rs6000.h revision 161651
1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6   This file is part of GCC.
7
8   GCC is free software; you can redistribute it and/or modify it
9   under the terms of the GNU General Public License as published
10   by the Free Software Foundation; either version 2, or (at your
11   option) any later version.
12
13   GCC is distributed in the hope that it will be useful, but WITHOUT
14   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16   License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with GCC; see the file COPYING.  If not, write to the
20   Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21   MA 02111-1307, USA.  */
22
23/* Note that some other tm.h files include this one and then override
24   many of the definitions.  */
25
26/* Definitions for the object file format.  These are set at
27   compile-time.  */
28
29#define OBJECT_XCOFF 1
30#define OBJECT_ELF 2
31#define OBJECT_PEF 3
32#define OBJECT_MACHO 4
33
34#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
38
39#ifndef TARGET_AIX
40#define TARGET_AIX 0
41#endif
42
43/* Default string to use for cpu if not specified.  */
44#ifndef TARGET_CPU_DEFAULT
45#define TARGET_CPU_DEFAULT ((char *)0)
46#endif
47
48/* Common ASM definitions used by ASM_SPEC among the various targets
49   for handling -mcpu=xxx switches.  */
50#define ASM_CPU_SPEC \
51"%{!mcpu*: \
52  %{mpower: %{!mpower2: -mpwr}} \
53  %{mpower2: -mpwrx} \
54  %{mpowerpc64*: -mppc64} \
55  %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
56  %{mno-power: %{!mpowerpc*: -mcom}} \
57  %{!mno-power: %{!mpower*: %(asm_default)}}} \
58%{mcpu=common: -mcom} \
59%{mcpu=power: -mpwr} \
60%{mcpu=power2: -mpwrx} \
61%{mcpu=power3: -mppc64} \
62%{mcpu=power4: -mpower4} \
63%{mcpu=power5: -mpower4} \
64%{mcpu=powerpc: -mppc} \
65%{mcpu=rios: -mpwr} \
66%{mcpu=rios1: -mpwr} \
67%{mcpu=rios2: -mpwrx} \
68%{mcpu=rsc: -mpwr} \
69%{mcpu=rsc1: -mpwr} \
70%{mcpu=rs64a: -mppc64} \
71%{mcpu=401: -mppc} \
72%{mcpu=403: -m403} \
73%{mcpu=405: -m405} \
74%{mcpu=405fp: -m405} \
75%{mcpu=440: -m440} \
76%{mcpu=440fp: -m440} \
77%{mcpu=505: -mppc} \
78%{mcpu=601: -m601} \
79%{mcpu=602: -mppc} \
80%{mcpu=603: -mppc} \
81%{mcpu=603e: -mppc} \
82%{mcpu=ec603e: -mppc} \
83%{mcpu=604: -mppc} \
84%{mcpu=604e: -mppc} \
85%{mcpu=620: -mppc64} \
86%{mcpu=630: -mppc64} \
87%{mcpu=740: -mppc} \
88%{mcpu=750: -mppc} \
89%{mcpu=G3: -mppc} \
90%{mcpu=7400: -mppc -maltivec} \
91%{mcpu=7450: -mppc -maltivec} \
92%{mcpu=G4: -mppc -maltivec} \
93%{mcpu=801: -mppc} \
94%{mcpu=821: -mppc} \
95%{mcpu=823: -mppc} \
96%{mcpu=860: -mppc} \
97%{mcpu=970: -mpower4 -maltivec} \
98%{mcpu=G5: -mpower4 -maltivec} \
99%{mcpu=8540: -me500} \
100%{maltivec: -maltivec} \
101-many"
102
103#define CPP_DEFAULT_SPEC ""
104
105#define ASM_DEFAULT_SPEC ""
106
107/* This macro defines names of additional specifications to put in the specs
108   that can be used in various specifications like CC1_SPEC.  Its definition
109   is an initializer with a subgrouping for each command option.
110
111   Each subgrouping contains a string constant, that defines the
112   specification name, and a string constant that used by the GCC driver
113   program.
