resolved.
440 */
441static void
442backpatch(list, target)
443	struct block *list, *target;
444{
445	struct block *next;
446
447	while (list) {
448		if (!list->sense) {
449			next = JT(list);
450			JT(list) = target;
451		} else {
452			next = JF(list);
453			JF(list) = target;
454		}
455		list = next;
456	}
457}
458
459/*
460 * Merge the lists in b0 and b1, using the 'sense' field to indicate
461 * which of jt and jf is the link.
462 */
463static void
464merge(b0, b1)
465	struct block *b0, *b1;
466{
467	register struct block **p = &b0;
468
469	/* Find end of list. */
470	while (*p)
471		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
472
473	/* Concatenate the lists. */
474	*p = b1;
475}
476
477void
478finish_parse(p)
479	struct block *p;
480{
481	backpatch(p, gen_retblk(snaplen));
482	p->sense = !p->sense;
483	backpatch(p, gen_retblk(0));
484	root = p->head;
485
486	/*
487	 * Insert before the statements of the first (root) block any
488	 * statements needed to load the lengths of any variable-length
489	 * headers into registers.
490	 *
491	 * XXX - a fancier strategy would be to insert those before the
492	 * statements of all blocks that use those lengths and that
493	 * have no predecessors that use them, so that we only compute
494	 * the lengths if we need them.  There might be even better
495	 * approaches than that.  However, as we're currently only
496	 * handling variable-length radiotap headers, and as all
497	 * filtering expressions other than raw link[M:N] tests
498	 * require the length of that header, doing more for that
499	 * header length isn't really worth the effort.
500	 */
501	insert_load_llprefixlen(root);
502}
503
504void
505gen_and(b0, b1)
506	struct block *b0, *b1;
507{
508	backpatch(b0, b1->head);
509	b0->sense = !b0->sense;
510	b1->sense = !b1->sense;
511	merge(b1, b0);
512	b1->sense = !b1->sense;
513	b1->head = b0->head;
514}
515
516void
517gen_or(b0, b1)
518	struct block *b0, *b1;
519{
520	b0->sense = !b0->sense;
521	backpatch(b0, b1->head);
522	b0->sense = !b0->sense;
523	merge(b1, b0);
524	b1->head = b0->head;
525}
526
527void
528gen_not(b)
529	struct block *b;
530{
531	b->sense = !b->sense;
532}
533
534static struct block *
535gen_cmp(offrel, offset, size, v)
536	enum e_offrel offrel;
537	u_int offset, size;
538	bpf_int32 v;
539{
540	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
541}
542
543static struct block *
544gen_cmp_gt(offrel, offset, size, v)
545	enum e_offrel offrel;
546	u_int offset, size;
547	bpf_int32 v;
548{
549	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
550}
551
552static struct block *
553gen_cmp_ge(offrel, offset, size, v)
554	enum e_offrel offrel;
555	u_int offset, size;
556	bpf_int32 v;
557{
558	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
559}
560
561static struct block *
562gen_cmp_lt(offrel, offset, size, v)
563	enum e_offrel offrel;
564	u_int offset, size;
565	bpf_int32 v;
566{
567	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
568}
569
570static struct block *
571gen_cmp_le(offrel, offset, size, v)
572	enum e_offrel offrel;
573	u_int offset, size;
574	bpf_int32 v;
575{
576	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
577}
578
579static struct block *
580gen_mcmp(offrel, offset, size, v, mask)
581	enum e_offrel offrel;
582	u_int offset, size;
583	bpf_int32 v;
584	bpf_u_int32 mask;
585{
586	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
587}
588
589static struct block *
590gen_bcmp(offrel, offset, size, v)
591	enum e_offrel offrel;
592	register u_int offset, size;
593	register const u_char *v;
594{
595	register struct block *b, *tmp;
596
597	b = NULL;
598	while (size >= 4) {
599		register const u_char *p = &v[size - 4];
600		bpf_int32 w = ((bpf_int32)p[0] << 24) |
601		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
602
603		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
604		if (b != NULL)
605			gen_and(b, tmp);
606		b = tmp;
607		size -= 4;
608	}
609	while (size >= 2) {
610		register const u_char *p = &v[size - 2];
611		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
612
613		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
614		if (b != NULL)
615			gen_and(b, tmp);
616		b = tmp;
617		size -= 2;
618	}
619	if (size > 0) {
620		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
621		if (b != NULL)
622			gen_and(b, tmp);
623		b = tmp;
624	}
625	return b;
626}
627
628/*
629 * AND the field of size "size" at offset "offset" relative to the header
630 * specified by "offrel" with "mask", and compare it with the value "v"
631 * with the test specified by "jtype"; if "reverse" is true, the test
632 * should test the opposite of "jtype".
633 */
634static struct block *
635gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
636	enum e_offrel offrel;
637	bpf_int32 v;
638	bpf_u_int32 offset, size, mask, jtype;
639	int reverse;
640{
641	struct slist *s, *s2;
642	struct block *b;
643
644	s = gen_load_a(offrel, offset, size);
645
646	if (mask != 0xffffffff) {
647		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
648		s2->s.k = mask;
649		sappend(s, s2);
650	}
651
652	b = new_block(JMP(jtype));
653	b->stmts = s;
654	b->s.k = v;
655	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
656		gen_not(b);
657	return b;
658}
659
660/*
661 * Various code constructs need to know the layout of the data link
662 * layer.  These variables give the necessary offsets from the beginning
663 * of the packet data.
664 *
665 * If the link layer has variable_length headers, the offsets are offsets
666 * from the end of the link-link-layer header, and "reg_ll_size" is
667 * the register number for a register containing the length of the
668 * link-layer header.  Otherwise, "reg_ll_size" is -1.
669 */
670static int reg_ll_size;
671
672/*
673 * This is the offset of the beginning of the link-layer header.
674 * It's usually 0, except for 802.11 with a fixed-length radio header.
675 */
676static u_int off_ll;
677
678/*
679 * This is the offset of the beginning of the MAC-layer header.
680 * It's usually 0, except for ATM LANE.
681 */
682static u_int off_mac;
683
684/*
685 * "off_linktype" is the offset to information in the link-layer header
686 * giving the packet type.
687 *
688 * For Ethernet, it's the offset of the Ethernet type field.
689 *
690 * For link-layer types that always use 802.2 headers, it's the
691 * offset of the LLC header.
692 *
693 * For PPP, it's the offset of the PPP type field.
694 *
695 * For Cisco HDLC, it's the offset of the CHDLC type field.
696 *
697 * For BSD loopback, it's the offset of the AF_ value.
698 *
699 * For Linux cooked sockets, it's the offset of the type field.
700 *
701 * It's set to -1 for no encapsulation, in which case, IP is assumed.
702 */
703static u_int off_linktype;
704
705/*
706 * TRUE if the link layer includes an ATM pseudo-header.
707 */
708static int is_atm = 0;
709
710/*
711 * TRUE if "lane" appeared in the filter; it causes us to generate
712 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
713 */
714static int is_lane = 0;
715
716/*
717 * These are offsets for the ATM pseudo-header.
718 */
719static u_int off_vpi;
720static u_int off_vci;
721static u_int off_proto;
722
723/*
724 * These are offsets for the MTP3 fields.
725 */
726static u_int off_sio;
727static u_int off_opc;
728static u_int off_dpc;
729static u_int off_sls;
730
731/*
732 * This is the offset of the first byte after the ATM pseudo_header,
733 * or -1 if there is no ATM pseudo-header.
734 */
735static u_int off_payload;
736
737/*
738 * These are offsets to the beginning of the network-layer header.
739 *
740 * If the link layer never uses 802.2 LLC:
741 *
742 *	"off_nl" and "off_nl_nosnap" are the same.
743 *
744 * If the link layer always uses 802.2 LLC:
745 *
746 *	"off_nl" is the offset if there's a SNAP header following
747 *	the 802.2 header;
748 *
749 *	"off_nl_nosnap" is the offset if there's no SNAP header.
750 *
751 * If the link layer is Ethernet:
752 *
753 *	"off_nl" is the offset if the packet is an Ethernet II packet
754 *	(we assume no 802.3+802.2+SNAP);
755 *
756 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
757 *	with an 802.2 header following it.
758 */
759static u_int off_nl;
760static u_int off_nl_nosnap;
761
762static int linktype;
763
764static void
765init_linktype(p)
766	pcap_t *p;
767{
768	linktype = pcap_datalink(p);
769#ifdef PCAP_FDDIPAD
770	pcap_fddipad = p->fddipad;
771#endif
772
773	/*
774	 * Assume it's not raw ATM with a pseudo-header, for now.
775	 */
776	off_mac = 0;
777	is_atm = 0;
778	is_lane = 0;
779	off_vpi = -1;
780	off_vci = -1;
781	off_proto = -1;
782	off_payload = -1;
783
784	off_sio = -1;
785	off_opc = -1;
786	off_dpc = -1;
787	off_sls = -1;
788
789	/*
790	 * Also assume it's not 802.11 with a fixed-length radio header.
791	 */
792	off_ll = 0;
793
794	orig_linktype = -1;
795	orig_nl = -1;
796
797	reg_ll_size = -1;
798
799	switch (linktype) {
800
801	case DLT_ARCNET:
802		off_linktype = 2;
803		off_nl = 6;		/* XXX in reality, variable! */
804		off_nl_nosnap = 6;	/* no 802.2 LLC */
805		return;
806
807	case DLT_ARCNET_LINUX:
808		off_linktype = 4;
809		off_nl = 8;		/* XXX in reality, variable! */
810		off_nl_nosnap = 8;	/* no 802.2 LLC */
811		return;
812
813	case DLT_EN10MB:
814		off_linktype = 12;
815		off_nl = 14;		/* Ethernet II */
816		off_nl_nosnap = 17;	/* 802.3+802.2 */
817		return;
818
819	case DLT_SLIP:
820		/*
821		 * SLIP doesn't have a link level type.  The 16 byte
822		 * header is hacked into our SLIP driver.
823		 */
824		off_linktype = -1;
825		off_nl = 16;
826		off_nl_nosnap = 16;	/* no 802.2 LLC */
827		return;
828
829	case DLT_SLIP_BSDOS:
830		/* XXX this may be the same as the DLT_PPP_BSDOS case */
831		off_linktype = -1;
832		/* XXX end */
833		off_nl = 24;
834		off_nl_nosnap = 24;	/* no 802.2 LLC */
835		return;
836
837	case DLT_NULL:
838	case DLT_LOOP:
839		off_linktype = 0;
840		off_nl = 4;
841		off_nl_nosnap = 4;	/* no 802.2 LLC */
842		return;
843
844	case DLT_ENC:
845		off_linktype = 0;
846		off_nl = 12;
847		off_nl_nosnap = 12;	/* no 802.2 LLC */
848		return;
849
850	case DLT_PPP:
851	case DLT_PPP_PPPD:
852	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
853	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
854		off_linktype = 2;
855		off_nl = 4;
856		off_nl_nosnap = 4;	/* no 802.2 LLC */
857		return;
858
859	case DLT_PPP_ETHER:
860		/*
861		 * This does no include the Ethernet header, and
862		 * only covers session state.
863		 */
864		off_linktype = 6;
865		off_nl = 8;
866		off_nl_nosnap = 8;	/* no 802.2 LLC */
867		return;
868
869	case DLT_PPP_BSDOS:
870		off_linktype = 5;
871		off_nl = 24;
872		off_nl_nosnap = 24;	/* no 802.2 LLC */
873		return;
874
875	case DLT_FDDI:
876		/*
877		 * FDDI doesn't really have a link-level type field.
878		 * We set "off_linktype" to the offset of the LLC header.
879		 *
880		 * To check for Ethernet types, we assume that SSAP = SNAP
881		 * is being used and pick out the encapsulated Ethernet type.
882		 * XXX - should we generate code to check for SNAP?
883		 */
884		off_linktype = 13;
885#ifdef PCAP_FDDIPAD
886		off_linktype += pcap_fddipad;
887#endif
888		off_nl = 21;		/* FDDI+802.2+SNAP */
889		off_nl_nosnap = 16;	/* FDDI+802.2 */
890#ifdef PCAP_FDDIPAD
891		off_nl += pcap_fddipad;
892		off_nl_nosnap += pcap_fddipad;
893#endif
894		return;
895
896	case DLT_IEEE802:
897		/*
898		 * Token Ring doesn't really have a link-level type field.
899		 * We set "off_linktype" to the offset of the LLC header.
900		 *
901		 * To check for Ethernet types, we assume that SSAP = SNAP
902		 * is being used and pick out the encapsulated Ethernet type.
903		 * XXX - should we generate code to check for SNAP?
904		 *
905		 * XXX - the header is actually variable-length.
906		 * Some various Linux patched versions gave 38
907		 * as "off_linktype" and 40 as "off_nl"; however,
908		 * if a token ring packet has *no* routing
909		 * information, i.e. is not source-routed, the correct
910		 * values are 20 and 22, as they are in the vanilla code.
911		 *
912		 * A packet is source-routed iff the uppermost bit
913		 * of the first byte of the source address, at an
914		 * offset of 8, has the uppermost bit set.  If the
915		 * packet is source-routed, the total number of bytes
916		 * of routing information is 2 plus bits 0x1F00 of
917		 * the 16-bit value at an offset of 14 (shifted right
918		 * 8 - figure out which byte that is).
919		 */
920		off_linktype = 14;
921		off_nl = 22;		/* Token Ring+802.2+SNAP */
922		off_nl_nosnap = 17;	/* Token Ring+802.2 */
923		return;
924
925	case DLT_IEEE802_11:
926		/*
927		 * 802.11 doesn't really have a link-level type field.
928		 * We set "off_linktype" to the offset of the LLC header.
929		 *
930		 * To check for Ethernet types, we assume that SSAP = SNAP
931		 * is being used and pick out the encapsulated Ethernet type.
932		 * XXX - should we generate code to check for SNAP?
933		 *
934		 * XXX - the header is actually variable-length.  We
935		 * assume a 24-byte link-layer header, as appears in
936		 * data frames in networks with no bridges.  If the
937		 * fromds and tods 802.11 header bits are both set,
938		 * it's actually supposed to be 30 bytes.
939		 */
940		off_linktype = 24;
941		off_nl = 32;		/* 802.11+802.2+SNAP */
942		off_nl_nosnap = 27;	/* 802.11+802.2 */
943		return;
944
945	case DLT_PRISM_HEADER:
946		/*
947		 * Same as 802.11, but with an additional header before
948		 * the 802.11 header, containing a bunch of additional
949		 * information including radio-level information.
950		 *
951		 * The header is 144 bytes long.
952		 *
953		 * XXX - same variable-length header problem; at least
954		 * the Prism header is fixed-length.
955		 */
956		off_ll = 144;
957		off_linktype = 144+24;
958		off_nl = 144+32;	/* Prism+802.11+802.2+SNAP */
959		off_nl_nosnap = 144+27;	/* Prism+802.11+802.2 */
960		return;
961
962	case DLT_IEEE802_11_RADIO_AVS:
963		/*
964		 * Same as 802.11, but with an additional header before
965		 * the 802.11 header, containing a bunch of additional
966		 * information including radio-level information.
967		 *
968		 * The header is 64 bytes long, at least in its
969		 * current incarnation.
970		 *
971		 * XXX - same variable-length header problem, only
972		 * more so; this header is also variable-length,
973		 * with the length being the 32-bit big-endian
974		 * number at an offset of 4 from the beginning
975		 * of the radio header.
976		 */
977		off_ll = 64;
978		off_linktype = 64+24;
979		off_nl = 64+32;		/* Radio+802.11+802.2+SNAP */
980		off_nl_nosnap = 64+27;	/* Radio+802.11+802.2 */
981		return;
982
983	case DLT_IEEE802_11_RADIO:
984		/*
985		 * Same as 802.11, but with an additional header before
986		 * the 802.11 header, containing a bunch of additional
987		 * information including radio-level information.
988		 *
989		 * The radiotap header is variable length, and we
990		 * generate code to compute its length and store it
991		 * in a register.  These offsets are relative to the
992		 * beginning of the 802.11 header.
993		 */
994		off_linktype = 24;
995		off_nl = 32;		/* 802.11+802.2+SNAP */
996		off_nl_nosnap = 27;	/* 802.11+802.2 */
997		return;
998
999	case DLT_ATM_RFC1483:
1000	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1001		/*
1002		 * assume routed, non-ISO PDUs
1003		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1004		 *
1005		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1006		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1007		 * latter would presumably be treated the way PPPoE
1008		 * should be, so you can do "pppoe and udp port 2049"
1009		 * or "pppoa and tcp port 80" and have it check for
1010		 * PPPo{A,E} and a PPP protocol of IP and....
1011		 */
1012		off_linktype = 0;
1013		off_nl = 8;		/* 802.2+SNAP */
1014		off_nl_nosnap = 3;	/* 802.2 */
1015		return;
1016
1017	case DLT_SUNATM:
1018		/*
1019		 * Full Frontal ATM; you get AALn PDUs with an ATM
1020		 * pseudo-header.
1021		 */
1022		is_atm = 1;
1023		off_vpi = SUNATM_VPI_POS;
1024		off_vci = SUNATM_VCI_POS;
1025		off_proto = PROTO_POS;
1026		off_mac = -1;	/* LLC-encapsulated, so no MAC-layer header */
1027		off_payload = SUNATM_PKT_BEGIN_POS;
1028		off_linktype = off_payload;
1029		off_nl = off_payload+8;		/* 802.2+SNAP */
1030		off_nl_nosnap = off_payload+3;	/* 802.2 */
1031		return;
1032
1033	case DLT_RAW:
1034		off_linktype = -1;
1035		off_nl = 0;
1036		off_nl_nosnap = 0;	/* no 802.2 LLC */
1037		return;
1038
1039	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1040		off_linktype = 14;
1041		off_nl = 16;
1042		off_nl_nosnap = 16;	/* no 802.2 LLC */
1043		return;
1044
1045	case DLT_LTALK:
1046		/*
1047		 * LocalTalk does have a 1-byte type field in the LLAP header,
1048		 * but really it just indicates whether there is a "short" or
1049		 * "long" DDP packet following.
1050		 */
1051		off_linktype = -1;
1052		off_nl = 0;
1053		off_nl_nosnap = 0;	/* no 802.2 LLC */
1054		return;
1055
1056	case DLT_IP_OVER_FC:
1057		/*
1058		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1059		 * link-level type field.  We set "off_linktype" to the
1060		 * offset of the LLC header.
1061		 *
1062		 * To check for Ethernet types, we assume that SSAP = SNAP
1063		 * is being used and pick out the encapsulated Ethernet type.
1064		 * XXX - should we generate code to check for SNAP? RFC
1065		 * 2625 says SNAP should be used.
1066		 */
1067		off_linktype = 16;
1068		off_nl = 24;		/* IPFC+802.2+SNAP */
1069		off_nl_nosnap = 19;	/* IPFC+802.2 */
1070		return;
1071
1072	case DLT_FRELAY:
1073		/*
1074		 * XXX - we should set this to handle SNAP-encapsulated
1075		 * frames (NLPID of 0x80).
1076		 */
1077		off_linktype = -1;
1078		off_nl = 0;
1079		off_nl_nosnap = 0;	/* no 802.2 LLC */
1080		return;
1081
1082	case DLT_APPLE_IP_OVER_IEEE1394:
1083		off_linktype = 16;
1084		off_nl = 18;
1085		off_nl_nosnap = 18;	/* no 802.2 LLC */
1086		return;
1087
1088	case DLT_LINUX_IRDA:
1089		/*
1090		 * Currently, only raw "link[N:M]" filtering is supported.
1091		 */
1092		off_linktype = -1;
1093		off_nl = -1;
1094		off_nl_nosnap = -1;
1095		return;
1096
1097	case DLT_DOCSIS:
1098		/*
1099		 * Currently, only raw "link[N:M]" filtering is supported.
1100		 */
1101		off_linktype = -1;
1102		off_nl = -1;
1103		off_nl_nosnap = -1;
1104		return;
1105
1106	case DLT_SYMANTEC_FIREWALL:
1107		off_linktype = 6;
1108		off_nl = 44;		/* Ethernet II */
1109		off_nl_nosnap = 44;	/* XXX - what does it do with 802.3 packets? */
1110		return;
1111
1112	case DLT_PFLOG:
1113		off_linktype = 0;
1114		/* XXX read this from pf.h? */
1115		off_nl = PFLOG_HDRLEN;
1116		off_nl_nosnap = PFLOG_HDRLEN;	/* no 802.2 LLC */
1117		return;
1118
1119        case DLT_JUNIPER_MLFR:
1120        case DLT_JUNIPER_MLPPP:
1121                off_linktype = 4;
1122		off_nl = 4;
1123		off_nl_nosnap = -1;	/* no 802.2 LLC */
1124                return;
1125
1126	case DLT_JUNIPER_ATM1:
1127		off_linktype = 4; /* in reality variable between 4-8 */
1128		off_nl = 4;
1129		off_nl_nosnap = 14;
1130		return;
1131
1132	case DLT_JUNIPER_ATM2:
1133		off_linktype = 8; /* in reality variable between 8-12 */
1134		off_nl = 8;
1135		off_nl_nosnap = 18;
1136		return;
1137
1138		/* frames captured on a Juniper PPPoE service PIC
1139		 * contain raw ethernet frames */
1140	case DLT_JUNIPER_PPPOE:
1141		off_linktype = 16;
1142		off_nl = 18;		/* Ethernet II */
1143		off_nl_nosnap = 21;	/* 802.3+802.2 */
1144		return;
1145
1146	case DLT_JUNIPER_PPPOE_ATM:
1147		off_linktype = 4;
1148		off_nl = 6;
1149		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1150		return;
1151
1152	case DLT_JUNIPER_GGSN:
1153		off_linktype = 6;
1154		off_nl = 12;
1155		off_nl_nosnap = -1;	 /* no 802.2 LLC */
1156		return;
1157
1158	case DLT_JUNIPER_ES:
1159		off_linktype = 6;
1160		off_nl = -1;		/* not really a network layer but raw IP adresses */
1161		off_nl_nosnap = -1;	/* no 802.2 LLC */
1162		return;
1163
1164	case DLT_JUNIPER_MONITOR:
1165		off_linktype = 12;
1166		off_nl = 12;		/* raw IP/IP6 header */
1167		off_nl_nosnap = -1;	/* no 802.2 LLC */
1168		return;
1169
1170	case DLT_JUNIPER_SERVICES:
1171		off_linktype = 12;
1172		off_nl = -1;		/* L3 proto location dep. on cookie type */
1173		off_nl_nosnap = -1;	/* no 802.2 LLC */
1174		return;
1175
1176	case DLT_MTP2:
1177		off_sio = 3;
1178		off_opc = 4;
1179		off_dpc = 4;
1180		off_sls = 7;
1181		off_linktype = -1;
1182		off_nl = -1;
1183		off_nl_nosnap = -1;
1184		return;
1185
1186#ifdef DLT_PFSYNC
1187	case DLT_PFSYNC:
1188		off_linktype = -1;
1189		off_nl = 4;
1190		off_nl_nosnap = 4;
1191		return;
1192#endif
1193
1194	case DLT_LINUX_LAPD:
1195		/*
1196		 * Currently, only raw "link[N:M]" filtering is supported.
