1/* Calculate (post)dominators in slightly super-linear time.
2   Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3   Contributed by Michael Matz (matz@ifh.de).
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING.  If not, write to the Free
19   Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20   02110-1301, USA.  */
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23   to compute the dominators in a control flow graph.  A basic block D is said
24   to dominate another block X, when all paths from the entry node of the CFG
25   to X go also over D.  The dominance relation is a transitive reflexive
26   relation and its minimal transitive reduction is a tree, called the
27   dominator tree.  So for each block X besides the entry block exists a
28   block I(X), called the immediate dominator of X, which is the parent of X
29   in the dominator tree.
30
31   The algorithm computes this dominator tree implicitly by computing for
32   each block its immediate dominator.  We use tree balancing and path
33   compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34   slowly growing functional inverse of the Ackerman function.  */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
39#include "tm.h"
40#include "rtl.h"
41#include "hard-reg-set.h"
42#include "obstack.h"
43#include "basic-block.h"
44#include "toplev.h"
45#include "et-forest.h"
46#include "timevar.h"
47
48/* Whether the dominators and the postdominators are available.  */
49enum dom_state dom_computed[2];
50
51/* We name our nodes with integers, beginning with 1.  Zero is reserved for
52   'undefined' or 'end of list'.  The name of each node is given by the dfs
53   number of the corresponding basic block.  Please note, that we include the
54   artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55   support multiple entry points.  Its dfs number is of course 1.  */
56
57/* Type of Basic Block aka. TBB */
58typedef unsigned int TBB;
59
60/* We work in a poor-mans object oriented fashion, and carry an instance of
61   this structure through all our 'methods'.  It holds various arrays
62   reflecting the (sub)structure of the flowgraph.  Most of them are of type
63   TBB and are also indexed by TBB.  */
64
65struct dom_info
66{
67  /* The parent of a node in the DFS tree.  */
68  TBB *dfs_parent;
69  /* For a node x key[x] is roughly the node nearest to the root from which
70     exists a way to x only over nodes behind x.  Such a node is also called
71     semidominator.  */
72  TBB *key;
73  /* The value in path_min[x] is the node y on the path from x to the root of
74     the tree x is in with the smallest key[y].  */
75  TBB *path_min;
76  /* bucket[x] points to the first node of the set of nodes having x as key.  */
77  TBB *bucket;
78  /* And next_bucket[x] points to the next node.  */
79  TBB *next_bucket;
80  /* After the algorithm is done, dom[x] contains the immediate dominator
81     of x.  */
82  TBB *dom;
83
84  /* The following few fields implement the structures needed for disjoint
85     sets.  */
86  /* set_chain[x] is the next node on the path from x to the representant
87     of the set containing x.  If set_chain[x]==0 then x is a root.  */
88  TBB *set_chain;
89  /* set_size[x] is the number of elements in the set named by x.  */
90  unsigned int *set_size;
91  /* set_child[x] is used for balancing the tree representing a set.  It can
92     be understood as the next sibling of x.  */
93  TBB *set_child;
94
95  /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96     number of that node in DFS order counted from 1.  This is an index
97     into most of the other arrays in this structure.  */
98  TBB *dfs_order;
99  /* If x is the DFS-index of a node which corresponds with a basic block,
100     dfs_to_bb[x] is that basic block.  Note, that in our structure there are
101     more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102     is true for every basic block bb, but not the opposite.  */
103  basic_block *dfs_to_bb;
104
105  /* This is the next free DFS number when creating the DFS tree.  */
106  unsigned int dfsnum;
107  /* The number of nodes in the DFS tree (==dfsnum-1).  */
108  unsigned int nodes;
109
110  /* Blocks with bits set here have a fake edge to EXIT.  These are used
111     to turn a DFS forest into a proper tree.  */
112  bitmap fake_exit_edge;
113};
114
115static void init_dom_info (struct dom_info *, enum cdi_direction);
116static void free_dom_info (struct dom_info *);
117static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
118				  enum cdi_direction);
119static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
120static void compress (struct dom_info *, TBB);
121static TBB eval (struct dom_info *, TBB);
122static void link_roots (struct dom_info *, TBB, TBB);
123static void calc_idoms (struct dom_info *, enum cdi_direction);
124void debug_dominance_info (enum cdi_direction);
125
126/* Keeps track of the*/
127static unsigned n_bbs_in_dom_tree[2];
128
129/* Helper macro for allocating and initializing an array,
130   for aesthetic reasons.  */
131#define init_ar(var, type, num, content)			\
132  do								\
133    {								\
134      unsigned int i = 1;    /* Catch content == i.  */		\
135      if (! (content))						\
136	(var) = XCNEWVEC (type, num);				\
137      else							\
138	{							\
139	  (var) = XNEWVEC (type, (num));			\
140	  for (i = 0; i < num; i++)				\
141	    (var)[i] = (content);				\
142	}							\
143    }								\
144  while (0)
145
146/* Allocate all needed memory in a pessimistic fashion (so we round up).