114
115   Do not define this macro if it does not need to do anything.  */
116
117#define SUBTARGET_EXTRA_SPECS
118
119#define EXTRA_SPECS							\
120  { "cpp_default",		CPP_DEFAULT_SPEC },			\
121  { "asm_cpu",			ASM_CPU_SPEC },				\
122  { "asm_default",		ASM_DEFAULT_SPEC },			\
123  SUBTARGET_EXTRA_SPECS
124
125/* Architecture type.  */
126
127extern int target_flags;
128
129/* Use POWER architecture instructions and MQ register.  */
130#define MASK_POWER		0x00000001
131
132/* Use POWER2 extensions to POWER architecture.  */
133#define MASK_POWER2		0x00000002
134
135/* Use PowerPC architecture instructions.  */
136#define MASK_POWERPC		0x00000004
137
138/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt.  */
139#define MASK_PPC_GPOPT		0x00000008
140
141/* Use PowerPC Graphics group optional instructions, e.g. fsel.  */
142#define MASK_PPC_GFXOPT		0x00000010
143
144/* Use PowerPC-64 architecture instructions.  */
145#define MASK_POWERPC64		0x00000020
146
147/* Use revised mnemonic names defined for PowerPC architecture.  */
148#define MASK_NEW_MNEMONICS	0x00000040
149
150/* Disable placing fp constants in the TOC; can be turned on when the
151   TOC overflows.  */
152#define MASK_NO_FP_IN_TOC	0x00000080
153
154/* Disable placing symbol+offset constants in the TOC; can be turned on when
155   the TOC overflows.  */
156#define MASK_NO_SUM_IN_TOC	0x00000100
157
158/* Output only one TOC entry per module.  Normally linking fails if
159   there are more than 16K unique variables/constants in an executable.  With
160   this option, linking fails only if there are more than 16K modules, or
161   if there are more than 16K unique variables/constant in a single module.
162
163   This is at the cost of having 2 extra loads and one extra store per
164   function, and one less allocable register.  */
165#define MASK_MINIMAL_TOC	0x00000200
166
167/* Nonzero for the 64 bit ABIs: longs and pointers are 64 bits.  The
168   chip is running in "64-bit mode", in which CR0 is set in dot
169   operations based on all 64 bits of the register, bdnz works on 64-bit
170   ctr, lr is 64 bits, and so on.  Requires MASK_POWERPC64.  */
171#define MASK_64BIT		0x00000400
172
173/* Disable use of FPRs.  */
174#define MASK_SOFT_FLOAT		0x00000800
175
176/* Enable load/store multiple, even on PowerPC */
177#define MASK_MULTIPLE		0x00001000
178
179/* Use string instructions for block moves */
180#define MASK_STRING		0x00002000
181
182/* Disable update form of load/store */
183#define MASK_NO_UPDATE		0x00004000
184
185/* Disable fused multiply/add operations */
186#define MASK_NO_FUSED_MADD	0x00008000
187
188/* Nonzero if we need to schedule the prolog and epilog.  */
189#define MASK_SCHED_PROLOG	0x00010000
190
191/* Use AltiVec instructions.  */
192#define MASK_ALTIVEC		0x00020000
193
194/* Return small structures in memory (as the AIX ABI requires).  */
195#define MASK_AIX_STRUCT_RET	0x00040000
196
197/* Use single field mfcr instruction.  */
198#define MASK_MFCRF		0x00080000
199
200/* The only remaining free bits are 0x00600000.  linux64.h uses
201   0x00100000, and sysv4.h uses 0x00800000 -> 0x40000000.
202   0x80000000 is not available because target_flags is signed.  */
203
204#define TARGET_POWER		(target_flags & MASK_POWER)
205#define TARGET_POWER2		(target_flags & MASK_POWER2)
206#define TARGET_POWERPC		(target_flags & MASK_POWERPC)
207#define TARGET_PPC_GPOPT	(target_flags & MASK_PPC_GPOPT)
208#define TARGET_PPC_GFXOPT	(target_flags & MASK_PPC_GFXOPT)
209#define TARGET_NEW_MNEMONICS	(target_flags & MASK_NEW_MNEMONICS)
210#define TARGET_NO_FP_IN_TOC	(target_flags & MASK_NO_FP_IN_TOC)
211#define TARGET_NO_SUM_IN_TOC	(target_flags & MASK_NO_SUM_IN_TOC)
212#define TARGET_MINIMAL_TOC	(target_flags & MASK_MINIMAL_TOC)
213#define TARGET_64BIT		(target_flags & MASK_64BIT)