1197		 */
1198		off_linktype = -1;
1199		off_nl = -1;
1200		off_nl_nosnap = -1;
1201		return;
1202	}
1203	bpf_error("unknown data link type %d", linktype);
1204	/* NOTREACHED */
1205}
1206
1207/*
1208 * Load a value relative to the beginning of the link-layer header.
1209 * The link-layer header doesn't necessarily begin at the beginning
1210 * of the packet data; there might be a variable-length prefix containing
1211 * radio information.
1212 */
1213static struct slist *
1214gen_load_llrel(offset, size)
1215	u_int offset, size;
1216{
1217	struct slist *s, *s2;
1218
1219	s = gen_llprefixlen();
1220
1221	/*
1222	 * If "s" is non-null, it has code to arrange that the X register
1223	 * contains the length of the prefix preceding the link-layer
1224	 * header.
1225	 */
1226	if (s != NULL) {
1227		s2 = new_stmt(BPF_LD|BPF_IND|size);
1228		s2->s.k = offset;
1229		sappend(s, s2);
1230	} else {
1231		s = new_stmt(BPF_LD|BPF_ABS|size);
1232		s->s.k = offset;
1233	}
1234	return s;
1235}
1236
1237/*
1238 * Load a value relative to the beginning of the specified header.
1239 */
1240static struct slist *
1241gen_load_a(offrel, offset, size)
1242	enum e_offrel offrel;
1243	u_int offset, size;
1244{
1245	struct slist *s, *s2;
1246
1247	switch (offrel) {
1248
1249	case OR_PACKET:
1250		s = gen_load_llrel(offset, size);
1251		break;
1252
1253	case OR_LINK:
1254		s = gen_load_llrel(off_ll + offset, size);
1255		break;
1256
1257	case OR_NET:
1258		s = gen_load_llrel(off_nl + offset, size);
1259		break;
1260
1261	case OR_NET_NOSNAP:
1262		s = gen_load_llrel(off_nl_nosnap + offset, size);
1263		break;
1264
1265	case OR_TRAN_IPV4:
1266		/*
1267		 * Load the X register with the length of the IPv4 header,
1268		 * in bytes.
1269		 */
1270		s = gen_loadx_iphdrlen();
1271
1272		/*
1273		 * Load the item at {length of the link-layer header} +
1274		 * {length of the IPv4 header} + {specified offset}.
1275		 */
1276		s2 = new_stmt(BPF_LD|BPF_IND|size);
1277		s2->s.k = off_nl + offset;
1278		sappend(s, s2);
1279		break;
1280
1281	case OR_TRAN_IPV6:
1282		s = gen_load_llrel(off_nl + 40 + offset, size);
1283		break;
1284
1285	default:
1286		abort();
1287		return NULL;
1288	}
1289	return s;
1290}
1291
1292/*
1293 * Generate code to load into the X register the sum of the length of
1294 * the IPv4 header and any variable-length header preceding the link-layer
1295 * header.
1296 */
1297static struct slist *
1298gen_loadx_iphdrlen()
1299{
1300	struct slist *s, *s2;
1301
1302	s = gen_llprefixlen();
1303	if (s != NULL) {
1304		/*
1305		 * There's a variable-length prefix preceding the
1306		 * link-layer header.  "s" points to a list of statements
1307		 * that put the length of that prefix into the X register.
1308		 * The 4*([k]&0xf) addressing mode can't be used, as we
1309		 * don't have a constant offset, so we have to load the
1310		 * value in question into the A register and add to it
1311		 * the value from the X register.
1312		 */
1313		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1314		s2->s.k = off_nl;
1315		sappend(s, s2);
1316		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1317		s2->s.k = 0xf;
1318		sappend(s, s2);
1319		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1320		s2->s.k = 2;
1321		sappend(s, s2);
1322
1323		/*
1324		 * The A register now contains the length of the
1325		 * IP header.  We need to add to it the length
1326		 * of the prefix preceding the link-layer
1327		 * header, which is still in the X register, and
1328		 * move the result into the X register.
1329		 */
1330		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1331		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1332	} else {
1333		/*
1334		 * There is no variable-length header preceding the
1335		 * link-layer header; if there's a fixed-length
1336		 * header preceding it, its length is included in
1337		 * the off_ variables, so it doesn't need to be added.
1338		 */
1339		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1340		s->s.k = off_nl;
1341	}
1342	return s;
1343}
1344
1345static struct block *
1346gen_uncond(rsense)
1347	int rsense;
1348{
1349	struct block *b;
1350	struct slist *s;
1351
1352	s = new_stmt(BPF_LD|BPF_IMM);
1353	s->s.k = !rsense;
1354	b = new_block(JMP(BPF_JEQ));
1355	b->stmts = s;
1356
1357	return b;
1358}
1359
1360static inline struct block *
1361gen_true()
1362{
1363	return gen_uncond(1);
1364}
1365
1366static inline struct block *
1367gen_false()
1368{
1369	return gen_uncond(0);
1370}
1371
1372/*
1373 * Byte-swap a 32-bit number.
1374 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1375 * big-endian platforms.)
1376 */
1377#define	SWAPLONG(y) \
1378((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1379
1380/*
1381 * Generate code to match a particular packet type.
1382 *
1383 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1384 * value, if <= ETHERMTU.  We use that to determine whether to
1385 * match the type/length field or to check the type/length field for
1386 * a value <= ETHERMTU to see whether it's a type field and then do
1387 * the appropriate test.
1388 */
1389static struct block *
1390gen_ether_linktype(proto)
1391	register int proto;
1392{
1393	struct block *b0, *b1;
1394
1395	switch (proto) {
1396
1397	case LLCSAP_ISONS:
1398	case LLCSAP_IP:
1399	case LLCSAP_NETBEUI:
1400		/*
1401		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1402		 * so we check the DSAP and SSAP.
1403		 *
1404		 * LLCSAP_IP checks for IP-over-802.2, rather
1405		 * than IP-over-Ethernet or IP-over-SNAP.
1406		 *
1407		 * XXX - should we check both the DSAP and the
1408		 * SSAP, like this, or should we check just the
1409		 * DSAP, as we do for other types <= ETHERMTU
1410		 * (i.e., other SAP values)?
1411		 */
1412		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1413		gen_not(b0);
1414		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1415			     ((proto << 8) | proto));
1416		gen_and(b0, b1);
1417		return b1;
1418
1419	case LLCSAP_IPX:
1420		/*
1421		 * Check for;
1422		 *
1423		 *	Ethernet_II frames, which are Ethernet
1424		 *	frames with a frame type of ETHERTYPE_IPX;
1425		 *
1426		 *	Ethernet_802.3 frames, which are 802.3
1427		 *	frames (i.e., the type/length field is
1428		 *	a length field, <= ETHERMTU, rather than
1429		 *	a type field) with the first two bytes
1430		 *	after the Ethernet/802.3 header being
1431		 *	0xFFFF;
1432		 *
1433		 *	Ethernet_802.2 frames, which are 802.3
1434		 *	frames with an 802.2 LLC header and
1435		 *	with the IPX LSAP as the DSAP in the LLC
1436		 *	header;
1437		 *
1438		 *	Ethernet_SNAP frames, which are 802.3
1439		 *	frames with an LLC header and a SNAP
1440		 *	header and with an OUI of 0x000000
1441		 *	(encapsulated Ethernet) and a protocol
1442		 *	ID of ETHERTYPE_IPX in the SNAP header.
1443		 *
1444		 * XXX - should we generate the same code both
1445		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1446		 */
1447
1448		/*
1449		 * This generates code to check both for the
1450		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1451		 */
1452		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1453		    (bpf_int32)LLCSAP_IPX);
1454		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H,
1455		    (bpf_int32)0xFFFF);
1456		gen_or(b0, b1);
1457
1458		/*
1459		 * Now we add code to check for SNAP frames with
1460		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1461		 */
1462		b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
1463		gen_or(b0, b1);
1464
1465		/*
1466		 * Now we generate code to check for 802.3
1467		 * frames in general.
1468		 */
1469		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1470		gen_not(b0);
1471
1472		/*
1473		 * Now add the check for 802.3 frames before the
1474		 * check for Ethernet_802.2 and Ethernet_802.3,
1475		 * as those checks should only be done on 802.3
1476		 * frames, not on Ethernet frames.
1477		 */
1478		gen_and(b0, b1);
1479
1480		/*
1481		 * Now add the check for Ethernet_II frames, and
1482		 * do that before checking for the other frame
1483		 * types.
1484		 */
1485		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1486		    (bpf_int32)ETHERTYPE_IPX);
1487		gen_or(b0, b1);
1488		return b1;
1489
1490	case ETHERTYPE_ATALK:
1491	case ETHERTYPE_AARP:
1492		/*
1493		 * EtherTalk (AppleTalk protocols on Ethernet link
1494		 * layer) may use 802.2 encapsulation.
1495		 */
1496
1497		/*
1498		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1499		 * we check for an Ethernet type field less than
1500		 * 1500, which means it's an 802.3 length field.
1501		 */
1502		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1503		gen_not(b0);
1504
1505		/*
1506		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1507		 * SNAP packets with an organization code of
1508		 * 0x080007 (Apple, for Appletalk) and a protocol
1509		 * type of ETHERTYPE_ATALK (Appletalk).
1510		 *
1511		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1512		 * SNAP packets with an organization code of
1513		 * 0x000000 (encapsulated Ethernet) and a protocol
1514		 * type of ETHERTYPE_AARP (Appletalk ARP).
1515		 */
1516		if (proto == ETHERTYPE_ATALK)
1517			b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
1518		else	/* proto == ETHERTYPE_AARP */
1519			b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
1520		gen_and(b0, b1);
1521
1522		/*
1523		 * Check for Ethernet encapsulation (Ethertalk
1524		 * phase 1?); we just check for the Ethernet
1525		 * protocol type.
1526		 */
1527		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1528
1529		gen_or(b0, b1);
1530		return b1;
1531
1532	default:
1533		if (proto <= ETHERMTU) {
1534			/*
1535			 * This is an LLC SAP value, so the frames
1536			 * that match would be 802.2 frames.
1537			 * Check that the frame is an 802.2 frame
1538			 * (i.e., that the length/type field is
1539			 * a length field, <= ETHERMTU) and
1540			 * then check the DSAP.
1541			 */
1542			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1543			gen_not(b0);
1544			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1545			    (bpf_int32)proto);
1546			gen_and(b0, b1);
1547			return b1;
1548		} else {
1549			/*
1550			 * This is an Ethernet type, so compare
1551			 * the length/type field with it (if
1552			 * the frame is an 802.2 frame, the length
1553			 * field will be <= ETHERMTU, and, as
1554			 * "proto" is > ETHERMTU, this test
1555			 * will fail and the frame won't match,
1556			 * which is what we want).
1557			 */
1558			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1559			    (bpf_int32)proto);
1560		}
1561	}
1562}
1563
1564/*
1565 * Generate code to match a particular packet type.
1566 *
1567 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1568 * value, if <= ETHERMTU.  We use that to determine whether to
1569 * match the type field or to check the type field for the special
1570 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1571 */
1572static struct block *
1573gen_linux_sll_linktype(proto)
1574	register int proto;
1575{
1576	struct block *b0, *b1;
1577
1578	switch (proto) {
1579
1580	case LLCSAP_ISONS:
1581	case LLCSAP_IP:
1582	case LLCSAP_NETBEUI:
1583		/*
1584		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1585		 * so we check the DSAP and SSAP.
1586		 *
1587		 * LLCSAP_IP checks for IP-over-802.2, rather
1588		 * than IP-over-Ethernet or IP-over-SNAP.
1589		 *
1590		 * XXX - should we check both the DSAP and the
1591		 * SSAP, like this, or should we check just the
1592		 * DSAP, as we do for other types <= ETHERMTU
1593		 * (i.e., other SAP values)?
1594		 */
1595		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1596		b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_H, (bpf_int32)
1597			     ((proto << 8) | proto));
1598		gen_and(b0, b1);
1599		return b1;
1600
1601	case LLCSAP_IPX:
1602		/*
1603		 *	Ethernet_II frames, which are Ethernet
1604		 *	frames with a frame type of ETHERTYPE_IPX;
1605		 *
1606		 *	Ethernet_802.3 frames, which have a frame
1607		 *	type of LINUX_SLL_P_802_3;
1608		 *
1609		 *	Ethernet_802.2 frames, which are 802.3
1610		 *	frames with an 802.2 LLC header (i.e, have
1611		 *	a frame type of LINUX_SLL_P_802_2) and
1612		 *	with the IPX LSAP as the DSAP in the LLC
1613		 *	header;
1614		 *
1615		 *	Ethernet_SNAP frames, which are 802.3
1616		 *	frames with an LLC header and a SNAP
1617		 *	header and with an OUI of 0x000000
1618		 *	(encapsulated Ethernet) and a protocol
1619		 *	ID of ETHERTYPE_IPX in the SNAP header.
1620		 *
1621		 * First, do the checks on LINUX_SLL_P_802_2
1622		 * frames; generate the check for either
1623		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1624		 * then put a check for LINUX_SLL_P_802_2 frames
1625		 * before it.
1626		 */
1627		b0 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1628		    (bpf_int32)LLCSAP_IPX);
1629		b1 = gen_snap(0x000000, ETHERTYPE_IPX,
1630		    off_linktype + 2);
1631		gen_or(b0, b1);
1632		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1633		gen_and(b0, b1);
1634
1635		/*
1636		 * Now check for 802.3 frames and OR that with
1637		 * the previous test.
1638		 */
1639		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1640		gen_or(b0, b1);
1641
1642		/*
1643		 * Now add the check for Ethernet_II frames, and
1644		 * do that before checking for the other frame
1645		 * types.
1646		 */
1647		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1648		    (bpf_int32)ETHERTYPE_IPX);
1649		gen_or(b0, b1);
1650		return b1;
1651
1652	case ETHERTYPE_ATALK:
1653	case ETHERTYPE_AARP:
1654		/*
1655		 * EtherTalk (AppleTalk protocols on Ethernet link
1656		 * layer) may use 802.2 encapsulation.
1657		 */
1658
1659		/*
1660		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1661		 * we check for the 802.2 protocol type in the
1662		 * "Ethernet type" field.
1663		 */
1664		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1665
1666		/*
1667		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1668		 * SNAP packets with an organization code of
1669		 * 0x080007 (Apple, for Appletalk) and a protocol
1670		 * type of ETHERTYPE_ATALK (Appletalk).
1671		 *
1672		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1673		 * SNAP packets with an organization code of
1674		 * 0x000000 (encapsulated Ethernet) and a protocol
1675		 * type of ETHERTYPE_AARP (Appletalk ARP).
1676		 */
1677		if (proto == ETHERTYPE_ATALK)
1678			b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
1679			    off_linktype + 2);
1680		else	/* proto == ETHERTYPE_AARP */
1681			b1 = gen_snap(0x000000, ETHERTYPE_AARP,
1682			    off_linktype + 2);
1683		gen_and(b0, b1);
1684
1685		/*
1686		 * Check for Ethernet encapsulation (Ethertalk
1687		 * phase 1?); we just check for the Ethernet
1688		 * protocol type.
1689		 */
1690		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1691
1692		gen_or(b0, b1);
1693		return b1;
1694
1695	default:
1696		if (proto <= ETHERMTU) {
1697			/*
1698			 * This is an LLC SAP value, so the frames
1699			 * that match would be 802.2 frames.
1700			 * Check for the 802.2 protocol type
1701			 * in the "Ethernet type" field, and
1702			 * then check the DSAP.
1703			 */
1704			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1705			    LINUX_SLL_P_802_2);
1706			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1707			     (bpf_int32)proto);
1708			gen_and(b0, b1);
1709			return b1;
1710		} else {
1711			/*
1712			 * This is an Ethernet type, so compare
1713			 * the length/type field with it (if
1714			 * the frame is an 802.2 frame, the length
1715			 * field will be <= ETHERMTU, and, as
1716			 * "proto" is > ETHERMTU, this test
1717			 * will fail and the frame won't match,
1718			 * which is what we want).
1719			 */
1720			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1721			    (bpf_int32)proto);
1722		}
1723	}
1724}
1725
1726static void
1727insert_radiotap_load_llprefixlen(b)
1728	struct block *b;
1729{
1730	struct slist *s1, *s2;
1731
1732	/*
1733	 * Prepend to the statements in this block code to load the
1734	 * length of the radiotap header into the register assigned
1735	 * to hold that length, if one has been assigned.
1736	 */
1737	if (reg_ll_size != -1) {
1738		/*
1739		 * The 2 bytes at offsets of 2 and 3 from the beginning
1740		 * of the radiotap header are the length of the radiotap
1741		 * header; unfortunately, it's little-endian, so we have
1742		 * to load it a byte at a time and construct the value.
1743		 */
1744
1745		/*
1746		 * Load the high-order byte, at an offset of 3, shift it
1747		 * left a byte, and put the result in the X register.
1748		 */
1749		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1750		s1->s.k = 3;
1751		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1752		sappend(s1, s2);
1753		s2->s.k = 8;
1754		s2 = new_stmt(BPF_MISC|BPF_TAX);
1755		sappend(s1, s2);
1756
1757		/*
1758		 * Load the next byte, at an offset of 2, and OR the
1759		 * value from the X register into it.
1760		 */
1761		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
1762		sappend(s1, s2);
1763		s2->s.k = 2;
1764		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
1765		sappend(s1, s2);
1766
1767		/*
1768		 * Now allocate a register to hold that value and store
1769		 * it.
1770		 */
1771		s2 = new_stmt(BPF_ST);
1772		s2->s.k = reg_ll_size;
1773		sappend(s1, s2);
1774
1775		/*
1776		 * Now move it into the X register.
1777		 */
1778		s2 = new_stmt(BPF_MISC|BPF_TAX);
1779		sappend(s1, s2);
1780
1781		/*
1782		 * Now append all the existing statements in this
1783		 * block to these statements.
1784		 */
1785		sappend(s1, b->stmts);
1786		b->stmts = s1;
1787	}
1788}
1789
1790
1791static void
1792insert_load_llprefixlen(b)
1793	struct block *b;
1794{
1795	switch (linktype) {
1796
1797	case DLT_IEEE802_11_RADIO:
1798		insert_radiotap_load_llprefixlen(b);
1799	}
1800}
1801
1802
1803static struct slist *
1804gen_radiotap_llprefixlen(void)
1805{
1806	struct slist *s;
1807
1808	if (reg_ll_size == -1) {
1809		/*
1810		 * We haven't yet assigned a register for the length
1811		 * of the radiotap header; allocate one.
1812		 */
1813		reg_ll_size = alloc_reg();
1814	}
1815
1816	/*
1817	 * Load the register containing the radiotap length
1818	 * into the X register.
1819	 */
1820	s = new_stmt(BPF_LDX|BPF_MEM);
1821	s->s.k = reg_ll_size;
1822	return s;
1823}
1824
1825/*
1826 * Generate code to compute the link-layer header length, if necessary,
1827 * putting it into the X register, and to return either a pointer to a
1828 * "struct slist" for the list of statements in that code, or NULL if
1829 * no code is necessary.
1830 */
1831static struct slist *
1832gen_llprefixlen(void)
1833{
1834	switch (linktype) {
1835
1836	case DLT_IEEE802_11_RADIO:
1837		return gen_radiotap_llprefixlen();
1838
1839	default:
1840		return NULL;
1841	}
1842}
1843
1844/*
1845 * Generate code to match a particular packet type by matching the
1846 * link-layer type field or fields in the 802.2 LLC header.
1847 *
1848 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1849 * value, if <= ETHERMTU.
1850 */
1851static struct block *
1852gen_linktype(proto)
1853	register int proto;
1854{
1855	struct block *b0, *b1, *b2;
1856
1857	switch (linktype) {
1858
1859	case DLT_EN10MB:
1860		return gen_ether_linktype(proto);
1861		/*NOTREACHED*/
1862		break;
1863
1864	case DLT_C_HDLC:
1865		switch (proto) {
1866
1867		case LLCSAP_ISONS:
1868			proto = (proto << 8 | LLCSAP_ISONS);
1869			/* fall through */
1870
1871		default:
1872			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1873			    (bpf_int32)proto);
1874			/*NOTREACHED*/
1875			break;
1876		}
1877		break;
1878
1879	case DLT_FDDI:
1880	case DLT_IEEE802:
1881	case DLT_IEEE802_11:
1882	case DLT_IEEE802_11_RADIO_AVS:
1883	case DLT_IEEE802_11_RADIO:
1884	case DLT_PRISM_HEADER:
1885	case DLT_ATM_RFC1483:
1886	case DLT_ATM_CLIP:
1887	case DLT_IP_OVER_FC:
1888		return gen_llc_linktype(proto);
1889		/*NOTREACHED*/
1890		break;
1891
1892	case DLT_SUNATM:
1893		/*
1894		 * If "is_lane" is set, check for a LANE-encapsulated
1895		 * version of this protocol, otherwise check for an
1896		 * LLC-encapsulated version of this protocol.
1897		 *
1898		 * We assume LANE means Ethernet, not Token Ring.
1899		 */
1900		if (is_lane) {
1901			/*
1902			 * Check that the packet doesn't begin with an
1903			 * LE Control marker.  (We've already generated
1904			 * a test for LANE.)
1905			 */
1906			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
1907			    0xFF00);
1908			gen_not(b0);
1909
1910			/*
1911			 * Now generate an Ethernet test.
1912			 */
1913			b1 = gen_ether_linktype(proto);
1914			gen_and(b0, b1);
1915			return b1;
1916		} else {
1917			/*
1918			 * Check for LLC encapsulation and then check the
1919			 * protocol.
1920			 */
1921			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
1922			b1 = gen_llc_linktype(proto);
1923			gen_and(b0, b1);
1924			return b1;
1925		}
1926		/*NOTREACHED*/
1927		break;
1928
1929	case DLT_LINUX_SLL:
1930		return gen_linux_sll_linktype(proto);
1931		/*NOTREACHED*/
1932		break;
1933
1934	case DLT_SLIP:
1935	case DLT_SLIP_BSDOS:
1936	case DLT_RAW:
1937		/*
1938		 * These types don't provide any type field; packets
1939		 * are always IP.
1940		 *
1941		 * XXX - for IPv4, check for a version number of 4, and,
1942		 * for IPv6, check for a version number of 6?
1943		 */
1944		switch (proto) {
1945
1946		case ETHERTYPE_IP:
1947#ifdef INET6
1948		case ETHERTYPE_IPV6:
1949#endif
1950			return gen_true();		/* always true */
1951
1952		default:
1953			return gen_false();		/* always false */
1954		}
1955		/*NOTREACHED*/
1956		break;
1957
1958	case DLT_PPP:
1959	case DLT_PPP_PPPD:
1960	case DLT_PPP_SERIAL:
1961	case DLT_PPP_ETHER:
1962		/*
1963		 * We use Ethernet protocol types inside libpcap;
1964		 * map them to the corresponding PPP protocol types.