147   This initializes the contents of DI, which already must be allocated.  */
148
149static void
150init_dom_info (struct dom_info *di, enum cdi_direction dir)
151{
152  unsigned int num = n_basic_blocks;
153  init_ar (di->dfs_parent, TBB, num, 0);
154  init_ar (di->path_min, TBB, num, i);
155  init_ar (di->key, TBB, num, i);
156  init_ar (di->dom, TBB, num, 0);
157
158  init_ar (di->bucket, TBB, num, 0);
159  init_ar (di->next_bucket, TBB, num, 0);
160
161  init_ar (di->set_chain, TBB, num, 0);
162  init_ar (di->set_size, unsigned int, num, 1);
163  init_ar (di->set_child, TBB, num, 0);
164
165  init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
166  init_ar (di->dfs_to_bb, basic_block, num, 0);
167
168  di->dfsnum = 1;
169  di->nodes = 0;
170
171  di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
172}
173
174#undef init_ar
175
176/* Free all allocated memory in DI, but not DI itself.  */
177
178static void
179free_dom_info (struct dom_info *di)
180{
181  free (di->dfs_parent);
182  free (di->path_min);
183  free (di->key);
184  free (di->dom);
185  free (di->bucket);
186  free (di->next_bucket);
187  free (di->set_chain);
188  free (di->set_size);
189  free (di->set_child);
190  free (di->dfs_order);
191  free (di->dfs_to_bb);
192  BITMAP_FREE (di->fake_exit_edge);
193}
194
195/* The nonrecursive variant of creating a DFS tree.  DI is our working
196   structure, BB the starting basic block for this tree and REVERSE
197   is true, if predecessors should be visited instead of successors of a
198   node.  After this is done all nodes reachable from BB were visited, have
199   assigned their dfs number and are linked together to form a tree.  */
200
201static void
202calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
203		      enum cdi_direction reverse)
204{
205  /* We call this _only_ if bb is not already visited.  */
206  edge e;
207  TBB child_i, my_i = 0;
208  edge_iterator *stack;
209  edge_iterator ei, einext;
210  int sp;
211  /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212     problem).  */
213  basic_block en_block;
214  /* Ending block.  */
215  basic_block ex_block;
216
217  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
218  sp = 0;
219
220  /* Initialize our border blocks, and the first edge.  */
221  if (reverse)
222    {
223      ei = ei_start (bb->preds);
224      en_block = EXIT_BLOCK_PTR;
225      ex_block = ENTRY_BLOCK_PTR;
226    }
227  else
228    {
229      ei = ei_start (bb->succs);
230      en_block = ENTRY_BLOCK_PTR;
231      ex_block = EXIT_BLOCK_PTR;
232    }
233
234  /* When the stack is empty we break out of this loop.  */
235  while (1)
236    {
237      basic_block bn;
238
239      /* This loop traverses edges e in depth first manner, and fills the
240         stack.  */
241      while (!ei_end_p (ei))
242	{
243	  e = ei_edge (ei);
244
245	  /* Deduce from E the current and the next block (BB and BN), and the
246	     next edge.  */
247	  if (reverse)
248	    {
249	      bn = e->src;
250
251	      /* If the next node BN is either already visited or a border
252	         block the current edge is useless, and simply overwritten
253	         with the next edge out of the current node.  */
254	      if (bn == ex_block || di->dfs_order[bn->index])
255		{
256		  ei_next (&ei);
257		  continue;
258		}
259	      bb = e->dest;
260	      einext = ei_start (bn->preds);
261	    }
262	  else
263	    {
264	      bn = e->dest;
265	      if (bn == ex_block || di->dfs_order[bn->index])
266		{
267		  ei_next (&ei);
268		  continue;
269		}
270	      bb = e->src;
271	      einext = ei_start (bn->succs);
272	    }
273
274	  gcc_assert (bn != en_block);
275
276	  /* Fill the DFS tree info calculatable _before_ recursing.  */
277	  if (bb != en_block)
278	    my_i = di->dfs_order[bb->index];
279	  else
280	    my_i = di->dfs_order[last_basic_block];