214#define TARGET_SOFT_FLOAT	(target_flags & MASK_SOFT_FLOAT)
215#define TARGET_MULTIPLE		(target_flags & MASK_MULTIPLE)
216#define TARGET_STRING		(target_flags & MASK_STRING)
217#define TARGET_NO_UPDATE	(target_flags & MASK_NO_UPDATE)
218#define TARGET_NO_FUSED_MADD	(target_flags & MASK_NO_FUSED_MADD)
219#define TARGET_SCHED_PROLOG	(target_flags & MASK_SCHED_PROLOG)
220#define TARGET_ALTIVEC		(target_flags & MASK_ALTIVEC)
221#define TARGET_AIX_STRUCT_RET	(target_flags & MASK_AIX_STRUCT_RET)
222
223/* Define TARGET_MFCRF if the target assembler supports the optional
224   field operand for mfcr and the target processor supports the
225   instruction.  */
226
227#ifdef HAVE_AS_MFCRF
228#define TARGET_MFCRF		(target_flags & MASK_MFCRF)
229#else
230#define TARGET_MFCRF 0
231#endif
232
233
234#define TARGET_32BIT		(! TARGET_64BIT)
235#define TARGET_HARD_FLOAT	(! TARGET_SOFT_FLOAT)
236#define TARGET_UPDATE		(! TARGET_NO_UPDATE)
237#define TARGET_FUSED_MADD	(! TARGET_NO_FUSED_MADD)
238
239/* Emit a dtp-relative reference to a TLS variable.  */
240
241#ifdef HAVE_AS_TLS
242#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
243  rs6000_output_dwarf_dtprel (FILE, SIZE, X)
244#endif
245
246#ifndef HAVE_AS_TLS
247#define HAVE_AS_TLS 0
248#endif
249
250#ifdef IN_LIBGCC2
251/* For libgcc2 we make sure this is a compile time constant */
252#if defined (__64BIT__) || defined (__powerpc64__)
253#define TARGET_POWERPC64	1
254#else
255#define TARGET_POWERPC64	0
256#endif
257#else
258#define TARGET_POWERPC64	(target_flags & MASK_POWERPC64)
259#endif
260
261#define TARGET_XL_COMPAT 0
262
263/* Run-time compilation parameters selecting different hardware subsets.
264
265   Macro to define tables used to set the flags.
266   This is a list in braces of pairs in braces,
267   each pair being { "NAME", VALUE }
268   where VALUE is the bits to set or minus the bits to clear.
269   An empty string NAME is used to identify the default VALUE.  */
270
271#define TARGET_SWITCHES							\
272 {{"power",		MASK_POWER  | MASK_MULTIPLE | MASK_STRING,	\
273			N_("Use POWER instruction set")},		\
274  {"power2",		(MASK_POWER | MASK_MULTIPLE | MASK_STRING	\
275			 | MASK_POWER2),				\
276			N_("Use POWER2 instruction set")},		\
277  {"no-power2",		- MASK_POWER2,					\
278			N_("Do not use POWER2 instruction set")},	\
279  {"no-power",		- (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE	\
280			   | MASK_STRING),				\
281			N_("Do not use POWER instruction set")},	\
282  {"powerpc",		MASK_POWERPC,					\
283			N_("Use PowerPC instruction set")},		\
284  {"no-powerpc",	- (MASK_POWERPC | MASK_PPC_GPOPT		\
285			   | MASK_PPC_GFXOPT | MASK_POWERPC64),		\
286			N_("Do not use PowerPC instruction set")},	\
287  {"powerpc-gpopt",	MASK_POWERPC | MASK_PPC_GPOPT,			\
288			N_("Use PowerPC General Purpose group optional instructions")},\
289  {"no-powerpc-gpopt",	- MASK_PPC_GPOPT,				\
290			N_("Do not use PowerPC General Purpose group optional instructions")},\
291  {"powerpc-gfxopt",	MASK_POWERPC | MASK_PPC_GFXOPT,			\
292			N_("Use PowerPC Graphics group optional instructions")},\
293  {"no-powerpc-gfxopt",	- MASK_PPC_GFXOPT,				\
294			N_("Do not use PowerPC Graphics group optional instructions")},\
295  {"powerpc64",		MASK_POWERPC64,					\
296			N_("Use PowerPC-64 instruction set")},		\
297  {"no-powerpc64",	- MASK_POWERPC64,				\
298			N_("Do not use PowerPC-64 instruction set")},	\
299  {"altivec",		MASK_ALTIVEC ,					\
300			N_("Use AltiVec instructions")},		\
301  {"no-altivec",	- MASK_ALTIVEC ,					\
302			N_("Do not use AltiVec instructions")},	\
303  {"new-mnemonics",	MASK_NEW_MNEMONICS,				\
304			N_("Use new mnemonics for PowerPC architecture")},\
305  {"old-mnemonics",	-MASK_NEW_MNEMONICS,				\
306			N_("Use old mnemonics for PowerPC architecture")},\
307  {"full-toc",		- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC	\