1965		 */
1966		switch (proto) {
1967
1968		case ETHERTYPE_IP:
1969			proto = PPP_IP;
1970			break;
1971
1972#ifdef INET6
1973		case ETHERTYPE_IPV6:
1974			proto = PPP_IPV6;
1975			break;
1976#endif
1977
1978		case ETHERTYPE_DN:
1979			proto = PPP_DECNET;
1980			break;
1981
1982		case ETHERTYPE_ATALK:
1983			proto = PPP_APPLE;
1984			break;
1985
1986		case ETHERTYPE_NS:
1987			proto = PPP_NS;
1988			break;
1989
1990		case LLCSAP_ISONS:
1991			proto = PPP_OSI;
1992			break;
1993
1994		case LLCSAP_8021D:
1995			/*
1996			 * I'm assuming the "Bridging PDU"s that go
1997			 * over PPP are Spanning Tree Protocol
1998			 * Bridging PDUs.
1999			 */
2000			proto = PPP_BRPDU;
2001			break;
2002
2003		case LLCSAP_IPX:
2004			proto = PPP_IPX;
2005			break;
2006		}
2007		break;
2008
2009	case DLT_PPP_BSDOS:
2010		/*
2011		 * We use Ethernet protocol types inside libpcap;
2012		 * map them to the corresponding PPP protocol types.
2013		 */
2014		switch (proto) {
2015
2016		case ETHERTYPE_IP:
2017			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
2018			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
2019			gen_or(b0, b1);
2020			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
2021			gen_or(b1, b0);
2022			return b0;
2023
2024#ifdef INET6
2025		case ETHERTYPE_IPV6:
2026			proto = PPP_IPV6;
2027			/* more to go? */
2028			break;
2029#endif
2030
2031		case ETHERTYPE_DN:
2032			proto = PPP_DECNET;
2033			break;
2034
2035		case ETHERTYPE_ATALK:
2036			proto = PPP_APPLE;
2037			break;
2038
2039		case ETHERTYPE_NS:
2040			proto = PPP_NS;
2041			break;
2042
2043		case LLCSAP_ISONS:
2044			proto = PPP_OSI;
2045			break;
2046
2047		case LLCSAP_8021D:
2048			/*
2049			 * I'm assuming the "Bridging PDU"s that go
2050			 * over PPP are Spanning Tree Protocol
2051			 * Bridging PDUs.
2052			 */
2053			proto = PPP_BRPDU;
2054			break;
2055
2056		case LLCSAP_IPX:
2057			proto = PPP_IPX;
2058			break;
2059		}
2060		break;
2061
2062	case DLT_NULL:
2063	case DLT_LOOP:
2064	case DLT_ENC:
2065		/*
2066		 * For DLT_NULL, the link-layer header is a 32-bit
2067		 * word containing an AF_ value in *host* byte order,
2068		 * and for DLT_ENC, the link-layer header begins
2069		 * with a 32-bit work containing an AF_ value in
2070		 * host byte order.
2071		 *
2072		 * In addition, if we're reading a saved capture file,
2073		 * the host byte order in the capture may not be the
2074		 * same as the host byte order on this machine.
2075		 *
2076		 * For DLT_LOOP, the link-layer header is a 32-bit
2077		 * word containing an AF_ value in *network* byte order.
2078		 *
2079		 * XXX - AF_ values may, unfortunately, be platform-
2080		 * dependent; for example, FreeBSD's AF_INET6 is 24
2081		 * whilst NetBSD's and OpenBSD's is 26.
2082		 *
2083		 * This means that, when reading a capture file, just
2084		 * checking for our AF_INET6 value won't work if the
2085		 * capture file came from another OS.
2086		 */
2087		switch (proto) {
2088
2089		case ETHERTYPE_IP:
2090			proto = AF_INET;
2091			break;
2092
2093#ifdef INET6
2094		case ETHERTYPE_IPV6:
2095			proto = AF_INET6;
2096			break;
2097#endif
2098
2099		default:
2100			/*
2101			 * Not a type on which we support filtering.
2102			 * XXX - support those that have AF_ values
2103			 * #defined on this platform, at least?
2104			 */
2105			return gen_false();
2106		}
2107
2108		if (linktype == DLT_NULL || linktype == DLT_ENC) {
2109			/*
2110			 * The AF_ value is in host byte order, but
2111			 * the BPF interpreter will convert it to
2112			 * network byte order.
2113			 *
2114			 * If this is a save file, and it's from a
2115			 * machine with the opposite byte order to
2116			 * ours, we byte-swap the AF_ value.
2117			 *
2118			 * Then we run it through "htonl()", and
2119			 * generate code to compare against the result.
2120			 */
2121			if (bpf_pcap->sf.rfile != NULL &&
2122			    bpf_pcap->sf.swapped)
2123				proto = SWAPLONG(proto);
2124			proto = htonl(proto);
2125		}
2126		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
2127
2128	case DLT_PFLOG:
2129		/*
2130		 * af field is host byte order in contrast to the rest of
2131		 * the packet.
2132		 */
2133		if (proto == ETHERTYPE_IP)
2134			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2135			    BPF_B, (bpf_int32)AF_INET));
2136#ifdef INET6
2137		else if (proto == ETHERTYPE_IPV6)
2138			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
2139			    BPF_B, (bpf_int32)AF_INET6));
2140#endif /* INET6 */
2141		else
2142			return gen_false();
2143		/*NOTREACHED*/
2144		break;
2145
2146	case DLT_ARCNET:
2147	case DLT_ARCNET_LINUX:
2148		/*
2149		 * XXX should we check for first fragment if the protocol
2150		 * uses PHDS?
2151		 */
2152		switch (proto) {
2153
2154		default:
2155			return gen_false();
2156
2157#ifdef INET6
2158		case ETHERTYPE_IPV6:
2159			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2160				(bpf_int32)ARCTYPE_INET6));
2161#endif /* INET6 */
2162
2163		case ETHERTYPE_IP:
2164			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2165				     (bpf_int32)ARCTYPE_IP);
2166			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2167				     (bpf_int32)ARCTYPE_IP_OLD);
2168			gen_or(b0, b1);
2169			return (b1);
2170
2171		case ETHERTYPE_ARP:
2172			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2173				     (bpf_int32)ARCTYPE_ARP);
2174			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
2175				     (bpf_int32)ARCTYPE_ARP_OLD);
2176			gen_or(b0, b1);
2177			return (b1);
2178
2179		case ETHERTYPE_REVARP:
2180			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2181					(bpf_int32)ARCTYPE_REVARP));
2182
2183		case ETHERTYPE_ATALK:
2184			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
2185					(bpf_int32)ARCTYPE_ATALK));
2186		}
2187		/*NOTREACHED*/
2188		break;
2189
2190	case DLT_LTALK:
2191		switch (proto) {
2192		case ETHERTYPE_ATALK:
2193			return gen_true();
2194		default:
2195			return gen_false();
2196		}
2197		/*NOTREACHED*/
2198		break;
2199
2200	case DLT_FRELAY:
2201		/*
2202		 * XXX - assumes a 2-byte Frame Relay header with
2203		 * DLCI and flags.  What if the address is longer?
2204		 */
2205		switch (proto) {
2206
2207		case ETHERTYPE_IP:
2208			/*
2209			 * Check for the special NLPID for IP.
2210			 */
2211			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
2212
2213#ifdef INET6
2214		case ETHERTYPE_IPV6:
2215			/*
2216			 * Check for the special NLPID for IPv6.
2217			 */
2218			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
2219#endif
2220
2221		case LLCSAP_ISONS:
2222			/*
2223			 * Check for several OSI protocols.
2224			 *
2225			 * Frame Relay packets typically have an OSI
2226			 * NLPID at the beginning; we check for each
2227			 * of them.
2228			 *
2229			 * What we check for is the NLPID and a frame
2230			 * control field of UI, i.e. 0x03 followed
2231			 * by the NLPID.
2232			 */
2233			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
2234			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
2235			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
2236			gen_or(b1, b2);
2237			gen_or(b0, b2);
2238			return b2;
2239
2240		default:
2241			return gen_false();
2242		}
2243		/*NOTREACHED*/
2244		break;
2245
2246        case DLT_JUNIPER_MLFR:
2247        case DLT_JUNIPER_MLPPP:
2248	case DLT_JUNIPER_ATM1:
2249	case DLT_JUNIPER_ATM2:
2250	case DLT_JUNIPER_PPPOE:
2251	case DLT_JUNIPER_PPPOE_ATM:
2252        case DLT_JUNIPER_GGSN:
2253        case DLT_JUNIPER_ES:
2254        case DLT_JUNIPER_MONITOR:
2255        case DLT_JUNIPER_SERVICES:
2256		/* just lets verify the magic number for now -
2257		 * on ATM we may have up to 6 different encapsulations on the wire
2258		 * and need a lot of heuristics to figure out that the payload
2259		 * might be;
2260		 *
2261		 * FIXME encapsulation specific BPF_ filters
2262		 */
2263		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
2264
2265	case DLT_LINUX_IRDA:
2266		bpf_error("IrDA link-layer type filtering not implemented");
2267
2268	case DLT_DOCSIS:
2269		bpf_error("DOCSIS link-layer type filtering not implemented");
2270
2271	case DLT_LINUX_LAPD:
2272		bpf_error("LAPD link-layer type filtering not implemented");
2273	}
2274
2275	/*
2276	 * All the types that have no encapsulation should either be
2277	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
2278	 * all packets are IP packets, or should be handled in some
2279	 * special case, if none of them are (if some are and some
2280	 * aren't, the lack of encapsulation is a problem, as we'd
2281	 * have to find some other way of determining the packet type).
2282	 *
2283	 * Therefore, if "off_linktype" is -1, there's an error.
2284	 */
2285	if (off_linktype == (u_int)-1)
2286		abort();
2287
2288	/*
2289	 * Any type not handled above should always have an Ethernet
2290	 * type at an offset of "off_linktype".  (PPP is partially
2291	 * handled above - the protocol type is mapped from the
2292	 * Ethernet and LLC types we use internally to the corresponding
2293	 * PPP type - but the PPP type is always specified by a value
2294	 * at "off_linktype", so we don't have to do the code generation
2295	 * above.)
2296	 */
2297	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2298}
2299
2300/*
2301 * Check for an LLC SNAP packet with a given organization code and
2302 * protocol type; we check the entire contents of the 802.2 LLC and
2303 * snap headers, checking for DSAP and SSAP of SNAP and a control
2304 * field of 0x03 in the LLC header, and for the specified organization
2305 * code and protocol type in the SNAP header.
2306 */
2307static struct block *
2308gen_snap(orgcode, ptype, offset)
2309	bpf_u_int32 orgcode;
2310	bpf_u_int32 ptype;
2311	u_int offset;
2312{
2313	u_char snapblock[8];
2314
2315	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
2316	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
2317	snapblock[2] = 0x03;		/* control = UI */
2318	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
2319	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
2320	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
2321	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
2322	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
2323	return gen_bcmp(OR_LINK, offset, 8, snapblock);
2324}
2325
2326/*
2327 * Generate code to match a particular packet type, for link-layer types
2328 * using 802.2 LLC headers.
2329 *
2330 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
2331 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
2332 *
2333 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2334 * value, if <= ETHERMTU.  We use that to determine whether to
2335 * match the DSAP or both DSAP and LSAP or to check the OUI and
2336 * protocol ID in a SNAP header.
2337 */
2338static struct block *
2339gen_llc_linktype(proto)
2340	int proto;
2341{
2342	/*
2343	 * XXX - handle token-ring variable-length header.
2344	 */
2345	switch (proto) {
2346
2347	case LLCSAP_IP:
2348	case LLCSAP_ISONS:
2349	case LLCSAP_NETBEUI:
2350		/*
2351		 * XXX - should we check both the DSAP and the
2352		 * SSAP, like this, or should we check just the
2353		 * DSAP, as we do for other types <= ETHERMTU
2354		 * (i.e., other SAP values)?
2355		 */
2356		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_u_int32)
2357			     ((proto << 8) | proto));
2358
2359	case LLCSAP_IPX:
2360		/*
2361		 * XXX - are there ever SNAP frames for IPX on
2362		 * non-Ethernet 802.x networks?
2363		 */
2364		return gen_cmp(OR_LINK, off_linktype, BPF_B,
2365		    (bpf_int32)LLCSAP_IPX);
2366
2367	case ETHERTYPE_ATALK:
2368		/*
2369		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2370		 * SNAP packets with an organization code of
2371		 * 0x080007 (Apple, for Appletalk) and a protocol
2372		 * type of ETHERTYPE_ATALK (Appletalk).
2373		 *
2374		 * XXX - check for an organization code of
2375		 * encapsulated Ethernet as well?
2376		 */
2377		return gen_snap(0x080007, ETHERTYPE_ATALK, off_linktype);
2378
2379	default:
2380		/*
2381		 * XXX - we don't have to check for IPX 802.3
2382		 * here, but should we check for the IPX Ethertype?
2383		 */
2384		if (proto <= ETHERMTU) {
2385			/*
2386			 * This is an LLC SAP value, so check
2387			 * the DSAP.
2388			 */
2389			return gen_cmp(OR_LINK, off_linktype, BPF_B,
2390			    (bpf_int32)proto);
2391		} else {
2392			/*
2393			 * This is an Ethernet type; we assume that it's
2394			 * unlikely that it'll appear in the right place
2395			 * at random, and therefore check only the
2396			 * location that would hold the Ethernet type
2397			 * in a SNAP frame with an organization code of
2398			 * 0x000000 (encapsulated Ethernet).
2399			 *
2400			 * XXX - if we were to check for the SNAP DSAP and
2401			 * LSAP, as per XXX, and were also to check for an
2402			 * organization code of 0x000000 (encapsulated
2403			 * Ethernet), we'd do
2404			 *
2405			 *	return gen_snap(0x000000, proto,
2406			 *	    off_linktype);
2407			 *
2408			 * here; for now, we don't, as per the above.
2409			 * I don't know whether it's worth the extra CPU
2410			 * time to do the right check or not.
2411			 */
2412			return gen_cmp(OR_LINK, off_linktype+6, BPF_H,
2413			    (bpf_int32)proto);
2414		}
2415	}
2416}
2417
2418static struct block *
2419gen_hostop(addr, mask, dir, proto, src_off, dst_off)
2420	bpf_u_int32 addr;
2421	bpf_u_int32 mask;
2422	int dir, proto;
2423	u_int src_off, dst_off;
2424{
2425	struct block *b0, *b1;
2426	u_int offset;
2427
2428	switch (dir) {
2429
2430	case Q_SRC:
2431		offset = src_off;
2432		break;
2433
2434	case Q_DST:
2435		offset = dst_off;
2436		break;
2437
2438	case Q_AND:
2439		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2440		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2441		gen_and(b0, b1);
2442		return b1;
2443
2444	case Q_OR:
2445	case Q_DEFAULT:
2446		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
2447		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
2448		gen_or(b0, b1);
2449		return b1;
2450
2451	default:
2452		abort();
2453	}
2454	b0 = gen_linktype(proto);
2455	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
2456	gen_and(b0, b1);
2457	return b1;
2458}
2459
2460#ifdef INET6
2461static struct block *
2462gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
2463	struct in6_addr *addr;
2464	struct in6_addr *mask;
2465	int dir, proto;
2466	u_int src_off, dst_off;
2467{
2468	struct block *b0, *b1;
2469	u_int offset;
2470	u_int32_t *a, *m;
2471
2472	switch (dir) {
2473
2474	case Q_SRC:
2475		offset = src_off;
2476		break;
2477
2478	case Q_DST:
2479		offset = dst_off;
2480		break;
2481
2482	case Q_AND:
2483		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2484		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2485		gen_and(b0, b1);
2486		return b1;
2487
2488	case Q_OR:
2489	case Q_DEFAULT:
2490		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
2491		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
2492		gen_or(b0, b1);
2493		return b1;
2494
2495	default:
2496		abort();
2497	}
2498	/* this order is important */
2499	a = (u_int32_t *)addr;
2500	m = (u_int32_t *)mask;
2501	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
2502	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
2503	gen_and(b0, b1);
2504	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
2505	gen_and(b0, b1);
2506	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
2507	gen_and(b0, b1);
2508	b0 = gen_linktype(proto);
2509	gen_and(b0, b1);
2510	return b1;
2511}
2512#endif /*INET6*/
2513
2514static struct block *
2515gen_ehostop(eaddr, dir)
2516	register const u_char *eaddr;
2517	register int dir;
2518{
2519	register struct block *b0, *b1;
2520
2521	switch (dir) {
2522	case Q_SRC:
2523		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
2524
2525	case Q_DST:
2526		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
2527
2528	case Q_AND:
2529		b0 = gen_ehostop(eaddr, Q_SRC);
2530		b1 = gen_ehostop(eaddr, Q_DST);
2531		gen_and(b0, b1);
2532		return b1;
2533
2534	case Q_DEFAULT:
2535	case Q_OR:
2536		b0 = gen_ehostop(eaddr, Q_SRC);
2537		b1 = gen_ehostop(eaddr, Q_DST);
2538		gen_or(b0, b1);
2539		return b1;
2540	}
2541	abort();
2542	/* NOTREACHED */
2543}
2544
2545/*
2546 * Like gen_ehostop, but for DLT_FDDI
2547 */
2548static struct block *
2549gen_fhostop(eaddr, dir)
2550	register const u_char *eaddr;
2551	register int dir;
2552{
2553	struct block *b0, *b1;
2554
2555	switch (dir) {
2556	case Q_SRC:
2557#ifdef PCAP_FDDIPAD
2558		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
2559#else
2560		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
2561#endif
2562
2563	case Q_DST:
2564#ifdef PCAP_FDDIPAD
2565		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
2566#else
2567		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
2568#endif
2569
2570	case Q_AND:
2571		b0 = gen_fhostop(eaddr, Q_SRC);
2572		b1 = gen_fhostop(eaddr, Q_DST);
2573		gen_and(b0, b1);
2574		return b1;
2575
2576	case Q_DEFAULT:
2577	case Q_OR:
2578		b0 = gen_fhostop(eaddr, Q_SRC);
2579		b1 = gen_fhostop(eaddr, Q_DST);
2580		gen_or(b0, b1);
2581		return b1;
2582	}
2583	abort();
2584	/* NOTREACHED */
2585}
2586
2587/*
2588 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2589 */
2590static struct block *
2591gen_thostop(eaddr, dir)
2592	register const u_char *eaddr;
2593	register int dir;
2594{
2595	register struct block *b0, *b1;
2596
2597	switch (dir) {
2598	case Q_SRC:
2599		return gen_bcmp(OR_LINK, 8, 6, eaddr);
2600
2601	case Q_DST:
2602		return gen_bcmp(OR_LINK, 2, 6, eaddr);
2603
2604	case Q_AND:
2605		b0 = gen_thostop(eaddr, Q_SRC);
2606		b1 = gen_thostop(eaddr, Q_DST);
2607		gen_and(b0, b1);
2608		return b1;
2609
2610	case Q_DEFAULT:
2611	case Q_OR:
2612		b0 = gen_thostop(eaddr, Q_SRC);
2613		b1 = gen_thostop(eaddr, Q_DST);
2614		gen_or(b0, b1);
2615		return b1;
2616	}
2617	abort();
2618	/* NOTREACHED */
2619}
2620
2621/*
2622 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2623 */
2624static struct block *
2625gen_wlanhostop(eaddr, dir)
2626	register const u_char *eaddr;
2627	register int dir;
2628{
2629	register struct block *b0, *b1, *b2;
2630	register struct slist *s;
2631
2632	switch (dir) {
2633	case Q_SRC:
2634		/*
2635		 * Oh, yuk.
2636		 *
2637		 *	For control frames, there is no SA.
2638		 *
2639		 *	For management frames, SA is at an
2640		 *	offset of 10 from the beginning of
2641		 *	the packet.
2642		 *
2643		 *	For data frames, SA is at an offset
2644		 *	of 10 from the beginning of the packet
2645		 *	if From DS is clear, at an offset of
2646		 *	16 from the beginning of the packet
2647		 *	if From DS is set and To DS is clear,
2648		 *	and an offset of 24 from the beginning
2649		 *	of the packet if From DS is set and To DS
2650		 *	is set.
2651		 */
2652
2653		/*
2654		 * Generate the tests to be done for data frames
2655		 * with From DS set.
2656		 *
2657		 * First, check for To DS set, i.e. check "link[1] & 0x01".
2658		 */
2659		s = gen_load_a(OR_LINK, 1, BPF_B);
2660		b1 = new_block(JMP(BPF_JSET));
2661		b1->s.k = 0x01;	/* To DS */
2662		b1->stmts = s;
2663
2664		/*
2665		 * If To DS is set, the SA is at 24.
2666		 */
2667		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
2668		gen_and(b1, b0);
2669
2670		/*
2671		 * Now, check for To DS not set, i.e. check
2672		 * "!(link[1] & 0x01)".
2673		 */
2674		s = gen_load_a(OR_LINK, 1, BPF_B);
2675		b2 = new_block(JMP(BPF_JSET));
2676		b2->s.k = 0x01;	/* To DS */
2677		b2->stmts = s;
2678		gen_not(b2);
2679
2680		/*
2681		 * If To DS is not set, the SA is at 16.
2682		 */
2683		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
2684		gen_and(b2, b1);
2685
2686		/*
2687		 * Now OR together the last two checks.  That gives
2688		 * the complete set of checks for data frames with
2689		 * From DS set.
2690		 */
2691		gen_or(b1, b0);
2692
2693		/*
2694		 * Now check for From DS being set, and AND that with
2695		 * the ORed-together checks.
2696		 */
2697		s = gen_load_a(OR_LINK, 1, BPF_B);
2698		b1 = new_block(JMP(BPF_JSET));
2699		b1->s.k = 0x02;	/* From DS */
2700		b1->stmts = s;
2701		gen_and(b1, b0);
2702
2703		/*
2704		 * Now check for data frames with From DS not set.
2705		 */
2706		s = gen_load_a(OR_LINK, 1, BPF_B);
2707		b2 = new_block(JMP(BPF_JSET));
2708		b2->s.k = 0x02;	/* From DS */
2709		b2->stmts = s;
2710		gen_not(b2);
2711
2712		/*
2713		 * If From DS isn't set, the SA is at 10.
2714		 */
2715		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
2716		gen_and(b2, b1);
2717
2718		/*
2719		 * Now OR together the checks for data frames with
2720		 * From DS not set and for data frames with From DS
2721		 * set; that gives the checks done for data frames.
2722		 */
2723		gen_or(b1, b0);
2724
2725		/*
2726		 * Now check for a data frame.
2727		 * I.e, check "link[0] & 0x08".
2728		 */
2729		gen_load_a(OR_LINK, 0, BPF_B);
2730		b1 = new_block(JMP(BPF_JSET));
2731		b1->s.k = 0x08;
2732		b1->stmts = s;
2733
2734		/*
2735		 * AND that with the checks done for data frames.
2736		 */
2737		gen_and(b1, b0);
2738
2739		/*
2740		 * If the high-order bit of the type value is 0, this
2741		 * is a management frame.
2742		 * I.e, check "!(link[0] & 0x08)".
2743		 */
2744		s = gen_load_a(OR_LINK, 0, BPF_B);
2745		b2 = new_block(JMP(BPF_JSET));
2746		b2->s.k = 0x08;
2747		b2->stmts = s;
2748		gen_not(b2);
2749
2750		/*
2751		 * For management frames, the SA is at 10.
2752		 */
2753		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
2754		gen_and(b2, b1);
2755
2756		/*
2757		 * OR that with the checks done for data frames.