281	  child_i = di->dfs_order[bn->index] = di->dfsnum++;
282	  di->dfs_to_bb[child_i] = bn;
283	  di->dfs_parent[child_i] = my_i;
284
285	  /* Save the current point in the CFG on the stack, and recurse.  */
286	  stack[sp++] = ei;
287	  ei = einext;
288	}
289
290      if (!sp)
291	break;
292      ei = stack[--sp];
293
294      /* OK.  The edge-list was exhausted, meaning normally we would
295         end the recursion.  After returning from the recursive call,
296         there were (may be) other statements which were run after a
297         child node was completely considered by DFS.  Here is the
298         point to do it in the non-recursive variant.
299         E.g. The block just completed is in e->dest for forward DFS,
300         the block not yet completed (the parent of the one above)
301         in e->src.  This could be used e.g. for computing the number of
302         descendants or the tree depth.  */
303      ei_next (&ei);
304    }
305  free (stack);
306}
307
308/* The main entry for calculating the DFS tree or forest.  DI is our working
309   structure and REVERSE is true, if we are interested in the reverse flow
310   graph.  In that case the result is not necessarily a tree but a forest,
311   because there may be nodes from which the EXIT_BLOCK is unreachable.  */
312
313static void
314calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
315{
316  /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE).  */
317  basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
318  di->dfs_order[last_basic_block] = di->dfsnum;
319  di->dfs_to_bb[di->dfsnum] = begin;
320  di->dfsnum++;
321
322  calc_dfs_tree_nonrec (di, begin, reverse);
323
324  if (reverse)
325    {
326      /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
327         They are reverse-unreachable.  In the dom-case we disallow such
328         nodes, but in post-dom we have to deal with them.
329
330	 There are two situations in which this occurs.  First, noreturn
331	 functions.  Second, infinite loops.  In the first case we need to
332	 pretend that there is an edge to the exit block.  In the second
333	 case, we wind up with a forest.  We need to process all noreturn
334	 blocks before we know if we've got any infinite loops.  */
335
336      basic_block b;
337      bool saw_unconnected = false;
338
339      FOR_EACH_BB_REVERSE (b)
340	{
341	  if (EDGE_COUNT (b->succs) > 0)
342	    {
343	      if (di->dfs_order[b->index] == 0)
344		saw_unconnected = true;
345	      continue;
346	    }
347	  bitmap_set_bit (di->fake_exit_edge, b->index);
348	  di->dfs_order[b->index] = di->dfsnum;
349	  di->dfs_to_bb[di->dfsnum] = b;
350	  di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
351	  di->dfsnum++;
352	  calc_dfs_tree_nonrec (di, b, reverse);
353	}
354
355      if (saw_unconnected)
356	{
357	  FOR_EACH_BB_REVERSE (b)
358	    {
359	      if (di->dfs_order[b->index])
360		continue;
361	      bitmap_set_bit (di->fake_exit_edge, b->index);
362	      di->dfs_order[b->index] = di->dfsnum;
363	      di->dfs_to_bb[di->dfsnum] = b;
364	      di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
365	      di->dfsnum++;
366	      calc_dfs_tree_nonrec (di, b, reverse);
367	    }
368	}
369    }
370
371  di->nodes = di->dfsnum - 1;
372
373  /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
374  gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
375}
376
377/* Compress the path from V to the root of its set and update path_min at the
378   same time.  After compress(di, V) set_chain[V] is the root of the set V is
379   in and path_min[V] is the node with the smallest key[] value on the path
380   from V to that root.  */
381
382static void
383compress (struct dom_info *di, TBB v)
384{
385  /* Btw. It's not worth to unrecurse compress() as the depth is usually not
386     greater than 5 even for huge graphs (I've not seen call depth > 4).