308			   | MASK_MINIMAL_TOC),				\
309			N_("Put everything in the regular TOC")},	\
310  {"fp-in-toc",		- MASK_NO_FP_IN_TOC,				\
311			N_("Place floating point constants in TOC")},	\
312  {"no-fp-in-toc",	MASK_NO_FP_IN_TOC,				\
313			N_("Do not place floating point constants in TOC")},\
314  {"sum-in-toc",	- MASK_NO_SUM_IN_TOC,				\
315			N_("Place symbol+offset constants in TOC")},	\
316  {"no-sum-in-toc",	MASK_NO_SUM_IN_TOC,				\
317			N_("Do not place symbol+offset constants in TOC")},\
318  {"minimal-toc",	MASK_MINIMAL_TOC,				\
319			"Use only one TOC entry per procedure"},	\
320  {"minimal-toc",	- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC),	\
321			""},						\
322  {"no-minimal-toc",	- MASK_MINIMAL_TOC,				\
323			N_("Place variable addresses in the regular TOC")},\
324  {"hard-float",	- MASK_SOFT_FLOAT,				\
325			N_("Use hardware floating point")},		\
326  {"soft-float",	MASK_SOFT_FLOAT,				\
327			N_("Do not use hardware floating point")},	\
328  {"multiple",		MASK_MULTIPLE,					\
329			N_("Generate load/store multiple instructions")},	\
330  {"no-multiple",	- MASK_MULTIPLE,				\
331			N_("Do not generate load/store multiple instructions")},\
332  {"string",		MASK_STRING,					\
333			N_("Generate string instructions for block moves")},\
334  {"no-string",		- MASK_STRING,					\
335			N_("Do not generate string instructions for block moves")},\
336  {"update",		- MASK_NO_UPDATE,				\
337			N_("Generate load/store with update instructions")},\
338  {"no-update",		MASK_NO_UPDATE,					\
339			N_("Do not generate load/store with update instructions")},\
340  {"fused-madd",	- MASK_NO_FUSED_MADD,				\
341			N_("Generate fused multiply/add instructions")},\
342  {"no-fused-madd",	MASK_NO_FUSED_MADD,				\
343			N_("Do not generate fused multiply/add instructions")},\
344  {"sched-prolog",      MASK_SCHED_PROLOG,                              \
345			""},						\
346  {"no-sched-prolog",   -MASK_SCHED_PROLOG,                             \
347			N_("Do not schedule the start and end of the procedure")},\
348  {"sched-epilog",      MASK_SCHED_PROLOG,                              \
349			""},						\
350  {"no-sched-epilog",   -MASK_SCHED_PROLOG,                             \
351			""},						\
352  {"aix-struct-return",	MASK_AIX_STRUCT_RET,				\
353			N_("Return all structures in memory (AIX default)")},\
354  {"svr4-struct-return", - MASK_AIX_STRUCT_RET,				\
355			N_("Return small structures in registers (SVR4 default)")},\
356  {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,			\
357			""},						\
358  {"no-svr4-struct-return", MASK_AIX_STRUCT_RET,			\
359			""},						\
360  {"mfcrf",		MASK_MFCRF,					\
361			N_("Generate single field mfcr instruction")},	\
362  {"no-mfcrf",		- MASK_MFCRF,					\
363			N_("Do not generate single field mfcr instruction")},\
364  SUBTARGET_SWITCHES							\
365  {"",			TARGET_DEFAULT | MASK_SCHED_PROLOG,		\
366			""}}
367
368#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
369
370/* This is meant to be redefined in the host dependent files */
371#define SUBTARGET_SWITCHES
372
373/* Processor type.  Order must match cpu attribute in MD file.  */
374enum processor_type
375 {
376   PROCESSOR_RIOS1,
377   PROCESSOR_RIOS2,
378   PROCESSOR_RS64A,
379   PROCESSOR_MPCCORE,
380   PROCESSOR_PPC403,
381   PROCESSOR_PPC405,
382   PROCESSOR_PPC440,
383   PROCESSOR_PPC601,
384   PROCESSOR_PPC603,
385   PROCESSOR_PPC604,
386   PROCESSOR_PPC604e,
387   PROCESSOR_PPC620,
388   PROCESSOR_PPC630,
389   PROCESSOR_PPC750,
390   PROCESSOR_PPC7400,
391   PROCESSOR_PPC7450,
392   PROCESSOR_PPC8540,
393   PROCESSOR_POWER4,
394   PROCESSOR_POWER5
395};
396
397extern enum processor_type rs6000_cpu;
398
399/* Recast the processor type to the cpu attribute.  */
400#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