2758		 * That gives the checks done for management and
2759		 * data frames.
2760		 */
2761		gen_or(b1, b0);
2762
2763		/*
2764		 * If the low-order bit of the type value is 1,
2765		 * this is either a control frame or a frame
2766		 * with a reserved type, and thus not a
2767		 * frame with an SA.
2768		 *
2769		 * I.e., check "!(link[0] & 0x04)".
2770		 */
2771		s = gen_load_a(OR_LINK, 0, BPF_B);
2772		b1 = new_block(JMP(BPF_JSET));
2773		b1->s.k = 0x04;
2774		b1->stmts = s;
2775		gen_not(b1);
2776
2777		/*
2778		 * AND that with the checks for data and management
2779		 * frames.
2780		 */
2781		gen_and(b1, b0);
2782		return b0;
2783
2784	case Q_DST:
2785		/*
2786		 * Oh, yuk.
2787		 *
2788		 *	For control frames, there is no DA.
2789		 *
2790		 *	For management frames, DA is at an
2791		 *	offset of 4 from the beginning of
2792		 *	the packet.
2793		 *
2794		 *	For data frames, DA is at an offset
2795		 *	of 4 from the beginning of the packet
2796		 *	if To DS is clear and at an offset of
2797		 *	16 from the beginning of the packet
2798		 *	if To DS is set.
2799		 */
2800
2801		/*
2802		 * Generate the tests to be done for data frames.
2803		 *
2804		 * First, check for To DS set, i.e. "link[1] & 0x01".
2805		 */
2806		s = gen_load_a(OR_LINK, 1, BPF_B);
2807		b1 = new_block(JMP(BPF_JSET));
2808		b1->s.k = 0x01;	/* To DS */
2809		b1->stmts = s;
2810
2811		/*
2812		 * If To DS is set, the DA is at 16.
2813		 */
2814		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
2815		gen_and(b1, b0);
2816
2817		/*
2818		 * Now, check for To DS not set, i.e. check
2819		 * "!(link[1] & 0x01)".
2820		 */
2821		s = gen_load_a(OR_LINK, 1, BPF_B);
2822		b2 = new_block(JMP(BPF_JSET));
2823		b2->s.k = 0x01;	/* To DS */
2824		b2->stmts = s;
2825		gen_not(b2);
2826
2827		/*
2828		 * If To DS is not set, the DA is at 4.
2829		 */
2830		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
2831		gen_and(b2, b1);
2832
2833		/*
2834		 * Now OR together the last two checks.  That gives
2835		 * the complete set of checks for data frames.
2836		 */
2837		gen_or(b1, b0);
2838
2839		/*
2840		 * Now check for a data frame.
2841		 * I.e, check "link[0] & 0x08".
2842		 */
2843		s = gen_load_a(OR_LINK, 0, BPF_B);
2844		b1 = new_block(JMP(BPF_JSET));
2845		b1->s.k = 0x08;
2846		b1->stmts = s;
2847
2848		/*
2849		 * AND that with the checks done for data frames.
2850		 */
2851		gen_and(b1, b0);
2852
2853		/*
2854		 * If the high-order bit of the type value is 0, this
2855		 * is a management frame.
2856		 * I.e, check "!(link[0] & 0x08)".
2857		 */
2858		s = gen_load_a(OR_LINK, 0, BPF_B);
2859		b2 = new_block(JMP(BPF_JSET));
2860		b2->s.k = 0x08;
2861		b2->stmts = s;
2862		gen_not(b2);
2863
2864		/*
2865		 * For management frames, the DA is at 4.
2866		 */
2867		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
2868		gen_and(b2, b1);
2869
2870		/*
2871		 * OR that with the checks done for data frames.
2872		 * That gives the checks done for management and
2873		 * data frames.
2874		 */
2875		gen_or(b1, b0);
2876
2877		/*
2878		 * If the low-order bit of the type value is 1,
2879		 * this is either a control frame or a frame
2880		 * with a reserved type, and thus not a
2881		 * frame with an SA.
2882		 *
2883		 * I.e., check "!(link[0] & 0x04)".
2884		 */
2885		s = gen_load_a(OR_LINK, 0, BPF_B);
2886		b1 = new_block(JMP(BPF_JSET));
2887		b1->s.k = 0x04;
2888		b1->stmts = s;
2889		gen_not(b1);
2890
2891		/*
2892		 * AND that with the checks for data and management
2893		 * frames.
2894		 */
2895		gen_and(b1, b0);
2896		return b0;
2897
2898	case Q_AND:
2899		b0 = gen_wlanhostop(eaddr, Q_SRC);
2900		b1 = gen_wlanhostop(eaddr, Q_DST);
2901		gen_and(b0, b1);
2902		return b1;
2903
2904	case Q_DEFAULT:
2905	case Q_OR:
2906		b0 = gen_wlanhostop(eaddr, Q_SRC);
2907		b1 = gen_wlanhostop(eaddr, Q_DST);
2908		gen_or(b0, b1);
2909		return b1;
2910	}
2911	abort();
2912	/* NOTREACHED */
2913}
2914
2915/*
2916 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2917 * (We assume that the addresses are IEEE 48-bit MAC addresses,
2918 * as the RFC states.)
2919 */
2920static struct block *
2921gen_ipfchostop(eaddr, dir)
2922	register const u_char *eaddr;
2923	register int dir;
2924{
2925	register struct block *b0, *b1;
2926
2927	switch (dir) {
2928	case Q_SRC:
2929		return gen_bcmp(OR_LINK, 10, 6, eaddr);
2930
2931	case Q_DST:
2932		return gen_bcmp(OR_LINK, 2, 6, eaddr);
2933
2934	case Q_AND:
2935		b0 = gen_ipfchostop(eaddr, Q_SRC);
2936		b1 = gen_ipfchostop(eaddr, Q_DST);
2937		gen_and(b0, b1);
2938		return b1;
2939
2940	case Q_DEFAULT:
2941	case Q_OR:
2942		b0 = gen_ipfchostop(eaddr, Q_SRC);
2943		b1 = gen_ipfchostop(eaddr, Q_DST);
2944		gen_or(b0, b1);
2945		return b1;
2946	}
2947	abort();
2948	/* NOTREACHED */
2949}
2950
2951/*
2952 * This is quite tricky because there may be pad bytes in front of the
2953 * DECNET header, and then there are two possible data packet formats that
2954 * carry both src and dst addresses, plus 5 packet types in a format that
2955 * carries only the src node, plus 2 types that use a different format and
2956 * also carry just the src node.
2957 *
2958 * Yuck.
2959 *
2960 * Instead of doing those all right, we just look for data packets with
2961 * 0 or 1 bytes of padding.  If you want to look at other packets, that
2962 * will require a lot more hacking.
2963 *
2964 * To add support for filtering on DECNET "areas" (network numbers)
2965 * one would want to add a "mask" argument to this routine.  That would
2966 * make the filter even more inefficient, although one could be clever
2967 * and not generate masking instructions if the mask is 0xFFFF.
2968 */
2969static struct block *
2970gen_dnhostop(addr, dir)
2971	bpf_u_int32 addr;
2972	int dir;
2973{
2974	struct block *b0, *b1, *b2, *tmp;
2975	u_int offset_lh;	/* offset if long header is received */
2976	u_int offset_sh;	/* offset if short header is received */
2977
2978	switch (dir) {
2979
2980	case Q_DST:
2981		offset_sh = 1;	/* follows flags */
2982		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
2983		break;
2984
2985	case Q_SRC:
2986		offset_sh = 3;	/* follows flags, dstnode */
2987		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
2988		break;
2989
2990	case Q_AND:
2991		/* Inefficient because we do our Calvinball dance twice */
2992		b0 = gen_dnhostop(addr, Q_SRC);
2993		b1 = gen_dnhostop(addr, Q_DST);
2994		gen_and(b0, b1);
2995		return b1;
2996
2997	case Q_OR:
2998	case Q_DEFAULT:
2999		/* Inefficient because we do our Calvinball dance twice */
3000		b0 = gen_dnhostop(addr, Q_SRC);
3001		b1 = gen_dnhostop(addr, Q_DST);
3002		gen_or(b0, b1);
3003		return b1;
3004
3005	case Q_ISO:
3006		bpf_error("ISO host filtering not implemented");
3007
3008	default:
3009		abort();
3010	}
3011	b0 = gen_linktype(ETHERTYPE_DN);
3012	/* Check for pad = 1, long header case */
3013	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3014	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
3015	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
3016	    BPF_H, (bpf_int32)ntohs(addr));
3017	gen_and(tmp, b1);
3018	/* Check for pad = 0, long header case */
3019	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
3020	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs(addr));
3021	gen_and(tmp, b2);
3022	gen_or(b2, b1);
3023	/* Check for pad = 1, short header case */
3024	tmp = gen_mcmp(OR_NET, 2, BPF_H,
3025	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
3026	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
3027	gen_and(tmp, b2);
3028	gen_or(b2, b1);
3029	/* Check for pad = 0, short header case */
3030	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
3031	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
3032	gen_and(tmp, b2);
3033	gen_or(b2, b1);
3034
3035	/* Combine with test for linktype */
3036	gen_and(b0, b1);
3037	return b1;
3038}
3039
3040static struct block *
3041gen_host(addr, mask, proto, dir)
3042	bpf_u_int32 addr;
3043	bpf_u_int32 mask;
3044	int proto;
3045	int dir;
3046{
3047	struct block *b0, *b1;
3048
3049	switch (proto) {
3050
3051	case Q_DEFAULT:
3052		b0 = gen_host(addr, mask, Q_IP, dir);
3053		if (off_linktype != (u_int)-1) {
3054		    b1 = gen_host(addr, mask, Q_ARP, dir);
3055		    gen_or(b0, b1);
3056		    b0 = gen_host(addr, mask, Q_RARP, dir);
3057		    gen_or(b1, b0);
3058		}
3059		return b0;
3060
3061	case Q_IP:
3062		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
3063
3064	case Q_RARP:
3065		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
3066
3067	case Q_ARP:
3068		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
3069
3070	case Q_TCP:
3071		bpf_error("'tcp' modifier applied to host");
3072
3073	case Q_SCTP:
3074		bpf_error("'sctp' modifier applied to host");
3075
3076	case Q_UDP:
3077		bpf_error("'udp' modifier applied to host");
3078
3079	case Q_ICMP:
3080		bpf_error("'icmp' modifier applied to host");
3081
3082	case Q_IGMP:
3083		bpf_error("'igmp' modifier applied to host");
3084
3085	case Q_IGRP:
3086		bpf_error("'igrp' modifier applied to host");
3087
3088	case Q_PIM:
3089		bpf_error("'pim' modifier applied to host");
3090
3091	case Q_VRRP:
3092		bpf_error("'vrrp' modifier applied to host");
3093
3094	case Q_ATALK:
3095		bpf_error("ATALK host filtering not implemented");
3096
3097	case Q_AARP:
3098		bpf_error("AARP host filtering not implemented");
3099
3100	case Q_DECNET:
3101		return gen_dnhostop(addr, dir);
3102
3103	case Q_SCA:
3104		bpf_error("SCA host filtering not implemented");
3105
3106	case Q_LAT:
3107		bpf_error("LAT host filtering not implemented");
3108
3109	case Q_MOPDL:
3110		bpf_error("MOPDL host filtering not implemented");
3111
3112	case Q_MOPRC:
3113		bpf_error("MOPRC host filtering not implemented");
3114
3115#ifdef INET6
3116	case Q_IPV6:
3117		bpf_error("'ip6' modifier applied to ip host");
3118
3119	case Q_ICMPV6:
3120		bpf_error("'icmp6' modifier applied to host");
3121#endif /* INET6 */
3122
3123	case Q_AH:
3124		bpf_error("'ah' modifier applied to host");
3125
3126	case Q_ESP:
3127		bpf_error("'esp' modifier applied to host");
3128
3129	case Q_ISO:
3130		bpf_error("ISO host filtering not implemented");
3131
3132	case Q_ESIS:
3133		bpf_error("'esis' modifier applied to host");
3134
3135	case Q_ISIS:
3136		bpf_error("'isis' modifier applied to host");
3137
3138	case Q_CLNP:
3139		bpf_error("'clnp' modifier applied to host");
3140
3141	case Q_STP:
3142		bpf_error("'stp' modifier applied to host");
3143
3144	case Q_IPX:
3145		bpf_error("IPX host filtering not implemented");
3146
3147	case Q_NETBEUI:
3148		bpf_error("'netbeui' modifier applied to host");
3149
3150	case Q_RADIO:
3151		bpf_error("'radio' modifier applied to host");
3152
3153	default:
3154		abort();
3155	}
3156	/* NOTREACHED */
3157}
3158
3159#ifdef INET6
3160static struct block *
3161gen_host6(addr, mask, proto, dir)
3162	struct in6_addr *addr;
3163	struct in6_addr *mask;
3164	int proto;
3165	int dir;
3166{
3167	switch (proto) {
3168
3169	case Q_DEFAULT:
3170		return gen_host6(addr, mask, Q_IPV6, dir);
3171
3172	case Q_IP:
3173		bpf_error("'ip' modifier applied to ip6 host");
3174
3175	case Q_RARP:
3176		bpf_error("'rarp' modifier applied to ip6 host");
3177
3178	case Q_ARP:
3179		bpf_error("'arp' modifier applied to ip6 host");
3180
3181	case Q_SCTP:
3182		bpf_error("'sctp' modifier applied to host");
3183
3184	case Q_TCP:
3185		bpf_error("'tcp' modifier applied to host");
3186
3187	case Q_UDP:
3188		bpf_error("'udp' modifier applied to host");
3189
3190	case Q_ICMP:
3191		bpf_error("'icmp' modifier applied to host");
3192
3193	case Q_IGMP:
3194		bpf_error("'igmp' modifier applied to host");
3195
3196	case Q_IGRP:
3197		bpf_error("'igrp' modifier applied to host");
3198
3199	case Q_PIM:
3200		bpf_error("'pim' modifier applied to host");
3201
3202	case Q_VRRP:
3203		bpf_error("'vrrp' modifier applied to host");
3204
3205	case Q_ATALK:
3206		bpf_error("ATALK host filtering not implemented");
3207
3208	case Q_AARP:
3209		bpf_error("AARP host filtering not implemented");
3210
3211	case Q_DECNET:
3212		bpf_error("'decnet' modifier applied to ip6 host");
3213
3214	case Q_SCA:
3215		bpf_error("SCA host filtering not implemented");
3216
3217	case Q_LAT:
3218		bpf_error("LAT host filtering not implemented");
3219
3220	case Q_MOPDL:
3221		bpf_error("MOPDL host filtering not implemented");
3222
3223	case Q_MOPRC:
3224		bpf_error("MOPRC host filtering not implemented");
3225
3226	case Q_IPV6:
3227		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
3228
3229	case Q_ICMPV6:
3230		bpf_error("'icmp6' modifier applied to host");
3231
3232	case Q_AH:
3233		bpf_error("'ah' modifier applied to host");
3234
3235	case Q_ESP:
3236		bpf_error("'esp' modifier applied to host");
3237
3238	case Q_ISO:
3239		bpf_error("ISO host filtering not implemented");
3240
3241	case Q_ESIS:
3242		bpf_error("'esis' modifier applied to host");
3243
3244	case Q_ISIS:
3245		bpf_error("'isis' modifier applied to host");
3246
3247	case Q_CLNP:
3248		bpf_error("'clnp' modifier applied to host");
3249
3250	case Q_STP:
3251		bpf_error("'stp' modifier applied to host");
3252
3253	case Q_IPX:
3254		bpf_error("IPX host filtering not implemented");
3255
3256	case Q_NETBEUI:
3257		bpf_error("'netbeui' modifier applied to host");
3258
3259	case Q_RADIO:
3260		bpf_error("'radio' modifier applied to host");
3261
3262	default:
3263		abort();
3264	}
3265	/* NOTREACHED */
3266}
3267#endif /*INET6*/
3268
3269#ifndef INET6
3270static struct block *
3271gen_gateway(eaddr, alist, proto, dir)
3272	const u_char *eaddr;
3273	bpf_u_int32 **alist;
3274	int proto;
3275	int dir;
3276{
3277	struct block *b0, *b1, *tmp;
3278
3279	if (dir != 0)
3280		bpf_error("direction applied to 'gateway'");
3281
3282	switch (proto) {
3283	case Q_DEFAULT:
3284	case Q_IP:
3285	case Q_ARP:
3286	case Q_RARP:
3287		if (linktype == DLT_EN10MB)
3288			b0 = gen_ehostop(eaddr, Q_OR);
3289		else if (linktype == DLT_FDDI)
3290			b0 = gen_fhostop(eaddr, Q_OR);
3291		else if (linktype == DLT_IEEE802)
3292			b0 = gen_thostop(eaddr, Q_OR);
3293		else if (linktype == DLT_IEEE802_11 ||
3294		    linktype == DLT_IEEE802_11_RADIO_AVS ||
3295		    linktype == DLT_IEEE802_11_RADIO ||
3296		    linktype == DLT_PRISM_HEADER)
3297			b0 = gen_wlanhostop(eaddr, Q_OR);
3298		else if (linktype == DLT_SUNATM && is_lane) {
3299			/*
3300			 * Check that the packet doesn't begin with an
3301			 * LE Control marker.  (We've already generated
3302			 * a test for LANE.)
3303			 */
3304			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3305			    0xFF00);
3306			gen_not(b1);
3307
3308			/*
3309			 * Now check the MAC address.
3310			 */
3311			b0 = gen_ehostop(eaddr, Q_OR);
3312			gen_and(b1, b0);
3313		} else if (linktype == DLT_IP_OVER_FC)
3314			b0 = gen_ipfchostop(eaddr, Q_OR);
3315		else
3316			bpf_error(
3317			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
3318
3319		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR);
3320		while (*alist) {
3321			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR);
3322			gen_or(b1, tmp);
3323			b1 = tmp;
3324		}
3325		gen_not(b1);
3326		gen_and(b0, b1);
3327		return b1;
3328	}
3329	bpf_error("illegal modifier of 'gateway'");
3330	/* NOTREACHED */
3331}
3332#endif
3333
3334struct block *
3335gen_proto_abbrev(proto)
3336	int proto;
3337{
3338	struct block *b0;
3339	struct block *b1;
3340
3341	switch (proto) {
3342
3343	case Q_SCTP:
3344		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
3345#ifdef INET6
3346		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
3347		gen_or(b0, b1);
3348#endif
3349		break;
3350
3351	case Q_TCP:
3352		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
3353#ifdef INET6
3354		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
3355		gen_or(b0, b1);
3356#endif
3357		break;
3358
3359	case Q_UDP:
3360		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
3361#ifdef INET6
3362		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
3363		gen_or(b0, b1);
3364#endif
3365		break;
3366
3367	case Q_ICMP:
3368		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
3369		break;
3370
3371#ifndef	IPPROTO_IGMP
3372#define	IPPROTO_IGMP	2
3373#endif
3374
3375	case Q_IGMP:
3376		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
3377		break;
3378
3379#ifndef	IPPROTO_IGRP
3380#define	IPPROTO_IGRP	9
3381#endif
3382	case Q_IGRP:
3383		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
3384		break;
3385
3386#ifndef IPPROTO_PIM
3387#define IPPROTO_PIM	103
3388#endif
3389
3390	case Q_PIM:
3391		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
3392#ifdef INET6
3393		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
3394		gen_or(b0, b1);
3395#endif
3396		break;
3397
3398#ifndef IPPROTO_VRRP
3399#define IPPROTO_VRRP	112
3400#endif
3401
3402	case Q_VRRP:
3403		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
3404		break;
3405
3406	case Q_IP:
3407		b1 =  gen_linktype(ETHERTYPE_IP);
3408		break;
3409
3410	case Q_ARP:
3411		b1 =  gen_linktype(ETHERTYPE_ARP);
3412		break;
3413
3414	case Q_RARP:
3415		b1 =  gen_linktype(ETHERTYPE_REVARP);
3416		break;
3417
3418	case Q_LINK:
3419		bpf_error("link layer applied in wrong context");
3420
3421	case Q_ATALK:
3422		b1 =  gen_linktype(ETHERTYPE_ATALK);
3423		break;
3424
3425	case Q_AARP:
3426		b1 =  gen_linktype(ETHERTYPE_AARP);
3427		break;
3428
3429	case Q_DECNET:
3430		b1 =  gen_linktype(ETHERTYPE_DN);
3431		break;
3432
3433	case Q_SCA:
3434		b1 =  gen_linktype(ETHERTYPE_SCA);
3435		break;
3436
3437	case Q_LAT:
3438		b1 =  gen_linktype(ETHERTYPE_LAT);
3439		break;
3440
3441	case Q_MOPDL:
3442		b1 =  gen_linktype(ETHERTYPE_MOPDL);
3443		break;
3444
3445	case Q_MOPRC:
3446		b1 =  gen_linktype(ETHERTYPE_MOPRC);
3447		break;
3448
3449#ifdef INET6
3450	case Q_IPV6:
3451		b1 = gen_linktype(ETHERTYPE_IPV6);
3452		break;
3453
3454#ifndef IPPROTO_ICMPV6
3455#define IPPROTO_ICMPV6	58
3456#endif
3457	case Q_ICMPV6:
3458		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
3459		break;
3460#endif /* INET6 */
3461
3462#ifndef IPPROTO_AH
3463#define IPPROTO_AH	51
3464#endif
3465	case Q_AH:
3466		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
3467#ifdef INET6
3468		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
3469		gen_or(b0, b1);
3470#endif
3471		break;
3472
3473#ifndef IPPROTO_ESP
3474#define IPPROTO_ESP	50
3475#endif
3476	case Q_ESP:
3477		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
3478#ifdef INET6
3479		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
3480		gen_or(b0, b1);
3481#endif
3482		break;
3483
3484	case Q_ISO:
3485		b1 = gen_linktype(LLCSAP_ISONS);
3486		break;
3487
3488	case Q_ESIS:
3489		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
3490		break;
3491
3492	case Q_ISIS:
3493		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
3494		break;
3495
3496	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
3497		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3498		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3499		gen_or(b0, b1);
3500		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3501		gen_or(b0, b1);
3502		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3503		gen_or(b0, b1);
3504		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3505		gen_or(b0, b1);
3506		break;
3507
3508	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
3509		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3510		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
3511		gen_or(b0, b1);
3512		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3513		gen_or(b0, b1);
3514		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3515		gen_or(b0, b1);
3516		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3517		gen_or(b0, b1);
3518		break;
3519
3520	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
3521		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
3522		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
3523		gen_or(b0, b1);
3524		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
3525		gen_or(b0, b1);
3526		break;
3527
3528	case Q_ISIS_LSP:
3529		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
3530		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
3531		gen_or(b0, b1);
3532		break;
3533
3534	case Q_ISIS_SNP:
3535		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3536		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3537		gen_or(b0, b1);
3538		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3539		gen_or(b0, b1);
3540		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3541		gen_or(b0, b1);
3542		break;
3543
3544	case Q_ISIS_CSNP:
3545		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
3546		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
3547		gen_or(b0, b1);
3548		break;
3549
3550	case Q_ISIS_PSNP:
3551		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
3552		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
3553		gen_or(b0, b1);
3554		break;
3555
3556	case Q_CLNP:
3557		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
3558		break;
3559
3560	case Q_STP:
3561		b1 = gen_linktype(LLCSAP_8021D);
3562		break;
3563
3564	case Q_IPX:
3565		b1 = gen_linktype(LLCSAP_IPX);
3566		break;
3567
3568	case Q_NETBEUI:
3569		b1 = gen_linktype(LLCSAP_NETBEUI);
3570		break;
3571
3572	case Q_RADIO:
3573		bpf_error("'radio' is not a valid protocol type");
3574
3575	default:
3576		abort();
3577	}
3578	return b1;
3579}
3580
3581static struct block *
3582gen_ipfrag()
3583{
3584	struct slist *s;
3585	struct block *b;
3586
3587	/* not ip frag */
3588	s = gen_load_a(OR_NET, 6, BPF_H);
3589	b = new_block(JMP(BPF_JSET));
3590	b->s.k = 0x1fff;
3591	b->stmts = s;
3592	gen_not(b);
3593
3594	return b;
3595}
3596
3597/*
3598 * Generate a comparison to a port value in the transport-layer header
3599 * at the specified offset from the beginning of that header.