387     Also performance wise compress() ranges _far_ behind eval().  */
388  TBB parent = di->set_chain[v];
389  if (di->set_chain[parent])
390    {
391      compress (di, parent);
392      if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
393	di->path_min[v] = di->path_min[parent];
394      di->set_chain[v] = di->set_chain[parent];
395    }
396}
397
398/* Compress the path from V to the set root of V if needed (when the root has
399   changed since the last call).  Returns the node with the smallest key[]
400   value on the path from V to the root.  */
401
402static inline TBB
403eval (struct dom_info *di, TBB v)
404{
405  /* The representant of the set V is in, also called root (as the set
406     representation is a tree).  */
407  TBB rep = di->set_chain[v];
408
409  /* V itself is the root.  */
410  if (!rep)
411    return di->path_min[v];
412
413  /* Compress only if necessary.  */
414  if (di->set_chain[rep])
415    {
416      compress (di, v);
417      rep = di->set_chain[v];
418    }
419
420  if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
421    return di->path_min[v];
422  else
423    return di->path_min[rep];
424}
425
426/* This essentially merges the two sets of V and W, giving a single set with
427   the new root V.  The internal representation of these disjoint sets is a
428   balanced tree.  Currently link(V,W) is only used with V being the parent
429   of W.  */
430
431static void
432link_roots (struct dom_info *di, TBB v, TBB w)
433{
434  TBB s = w;
435
436  /* Rebalance the tree.  */
437  while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
438    {
439      if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
440	  >= 2 * di->set_size[di->set_child[s]])
441	{
442	  di->set_chain[di->set_child[s]] = s;
443	  di->set_child[s] = di->set_child[di->set_child[s]];
444	}
445      else
446	{
447	  di->set_size[di->set_child[s]] = di->set_size[s];
448	  s = di->set_chain[s] = di->set_child[s];
449	}
450    }
451
452  di->path_min[s] = di->path_min[w];
453  di->set_size[v] += di->set_size[w];
454  if (di->set_size[v] < 2 * di->set_size[w])
455    {
456      TBB tmp = s;
457      s = di->set_child[v];
458      di->set_child[v] = tmp;
459    }
460
461  /* Merge all subtrees.  */
462  while (s)
463    {
464      di->set_chain[s] = v;
465      s = di->set_child[s];
466    }
467}
468
469/* This calculates the immediate dominators (or post-dominators if REVERSE is
470   true).  DI is our working structure and should hold the DFS forest.
471   On return the immediate dominator to node V is in di->dom[V].  */
472
473static void
474calc_idoms (struct dom_info *di, enum cdi_direction reverse)
475{
476  TBB v, w, k, par;
477  basic_block en_block;
478  edge_iterator ei, einext;
479
480  if (reverse)
481    en_block = EXIT_BLOCK_PTR;
482  else
483    en_block = ENTRY_BLOCK_PTR;
484
485  /* Go backwards in DFS order, to first look at the leafs.  */
486  v = di->nodes;
487  while (v > 1)
488    {
489      basic_block bb = di->dfs_to_bb[v];
490      edge e;
491
492      par = di->dfs_parent[v];
493      k = v;
494
495      ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
496
497      if (reverse)
498	{
499	  /* If this block has a fake edge to exit, process that first.  */
500	  if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501	    {
502	      einext = ei;
503	      einext.index = 0;
504	      goto do_fake_exit_edge;
505	    }
506	}
507
508      /* Search all direct predecessors for the smallest node with a path
509         to them.  That way we have the smallest node with also a path to
510         us only over nodes behind us.  In effect we search for our
511         semidominator.  */
512      while (!ei_end_p (ei))
513	{
514	  TBB k1;
515	  basic_block b;
516
517	  e = ei_edge (ei);
518	  b = (reverse) ? e->dest : e->src;
519	  einext = ei;
520	  ei_next (&einext);
521
522	  if (b == en_block)
523	    {