401
402/* Define generic processor types based upon current deployment.  */
403#define PROCESSOR_COMMON    PROCESSOR_PPC601
404#define PROCESSOR_POWER     PROCESSOR_RIOS1
405#define PROCESSOR_POWERPC   PROCESSOR_PPC604
406#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
407
408/* Define the default processor.  This is overridden by other tm.h files.  */
409#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
410#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
411
412/* Specify the dialect of assembler to use.  New mnemonics is dialect one
413   and the old mnemonics are dialect zero.  */
414#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
415
416/* Types of costly dependences.  */
417enum rs6000_dependence_cost
418 {
419   max_dep_latency = 1000,
420   no_dep_costly,
421   all_deps_costly,
422   true_store_to_load_dep_costly,
423   store_to_load_dep_costly
424 };
425
426/* Types of nop insertion schemes in sched target hook sched_finish.  */
427enum rs6000_nop_insertion
428  {
429    sched_finish_regroup_exact = 1000,
430    sched_finish_pad_groups,
431    sched_finish_none
432  };
433
434/* Dispatch group termination caused by an insn.  */
435enum group_termination
436  {
437    current_group,
438    previous_group
439  };
440
441/* This is meant to be overridden in target specific files.  */
442#define	SUBTARGET_OPTIONS
443
444#define TARGET_OPTIONS							\
445{									\
446   {"cpu=",  &rs6000_select[1].string,					\
447    N_("Use features of and schedule code for given CPU"), 0},		\
448   {"tune=", &rs6000_select[2].string,					\
449    N_("Schedule code for given CPU"), 0},				\
450   {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0},	\
451   {"traceback=", &rs6000_traceback_name,				\
452    N_("Select full, part, or no traceback table"), 0},			\
453   {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0},		\
454   {"long-double-", &rs6000_long_double_size_string,			\
455    N_("Specify size of long double (64 or 128 bits)"), 0},		\
456   {"isel=", &rs6000_isel_string,                                       \
457    N_("Specify yes/no if isel instructions should be generated"), 0},  \
458   {"spe=", &rs6000_spe_string,                                         \
459    N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
460   {"float-gprs=", &rs6000_float_gprs_string,                           \
461    N_("Specify yes/no if using floating point in the GPRs"), 0},       \
462   {"vrsave=", &rs6000_altivec_vrsave_string,                           \
463    N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
464   {"longcall", &rs6000_longcall_switch,				\
465    N_("Avoid all range limits on call instructions"), 0},		\
466   {"no-longcall", &rs6000_longcall_switch, "", 0},			\
467   {"warn-altivec-long", &rs6000_warn_altivec_long_switch, \
468    N_("Warn about deprecated 'vector long ...' AltiVec type usage"), 0}, \
469   {"no-warn-altivec-long", &rs6000_warn_altivec_long_switch, "", 0}, \
470   {"sched-costly-dep=", &rs6000_sched_costly_dep_str,                  \
471    N_("Determine which dependences between insns are considered costly"), 0}, \
472   {"insert-sched-nops=", &rs6000_sched_insert_nops_str,                \
473    N_("Specify which post scheduling nop insertion scheme to apply"), 0}, \
474   {"align-", &rs6000_alignment_string,					\
475    N_("Specify alignment of structure fields default/natural"), 0},	\
476   {"prioritize-restricted-insns=", &rs6000_sched_restricted_insns_priority_str, \
477    N_("Specify scheduling priority for dispatch slot restricted insns"), 0}, \
478   SUBTARGET_OPTIONS							\
479}
480
481/* Support for a compile-time default CPU, et cetera.  The rules are:
482   --with-cpu is ignored if -mcpu is specified.
483   --with-tune is ignored if -mtune is specified.