3600 *
3601 * XXX - this handles a variable-length prefix preceding the link-layer
3602 * header, such as the radiotap or AVS radio prefix, but doesn't handle
3603 * variable-length link-layer headers (such as Token Ring or 802.11
3604 * headers).
3605 */
3606static struct block *
3607gen_portatom(off, v)
3608	int off;
3609	bpf_int32 v;
3610{
3611	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
3612}
3613
3614#ifdef INET6
3615static struct block *
3616gen_portatom6(off, v)
3617	int off;
3618	bpf_int32 v;
3619{
3620	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
3621}
3622#endif/*INET6*/
3623
3624struct block *
3625gen_portop(port, proto, dir)
3626	int port, proto, dir;
3627{
3628	struct block *b0, *b1, *tmp;
3629
3630	/* ip proto 'proto' */
3631	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
3632	b0 = gen_ipfrag();
3633	gen_and(tmp, b0);
3634
3635	switch (dir) {
3636	case Q_SRC:
3637		b1 = gen_portatom(0, (bpf_int32)port);
3638		break;
3639
3640	case Q_DST:
3641		b1 = gen_portatom(2, (bpf_int32)port);
3642		break;
3643
3644	case Q_OR:
3645	case Q_DEFAULT:
3646		tmp = gen_portatom(0, (bpf_int32)port);
3647		b1 = gen_portatom(2, (bpf_int32)port);
3648		gen_or(tmp, b1);
3649		break;
3650
3651	case Q_AND:
3652		tmp = gen_portatom(0, (bpf_int32)port);
3653		b1 = gen_portatom(2, (bpf_int32)port);
3654		gen_and(tmp, b1);
3655		break;
3656
3657	default:
3658		abort();
3659	}
3660	gen_and(b0, b1);
3661
3662	return b1;
3663}
3664
3665static struct block *
3666gen_port(port, ip_proto, dir)
3667	int port;
3668	int ip_proto;
3669	int dir;
3670{
3671	struct block *b0, *b1, *tmp;
3672
3673	/*
3674	 * ether proto ip
3675	 *
3676	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3677	 * not LLC encapsulation with LLCSAP_IP.
3678	 *
3679	 * For IEEE 802 networks - which includes 802.5 token ring
3680	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3681	 * says that SNAP encapsulation is used, not LLC encapsulation
3682	 * with LLCSAP_IP.
3683	 *
3684	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3685	 * RFC 2225 say that SNAP encapsulation is used, not LLC
3686	 * encapsulation with LLCSAP_IP.
3687	 *
3688	 * So we always check for ETHERTYPE_IP.
3689	 */
3690	b0 =  gen_linktype(ETHERTYPE_IP);
3691
3692	switch (ip_proto) {
3693	case IPPROTO_UDP:
3694	case IPPROTO_TCP:
3695	case IPPROTO_SCTP:
3696		b1 = gen_portop(port, ip_proto, dir);
3697		break;
3698
3699	case PROTO_UNDEF:
3700		tmp = gen_portop(port, IPPROTO_TCP, dir);
3701		b1 = gen_portop(port, IPPROTO_UDP, dir);
3702		gen_or(tmp, b1);
3703		tmp = gen_portop(port, IPPROTO_SCTP, dir);
3704		gen_or(tmp, b1);
3705		break;
3706
3707	default:
3708		abort();
3709	}
3710	gen_and(b0, b1);
3711	return b1;
3712}
3713
3714#ifdef INET6
3715struct block *
3716gen_portop6(port, proto, dir)
3717	int port, proto, dir;
3718{
3719	struct block *b0, *b1, *tmp;
3720
3721	/* ip6 proto 'proto' */
3722	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
3723
3724	switch (dir) {
3725	case Q_SRC:
3726		b1 = gen_portatom6(0, (bpf_int32)port);
3727		break;
3728
3729	case Q_DST:
3730		b1 = gen_portatom6(2, (bpf_int32)port);
3731		break;
3732
3733	case Q_OR:
3734	case Q_DEFAULT:
3735		tmp = gen_portatom6(0, (bpf_int32)port);
3736		b1 = gen_portatom6(2, (bpf_int32)port);
3737		gen_or(tmp, b1);
3738		break;
3739
3740	case Q_AND:
3741		tmp = gen_portatom6(0, (bpf_int32)port);
3742		b1 = gen_portatom6(2, (bpf_int32)port);
3743		gen_and(tmp, b1);
3744		break;
3745
3746	default:
3747		abort();
3748	}
3749	gen_and(b0, b1);
3750
3751	return b1;
3752}
3753
3754static struct block *
3755gen_port6(port, ip_proto, dir)
3756	int port;
3757	int ip_proto;
3758	int dir;
3759{
3760	struct block *b0, *b1, *tmp;
3761
3762	/* link proto ip6 */
3763	b0 =  gen_linktype(ETHERTYPE_IPV6);
3764
3765	switch (ip_proto) {
3766	case IPPROTO_UDP:
3767	case IPPROTO_TCP:
3768	case IPPROTO_SCTP:
3769		b1 = gen_portop6(port, ip_proto, dir);
3770		break;
3771
3772	case PROTO_UNDEF:
3773		tmp = gen_portop6(port, IPPROTO_TCP, dir);
3774		b1 = gen_portop6(port, IPPROTO_UDP, dir);
3775		gen_or(tmp, b1);
3776		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
3777		gen_or(tmp, b1);
3778		break;
3779
3780	default:
3781		abort();
3782	}
3783	gen_and(b0, b1);
3784	return b1;
3785}
3786#endif /* INET6 */
3787
3788/* gen_portrange code */
3789static struct block *
3790gen_portrangeatom(off, v1, v2)
3791	int off;
3792	bpf_int32 v1, v2;
3793{
3794	struct block *b1, *b2;
3795
3796	if (v1 > v2) {
3797		/*
3798		 * Reverse the order of the ports, so v1 is the lower one.
3799		 */
3800		bpf_int32 vtemp;
3801
3802		vtemp = v1;
3803		v1 = v2;
3804		v2 = vtemp;
3805	}
3806
3807	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
3808	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
3809
3810	gen_and(b1, b2);
3811
3812	return b2;
3813}
3814
3815struct block *
3816gen_portrangeop(port1, port2, proto, dir)
3817	int port1, port2;
3818	int proto;
3819	int dir;
3820{
3821	struct block *b0, *b1, *tmp;
3822
3823	/* ip proto 'proto' */
3824	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
3825	b0 = gen_ipfrag();
3826	gen_and(tmp, b0);
3827
3828	switch (dir) {
3829	case Q_SRC:
3830		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3831		break;
3832
3833	case Q_DST:
3834		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3835		break;
3836
3837	case Q_OR:
3838	case Q_DEFAULT:
3839		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3840		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3841		gen_or(tmp, b1);
3842		break;
3843
3844	case Q_AND:
3845		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
3846		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
3847		gen_and(tmp, b1);
3848		break;
3849
3850	default:
3851		abort();
3852	}
3853	gen_and(b0, b1);
3854
3855	return b1;
3856}
3857
3858static struct block *
3859gen_portrange(port1, port2, ip_proto, dir)
3860	int port1, port2;
3861	int ip_proto;
3862	int dir;
3863{
3864	struct block *b0, *b1, *tmp;
3865
3866	/* link proto ip */
3867	b0 =  gen_linktype(ETHERTYPE_IP);
3868
3869	switch (ip_proto) {
3870	case IPPROTO_UDP:
3871	case IPPROTO_TCP:
3872	case IPPROTO_SCTP:
3873		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
3874		break;
3875
3876	case PROTO_UNDEF:
3877		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
3878		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
3879		gen_or(tmp, b1);
3880		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
3881		gen_or(tmp, b1);
3882		break;
3883
3884	default:
3885		abort();
3886	}
3887	gen_and(b0, b1);
3888	return b1;
3889}
3890
3891#ifdef INET6
3892static struct block *
3893gen_portrangeatom6(off, v1, v2)
3894	int off;
3895	bpf_int32 v1, v2;
3896{
3897	struct block *b1, *b2;
3898
3899	if (v1 > v2) {
3900		/*
3901		 * Reverse the order of the ports, so v1 is the lower one.
3902		 */
3903		bpf_int32 vtemp;
3904
3905		vtemp = v1;
3906		v1 = v2;
3907		v2 = vtemp;
3908	}
3909
3910	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
3911	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
3912
3913	gen_and(b1, b2);
3914
3915	return b2;
3916}
3917
3918struct block *
3919gen_portrangeop6(port1, port2, proto, dir)
3920	int port1, port2;
3921	int proto;
3922	int dir;
3923{
3924	struct block *b0, *b1, *tmp;
3925
3926	/* ip6 proto 'proto' */
3927	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
3928
3929	switch (dir) {
3930	case Q_SRC:
3931		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3932		break;
3933
3934	case Q_DST:
3935		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3936		break;
3937
3938	case Q_OR:
3939	case Q_DEFAULT:
3940		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3941		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3942		gen_or(tmp, b1);
3943		break;
3944
3945	case Q_AND:
3946		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
3947		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
3948		gen_and(tmp, b1);
3949		break;
3950
3951	default:
3952		abort();
3953	}
3954	gen_and(b0, b1);
3955
3956	return b1;
3957}
3958
3959static struct block *
3960gen_portrange6(port1, port2, ip_proto, dir)
3961	int port1, port2;
3962	int ip_proto;
3963	int dir;
3964{
3965	struct block *b0, *b1, *tmp;
3966
3967	/* link proto ip6 */
3968	b0 =  gen_linktype(ETHERTYPE_IPV6);
3969
3970	switch (ip_proto) {
3971	case IPPROTO_UDP:
3972	case IPPROTO_TCP:
3973	case IPPROTO_SCTP:
3974		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
3975		break;
3976
3977	case PROTO_UNDEF:
3978		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
3979		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
3980		gen_or(tmp, b1);
3981		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
3982		gen_or(tmp, b1);
3983		break;
3984
3985	default:
3986		abort();
3987	}
3988	gen_and(b0, b1);
3989	return b1;
3990}
3991#endif /* INET6 */
3992
3993static int
3994lookup_proto(name, proto)
3995	register const char *name;
3996	register int proto;
3997{
3998	register int v;
3999
4000	switch (proto) {
4001
4002	case Q_DEFAULT:
4003	case Q_IP:
4004	case Q_IPV6:
4005		v = pcap_nametoproto(name);
4006		if (v == PROTO_UNDEF)
4007			bpf_error("unknown ip proto '%s'", name);
4008		break;
4009
4010	case Q_LINK:
4011		/* XXX should look up h/w protocol type based on linktype */
4012		v = pcap_nametoeproto(name);
4013		if (v == PROTO_UNDEF) {
4014			v = pcap_nametollc(name);
4015			if (v == PROTO_UNDEF)
4016				bpf_error("unknown ether proto '%s'", name);
4017		}
4018		break;
4019
4020	case Q_ISO:
4021		if (strcmp(name, "esis") == 0)
4022			v = ISO9542_ESIS;
4023		else if (strcmp(name, "isis") == 0)
4024			v = ISO10589_ISIS;
4025		else if (strcmp(name, "clnp") == 0)
4026			v = ISO8473_CLNP;
4027		else
4028			bpf_error("unknown osi proto '%s'", name);
4029		break;
4030
4031	default:
4032		v = PROTO_UNDEF;
4033		break;
4034	}
4035	return v;
4036}
4037
4038#if 0
4039struct stmt *
4040gen_joinsp(s, n)
4041	struct stmt **s;
4042	int n;
4043{
4044	return NULL;
4045}
4046#endif
4047
4048static struct block *
4049gen_protochain(v, proto, dir)
4050	int v;
4051	int proto;
4052	int dir;
4053{
4054#ifdef NO_PROTOCHAIN
4055	return gen_proto(v, proto, dir);
4056#else
4057	struct block *b0, *b;
4058	struct slist *s[100];
4059	int fix2, fix3, fix4, fix5;
4060	int ahcheck, again, end;
4061	int i, max;
4062	int reg2 = alloc_reg();
4063
4064	memset(s, 0, sizeof(s));
4065	fix2 = fix3 = fix4 = fix5 = 0;
4066
4067	switch (proto) {
4068	case Q_IP:
4069	case Q_IPV6:
4070		break;
4071	case Q_DEFAULT:
4072		b0 = gen_protochain(v, Q_IP, dir);
4073		b = gen_protochain(v, Q_IPV6, dir);
4074		gen_or(b0, b);
4075		return b;
4076	default:
4077		bpf_error("bad protocol applied for 'protochain'");
4078		/*NOTREACHED*/
4079	}
4080
4081	/*
4082	 * We don't handle variable-length radiotap here headers yet.
4083	 * We might want to add BPF instructions to do the protochain
4084	 * work, to simplify that and, on platforms that have a BPF
4085	 * interpreter with the new instructions, let the filtering
4086	 * be done in the kernel.  (We already require a modified BPF
4087	 * engine to do the protochain stuff, to support backward
4088	 * branches, and backward branch support is unlikely to appear
4089	 * in kernel BPF engines.)
4090	 */
4091	if (linktype == DLT_IEEE802_11_RADIO)
4092		bpf_error("'protochain' not supported with radiotap headers");
4093
4094	no_optimize = 1; /*this code is not compatible with optimzer yet */
4095
4096	/*
4097	 * s[0] is a dummy entry to protect other BPF insn from damage
4098	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
4099	 * hard to find interdependency made by jump table fixup.
4100	 */
4101	i = 0;
4102	s[i] = new_stmt(0);	/*dummy*/
4103	i++;
4104
4105	switch (proto) {
4106	case Q_IP:
4107		b0 = gen_linktype(ETHERTYPE_IP);
4108
4109		/* A = ip->ip_p */
4110		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4111		s[i]->s.k = off_nl + 9;
4112		i++;
4113		/* X = ip->ip_hl << 2 */
4114		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
4115		s[i]->s.k = off_nl;
4116		i++;
4117		break;
4118#ifdef INET6
4119	case Q_IPV6:
4120		b0 = gen_linktype(ETHERTYPE_IPV6);
4121
4122		/* A = ip6->ip_nxt */
4123		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
4124		s[i]->s.k = off_nl + 6;
4125		i++;
4126		/* X = sizeof(struct ip6_hdr) */
4127		s[i] = new_stmt(BPF_LDX|BPF_IMM);
4128		s[i]->s.k = 40;
4129		i++;
4130		break;
4131#endif
4132	default:
4133		bpf_error("unsupported proto to gen_protochain");
4134		/*NOTREACHED*/
4135	}
4136
4137	/* again: if (A == v) goto end; else fall through; */
4138	again = i;
4139	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4140	s[i]->s.k = v;
4141	s[i]->s.jt = NULL;		/*later*/
4142	s[i]->s.jf = NULL;		/*update in next stmt*/
4143	fix5 = i;
4144	i++;
4145
4146#ifndef IPPROTO_NONE
4147#define IPPROTO_NONE	59
4148#endif
4149	/* if (A == IPPROTO_NONE) goto end */
4150	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4151	s[i]->s.jt = NULL;	/*later*/
4152	s[i]->s.jf = NULL;	/*update in next stmt*/
4153	s[i]->s.k = IPPROTO_NONE;
4154	s[fix5]->s.jf = s[i];
4155	fix2 = i;
4156	i++;
4157
4158#ifdef INET6
4159	if (proto == Q_IPV6) {
4160		int v6start, v6end, v6advance, j;
4161
4162		v6start = i;
4163		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
4164		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4165		s[i]->s.jt = NULL;	/*later*/
4166		s[i]->s.jf = NULL;	/*update in next stmt*/
4167		s[i]->s.k = IPPROTO_HOPOPTS;
4168		s[fix2]->s.jf = s[i];
4169		i++;
4170		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
4171		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4172		s[i]->s.jt = NULL;	/*later*/
4173		s[i]->s.jf = NULL;	/*update in next stmt*/
4174		s[i]->s.k = IPPROTO_DSTOPTS;
4175		i++;
4176		/* if (A == IPPROTO_ROUTING) goto v6advance */
4177		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4178		s[i]->s.jt = NULL;	/*later*/
4179		s[i]->s.jf = NULL;	/*update in next stmt*/
4180		s[i]->s.k = IPPROTO_ROUTING;
4181		i++;
4182		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
4183		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4184		s[i]->s.jt = NULL;	/*later*/
4185		s[i]->s.jf = NULL;	/*later*/
4186		s[i]->s.k = IPPROTO_FRAGMENT;
4187		fix3 = i;
4188		v6end = i;
4189		i++;
4190
4191		/* v6advance: */
4192		v6advance = i;
4193
4194		/*
4195		 * in short,
4196		 * A = P[X];
4197		 * X = X + (P[X + 1] + 1) * 8;
4198		 */
4199		/* A = X */
4200		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4201		i++;
4202		/* A = P[X + packet head] */
4203		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4204		s[i]->s.k = off_nl;
4205		i++;
4206		/* MEM[reg2] = A */
4207		s[i] = new_stmt(BPF_ST);
4208		s[i]->s.k = reg2;
4209		i++;
4210		/* A = X */
4211		s[i] = new_stmt(BPF_MISC|BPF_TXA);
4212		i++;
4213		/* A += 1 */
4214		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4215		s[i]->s.k = 1;
4216		i++;
4217		/* X = A */
4218		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4219		i++;
4220		/* A = P[X + packet head]; */
4221		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4222		s[i]->s.k = off_nl;
4223		i++;
4224		/* A += 1 */
4225		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4226		s[i]->s.k = 1;
4227		i++;
4228		/* A *= 8 */
4229		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4230		s[i]->s.k = 8;
4231		i++;
4232		/* X = A; */
4233		s[i] = new_stmt(BPF_MISC|BPF_TAX);
4234		i++;
4235		/* A = MEM[reg2] */
4236		s[i] = new_stmt(BPF_LD|BPF_MEM);
4237		s[i]->s.k = reg2;
4238		i++;
4239
4240		/* goto again; (must use BPF_JA for backward jump) */
4241		s[i] = new_stmt(BPF_JMP|BPF_JA);
4242		s[i]->s.k = again - i - 1;
4243		s[i - 1]->s.jf = s[i];
4244		i++;
4245
4246		/* fixup */
4247		for (j = v6start; j <= v6end; j++)
4248			s[j]->s.jt = s[v6advance];
4249	} else
4250#endif
4251	{
4252		/* nop */
4253		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4254		s[i]->s.k = 0;
4255		s[fix2]->s.jf = s[i];
4256		i++;
4257	}
4258
4259	/* ahcheck: */
4260	ahcheck = i;
4261	/* if (A == IPPROTO_AH) then fall through; else goto end; */
4262	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
4263	s[i]->s.jt = NULL;	/*later*/
4264	s[i]->s.jf = NULL;	/*later*/
4265	s[i]->s.k = IPPROTO_AH;
4266	if (fix3)
4267		s[fix3]->s.jf = s[ahcheck];
4268	fix4 = i;
4269	i++;
4270
4271	/*
4272	 * in short,
4273	 * A = P[X];
4274	 * X = X + (P[X + 1] + 2) * 4;
4275	 */
4276	/* A = X */
4277	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4278	i++;
4279	/* A = P[X + packet head]; */
4280	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4281	s[i]->s.k = off_nl;
4282	i++;
4283	/* MEM[reg2] = A */
4284	s[i] = new_stmt(BPF_ST);
4285	s[i]->s.k = reg2;
4286	i++;
4287	/* A = X */
4288	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
4289	i++;
4290	/* A += 1 */
4291	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4292	s[i]->s.k = 1;
4293	i++;
4294	/* X = A */
4295	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4296	i++;
4297	/* A = P[X + packet head] */
4298	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
4299	s[i]->s.k = off_nl;
4300	i++;
4301	/* A += 2 */
4302	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4303	s[i]->s.k = 2;
4304	i++;
4305	/* A *= 4 */
4306	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
4307	s[i]->s.k = 4;
4308	i++;
4309	/* X = A; */
4310	s[i] = new_stmt(BPF_MISC|BPF_TAX);
4311	i++;
4312	/* A = MEM[reg2] */
4313	s[i] = new_stmt(BPF_LD|BPF_MEM);
4314	s[i]->s.k = reg2;
4315	i++;
4316
4317	/* goto again; (must use BPF_JA for backward jump) */
4318	s[i] = new_stmt(BPF_JMP|BPF_JA);
4319	s[i]->s.k = again - i - 1;
4320	i++;
4321
4322	/* end: nop */
4323	end = i;
4324	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
4325	s[i]->s.k = 0;
4326	s[fix2]->s.jt = s[end];
4327	s[fix4]->s.jf = s[end];
4328	s[fix5]->s.jt = s[end];
4329	i++;
4330
4331	/*
4332	 * make slist chain
4333	 */
4334	max = i;
4335	for (i = 0; i < max - 1; i++)
4336		s[i]->next = s[i + 1];
4337	s[max - 1]->next = NULL;
4338
4339	/*
4340	 * emit final check
4341	 */
4342	b = new_block(JMP(BPF_JEQ));
4343	b->stmts = s[1];	/*remember, s[0] is dummy*/
4344	b->s.k = v;
4345
4346	free_reg(reg2);
4347
4348	gen_and(b0, b);
4349	return b;
4350#endif
4351}
4352
4353/*
4354 * Generate code that checks whether the packet is a packet for protocol
4355 * <proto> and whether the type field in that protocol's header has
4356 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
4357 * IP packet and checks the protocol number in the IP header against <v>.
4358 *
4359 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
4360 * against Q_IP and Q_IPV6.
4361 */
4362static struct block *
4363gen_proto(v, proto, dir)
4364	int v;
4365	int proto;
4366	int dir;
4367{
4368	struct block *b0, *b1;
4369
4370	if (dir != Q_DEFAULT)
4371		bpf_error("direction applied to 'proto'");
4372
4373	switch (proto) {
4374	case Q_DEFAULT:
4375#ifdef INET6
4376		b0 = gen_proto(v, Q_IP, dir);
4377		b1 = gen_proto(v, Q_IPV6, dir);
4378		gen_or(b0, b1);
4379		return b1;
4380#else
4381		/*FALLTHROUGH*/
4382#endif
4383	case Q_IP:
4384		/*
4385		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
4386		 * not LLC encapsulation with LLCSAP_IP.