524	    do_fake_exit_edge:
525	      k1 = di->dfs_order[last_basic_block];
526	    }
527	  else
528	    k1 = di->dfs_order[b->index];
529
530	  /* Call eval() only if really needed.  If k1 is above V in DFS tree,
531	     then we know, that eval(k1) == k1 and key[k1] == k1.  */
532	  if (k1 > v)
533	    k1 = di->key[eval (di, k1)];
534	  if (k1 < k)
535	    k = k1;
536
537	  ei = einext;
538	}
539
540      di->key[v] = k;
541      link_roots (di, par, v);
542      di->next_bucket[v] = di->bucket[k];
543      di->bucket[k] = v;
544
545      /* Transform semidominators into dominators.  */
546      for (w = di->bucket[par]; w; w = di->next_bucket[w])
547	{
548	  k = eval (di, w);
549	  if (di->key[k] < di->key[w])
550	    di->dom[w] = k;
551	  else
552	    di->dom[w] = par;
553	}
554      /* We don't need to cleanup next_bucket[].  */
555      di->bucket[par] = 0;
556      v--;
557    }
558
559  /* Explicitly define the dominators.  */
560  di->dom[1] = 0;
561  for (v = 2; v <= di->nodes; v++)
562    if (di->dom[v] != di->key[v])
563      di->dom[v] = di->dom[di->dom[v]];
564}
565
566/* Assign dfs numbers starting from NUM to NODE and its sons.  */
567
568static void
569assign_dfs_numbers (struct et_node *node, int *num)
570{
571  struct et_node *son;
572
573  node->dfs_num_in = (*num)++;
574
575  if (node->son)
576    {
577      assign_dfs_numbers (node->son, num);
578      for (son = node->son->right; son != node->son; son = son->right)
579	assign_dfs_numbers (son, num);
580    }
581
582  node->dfs_num_out = (*num)++;
583}
584
585/* Compute the data necessary for fast resolving of dominator queries in a
586   static dominator tree.  */
587
588static void
589compute_dom_fast_query (enum cdi_direction dir)
590{
591  int num = 0;
592  basic_block bb;
593
594  gcc_assert (dom_info_available_p (dir));
595
596  if (dom_computed[dir] == DOM_OK)
597    return;
598
599  FOR_ALL_BB (bb)
600    {
601      if (!bb->dom[dir]->father)
602	assign_dfs_numbers (bb->dom[dir], &num);
603    }
604
605  dom_computed[dir] = DOM_OK;
606}
607
608/* The main entry point into this module.  DIR is set depending on whether
609   we want to compute dominators or postdominators.  */
610
611void
612calculate_dominance_info (enum cdi_direction dir)
613{
614  struct dom_info di;
615  basic_block b;
616
617  if (dom_computed[dir] == DOM_OK)
618    return;
619
620  timevar_push (TV_DOMINANCE);
621  if (!dom_info_available_p (dir))
622    {
623      gcc_assert (!n_bbs_in_dom_tree[dir]);
624
625      FOR_ALL_BB (b)
626	{
627	  b->dom[dir] = et_new_tree (b);
628	}
629      n_bbs_in_dom_tree[dir] = n_basic_blocks;
630
631      init_dom_info (&di, dir);
632      calc_dfs_tree (&di, dir);
633      calc_idoms (&di, dir);
634
635      FOR_EACH_BB (b)
636	{
637	  TBB d = di.dom[di.dfs_order[b->index]];
638
639	  if (di.dfs_to_bb[d])
640	    et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
641	}
642
643      free_dom_info (&di);
644      dom_computed[dir] = DOM_NO_FAST_QUERY;
645    }
646
647  compute_dom_fast_query (dir);
648
649  timevar_pop (TV_DOMINANCE);
650}
651
652/* Free dominance information for direction DIR.  */
653void
654free_dominance_info (enum cdi_direction dir)
655{
656  basic_block bb;
657
658  if (!dom_info_available_p (dir))
659    return;
660
661  FOR_ALL_BB (bb)
662    {
663      et_free_tree_force (bb->dom[dir]);
664      bb->dom[dir] = NULL;
665    }
666  et_free_pools ();
667
668  n_bbs_in_dom_tree[dir] = 0;
669
670  dom_computed[dir] = DOM_NONE;
671}
672
673/* Return the immediate dominator of basic block BB.  */
674basic_block
675get_immediate_dominator (enum cdi_direction dir, basic_block bb)
676{
677  struct et_node *node = bb->dom[dir];
678
679  gcc_assert (dom_computed[dir]);
680
681  if (!node->father)
682    return NULL;
683
684  return node->father->data;
685}
686
687/* Set the immediate dominator of the block possibly removing