484   --with-float is ignored if -mhard-float or -msoft-float are
485    specified.  */
486#define OPTION_DEFAULT_SPECS \
487  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
488  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
489  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
490
491/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
492struct rs6000_cpu_select
493{
494  const char *string;
495  const char *name;
496  int set_tune_p;
497  int set_arch_p;
498};
499
500extern struct rs6000_cpu_select rs6000_select[];
501
502/* Debug support */
503extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
504extern const char *rs6000_abi_string;	/* for -mabi={sysv,darwin,eabi,aix,altivec} */
505extern int rs6000_debug_stack;		/* debug stack applications */
506extern int rs6000_debug_arg;		/* debug argument handling */
507
508#define	TARGET_DEBUG_STACK	rs6000_debug_stack
509#define	TARGET_DEBUG_ARG	rs6000_debug_arg
510
511extern const char *rs6000_traceback_name; /* Type of traceback table.  */
512
513/* These are separate from target_flags because we've run out of bits
514   there.  */
515extern const char *rs6000_long_double_size_string;
516extern int rs6000_long_double_type_size;
517extern int rs6000_altivec_abi;
518extern int rs6000_spe_abi;
519extern int rs6000_isel;
520extern int rs6000_spe;
521extern int rs6000_float_gprs;
522extern const char *rs6000_float_gprs_string;
523extern const char *rs6000_isel_string;
524extern const char *rs6000_spe_string;
525extern const char *rs6000_altivec_vrsave_string;
526extern int rs6000_altivec_vrsave;
527extern const char *rs6000_longcall_switch;
528extern int rs6000_default_long_calls;
529extern const char* rs6000_alignment_string;
530extern int rs6000_alignment_flags;
531extern const char *rs6000_sched_restricted_insns_priority_str;
532extern int rs6000_sched_restricted_insns_priority;
533extern const char *rs6000_sched_costly_dep_str;
534extern enum rs6000_dependence_cost rs6000_sched_costly_dep;
535extern const char *rs6000_sched_insert_nops_str;
536extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
537
538extern int rs6000_warn_altivec_long;
539extern const char *rs6000_warn_altivec_long_switch;
540
541/* Alignment options for fields in structures for sub-targets following
542   AIX-like ABI.
543   ALIGN_POWER word-aligns FP doubles (default AIX ABI).
544   ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
545
546   Override the macro definitions when compiling libobjc to avoid undefined
547   reference to rs6000_alignment_flags due to library's use of GCC alignment
548   macros which use the macros below.  */
549
550#ifndef IN_TARGET_LIBS
551#define MASK_ALIGN_POWER   0x00000000
552#define MASK_ALIGN_NATURAL 0x00000001
553#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
554#else
555#define TARGET_ALIGN_NATURAL 0
556#endif
557
558#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
559#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
560#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
561
562#define TARGET_SPE_ABI 0
563#define TARGET_SPE 0
564#define TARGET_E500 0
565#define TARGET_ISEL 0
566#define TARGET_FPRS 1
567
568/* Sometimes certain combinations of command options do not make sense
569   on a particular target machine.  You can define a macro
570   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
571   defined, is executed once just after all the command options have
572   been parsed.
573
574   Do not use this macro to turn on various extra optimizations for
575   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
576
577   On the RS/6000 this is used to define the target cpu type.  */
578
579#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
580
581/* Define this to change the optimizations performed by default.  */
582#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
583
584/* Show we can debug even without a frame pointer.  */
585#define CAN_DEBUG_WITHOUT_FP
586
587/* Target pragma.  */
588#define REGISTER_TARGET_PRAGMAS() do {				\
589  c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
590} while (0)
591
592/* Target #defines.  */
593#define TARGET_CPU_CPP_BUILTINS() \
594  rs6000_cpu_cpp_builtins (pfile)
595
596/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
597   we're compiling for.  Some configurations may need to override it.  */
598#define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
599  do						\
600    {						\
601      if (BYTES_BIG_ENDIAN)			\
602	{					\
603	  builtin_define ("__BIG_ENDIAN__");	\
604	  builtin_define ("_BIG_ENDIAN");	\
605	  builtin_assert ("machine=bigendian");	\
606	}					\
607      else					\
608	{					\
609	  builtin_define ("__LITTLE_ENDIAN__");	\
610	  builtin_define ("_LITTLE_ENDIAN");	\
611	  builtin_assert ("machine=littleendian"); \
612	}					\
613    }						\
614  while (0)
615
616/* Target machine storage layout.  */
617
618/* Define this macro if it is advisable to hold scalars in registers
619   in a wider mode than that declared by the program.  In such cases,
620   the value is constrained to be within the bounds of the declared
621   type, but kept valid in the wider mode.  The signedness of the
622   extension may differ from that of the type.  */
623
624#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
625  if (GET_MODE_CLASS (MODE) == MODE_INT		\
626      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
627    (MODE) = TARGET_32BIT ? SImode : DImode;
628
629/* Define this if most significant bit is lowest numbered
630   in instructions that operate on numbered bit-fields.  */
631/* That is true on RS/6000.  */
632#define BITS_BIG_ENDIAN 1
633
634/* Define this if most significant byte of a word is the lowest numbered.  */
635/* That is true on RS/6000.  */
636#define BYTES_BIG_ENDIAN 1
637
638/* Define this if most significant word of a multiword number is lowest
639   numbered.