4387		 *
4388		 * For IEEE 802 networks - which includes 802.5 token ring
4389		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
4390		 * says that SNAP encapsulation is used, not LLC encapsulation
4391		 * with LLCSAP_IP.
4392		 *
4393		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
4394		 * RFC 2225 say that SNAP encapsulation is used, not LLC
4395		 * encapsulation with LLCSAP_IP.
4396		 *
4397		 * So we always check for ETHERTYPE_IP.
4398		 */
4399		b0 = gen_linktype(ETHERTYPE_IP);
4400#ifndef CHASE_CHAIN
4401		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
4402#else
4403		b1 = gen_protochain(v, Q_IP);
4404#endif
4405		gen_and(b0, b1);
4406		return b1;
4407
4408	case Q_ISO:
4409		switch (linktype) {
4410
4411		case DLT_FRELAY:
4412			/*
4413			 * Frame Relay packets typically have an OSI
4414			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
4415			 * generates code to check for all the OSI
4416			 * NLPIDs, so calling it and then adding a check
4417			 * for the particular NLPID for which we're
4418			 * looking is bogus, as we can just check for
4419			 * the NLPID.
4420			 *
4421			 * What we check for is the NLPID and a frame
4422			 * control field value of UI, i.e. 0x03 followed
4423			 * by the NLPID.
4424			 *
4425			 * XXX - assumes a 2-byte Frame Relay header with
4426			 * DLCI and flags.  What if the address is longer?
4427			 *
4428			 * XXX - what about SNAP-encapsulated frames?
4429			 */
4430			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
4431			/*NOTREACHED*/
4432			break;
4433
4434		case DLT_C_HDLC:
4435			/*
4436			 * Cisco uses an Ethertype lookalike - for OSI,
4437			 * it's 0xfefe.
4438			 */
4439			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
4440			/* OSI in C-HDLC is stuffed with a fudge byte */
4441			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
4442			gen_and(b0, b1);
4443			return b1;
4444
4445		default:
4446			b0 = gen_linktype(LLCSAP_ISONS);
4447			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
4448			gen_and(b0, b1);
4449			return b1;
4450		}
4451
4452	case Q_ISIS:
4453		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4454		/*
4455		 * 4 is the offset of the PDU type relative to the IS-IS
4456		 * header.
4457		 */
4458		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
4459		gen_and(b0, b1);
4460		return b1;
4461
4462	case Q_ARP:
4463		bpf_error("arp does not encapsulate another protocol");
4464		/* NOTREACHED */
4465
4466	case Q_RARP:
4467		bpf_error("rarp does not encapsulate another protocol");
4468		/* NOTREACHED */
4469
4470	case Q_ATALK:
4471		bpf_error("atalk encapsulation is not specifiable");
4472		/* NOTREACHED */
4473
4474	case Q_DECNET:
4475		bpf_error("decnet encapsulation is not specifiable");
4476		/* NOTREACHED */
4477
4478	case Q_SCA:
4479		bpf_error("sca does not encapsulate another protocol");
4480		/* NOTREACHED */
4481
4482	case Q_LAT:
4483		bpf_error("lat does not encapsulate another protocol");
4484		/* NOTREACHED */
4485
4486	case Q_MOPRC:
4487		bpf_error("moprc does not encapsulate another protocol");
4488		/* NOTREACHED */
4489
4490	case Q_MOPDL:
4491		bpf_error("mopdl does not encapsulate another protocol");
4492		/* NOTREACHED */
4493
4494	case Q_LINK:
4495		return gen_linktype(v);
4496
4497	case Q_UDP:
4498		bpf_error("'udp proto' is bogus");
4499		/* NOTREACHED */
4500
4501	case Q_TCP:
4502		bpf_error("'tcp proto' is bogus");
4503		/* NOTREACHED */
4504
4505	case Q_SCTP:
4506		bpf_error("'sctp proto' is bogus");
4507		/* NOTREACHED */
4508
4509	case Q_ICMP:
4510		bpf_error("'icmp proto' is bogus");
4511		/* NOTREACHED */
4512
4513	case Q_IGMP:
4514		bpf_error("'igmp proto' is bogus");
4515		/* NOTREACHED */
4516
4517	case Q_IGRP:
4518		bpf_error("'igrp proto' is bogus");
4519		/* NOTREACHED */
4520
4521	case Q_PIM:
4522		bpf_error("'pim proto' is bogus");
4523		/* NOTREACHED */
4524
4525	case Q_VRRP:
4526		bpf_error("'vrrp proto' is bogus");
4527		/* NOTREACHED */
4528
4529#ifdef INET6
4530	case Q_IPV6:
4531		b0 = gen_linktype(ETHERTYPE_IPV6);
4532#ifndef CHASE_CHAIN
4533		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
4534#else
4535		b1 = gen_protochain(v, Q_IPV6);
4536#endif
4537		gen_and(b0, b1);
4538		return b1;
4539
4540	case Q_ICMPV6:
4541		bpf_error("'icmp6 proto' is bogus");
4542#endif /* INET6 */
4543
4544	case Q_AH:
4545		bpf_error("'ah proto' is bogus");
4546
4547	case Q_ESP:
4548		bpf_error("'ah proto' is bogus");
4549
4550	case Q_STP:
4551		bpf_error("'stp proto' is bogus");
4552
4553	case Q_IPX:
4554		bpf_error("'ipx proto' is bogus");
4555
4556	case Q_NETBEUI:
4557		bpf_error("'netbeui proto' is bogus");
4558
4559	case Q_RADIO:
4560		bpf_error("'radio proto' is bogus");
4561
4562	default:
4563		abort();
4564		/* NOTREACHED */
4565	}
4566	/* NOTREACHED */
4567}
4568
4569struct block *
4570gen_scode(name, q)
4571	register const char *name;
4572	struct qual q;
4573{
4574	int proto = q.proto;
4575	int dir = q.dir;
4576	int tproto;
4577	u_char *eaddr;
4578	bpf_u_int32 mask, addr;
4579#ifndef INET6
4580	bpf_u_int32 **alist;
4581#else
4582	int tproto6;
4583	struct sockaddr_in *sin;
4584	struct sockaddr_in6 *sin6;
4585	struct addrinfo *res, *res0;
4586	struct in6_addr mask128;
4587#endif /*INET6*/
4588	struct block *b, *tmp;
4589	int port, real_proto;
4590	int port1, port2;
4591
4592	switch (q.addr) {
4593
4594	case Q_NET:
4595		addr = pcap_nametonetaddr(name);
4596		if (addr == 0)
4597			bpf_error("unknown network '%s'", name);
4598		/* Left justify network addr and calculate its network mask */
4599		mask = 0xffffffff;
4600		while (addr && (addr & 0xff000000) == 0) {
4601			addr <<= 8;
4602			mask <<= 8;
4603		}
4604		return gen_host(addr, mask, proto, dir);
4605
4606	case Q_DEFAULT:
4607	case Q_HOST:
4608		if (proto == Q_LINK) {
4609			switch (linktype) {
4610
4611			case DLT_EN10MB:
4612				eaddr = pcap_ether_hostton(name);
4613				if (eaddr == NULL)
4614					bpf_error(
4615					    "unknown ether host '%s'", name);
4616				b = gen_ehostop(eaddr, dir);
4617				free(eaddr);
4618				return b;
4619
4620			case DLT_FDDI:
4621				eaddr = pcap_ether_hostton(name);
4622				if (eaddr == NULL)
4623					bpf_error(
4624					    "unknown FDDI host '%s'", name);
4625				b = gen_fhostop(eaddr, dir);
4626				free(eaddr);
4627				return b;
4628
4629			case DLT_IEEE802:
4630				eaddr = pcap_ether_hostton(name);
4631				if (eaddr == NULL)
4632					bpf_error(
4633					    "unknown token ring host '%s'", name);
4634				b = gen_thostop(eaddr, dir);
4635				free(eaddr);
4636				return b;
4637
4638			case DLT_IEEE802_11:
4639			case DLT_IEEE802_11_RADIO_AVS:
4640			case DLT_IEEE802_11_RADIO:
4641			case DLT_PRISM_HEADER:
4642				eaddr = pcap_ether_hostton(name);
4643				if (eaddr == NULL)
4644					bpf_error(
4645					    "unknown 802.11 host '%s'", name);
4646				b = gen_wlanhostop(eaddr, dir);
4647				free(eaddr);
4648				return b;
4649
4650			case DLT_IP_OVER_FC:
4651				eaddr = pcap_ether_hostton(name);
4652				if (eaddr == NULL)
4653					bpf_error(
4654					    "unknown Fibre Channel host '%s'", name);
4655				b = gen_ipfchostop(eaddr, dir);
4656				free(eaddr);
4657				return b;
4658
4659			case DLT_SUNATM:
4660				if (!is_lane)
4661					break;
4662
4663				/*
4664				 * Check that the packet doesn't begin
4665				 * with an LE Control marker.  (We've
4666				 * already generated a test for LANE.)
4667				 */
4668				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4669				    BPF_H, 0xFF00);
4670				gen_not(tmp);
4671
4672				eaddr = pcap_ether_hostton(name);
4673				if (eaddr == NULL)
4674					bpf_error(
4675					    "unknown ether host '%s'", name);
4676				b = gen_ehostop(eaddr, dir);
4677				gen_and(tmp, b);
4678				free(eaddr);
4679				return b;
4680			}
4681
4682			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4683		} else if (proto == Q_DECNET) {
4684			unsigned short dn_addr = __pcap_nametodnaddr(name);
4685			/*
4686			 * I don't think DECNET hosts can be multihomed, so
4687			 * there is no need to build up a list of addresses
4688			 */
4689			return (gen_host(dn_addr, 0, proto, dir));
4690		} else {
4691#ifndef INET6
4692			alist = pcap_nametoaddr(name);
4693			if (alist == NULL || *alist == NULL)
4694				bpf_error("unknown host '%s'", name);
4695			tproto = proto;
4696			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
4697				tproto = Q_IP;
4698			b = gen_host(**alist++, 0xffffffff, tproto, dir);
4699			while (*alist) {
4700				tmp = gen_host(**alist++, 0xffffffff,
4701					       tproto, dir);
4702				gen_or(b, tmp);
4703				b = tmp;
4704			}
4705			return b;
4706#else
4707			memset(&mask128, 0xff, sizeof(mask128));
4708			res0 = res = pcap_nametoaddrinfo(name);
4709			if (res == NULL)
4710				bpf_error("unknown host '%s'", name);
4711			b = tmp = NULL;
4712			tproto = tproto6 = proto;
4713			if (off_linktype == -1 && tproto == Q_DEFAULT) {
4714				tproto = Q_IP;
4715				tproto6 = Q_IPV6;
4716			}
4717			for (res = res0; res; res = res->ai_next) {
4718				switch (res->ai_family) {
4719				case AF_INET:
4720					if (tproto == Q_IPV6)
4721						continue;
4722
4723					sin = (struct sockaddr_in *)
4724						res->ai_addr;
4725					tmp = gen_host(ntohl(sin->sin_addr.s_addr),
4726						0xffffffff, tproto, dir);
4727					break;
4728				case AF_INET6:
4729					if (tproto6 == Q_IP)
4730						continue;
4731
4732					sin6 = (struct sockaddr_in6 *)
4733						res->ai_addr;
4734					tmp = gen_host6(&sin6->sin6_addr,
4735						&mask128, tproto6, dir);
4736					break;
4737				default:
4738					continue;
4739				}
4740				if (b)
4741					gen_or(b, tmp);
4742				b = tmp;
4743			}
4744			freeaddrinfo(res0);
4745			if (b == NULL) {
4746				bpf_error("unknown host '%s'%s", name,
4747				    (proto == Q_DEFAULT)
4748					? ""
4749					: " for specified address family");
4750			}
4751			return b;
4752#endif /*INET6*/
4753		}
4754
4755	case Q_PORT:
4756		if (proto != Q_DEFAULT &&
4757		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
4758			bpf_error("illegal qualifier of 'port'");
4759		if (pcap_nametoport(name, &port, &real_proto) == 0)
4760			bpf_error("unknown port '%s'", name);
4761		if (proto == Q_UDP) {
4762			if (real_proto == IPPROTO_TCP)
4763				bpf_error("port '%s' is tcp", name);
4764			else if (real_proto == IPPROTO_SCTP)
4765				bpf_error("port '%s' is sctp", name);
4766			else
4767				/* override PROTO_UNDEF */
4768				real_proto = IPPROTO_UDP;
4769		}
4770		if (proto == Q_TCP) {
4771			if (real_proto == IPPROTO_UDP)
4772				bpf_error("port '%s' is udp", name);
4773
4774			else if (real_proto == IPPROTO_SCTP)
4775				bpf_error("port '%s' is sctp", name);
4776			else
4777				/* override PROTO_UNDEF */
4778				real_proto = IPPROTO_TCP;
4779		}
4780		if (proto == Q_SCTP) {
4781			if (real_proto == IPPROTO_UDP)
4782				bpf_error("port '%s' is udp", name);
4783
4784			else if (real_proto == IPPROTO_TCP)
4785				bpf_error("port '%s' is tcp", name);
4786			else
4787				/* override PROTO_UNDEF */
4788				real_proto = IPPROTO_SCTP;
4789		}
4790#ifndef INET6
4791		return gen_port(port, real_proto, dir);
4792#else
4793	    {
4794		struct block *b;
4795		b = gen_port(port, real_proto, dir);
4796		gen_or(gen_port6(port, real_proto, dir), b);
4797		return b;
4798	    }
4799#endif /* INET6 */
4800
4801	case Q_PORTRANGE:
4802		if (proto != Q_DEFAULT &&
4803		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
4804			bpf_error("illegal qualifier of 'portrange'");
4805		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
4806			bpf_error("unknown port in range '%s'", name);
4807		if (proto == Q_UDP) {
4808			if (real_proto == IPPROTO_TCP)
4809				bpf_error("port in range '%s' is tcp", name);
4810			else if (real_proto == IPPROTO_SCTP)
4811				bpf_error("port in range '%s' is sctp", name);
4812			else
4813				/* override PROTO_UNDEF */
4814				real_proto = IPPROTO_UDP;
4815		}
4816		if (proto == Q_TCP) {
4817			if (real_proto == IPPROTO_UDP)
4818				bpf_error("port in range '%s' is udp", name);
4819			else if (real_proto == IPPROTO_SCTP)
4820				bpf_error("port in range '%s' is sctp", name);
4821			else
4822				/* override PROTO_UNDEF */
4823				real_proto = IPPROTO_TCP;
4824		}
4825		if (proto == Q_SCTP) {
4826			if (real_proto == IPPROTO_UDP)
4827				bpf_error("port in range '%s' is udp", name);
4828			else if (real_proto == IPPROTO_TCP)
4829				bpf_error("port in range '%s' is tcp", name);
4830			else
4831				/* override PROTO_UNDEF */
4832				real_proto = IPPROTO_SCTP;
4833		}
4834#ifndef INET6
4835		return gen_portrange(port1, port2, real_proto, dir);
4836#else
4837	    {
4838		struct block *b;
4839		b = gen_portrange(port1, port2, real_proto, dir);
4840		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
4841		return b;
4842	    }
4843#endif /* INET6 */
4844
4845	case Q_GATEWAY:
4846#ifndef INET6
4847		eaddr = pcap_ether_hostton(name);
4848		if (eaddr == NULL)
4849			bpf_error("unknown ether host: %s", name);
4850
4851		alist = pcap_nametoaddr(name);
4852		if (alist == NULL || *alist == NULL)
4853			bpf_error("unknown host '%s'", name);
4854		b = gen_gateway(eaddr, alist, proto, dir);
4855		free(eaddr);
4856		return b;
4857#else
4858		bpf_error("'gateway' not supported in this configuration");
4859#endif /*INET6*/
4860
4861	case Q_PROTO:
4862		real_proto = lookup_proto(name, proto);
4863		if (real_proto >= 0)
4864			return gen_proto(real_proto, proto, dir);
4865		else
4866			bpf_error("unknown protocol: %s", name);
4867
4868	case Q_PROTOCHAIN:
4869		real_proto = lookup_proto(name, proto);
4870		if (real_proto >= 0)
4871			return gen_protochain(real_proto, proto, dir);
4872		else
4873			bpf_error("unknown protocol: %s", name);
4874
4875
4876	case Q_UNDEF:
4877		syntax();
4878		/* NOTREACHED */
4879	}
4880	abort();
4881	/* NOTREACHED */
4882}
4883
4884struct block *
4885gen_mcode(s1, s2, masklen, q)
4886	register const char *s1, *s2;
4887	register int masklen;
4888	struct qual q;
4889{
4890	register int nlen, mlen;
4891	bpf_u_int32 n, m;
4892
4893	nlen = __pcap_atoin(s1, &n);
4894	/* Promote short ipaddr */
4895	n <<= 32 - nlen;
4896
4897	if (s2 != NULL) {
4898		mlen = __pcap_atoin(s2, &m);
4899		/* Promote short ipaddr */
4900		m <<= 32 - mlen;
4901		if ((n & ~m) != 0)
4902			bpf_error("non-network bits set in \"%s mask %s\"",
4903			    s1, s2);
4904	} else {
4905		/* Convert mask len to mask */
4906		if (masklen > 32)
4907			bpf_error("mask length must be <= 32");
4908		m = 0xffffffff << (32 - masklen);
4909		if ((n & ~m) != 0)
4910			bpf_error("non-network bits set in \"%s/%d\"",
4911			    s1, masklen);
4912	}
4913
4914	switch (q.addr) {
4915
4916	case Q_NET:
4917		return gen_host(n, m, q.proto, q.dir);
4918
4919	default:
4920		bpf_error("Mask syntax for networks only");
4921		/* NOTREACHED */
4922	}
4923	/* NOTREACHED */
4924}
4925
4926struct block *
4927gen_ncode(s, v, q)
4928	register const char *s;
4929	bpf_u_int32 v;
4930	struct qual q;
4931{
4932	bpf_u_int32 mask;
4933	int proto = q.proto;
4934	int dir = q.dir;
4935	register int vlen;
4936
4937	if (s == NULL)
4938		vlen = 32;
4939	else if (q.proto == Q_DECNET)
4940		vlen = __pcap_atodn(s, &v);
4941	else
4942		vlen = __pcap_atoin(s, &v);
4943
4944	switch (q.addr) {
4945
4946	case Q_DEFAULT:
4947	case Q_HOST:
4948	case Q_NET:
4949		if (proto == Q_DECNET)
4950			return gen_host(v, 0, proto, dir);
4951		else if (proto == Q_LINK) {
4952			bpf_error("illegal link layer address");
4953		} else {
4954			mask = 0xffffffff;
4955			if (s == NULL && q.addr == Q_NET) {
4956				/* Promote short net number */
4957				while (v && (v & 0xff000000) == 0) {
4958					v <<= 8;
4959					mask <<= 8;
4960				}
4961			} else {
4962				/* Promote short ipaddr */
4963				v <<= 32 - vlen;
4964				mask <<= 32 - vlen;
4965			}
4966			return gen_host(v, mask, proto, dir);
4967		}
4968
4969	case Q_PORT:
4970		if (proto == Q_UDP)
4971			proto = IPPROTO_UDP;
4972		else if (proto == Q_TCP)
4973			proto = IPPROTO_TCP;
4974		else if (proto == Q_SCTP)
4975			proto = IPPROTO_SCTP;
4976		else if (proto == Q_DEFAULT)
4977			proto = PROTO_UNDEF;
4978		else
4979			bpf_error("illegal qualifier of 'port'");
4980
4981#ifndef INET6
4982		return gen_port((int)v, proto, dir);
4983#else
4984	    {
4985		struct block *b;
4986		b = gen_port((int)v, proto, dir);
4987		gen_or(gen_port6((int)v, proto, dir), b);
4988		return b;
4989	    }
4990#endif /* INET6 */
4991
4992	case Q_PORTRANGE:
4993		if (proto == Q_UDP)
4994			proto = IPPROTO_UDP;
4995		else if (proto == Q_TCP)
4996			proto = IPPROTO_TCP;
4997		else if (proto == Q_SCTP)
4998			proto = IPPROTO_SCTP;
4999		else if (proto == Q_DEFAULT)
5000			proto = PROTO_UNDEF;
5001		else
5002			bpf_error("illegal qualifier of 'portrange'");
5003
5004#ifndef INET6
5005		return gen_portrange((int)v, (int)v, proto, dir);
5006#else
5007	    {
5008		struct block *b;
5009		b = gen_portrange((int)v, (int)v, proto, dir);
5010		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
5011		return b;
5012	    }
5013#endif /* INET6 */
5014
5015	case Q_GATEWAY:
5016		bpf_error("'gateway' requires a name");
5017		/* NOTREACHED */
5018
5019	case Q_PROTO:
5020		return gen_proto((int)v, proto, dir);
5021
5022	case Q_PROTOCHAIN:
5023		return gen_protochain((int)v, proto, dir);
5024
5025	case Q_UNDEF:
5026		syntax();
5027		/* NOTREACHED */
5028
5029	default:
5030		abort();
5031		/* NOTREACHED */
5032	}
5033	/* NOTREACHED */
5034}
5035
5036#ifdef INET6
5037struct block *
5038gen_mcode6(s1, s2, masklen, q)
5039	register const char *s1, *s2;
5040	register int masklen;
5041	struct qual q;
5042{
5043	struct addrinfo *res;
5044	struct in6_addr *addr;
5045	struct in6_addr mask;
5046	struct block *b;
5047	u_int32_t *a, *m;
5048
5049	if (s2)
5050		bpf_error("no mask %s supported", s2);
5051
5052	res = pcap_nametoaddrinfo(s1);
5053	if (!res)
5054		bpf_error("invalid ip6 address %s", s1);
5055	if (res->ai_next)
5056		bpf_error("%s resolved to multiple address", s1);
5057	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
5058
5059	if (sizeof(mask) * 8 < masklen)
5060		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
5061	memset(&mask, 0, sizeof(mask));
5062	memset(&mask, 0xff, masklen / 8);
5063	if (masklen % 8) {
5064		mask.s6_addr[masklen / 8] =
5065			(0xff << (8 - masklen % 8)) & 0xff;
5066	}
5067
5068	a = (u_int32_t *)addr;
5069	m = (u_int32_t *)&mask;
5070	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
5071	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
5072		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
5073	}
5074
5075	switch (q.addr) {
5076
5077	case Q_DEFAULT:
5078	case Q_HOST:
5079		if (masklen != 128)
5080			bpf_error("Mask syntax for networks only");
5081		/* FALLTHROUGH */
5082
5083	case Q_NET:
5084		b = gen_host6(addr, &mask, q.proto, q.dir);
5085		freeaddrinfo(res);
5086		return b;
5087
5088	default:
5089		bpf_error("invalid qualifier against IPv6 address");
5090		/* NOTREACHED */
5091	}
5092}
5093#endif /*INET6*/
5094
5095struct block *
5096gen_ecode(eaddr, q)
5097	register const u_char *eaddr;
5098	struct qual q;
5099{
5100	struct block *b, *tmp;
5101
5102	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
5103		if (linktype == DLT_EN10MB)
5104			return gen_ehostop(eaddr, (int)q.dir);
5105		if (linktype == DLT_FDDI)
5106			return gen_fhostop(eaddr, (int)q.dir);
5107		if (linktype == DLT_IEEE802)
5108			return gen_thostop(eaddr, (int)q.dir);
5109		if (linktype == DLT_IEEE802_11 ||
5110		    linktype == DLT_IEEE802_11_RADIO_AVS ||
5111		    linktype == DLT_IEEE802_11_RADIO ||
5112		    linktype == DLT_PRISM_HEADER)
5113			return gen_wlanhostop(eaddr, (int)q.dir);
5114		if (linktype == DLT_SUNATM && is_lane) {
5115			/*
5116			 * Check that the packet doesn't begin with an
5117			 * LE Control marker.  (We've already generated
5118			 * a test for LANE.)