688   existing edge.  NULL can be used to remove any edge.  */
689inline void
690set_immediate_dominator (enum cdi_direction dir, basic_block bb,
691			 basic_block dominated_by)
692{
693  struct et_node *node = bb->dom[dir];
694
695  gcc_assert (dom_computed[dir]);
696
697  if (node->father)
698    {
699      if (node->father->data == dominated_by)
700	return;
701      et_split (node);
702    }
703
704  if (dominated_by)
705    et_set_father (node, dominated_by->dom[dir]);
706
707  if (dom_computed[dir] == DOM_OK)
708    dom_computed[dir] = DOM_NO_FAST_QUERY;
709}
710
711/* Store all basic blocks immediately dominated by BB into BBS and return
712   their number.  */
713int
714get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
715{
716  int n;
717  struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718
719  gcc_assert (dom_computed[dir]);
720
721  if (!son)
722    {
723      *bbs = NULL;
724      return 0;
725    }
726
727  for (ason = son->right, n = 1; ason != son; ason = ason->right)
728    n++;
729
730  *bbs = XNEWVEC (basic_block, n);
731  (*bbs)[0] = son->data;
732  for (ason = son->right, n = 1; ason != son; ason = ason->right)
733    (*bbs)[n++] = ason->data;
734
735  return n;
736}
737
738/* Find all basic blocks that are immediately dominated (in direction DIR)
739   by some block between N_REGION ones stored in REGION, except for blocks
740   in the REGION itself.  The found blocks are stored to DOMS and their number
741   is returned.  */
742
743unsigned
744get_dominated_by_region (enum cdi_direction dir, basic_block *region,
745			 unsigned n_region, basic_block *doms)
746{
747  unsigned n_doms = 0, i;
748  basic_block dom;
749
750  for (i = 0; i < n_region; i++)
751    region[i]->flags |= BB_DUPLICATED;
752  for (i = 0; i < n_region; i++)
753    for (dom = first_dom_son (dir, region[i]);
754	 dom;
755	 dom = next_dom_son (dir, dom))
756      if (!(dom->flags & BB_DUPLICATED))
757	doms[n_doms++] = dom;
758  for (i = 0; i < n_region; i++)
759    region[i]->flags &= ~BB_DUPLICATED;
760
761  return n_doms;
762}
763
764/* Redirect all edges pointing to BB to TO.  */
765void
766redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
767			       basic_block to)
768{
769  struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770
771  gcc_assert (dom_computed[dir]);
772
773  if (!bb_node->son)
774    return;
775
776  while (bb_node->son)
777    {
778      son = bb_node->son;
779
780      et_split (son);
781      et_set_father (son, to_node);
782    }
783
784  if (dom_computed[dir] == DOM_OK)
785    dom_computed[dir] = DOM_NO_FAST_QUERY;
786}
787
788/* Find first basic block in the tree dominating both BB1 and BB2.  */
789basic_block
790nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791{
792  gcc_assert (dom_computed[dir]);
793
794  if (!bb1)
795    return bb2;
796  if (!bb2)
797    return bb1;
798
799  return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
800}
801
802
803/* Find the nearest common dominator for the basic blocks in BLOCKS,
804   using dominance direction DIR.  */
805
806basic_block
807nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
808{
809  unsigned i, first;
810  bitmap_iterator bi;
811  basic_block dom;
812
813  first = bitmap_first_set_bit (blocks);
814  dom = BASIC_BLOCK (first);
815  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
816    if (dom != BASIC_BLOCK (i))
817      dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
818
819  return dom;
820}
821
822/*  Given a dominator tree, we can determine whether one thing
823    dominates another in constant time by using two DFS numbers:
824
825    1. The number for when we visit a node on the way down the tree
826    2. The number for when we visit a node on the way back up the tree
827
828    You can view these as bounds for the range of dfs numbers the
829    nodes in the subtree of the dominator tree rooted at that node
830    will contain.