640
641   For RS/6000 we can decide arbitrarily since there are no machine
642   instructions for them.  Might as well be consistent with bits and bytes.  */
643#define WORDS_BIG_ENDIAN 1
644
645#define MAX_BITS_PER_WORD 64
646
647/* Width of a word, in units (bytes).  */
648#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
649#ifdef IN_LIBGCC2
650#define MIN_UNITS_PER_WORD UNITS_PER_WORD
651#else
652#define MIN_UNITS_PER_WORD 4
653#endif
654#define UNITS_PER_FP_WORD 8
655#define UNITS_PER_ALTIVEC_WORD 16
656#define UNITS_PER_SPE_WORD 8
657
658/* Type used for ptrdiff_t, as a string used in a declaration.  */
659#define PTRDIFF_TYPE "int"
660
661/* Type used for size_t, as a string used in a declaration.  */
662#define SIZE_TYPE "long unsigned int"
663
664/* Type used for wchar_t, as a string used in a declaration.  */
665#define WCHAR_TYPE "short unsigned int"
666
667/* Width of wchar_t in bits.  */
668#define WCHAR_TYPE_SIZE 16
669
670/* A C expression for the size in bits of the type `short' on the
671   target machine.  If you don't define this, the default is half a
672   word.  (If this would be less than one storage unit, it is
673   rounded up to one unit.)  */
674#define SHORT_TYPE_SIZE 16
675
676/* A C expression for the size in bits of the type `int' on the
677   target machine.  If you don't define this, the default is one
678   word.  */
679#define INT_TYPE_SIZE 32
680
681/* A C expression for the size in bits of the type `long' on the
682   target machine.  If you don't define this, the default is one
683   word.  */
684#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
685#define MAX_LONG_TYPE_SIZE 64
686
687/* A C expression for the size in bits of the type `long long' on the
688   target machine.  If you don't define this, the default is two
689   words.  */
690#define LONG_LONG_TYPE_SIZE 64
691
692/* A C expression for the size in bits of the type `float' on the
693   target machine.  If you don't define this, the default is one
694   word.  */
695#define FLOAT_TYPE_SIZE 32
696
697/* A C expression for the size in bits of the type `double' on the
698   target machine.  If you don't define this, the default is two
699   words.  */
700#define DOUBLE_TYPE_SIZE 64
701
702/* A C expression for the size in bits of the type `long double' on
703   the target machine.  If you don't define this, the default is two
704   words.  */
705#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
706
707/* Constant which presents upper bound of the above value.  */
708#define MAX_LONG_DOUBLE_TYPE_SIZE 128
709
710/* Define this to set long double type size to use in libgcc2.c, which can
711   not depend on target_flags.  */
712#ifdef __LONG_DOUBLE_128__
713#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
714#else
715#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
716#endif
717
718/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
719#define WIDEST_HARDWARE_FP_SIZE 64
720
721/* Width in bits of a pointer.
722   See also the macro `Pmode' defined below.  */
723#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
724
725/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
726#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
727
728/* Boundary (in *bits*) on which stack pointer should be aligned.  */
729#define STACK_BOUNDARY \
730  ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
731
732/* Allocation boundary (in *bits*) for the code of a function.  */
733#define FUNCTION_BOUNDARY 32
734
735/* No data type wants to be aligned rounder than this.  */
736#define BIGGEST_ALIGNMENT 128
737
738/* A C expression to compute the alignment for a variables in the
739   local store.  TYPE is the data type, and ALIGN is the alignment
740   that the object would ordinarily have.  */
741#define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
742  ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :	\
743    (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
744
745/* Alignment of field after `int : 0' in a structure.  */
746#define EMPTY_FIELD_BOUNDARY 32
747
748/* Every structure's size must be a multiple of this.  */
749#define STRUCTURE_SIZE_BOUNDARY 8
750
751/* Return 1 if a structure or array containing FIELD should be
752   accessed using `BLKMODE'.
753
754   For the SPE, simd types are V2SI, and gcc can be tempted to put the
755   entire thing in a DI and use subregs to access the internals.
756   store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
757   back-end.  Because a single GPR can hold a V2SI, but not a DI, the
758   best thing to do is set structs to BLKmode and avoid Severe Tire
759   Damage.  */
760#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
761  (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
762
763/* A bit-field declared as `int' forces `int' alignment for the struct.  */
764#define PCC_BITFIELD_TYPE_MATTERS 1
765
766/* Make strings word-aligned so strcpy from constants will be faster.