5119			 */
5120			tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5121			    0xFF00);
5122			gen_not(tmp);
5123
5124			/*
5125			 * Now check the MAC address.
5126			 */
5127			b = gen_ehostop(eaddr, (int)q.dir);
5128			gen_and(tmp, b);
5129			return b;
5130		}
5131		if (linktype == DLT_IP_OVER_FC)
5132			return gen_ipfchostop(eaddr, (int)q.dir);
5133		bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5134	}
5135	bpf_error("ethernet address used in non-ether expression");
5136	/* NOTREACHED */
5137}
5138
5139void
5140sappend(s0, s1)
5141	struct slist *s0, *s1;
5142{
5143	/*
5144	 * This is definitely not the best way to do this, but the
5145	 * lists will rarely get long.
5146	 */
5147	while (s0->next)
5148		s0 = s0->next;
5149	s0->next = s1;
5150}
5151
5152static struct slist *
5153xfer_to_x(a)
5154	struct arth *a;
5155{
5156	struct slist *s;
5157
5158	s = new_stmt(BPF_LDX|BPF_MEM);
5159	s->s.k = a->regno;
5160	return s;
5161}
5162
5163static struct slist *
5164xfer_to_a(a)
5165	struct arth *a;
5166{
5167	struct slist *s;
5168
5169	s = new_stmt(BPF_LD|BPF_MEM);
5170	s->s.k = a->regno;
5171	return s;
5172}
5173
5174/*
5175 * Modify "index" to use the value stored into its register as an
5176 * offset relative to the beginning of the header for the protocol
5177 * "proto", and allocate a register and put an item "size" bytes long
5178 * (1, 2, or 4) at that offset into that register, making it the register
5179 * for "index".
5180 */
5181struct arth *
5182gen_load(proto, index, size)
5183	int proto;
5184	struct arth *index;
5185	int size;
5186{
5187	struct slist *s, *tmp;
5188	struct block *b;
5189	int regno = alloc_reg();
5190
5191	free_reg(index->regno);
5192	switch (size) {
5193
5194	default:
5195		bpf_error("data size must be 1, 2, or 4");
5196
5197	case 1:
5198		size = BPF_B;
5199		break;
5200
5201	case 2:
5202		size = BPF_H;
5203		break;
5204
5205	case 4:
5206		size = BPF_W;
5207		break;
5208	}
5209	switch (proto) {
5210	default:
5211		bpf_error("unsupported index operation");
5212
5213	case Q_RADIO:
5214		/*
5215		 * The offset is relative to the beginning of the packet
5216		 * data, if we have a radio header.  (If we don't, this
5217		 * is an error.)
5218		 */
5219		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
5220		    linktype != DLT_IEEE802_11_RADIO &&
5221		    linktype != DLT_PRISM_HEADER)
5222			bpf_error("radio information not present in capture");
5223
5224		/*
5225		 * Load into the X register the offset computed into the
5226		 * register specifed by "index".
5227		 */
5228		s = xfer_to_x(index);
5229
5230		/*
5231		 * Load the item at that offset.
5232		 */
5233		tmp = new_stmt(BPF_LD|BPF_IND|size);
5234		sappend(s, tmp);
5235		sappend(index->s, s);
5236		break;
5237
5238	case Q_LINK:
5239		/*
5240		 * The offset is relative to the beginning of
5241		 * the link-layer header.
5242		 *
5243		 * XXX - what about ATM LANE?  Should the index be
5244		 * relative to the beginning of the AAL5 frame, so
5245		 * that 0 refers to the beginning of the LE Control
5246		 * field, or relative to the beginning of the LAN
5247		 * frame, so that 0 refers, for Ethernet LANE, to
5248		 * the beginning of the destination address?
5249		 */
5250		s = gen_llprefixlen();
5251
5252		/*
5253		 * If "s" is non-null, it has code to arrange that the
5254		 * X register contains the length of the prefix preceding
5255		 * the link-layer header.  Add to it the offset computed
5256		 * into the register specified by "index", and move that
5257		 * into the X register.  Otherwise, just load into the X
5258		 * register the offset computed into the register specifed
5259		 * by "index".
5260		 */
5261		if (s != NULL) {
5262			sappend(s, xfer_to_a(index));
5263			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5264			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5265		} else
5266			s = xfer_to_x(index);
5267
5268		/*
5269		 * Load the item at the sum of the offset we've put in the
5270		 * X register and the offset of the start of the link
5271		 * layer header (which is 0 if the radio header is
5272		 * variable-length; that header length is what we put
5273		 * into the X register and then added to the index).
5274		 */
5275		tmp = new_stmt(BPF_LD|BPF_IND|size);
5276		tmp->s.k = off_ll;
5277		sappend(s, tmp);
5278		sappend(index->s, s);
5279		break;
5280
5281	case Q_IP:
5282	case Q_ARP:
5283	case Q_RARP:
5284	case Q_ATALK:
5285	case Q_DECNET:
5286	case Q_SCA:
5287	case Q_LAT:
5288	case Q_MOPRC:
5289	case Q_MOPDL:
5290#ifdef INET6
5291	case Q_IPV6:
5292#endif
5293		/*
5294		 * The offset is relative to the beginning of
5295		 * the network-layer header.
5296		 * XXX - are there any cases where we want
5297		 * off_nl_nosnap?
5298		 */
5299		s = gen_llprefixlen();
5300
5301		/*
5302		 * If "s" is non-null, it has code to arrange that the
5303		 * X register contains the length of the prefix preceding
5304		 * the link-layer header.  Add to it the offset computed
5305		 * into the register specified by "index", and move that
5306		 * into the X register.  Otherwise, just load into the X
5307		 * register the offset computed into the register specifed
5308		 * by "index".
5309		 */
5310		if (s != NULL) {
5311			sappend(s, xfer_to_a(index));
5312			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5313			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5314		} else
5315			s = xfer_to_x(index);
5316
5317		/*
5318		 * Load the item at the sum of the offset we've put in the
5319		 * X register and the offset of the start of the network
5320		 * layer header.
5321		 */
5322		tmp = new_stmt(BPF_LD|BPF_IND|size);
5323		tmp->s.k = off_nl;
5324		sappend(s, tmp);
5325		sappend(index->s, s);
5326
5327		/*
5328		 * Do the computation only if the packet contains
5329		 * the protocol in question.
5330		 */
5331		b = gen_proto_abbrev(proto);
5332		if (index->b)
5333			gen_and(index->b, b);
5334		index->b = b;
5335		break;
5336
5337	case Q_SCTP:
5338	case Q_TCP:
5339	case Q_UDP:
5340	case Q_ICMP:
5341	case Q_IGMP:
5342	case Q_IGRP:
5343	case Q_PIM:
5344	case Q_VRRP:
5345		/*
5346		 * The offset is relative to the beginning of
5347		 * the transport-layer header.
5348		 * XXX - are there any cases where we want
5349		 * off_nl_nosnap?
5350		 * XXX - we should, if we're built with
5351		 * IPv6 support, generate code to load either
5352		 * IPv4, IPv6, or both, as appropriate.
5353		 */
5354		s = gen_loadx_iphdrlen();
5355
5356		/*
5357		 * The X register now contains the sum of the offset
5358		 * of the beginning of the link-layer header and
5359		 * the length of the network-layer header.  Load
5360		 * into the A register the offset relative to
5361		 * the beginning of the transport layer header,
5362		 * add the X register to that, move that to the
5363		 * X register, and load with an offset from the
5364		 * X register equal to the offset of the network
5365		 * layer header relative to the beginning of
5366		 * the link-layer header.
5367		 */
5368		sappend(s, xfer_to_a(index));
5369		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
5370		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
5371		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
5372		tmp->s.k = off_nl;
5373		sappend(index->s, s);
5374
5375		/*
5376		 * Do the computation only if the packet contains
5377		 * the protocol in question - which is true only
5378		 * if this is an IP datagram and is the first or
5379		 * only fragment of that datagram.
5380		 */
5381		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
5382		if (index->b)
5383			gen_and(index->b, b);
5384#ifdef INET6
5385		gen_and(gen_proto_abbrev(Q_IP), b);
5386#endif
5387		index->b = b;
5388		break;
5389#ifdef INET6
5390	case Q_ICMPV6:
5391		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
5392		/*NOTREACHED*/
5393#endif
5394	}
5395	index->regno = regno;
5396	s = new_stmt(BPF_ST);
5397	s->s.k = regno;
5398	sappend(index->s, s);
5399
5400	return index;
5401}
5402
5403struct block *
5404gen_relation(code, a0, a1, reversed)
5405	int code;
5406	struct arth *a0, *a1;
5407	int reversed;
5408{
5409	struct slist *s0, *s1, *s2;
5410	struct block *b, *tmp;
5411
5412	s0 = xfer_to_x(a1);
5413	s1 = xfer_to_a(a0);
5414	if (code == BPF_JEQ) {
5415		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
5416		b = new_block(JMP(code));
5417		sappend(s1, s2);
5418	}
5419	else
5420		b = new_block(BPF_JMP|code|BPF_X);
5421	if (reversed)
5422		gen_not(b);
5423
5424	sappend(s0, s1);
5425	sappend(a1->s, s0);
5426	sappend(a0->s, a1->s);
5427
5428	b->stmts = a0->s;
5429
5430	free_reg(a0->regno);
5431	free_reg(a1->regno);
5432
5433	/* 'and' together protocol checks */
5434	if (a0->b) {
5435		if (a1->b) {
5436			gen_and(a0->b, tmp = a1->b);
5437		}
5438		else
5439			tmp = a0->b;
5440	} else
5441		tmp = a1->b;
5442
5443	if (tmp)
5444		gen_and(tmp, b);
5445
5446	return b;
5447}
5448
5449struct arth *
5450gen_loadlen()
5451{
5452	int regno = alloc_reg();
5453	struct arth *a = (struct arth *)newchunk(sizeof(*a));
5454	struct slist *s;
5455
5456	s = new_stmt(BPF_LD|BPF_LEN);
5457	s->next = new_stmt(BPF_ST);
5458	s->next->s.k = regno;
5459	a->s = s;
5460	a->regno = regno;
5461
5462	return a;
5463}
5464
5465struct arth *
5466gen_loadi(val)
5467	int val;
5468{
5469	struct arth *a;
5470	struct slist *s;
5471	int reg;
5472
5473	a = (struct arth *)newchunk(sizeof(*a));
5474
5475	reg = alloc_reg();
5476
5477	s = new_stmt(BPF_LD|BPF_IMM);
5478	s->s.k = val;
5479	s->next = new_stmt(BPF_ST);
5480	s->next->s.k = reg;
5481	a->s = s;
5482	a->regno = reg;
5483
5484	return a;
5485}
5486
5487struct arth *
5488gen_neg(a)
5489	struct arth *a;
5490{
5491	struct slist *s;
5492
5493	s = xfer_to_a(a);
5494	sappend(a->s, s);
5495	s = new_stmt(BPF_ALU|BPF_NEG);
5496	s->s.k = 0;
5497	sappend(a->s, s);
5498	s = new_stmt(BPF_ST);
5499	s->s.k = a->regno;
5500	sappend(a->s, s);
5501
5502	return a;
5503}
5504
5505struct arth *
5506gen_arth(code, a0, a1)
5507	int code;
5508	struct arth *a0, *a1;
5509{
5510	struct slist *s0, *s1, *s2;
5511
5512	s0 = xfer_to_x(a1);
5513	s1 = xfer_to_a(a0);
5514	s2 = new_stmt(BPF_ALU|BPF_X|code);
5515
5516	sappend(s1, s2);
5517	sappend(s0, s1);
5518	sappend(a1->s, s0);
5519	sappend(a0->s, a1->s);
5520
5521	free_reg(a0->regno);
5522	free_reg(a1->regno);
5523
5524	s0 = new_stmt(BPF_ST);
5525	a0->regno = s0->s.k = alloc_reg();
5526	sappend(a0->s, s0);
5527
5528	return a0;
5529}
5530
5531/*
5532 * Here we handle simple allocation of the scratch registers.
5533 * If too many registers are alloc'd, the allocator punts.
5534 */
5535static int regused[BPF_MEMWORDS];
5536static int curreg;
5537
5538/*
5539 * Return the next free register.
5540 */
5541static int
5542alloc_reg()
5543{
5544	int n = BPF_MEMWORDS;
5545
5546	while (--n >= 0) {
5547		if (regused[curreg])
5548			curreg = (curreg + 1) % BPF_MEMWORDS;
5549		else {
5550			regused[curreg] = 1;
5551			return curreg;
5552		}
5553	}
5554	bpf_error("too many registers needed to evaluate expression");
5555	/* NOTREACHED */
5556}
5557
5558/*
5559 * Return a register to the table so it can
5560 * be used later.
5561 */
5562static void
5563free_reg(n)
5564	int n;
5565{
5566	regused[n] = 0;
5567}
5568
5569static struct block *
5570gen_len(jmp, n)
5571	int jmp, n;
5572{
5573	struct slist *s;
5574	struct block *b;
5575
5576	s = new_stmt(BPF_LD|BPF_LEN);
5577	b = new_block(JMP(jmp));
5578	b->stmts = s;
5579	b->s.k = n;
5580
5581	return b;
5582}
5583
5584struct block *
5585gen_greater(n)
5586	int n;
5587{
5588	return gen_len(BPF_JGE, n);
5589}
5590
5591/*
5592 * Actually, this is less than or equal.
5593 */
5594struct block *
5595gen_less(n)
5596	int n;
5597{
5598	struct block *b;
5599
5600	b = gen_len(BPF_JGT, n);
5601	gen_not(b);
5602
5603	return b;
5604}
5605
5606/*
5607 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
5608 * the beginning of the link-layer header.
5609 * XXX - that means you can't test values in the radiotap header, but
5610 * as that header is difficult if not impossible to parse generally
5611 * without a loop, that might not be a severe problem.  A new keyword
5612 * "radio" could be added for that, although what you'd really want
5613 * would be a way of testing particular radio header values, which
5614 * would generate code appropriate to the radio header in question.
5615 */
5616struct block *
5617gen_byteop(op, idx, val)
5618	int op, idx, val;
5619{
5620	struct block *b;
5621	struct slist *s;
5622
5623	switch (op) {
5624	default:
5625		abort();
5626
5627	case '=':
5628		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5629
5630	case '<':
5631		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5632		return b;
5633
5634	case '>':
5635		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
5636		return b;
5637
5638	case '|':
5639		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
5640		break;
5641
5642	case '&':
5643		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
5644		break;
5645	}
5646	s->s.k = val;
5647	b = new_block(JMP(BPF_JEQ));
5648	b->stmts = s;
5649	gen_not(b);
5650
5651	return b;
5652}
5653
5654static u_char abroadcast[] = { 0x0 };
5655
5656struct block *
5657gen_broadcast(proto)
5658	int proto;
5659{
5660	bpf_u_int32 hostmask;
5661	struct block *b0, *b1, *b2;
5662	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5663
5664	switch (proto) {
5665
5666	case Q_DEFAULT:
5667	case Q_LINK:
5668		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
5669			return gen_ahostop(abroadcast, Q_DST);
5670		if (linktype == DLT_EN10MB)
5671			return gen_ehostop(ebroadcast, Q_DST);
5672		if (linktype == DLT_FDDI)
5673			return gen_fhostop(ebroadcast, Q_DST);
5674		if (linktype == DLT_IEEE802)
5675			return gen_thostop(ebroadcast, Q_DST);
5676		if (linktype == DLT_IEEE802_11 ||
5677		    linktype == DLT_IEEE802_11_RADIO_AVS ||
5678		    linktype == DLT_IEEE802_11_RADIO ||
5679		    linktype == DLT_PRISM_HEADER)
5680			return gen_wlanhostop(ebroadcast, Q_DST);
5681		if (linktype == DLT_IP_OVER_FC)
5682			return gen_ipfchostop(ebroadcast, Q_DST);
5683		if (linktype == DLT_SUNATM && is_lane) {
5684			/*
5685			 * Check that the packet doesn't begin with an
5686			 * LE Control marker.  (We've already generated
5687			 * a test for LANE.)
5688			 */
5689			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5690			    0xFF00);
5691			gen_not(b1);
5692
5693			/*
5694			 * Now check the MAC address.
5695			 */
5696			b0 = gen_ehostop(ebroadcast, Q_DST);
5697			gen_and(b1, b0);
5698			return b0;
5699		}
5700		bpf_error("not a broadcast link");
5701		break;
5702
5703	case Q_IP:
5704		b0 = gen_linktype(ETHERTYPE_IP);
5705		hostmask = ~netmask;
5706		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
5707		b2 = gen_mcmp(OR_NET, 16, BPF_W,
5708			      (bpf_int32)(~0 & hostmask), hostmask);
5709		gen_or(b1, b2);
5710		gen_and(b0, b2);
5711		return b2;
5712	}
5713	bpf_error("only link-layer/IP broadcast filters supported");
5714	/* NOTREACHED */
5715}
5716
5717/*
5718 * Generate code to test the low-order bit of a MAC address (that's
5719 * the bottom bit of the *first* byte).
5720 */
5721static struct block *
5722gen_mac_multicast(offset)
5723	int offset;
5724{
5725	register struct block *b0;
5726	register struct slist *s;
5727
5728	/* link[offset] & 1 != 0 */
5729	s = gen_load_a(OR_LINK, offset, BPF_B);
5730	b0 = new_block(JMP(BPF_JSET));
5731	b0->s.k = 1;
5732	b0->stmts = s;
5733	return b0;
5734}
5735
5736struct block *
5737gen_multicast(proto)
5738	int proto;
5739{
5740	register struct block *b0, *b1, *b2;
5741	register struct slist *s;
5742
5743	switch (proto) {
5744
5745	case Q_DEFAULT:
5746	case Q_LINK:
5747		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
5748			/* all ARCnet multicasts use the same address */
5749			return gen_ahostop(abroadcast, Q_DST);
5750
5751		if (linktype == DLT_EN10MB) {
5752			/* ether[0] & 1 != 0 */
5753			return gen_mac_multicast(0);
5754		}
5755
5756		if (linktype == DLT_FDDI) {
5757			/*
5758			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
5759			 *
5760			 * XXX - was that referring to bit-order issues?
5761			 */
5762			/* fddi[1] & 1 != 0 */
5763			return gen_mac_multicast(1);
5764		}
5765
5766		if (linktype == DLT_IEEE802) {
5767			/* tr[2] & 1 != 0 */
5768			return gen_mac_multicast(2);
5769		}
5770
5771		if (linktype == DLT_IEEE802_11 ||
5772		    linktype == DLT_IEEE802_11_RADIO_AVS ||
5773		    linktype == DLT_IEEE802_11_RADIO ||
5774		    linktype == DLT_PRISM_HEADER) {
5775			/*
5776			 * Oh, yuk.
5777			 *
5778			 *	For control frames, there is no DA.
5779			 *
5780			 *	For management frames, DA is at an
5781			 *	offset of 4 from the beginning of
5782			 *	the packet.
5783			 *
5784			 *	For data frames, DA is at an offset
5785			 *	of 4 from the beginning of the packet
5786			 *	if To DS is clear and at an offset of
5787			 *	16 from the beginning of the packet
5788			 *	if To DS is set.
5789			 */
5790
5791			/*
5792			 * Generate the tests to be done for data frames.
5793			 *
5794			 * First, check for To DS set, i.e. "link[1] & 0x01".
5795			 */
5796			s = gen_load_a(OR_LINK, 1, BPF_B);
5797			b1 = new_block(JMP(BPF_JSET));
5798			b1->s.k = 0x01;	/* To DS */
5799			b1->stmts = s;
5800
5801			/*
5802			 * If To DS is set, the DA is at 16.
5803			 */
5804			b0 = gen_mac_multicast(16);
5805			gen_and(b1, b0);
5806
5807			/*
5808			 * Now, check for To DS not set, i.e. check
5809			 * "!(link[1] & 0x01)".
5810			 */
5811			s = gen_load_a(OR_LINK, 1, BPF_B);
5812			b2 = new_block(JMP(BPF_JSET));
5813			b2->s.k = 0x01;	/* To DS */
5814			b2->stmts = s;
5815			gen_not(b2);
5816
5817			/*
5818			 * If To DS is not set, the DA is at 4.
5819			 */
5820			b1 = gen_mac_multicast(4);
5821			gen_and(b2, b1);
5822
5823			/*
5824			 * Now OR together the last two checks.  That gives
5825			 * the complete set of checks for data frames.
5826			 */
5827			gen_or(b1, b0);
5828
5829			/*
5830			 * Now check for a data frame.
5831			 * I.e, check "link[0] & 0x08".
5832			 */
5833			s = gen_load_a(OR_LINK, 0, BPF_B);
5834			b1 = new_block(JMP(BPF_JSET));
5835			b1->s.k = 0x08;
5836			b1->stmts = s;
5837
5838			/*
5839			 * AND that with the checks done for data frames.
5840			 */
5841			gen_and(b1, b0);
5842
5843			/*
5844			 * If the high-order bit of the type value is 0, this
5845			 * is a management frame.
5846			 * I.e, check "!(link[0] & 0x08)".
5847			 */
5848			s = gen_load_a(OR_LINK, 0, BPF_B);
5849			b2 = new_block(JMP(BPF_JSET));
5850			b2->s.k = 0x08;
5851			b2->stmts = s;
5852			gen_not(b2);
5853
5854			/*
5855			 * For management frames, the DA is at 4.
5856			 */
5857			b1 = gen_mac_multicast(4);
5858			gen_and(b2, b1);
5859
5860			/*
5861			 * OR that with the checks done for data frames.
5862			 * That gives the checks done for management and
5863			 * data frames.
5864			 */
5865			gen_or(b1, b0);
5866
5867			/*
5868			 * If the low-order bit of the type value is 1,
5869			 * this is either a control frame or a frame
5870			 * with a reserved type, and thus not a
5871			 * frame with an SA.
5872			 *
5873			 * I.e., check "!(link[0] & 0x04)".
5874			 */
5875			s = gen_load_a(OR_LINK, 0, BPF_B);
5876			b1 = new_block(JMP(BPF_JSET));
5877			b1->s.k = 0x04;
5878			b1->stmts = s;
5879			gen_not(b1);
5880
5881			/*
5882			 * AND that with the checks for data and management
5883			 * frames.