831
832    The dominator tree is always a simple acyclic tree, so there are
833    only three possible relations two nodes in the dominator tree have
834    to each other:
835
836    1. Node A is above Node B (and thus, Node A dominates node B)
837
838     A
839     |
840     C
841    / \
842   B   D
843
844
845   In the above case, DFS_Number_In of A will be <= DFS_Number_In of
846   B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
847   because we must hit A in the dominator tree *before* B on the walk
848   down, and we will hit A *after* B on the walk back up
849
850   2. Node A is below node B (and thus, node B dominates node A)
851
852
853     B
854     |
855     A
856    / \
857   C   D
858
859   In the above case, DFS_Number_In of A will be >= DFS_Number_In of
860   B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
861
862   This is because we must hit A in the dominator tree *after* B on
863   the walk down, and we will hit A *before* B on the walk back up
864
865   3. Node A and B are siblings (and thus, neither dominates the other)
866
867     C
868     |
869     D
870    / \
871   A   B
872
873   In the above case, DFS_Number_In of A will *always* be <=
874   DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
875   DFS_Number_Out of B.  This is because we will always finish the dfs
876   walk of one of the subtrees before the other, and thus, the dfs
877   numbers for one subtree can't intersect with the range of dfs
878   numbers for the other subtree.  If you swap A and B's position in
879   the dominator tree, the comparison changes direction, but the point
880   is that both comparisons will always go the same way if there is no
881   dominance relationship.
882
883   Thus, it is sufficient to write
884
885   A_Dominates_B (node A, node B)
886   {
887     return DFS_Number_In(A) <= DFS_Number_In(B)
888            && DFS_Number_Out (A) >= DFS_Number_Out(B);
889   }
890
891   A_Dominated_by_B (node A, node B)
892   {
893     return DFS_Number_In(A) >= DFS_Number_In(A)
894            && DFS_Number_Out (A) <= DFS_Number_Out(B);
895   }  */
896
897/* Return TRUE in case BB1 is dominated by BB2.  */
898bool
899dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
900{
901  struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
902
903  gcc_assert (dom_computed[dir]);
904
905  if (dom_computed[dir] == DOM_OK)
906    return (n1->dfs_num_in >= n2->dfs_num_in
907  	    && n1->dfs_num_out <= n2->dfs_num_out);
908
909  return et_below (n1, n2);
910}
911
912/* Returns the entry dfs number for basic block BB, in the direction DIR.  */
913
914unsigned
915bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
916{
917  struct et_node *n = bb->dom[dir];
918
919  gcc_assert (dom_computed[dir] == DOM_OK);
920  return n->dfs_num_in;
921}
922
923/* Returns the exit dfs number for basic block BB, in the direction DIR.  */
924
925unsigned
926bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
927{
928  struct et_node *n = bb->dom[dir];
929
930  gcc_assert (dom_computed[dir] == DOM_OK);
931  return n->dfs_num_out;
932}
933
934/* Verify invariants of dominator structure.  */
935void
936verify_dominators (enum cdi_direction dir)
937{
938  int err = 0;
939  basic_block bb;
940
941  gcc_assert (dom_info_available_p (dir));
942
943  FOR_EACH_BB (bb)
944    {
945      basic_block dom_bb;
946      basic_block imm_bb;
947
948      dom_bb = recount_dominator (dir, bb);
949      imm_bb = get_immediate_dominator (dir, bb);
950      if (dom_bb != imm_bb)
951	{
952	  if ((dom_bb == NULL) || (imm_bb == NULL))
953	    error ("dominator of %d status unknown", bb->index);
954	  else
955	    error ("dominator of %d should be %d, not %d",
956		   bb->index, dom_bb->index, imm_bb->index);
957	  err = 1;
958	}
959    }
960
961  if (dir == CDI_DOMINATORS)
962    {
963      FOR_EACH_BB (bb)
964	{
965	  if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