5884			 */
5885			gen_and(b1, b0);
5886			return b0;
5887		}
5888
5889		if (linktype == DLT_IP_OVER_FC) {
5890			b0 = gen_mac_multicast(2);
5891			return b0;
5892		}
5893
5894		if (linktype == DLT_SUNATM && is_lane) {
5895			/*
5896			 * Check that the packet doesn't begin with an
5897			 * LE Control marker.  (We've already generated
5898			 * a test for LANE.)
5899			 */
5900			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
5901			    0xFF00);
5902			gen_not(b1);
5903
5904			/* ether[off_mac] & 1 != 0 */
5905			b0 = gen_mac_multicast(off_mac);
5906			gen_and(b1, b0);
5907			return b0;
5908		}
5909
5910		/* Link not known to support multicasts */
5911		break;
5912
5913	case Q_IP:
5914		b0 = gen_linktype(ETHERTYPE_IP);
5915		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
5916		gen_and(b0, b1);
5917		return b1;
5918
5919#ifdef INET6
5920	case Q_IPV6:
5921		b0 = gen_linktype(ETHERTYPE_IPV6);
5922		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
5923		gen_and(b0, b1);
5924		return b1;
5925#endif /* INET6 */
5926	}
5927	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
5928	/* NOTREACHED */
5929}
5930
5931/*
5932 * generate command for inbound/outbound.  It's here so we can
5933 * make it link-type specific.  'dir' = 0 implies "inbound",
5934 * = 1 implies "outbound".
5935 */
5936struct block *
5937gen_inbound(dir)
5938	int dir;
5939{
5940	register struct block *b0;
5941
5942	/*
5943	 * Only some data link types support inbound/outbound qualifiers.
5944	 */
5945	switch (linktype) {
5946	case DLT_SLIP:
5947		b0 = gen_relation(BPF_JEQ,
5948			  gen_load(Q_LINK, gen_loadi(0), 1),
5949			  gen_loadi(0),
5950			  dir);
5951		break;
5952
5953	case DLT_LINUX_SLL:
5954		if (dir) {
5955			/*
5956			 * Match packets sent by this machine.
5957			 */
5958			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
5959		} else {
5960			/*
5961			 * Match packets sent to this machine.
5962			 * (No broadcast or multicast packets, or
5963			 * packets sent to some other machine and
5964			 * received promiscuously.)
5965			 *
5966			 * XXX - packets sent to other machines probably
5967			 * shouldn't be matched, but what about broadcast
5968			 * or multicast packets we received?
5969			 */
5970			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
5971		}
5972		break;
5973
5974	case DLT_PFLOG:
5975		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
5976		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
5977		break;
5978
5979	case DLT_PPP_PPPD:
5980		if (dir) {
5981			/* match outgoing packets */
5982			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
5983		} else {
5984			/* match incoming packets */
5985			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
5986		}
5987		break;
5988
5989        case DLT_JUNIPER_MLFR:
5990        case DLT_JUNIPER_MLPPP:
5991	case DLT_JUNIPER_ATM1:
5992	case DLT_JUNIPER_ATM2:
5993	case DLT_JUNIPER_PPPOE:
5994	case DLT_JUNIPER_PPPOE_ATM:
5995        case DLT_JUNIPER_GGSN:
5996        case DLT_JUNIPER_ES:
5997        case DLT_JUNIPER_MONITOR:
5998        case DLT_JUNIPER_SERVICES:
5999		/* juniper flags (including direction) are stored
6000		 * the byte after the 3-byte magic number */
6001		if (dir) {
6002			/* match outgoing packets */
6003			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
6004		} else {
6005			/* match incoming packets */
6006			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
6007		}
6008	    break;
6009
6010	default:
6011		bpf_error("inbound/outbound not supported on linktype %d",
6012		    linktype);
6013		b0 = NULL;
6014		/* NOTREACHED */
6015	}
6016	return (b0);
6017}
6018
6019/* PF firewall log matched interface */
6020struct block *
6021gen_pf_ifname(const char *ifname)
6022{
6023	struct block *b0;
6024	u_int len, off;
6025
6026	if (linktype == DLT_PFLOG) {
6027		len = sizeof(((struct pfloghdr *)0)->ifname);
6028		off = offsetof(struct pfloghdr, ifname);
6029	} else {
6030		bpf_error("ifname not supported on linktype 0x%x", linktype);
6031		/* NOTREACHED */
6032	}
6033	if (strlen(ifname) >= len) {
6034		bpf_error("ifname interface names can only be %d characters",
6035		    len-1);
6036		/* NOTREACHED */
6037	}
6038	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
6039	return (b0);
6040}
6041
6042/* PF firewall log matched interface */
6043struct block *
6044gen_pf_ruleset(char *ruleset)
6045{
6046	struct block *b0;
6047
6048	if (linktype != DLT_PFLOG) {
6049		bpf_error("ruleset not supported on linktype 0x%x", linktype);
6050		/* NOTREACHED */
6051	}
6052	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
6053		bpf_error("ruleset names can only be %ld characters",
6054		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
6055		/* NOTREACHED */
6056	}
6057	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
6058	    strlen(ruleset), (const u_char *)ruleset);
6059	return (b0);
6060}
6061
6062/* PF firewall log rule number */
6063struct block *
6064gen_pf_rnr(int rnr)
6065{
6066	struct block *b0;
6067
6068	if (linktype == DLT_PFLOG) {
6069		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
6070			 (bpf_int32)rnr);
6071	} else {
6072		bpf_error("rnr not supported on linktype 0x%x", linktype);
6073		/* NOTREACHED */
6074	}
6075
6076	return (b0);
6077}
6078
6079/* PF firewall log sub-rule number */
6080struct block *
6081gen_pf_srnr(int srnr)
6082{
6083	struct block *b0;
6084
6085	if (linktype != DLT_PFLOG) {
6086		bpf_error("srnr not supported on linktype 0x%x", linktype);
6087		/* NOTREACHED */
6088	}
6089
6090	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
6091	    (bpf_int32)srnr);
6092	return (b0);
6093}
6094
6095/* PF firewall log reason code */
6096struct block *
6097gen_pf_reason(int reason)
6098{
6099	struct block *b0;
6100
6101	if (linktype == DLT_PFLOG) {
6102		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
6103		    (bpf_int32)reason);
6104	} else {
6105		bpf_error("reason not supported on linktype 0x%x", linktype);
6106		/* NOTREACHED */
6107	}
6108
6109	return (b0);
6110}
6111
6112/* PF firewall log action */
6113struct block *
6114gen_pf_action(int action)
6115{
6116	struct block *b0;
6117
6118	if (linktype == DLT_PFLOG) {
6119		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
6120		    (bpf_int32)action);
6121	} else {
6122		bpf_error("action not supported on linktype 0x%x", linktype);
6123		/* NOTREACHED */
6124	}
6125
6126	return (b0);
6127}
6128
6129struct block *
6130gen_acode(eaddr, q)
6131	register const u_char *eaddr;
6132	struct qual q;
6133{
6134	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6135		if (linktype == DLT_ARCNET || linktype == DLT_ARCNET_LINUX)
6136			return gen_ahostop(eaddr, (int)q.dir);
6137	}
6138	bpf_error("ARCnet address used in non-arc expression");
6139	/* NOTREACHED */
6140}
6141
6142static struct block *
6143gen_ahostop(eaddr, dir)
6144	register const u_char *eaddr;
6145	register int dir;
6146{
6147	register struct block *b0, *b1;
6148
6149	switch (dir) {
6150	/* src comes first, different from Ethernet */
6151	case Q_SRC:
6152		return gen_bcmp(OR_LINK, 0, 1, eaddr);
6153
6154	case Q_DST:
6155		return gen_bcmp(OR_LINK, 1, 1, eaddr);
6156
6157	case Q_AND:
6158		b0 = gen_ahostop(eaddr, Q_SRC);
6159		b1 = gen_ahostop(eaddr, Q_DST);
6160		gen_and(b0, b1);
6161		return b1;
6162
6163	case Q_DEFAULT:
6164	case Q_OR:
6165		b0 = gen_ahostop(eaddr, Q_SRC);
6166		b1 = gen_ahostop(eaddr, Q_DST);
6167		gen_or(b0, b1);
6168		return b1;
6169	}
6170	abort();
6171	/* NOTREACHED */
6172}
6173
6174/*
6175 * support IEEE 802.1Q VLAN trunk over ethernet
6176 */
6177struct block *
6178gen_vlan(vlan_num)
6179	int vlan_num;
6180{
6181	struct	block	*b0;
6182
6183	/*
6184	 * Change the offsets to point to the type and data fields within
6185	 * the VLAN packet.  Just increment the offsets, so that we
6186	 * can support a hierarchy, e.g. "vlan 300 && vlan 200" to
6187	 * capture VLAN 200 encapsulated within VLAN 100.
6188	 *
6189	 * XXX - this is a bit of a kludge.  If we were to split the
6190	 * compiler into a parser that parses an expression and
6191	 * generates an expression tree, and a code generator that
6192	 * takes an expression tree (which could come from our
6193	 * parser or from some other parser) and generates BPF code,
6194	 * we could perhaps make the offsets parameters of routines
6195	 * and, in the handler for an "AND" node, pass to subnodes
6196	 * other than the VLAN node the adjusted offsets.
6197	 *
6198	 * This would mean that "vlan" would, instead of changing the
6199	 * behavior of *all* tests after it, change only the behavior
6200	 * of tests ANDed with it.  That would change the documented
6201	 * semantics of "vlan", which might break some expressions.
6202	 * However, it would mean that "(vlan and ip) or ip" would check
6203	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
6204	 * checking only for VLAN-encapsulated IP, so that could still
6205	 * be considered worth doing; it wouldn't break expressions
6206	 * that are of the form "vlan and ..." or "vlan N and ...",
6207	 * which I suspect are the most common expressions involving
6208	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
6209	 * would really want, now, as all the "or ..." tests would
6210	 * be done assuming a VLAN, even though the "or" could be viewed
6211	 * as meaning "or, if this isn't a VLAN packet...".
6212	 */
6213        orig_linktype = off_linktype;	/* save original values */
6214        orig_nl = off_nl;
6215
6216        switch (linktype) {
6217
6218        case DLT_EN10MB:
6219                off_linktype += 4;
6220                off_nl_nosnap += 4;
6221                off_nl += 4;
6222                break;
6223
6224        default:
6225                bpf_error("no VLAN support for data link type %d",
6226                      linktype);
6227            /*NOTREACHED*/
6228        }
6229
6230	/* check for VLAN */
6231	b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
6232
6233	/* If a specific VLAN is requested, check VLAN id */
6234	if (vlan_num >= 0) {
6235		struct block *b1;
6236
6237		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_H, (bpf_int32)vlan_num,
6238		    0x0fff);
6239		gen_and(b0, b1);
6240		b0 = b1;
6241	}
6242
6243	return (b0);
6244}
6245
6246/*
6247 * support for MPLS
6248 */
6249struct block *
6250gen_mpls(label_num)
6251	int label_num;
6252{
6253	struct	block	*b0;
6254
6255	/*
6256	 * Change the offsets to point to the type and data fields within
6257	 * the MPLS packet.  Just increment the offsets, so that we
6258	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
6259	 * capture packets with an outer label of 100000 and an inner
6260	 * label of 1024.
6261	 *
6262	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
6263	 */
6264        orig_linktype = off_linktype;	/* save original values */
6265        orig_nl = off_nl;
6266
6267        switch (linktype) {
6268
6269        case DLT_C_HDLC: /* fall through */
6270        case DLT_EN10MB:
6271                off_nl_nosnap += 4;
6272                off_nl += 4;
6273
6274                b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H,
6275                    (bpf_int32)ETHERTYPE_MPLS);
6276                break;
6277
6278        case DLT_PPP:
6279                off_nl_nosnap += 4;
6280                off_nl += 4;
6281
6282                b0 = gen_cmp(OR_LINK, orig_linktype, BPF_H,
6283                    (bpf_int32)PPP_MPLS_UCAST);
6284                break;
6285
6286                /* FIXME add other DLT_s ...
6287                 * for Frame-Relay/and ATM this may get messy due to SNAP headers
6288                 * leave it for now */
6289
6290        default:
6291                bpf_error("no MPLS support for data link type %d",
6292                          linktype);
6293                b0 = NULL;
6294                /*NOTREACHED*/
6295                break;
6296        }
6297
6298	/* If a specific MPLS label is requested, check it */
6299	if (label_num >= 0) {
6300		struct block *b1;
6301
6302		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
6303		b1 = gen_mcmp(OR_LINK, orig_nl, BPF_W, (bpf_int32)label_num,
6304		    0xfffff000); /* only compare the first 20 bits */
6305		gen_and(b0, b1);
6306		b0 = b1;
6307	}
6308
6309	return (b0);
6310}
6311
6312struct block *
6313gen_atmfield_code(atmfield, jvalue, jtype, reverse)
6314	int atmfield;
6315	bpf_int32 jvalue;
6316	bpf_u_int32 jtype;
6317	int reverse;
6318{
6319	struct block *b0;
6320
6321	switch (atmfield) {
6322
6323	case A_VPI:
6324		if (!is_atm)
6325			bpf_error("'vpi' supported only on raw ATM");
6326		if (off_vpi == (u_int)-1)
6327			abort();
6328		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
6329		    reverse, jvalue);
6330		break;
6331
6332	case A_VCI:
6333		if (!is_atm)
6334			bpf_error("'vci' supported only on raw ATM");
6335		if (off_vci == (u_int)-1)
6336			abort();
6337		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
6338		    reverse, jvalue);
6339		break;
6340
6341	case A_PROTOTYPE:
6342		if (off_proto == (u_int)-1)
6343			abort();	/* XXX - this isn't on FreeBSD */
6344		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
6345		    reverse, jvalue);
6346		break;
6347
6348	case A_MSGTYPE:
6349		if (off_payload == (u_int)-1)
6350			abort();
6351		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
6352		    0xffffffff, jtype, reverse, jvalue);
6353		break;
6354
6355	case A_CALLREFTYPE:
6356		if (!is_atm)
6357			bpf_error("'callref' supported only on raw ATM");
6358		if (off_proto == (u_int)-1)
6359			abort();
6360		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
6361		    jtype, reverse, jvalue);
6362		break;
6363
6364	default:
6365		abort();
6366	}
6367	return b0;
6368}
6369
6370struct block *
6371gen_atmtype_abbrev(type)
6372	int type;
6373{
6374	struct block *b0, *b1;
6375
6376	switch (type) {
6377
6378	case A_METAC:
6379		/* Get all packets in Meta signalling Circuit */
6380		if (!is_atm)
6381			bpf_error("'metac' supported only on raw ATM");
6382		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6383		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
6384		gen_and(b0, b1);
6385		break;
6386
6387	case A_BCC:
6388		/* Get all packets in Broadcast Circuit*/
6389		if (!is_atm)
6390			bpf_error("'bcc' supported only on raw ATM");
6391		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6392		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
6393		gen_and(b0, b1);
6394		break;
6395
6396	case A_OAMF4SC:
6397		/* Get all cells in Segment OAM F4 circuit*/
6398		if (!is_atm)
6399			bpf_error("'oam4sc' supported only on raw ATM");
6400		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6401		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6402		gen_and(b0, b1);
6403		break;
6404
6405	case A_OAMF4EC:
6406		/* Get all cells in End-to-End OAM F4 Circuit*/
6407		if (!is_atm)
6408			bpf_error("'oam4ec' supported only on raw ATM");
6409		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6410		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6411		gen_and(b0, b1);
6412		break;
6413
6414	case A_SC:
6415		/*  Get all packets in connection Signalling Circuit */
6416		if (!is_atm)
6417			bpf_error("'sc' supported only on raw ATM");
6418		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6419		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
6420		gen_and(b0, b1);
6421		break;
6422
6423	case A_ILMIC:
6424		/* Get all packets in ILMI Circuit */
6425		if (!is_atm)
6426			bpf_error("'ilmic' supported only on raw ATM");
6427		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6428		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
6429		gen_and(b0, b1);
6430		break;
6431
6432	case A_LANE:
6433		/* Get all LANE packets */
6434		if (!is_atm)
6435			bpf_error("'lane' supported only on raw ATM");
6436		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
6437
6438		/*
6439		 * Arrange that all subsequent tests assume LANE
6440		 * rather than LLC-encapsulated packets, and set
6441		 * the offsets appropriately for LANE-encapsulated
6442		 * Ethernet.
6443		 *
6444		 * "off_mac" is the offset of the Ethernet header,
6445		 * which is 2 bytes past the ATM pseudo-header
6446		 * (skipping the pseudo-header and 2-byte LE Client
6447		 * field).  The other offsets are Ethernet offsets
6448		 * relative to "off_mac".
6449		 */
6450		is_lane = 1;
6451		off_mac = off_payload + 2;	/* MAC header */
6452		off_linktype = off_mac + 12;
6453		off_nl = off_mac + 14;		/* Ethernet II */
6454		off_nl_nosnap = off_mac + 17;	/* 802.3+802.2 */
6455		break;
6456
6457	case A_LLC:
6458		/* Get all LLC-encapsulated packets */
6459		if (!is_atm)
6460			bpf_error("'llc' supported only on raw ATM");
6461		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
6462		is_lane = 0;
6463		break;
6464
6465	default:
6466		abort();
6467	}
6468	return b1;
6469}
6470
6471struct block *
6472gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
6473	int mtp3field;
6474	bpf_u_int32 jvalue;
6475	bpf_u_int32 jtype;
6476	int reverse;
6477{
6478	struct block *b0;
6479	bpf_u_int32 val1 , val2 , val3;
6480
6481	switch (mtp3field) {
6482
6483	case M_SIO:
6484		if (off_sio == (u_int)-1)
6485			bpf_error("'sio' supported only on SS7");
6486		/* sio coded on 1 byte so max value 255 */
6487		if(jvalue > 255)
6488		        bpf_error("sio value %u too big; max value = 255",
6489		            jvalue);
6490		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
6491		    (u_int)jtype, reverse, (u_int)jvalue);
6492		break;
6493
6494        case M_OPC:
6495	        if (off_opc == (u_int)-1)
6496			bpf_error("'opc' supported only on SS7");
6497		/* opc coded on 14 bits so max value 16383 */
6498		if (jvalue > 16383)
6499		        bpf_error("opc value %u too big; max value = 16383",
6500		            jvalue);
6501		/* the following instructions are made to convert jvalue
6502		 * to the form used to write opc in an ss7 message*/
6503		val1 = jvalue & 0x00003c00;
6504		val1 = val1 >>10;
6505		val2 = jvalue & 0x000003fc;
6506		val2 = val2 <<6;
6507		val3 = jvalue & 0x00000003;
6508		val3 = val3 <<22;
6509		jvalue = val1 + val2 + val3;
6510		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
6511		    (u_int)jtype, reverse, (u_int)jvalue);
6512		break;
6513
6514	case M_DPC:
6515	        if (off_dpc == (u_int)-1)
6516			bpf_error("'dpc' supported only on SS7");
6517		/* dpc coded on 14 bits so max value 16383 */
6518		if (jvalue > 16383)
6519		        bpf_error("dpc value %u too big; max value = 16383",
6520		            jvalue);
6521		/* the following instructions are made to convert jvalue
6522		 * to the forme used to write dpc in an ss7 message*/
6523		val1 = jvalue & 0x000000ff;
6524		val1 = val1 << 24;
6525		val2 = jvalue & 0x00003f00;
6526		val2 = val2 << 8;
6527		jvalue = val1 + val2;
6528		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
6529		    (u_int)jtype, reverse, (u_int)jvalue);
6530		break;
6531
6532	case M_SLS:
6533	        if (off_sls == (u_int)-1)
6534			bpf_error("'sls' supported only on SS7");
6535		/* sls coded on 4 bits so max value 15 */
6536		if (jvalue > 15)
6537		         bpf_error("sls value %u too big; max value = 15",
6538		             jvalue);
6539		/* the following instruction is made to convert jvalue
6540		 * to the forme used to write sls in an ss7 message*/
6541		jvalue = jvalue << 4;
6542		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
6543		    (u_int)jtype,reverse, (u_int)jvalue);
6544		break;
6545
6546	default:
6547		abort();
6548	}
6549	return b0;
6550}
6551
6552static struct block *
6553gen_msg_abbrev(type)
6554	int type;
6555{
6556	struct block *b1;
6557
6558	/*
6559	 * Q.2931 signalling protocol messages for handling virtual circuits
6560	 * establishment and teardown
6561	 */
6562	switch (type) {
6563
6564	case A_SETUP:
6565		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
6566		break;
6567
6568	case A_CALLPROCEED:
6569		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
6570		break;
6571
6572	case A_CONNECT:
6573		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
6574		break;
6575
6576	case A_CONNECTACK:
6577		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
6578		break;
6579
6580	case A_RELEASE:
6581		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
6582		break;
6583
6584	case A_RELEASE_DONE:
6585		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
6586		break;
6587
6588	default:
6589		abort();
6590	}
6591	return b1;
6592}
6593
6594struct block *
6595gen_atmmulti_abbrev(type)
6596	int type;
6597{
6598	struct block *b0, *b1;
6599
6600	switch (type) {
6601
6602	case A_OAM:
6603		if (!is_atm)
6604			bpf_error("'oam' supported only on raw ATM");
6605		b1 = gen_atmmulti_abbrev(A_OAMF4);
6606		break;
6607
6608	case A_OAMF4:
6609		if (!is_atm)
6610			bpf_error("'oamf4' supported only on raw ATM");
6611		/* OAM F4 type */
6612		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
6613		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
6614		gen_or(b0, b1);
6615		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
6616		gen_and(b0, b1);
6617		break;
6618
6619	case A_CONNECTMSG:
6620		/*
6621		 * Get Q.2931 signalling messages for switched
6622		 * virtual connection
6623		 */
6624		if (!is_atm)
6625			bpf_error("'connectmsg' supported only on raw ATM");
6626		b0 = gen_msg_abbrev(A_SETUP);
6627		b1 = gen_msg_abbrev(A_CALLPROCEED);
6628		gen_or(b0, b1);
6629		b0 = gen_msg_abbrev(A_CONNECT);
6630		gen_or(b0, b1);
6631		b0 = gen_msg_abbrev(A_CONNECTACK);
6632		gen_or(b0, b1);
6633		b0 = gen_msg_abbrev(A_RELEASE);
6634		gen_or(b0, b1);
6635		b0 = gen_msg_abbrev(A_RELEASE_DONE);
6636		gen_or(b0, b1);
6637		b0 = gen_atmtype_abbrev(A_SC);
6638		gen_and(b0, b1);
6639		break;
6640
6641	case A_METACONNECT:
6642		if (!is_atm)
6643			bpf_error("'metaconnect' supported only on raw ATM");
6644		b0 = gen_msg_abbrev(A_SETUP);
6645		b1 = gen_msg_abbrev(A_CALLPROCEED);
6646		gen_or(b0, b1);
6647		b0 = gen_msg_abbrev(A_CONNECT);
6648		gen_or(b0, b1);
6649		b0 = gen_msg_abbrev(A_RELEASE);
6650		gen_or(b0, b1);
6651		b0 = gen_msg_abbrev(A_RELEASE_DONE);
6652		gen_or(b0, b1);
6653		b0 = gen_atmtype_abbrev(A_METAC);
6654		gen_and(b0, b1);
6655		break;
6656
6657	default:
6658		abort();
6659	}
6660	return b1;
6661}
6662