966	    {
967	      error ("ENTRY does not dominate bb %d", bb->index);
968	      err = 1;
969	    }
970	}
971    }
972
973  gcc_assert (!err);
974}
975
976/* Determine immediate dominator (or postdominator, according to DIR) of BB,
977   assuming that dominators of other blocks are correct.  We also use it to
978   recompute the dominators in a restricted area, by iterating it until it
979   reaches a fixed point.  */
980
981basic_block
982recount_dominator (enum cdi_direction dir, basic_block bb)
983{
984  basic_block dom_bb = NULL;
985  edge e;
986  edge_iterator ei;
987
988  gcc_assert (dom_computed[dir]);
989
990  if (dir == CDI_DOMINATORS)
991    {
992      FOR_EACH_EDGE (e, ei, bb->preds)
993	{
994	  /* Ignore the predecessors that either are not reachable from
995	     the entry block, or whose dominator was not determined yet.  */
996	  if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
997	    continue;
998
999	  if (!dominated_by_p (dir, e->src, bb))
1000	    dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1001	}
1002    }
1003  else
1004    {
1005      FOR_EACH_EDGE (e, ei, bb->succs)
1006	{
1007	  if (!dominated_by_p (dir, e->dest, bb))
1008	    dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1009	}
1010    }
1011
1012  return dom_bb;
1013}
1014
1015/* Iteratively recount dominators of BBS. The change is supposed to be local
1016   and not to grow further.  */
1017void
1018iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
1019{
1020  int i, changed = 1;
1021  basic_block old_dom, new_dom;
1022
1023  gcc_assert (dom_computed[dir]);
1024
1025  for (i = 0; i < n; i++)
1026    set_immediate_dominator (dir, bbs[i], NULL);
1027
1028  while (changed)
1029    {
1030      changed = 0;
1031      for (i = 0; i < n; i++)
1032	{
1033	  old_dom = get_immediate_dominator (dir, bbs[i]);
1034	  new_dom = recount_dominator (dir, bbs[i]);
1035	  if (old_dom != new_dom)
1036	    {
1037	      changed = 1;
1038	      set_immediate_dominator (dir, bbs[i], new_dom);
1039	    }
1040	}
1041    }
1042
1043  for (i = 0; i < n; i++)
1044    gcc_assert (get_immediate_dominator (dir, bbs[i]));
1045}
1046
1047void
1048add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1049{
1050  gcc_assert (dom_computed[dir]);
1051  gcc_assert (!bb->dom[dir]);
1052
1053  n_bbs_in_dom_tree[dir]++;
1054
1055  bb->dom[dir] = et_new_tree (bb);
1056
1057  if (dom_computed[dir] == DOM_OK)
1058    dom_computed[dir] = DOM_NO_FAST_QUERY;
1059}
1060
1061void
1062delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1063{
1064  gcc_assert (dom_computed[dir]);
1065
1066  et_free_tree (bb->dom[dir]);
1067  bb->dom[dir] = NULL;
1068  n_bbs_in_dom_tree[dir]--;
1069
1070  if (dom_computed[dir] == DOM_OK)
1071    dom_computed[dir] = DOM_NO_FAST_QUERY;
1072}
1073
1074/* Returns the first son of BB in the dominator or postdominator tree
1075   as determined by DIR.  */
1076
1077basic_block
1078first_dom_son (enum cdi_direction dir, basic_block bb)
1079{
1080  struct et_node *son = bb->dom[dir]->son;
1081
1082  return son ? son->data : NULL;
1083}
1084
1085/* Returns the next dominance son after BB in the dominator or postdominator
1086   tree as determined by DIR, or NULL if it was the last one.  */
1087
1088basic_block
1089next_dom_son (enum cdi_direction dir, basic_block bb)
1090{
1091  struct et_node *next = bb->dom[dir]->right;
1092
1093  return next->father->son == next ? NULL : next->data;
1094}
1095
1096/* Returns true if dominance information for direction DIR is available.  */
1097
1098bool
1099dom_info_available_p (enum cdi_direction dir)
1100{
1101  return dom_computed[dir] != DOM_NONE;
1102}
1103
1104void
1105debug_dominance_info (enum cdi_direction dir)
1106{
1107  basic_block bb, bb2;
1108  FOR_EACH_BB (bb)
1109    if ((bb2 = get_immediate_dominator (dir, bb)))
1110      fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1111}
1112