767   Make vector constants quadword aligned.  */
768#define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
769  (TREE_CODE (EXP) == STRING_CST	                         \
770   && (ALIGN) < BITS_PER_WORD                                    \
771   ? BITS_PER_WORD                                               \
772   : (ALIGN))
773
774/* Make arrays of chars word-aligned for the same reasons.
775   Align vectors to 128 bits.  */
776#define DATA_ALIGNMENT(TYPE, ALIGN)		\
777  (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)	\
778   : TREE_CODE (TYPE) == ARRAY_TYPE		\
779   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
780   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
781
782/* Nonzero if move instructions will actually fail to work
783   when given unaligned data.  */
784#define STRICT_ALIGNMENT 0
785
786/* Define this macro to be the value 1 if unaligned accesses have a cost
787   many times greater than aligned accesses, for example if they are
788   emulated in a trap handler.  */
789#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
790  (STRICT_ALIGNMENT							\
791   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
792	|| (MODE) == DImode)						\
793       && (ALIGN) < 32))
794
795/* Standard register usage.  */
796
797/* Number of actual hardware registers.
798   The hardware registers are assigned numbers for the compiler
799   from 0 to just below FIRST_PSEUDO_REGISTER.
800   All registers that the compiler knows about must be given numbers,
801   even those that are not normally considered general registers.
802
803   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
804   an MQ register, a count register, a link register, and 8 condition
805   register fields, which we view here as separate registers.  AltiVec
806   adds 32 vector registers and a VRsave register.
807
808   In addition, the difference between the frame and argument pointers is
809   a function of the number of registers saved, so we need to have a
810   register for AP that will later be eliminated in favor of SP or FP.
811   This is a normal register, but it is fixed.
812
813   We also create a pseudo register for float/int conversions, that will
814   really represent the memory location used.  It is represented here as
815   a register, in order to work around problems in allocating stack storage
816   in inline functions.  */
817
818#define FIRST_PSEUDO_REGISTER 113
819
820/* This must be included for pre gcc 3.0 glibc compatibility.  */
821#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
822
823/* Add 32 dwarf columns for synthetic SPE registers.  */
824#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
825
826/* The SPE has an additional 32 synthetic registers, with DWARF debug
827   info numbering for these registers starting at 1200.  While eh_frame
828   register numbering need not be the same as the debug info numbering,
829   we choose to number these regs for eh_frame at 1200 too.  This allows
830   future versions of the rs6000 backend to add hard registers and
831   continue to use the gcc hard register numbering for eh_frame.  If the
832   extra SPE registers in eh_frame were numbered starting from the
833   current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
834   changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
835   avoid invalidating older SPE eh_frame info.
836
837   We must map them here to avoid huge unwinder tables mostly consisting
838   of unused space.  */
839#define DWARF_REG_TO_UNWIND_COLUMN(r) \
840  ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER) : (r))
841
842/* Use gcc hard register numbering for eh_frame.  */
843#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
844
845/* 1 for registers that have pervasive standard uses
846   and are not available for the register allocator.
847
848   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
849   as a local register; for all other OS's r2 is the TOC pointer.
850
851   cr5 is not supposed to be used.
852
853   On System V implementations, r13 is fixed and not available for use.  */
854
855#define FIXED_REGISTERS  \
856  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
857   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
858   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
859   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
860   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
861   /* AltiVec registers.  */			   \
862   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
863   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864   1, 1						   \
865   , 1, 1                                          \
866}
867
868/* 1 for registers not available across function calls.
869   These must include the FIXED_REGISTERS and also any
870   registers that can be used without being saved.
871   The latter must include the registers where values are returned
872   and the register where structure-value addresses are passed.
873   Aside from that, you can include as many other registers as you like.  */
874
875#define CALL_USED_REGISTERS  \
876  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
877   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
878   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
879   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
880   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
881   /* AltiVec registers.  */			   \
882   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
883   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
884   1, 1						   \
885   , 1, 1                                          \
886}
887
888/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
889   the entire set of `FIXED_REGISTERS' be included.
890   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
891   This macro is optional.  If not specified, it defaults to the value
892   of `CALL_USED_REGISTERS'.  */
893
894#define CALL_REALLY_USED_REGISTERS  \
895  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
896   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
897   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
898   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
899   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
900   /* AltiVec registers.  */			   \
901   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
902   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
903   0, 0						   \
904   , 0, 0                                          \
905}
906
907#define MQ_REGNO     64
908#define CR0_REGNO    68
909#define CR1_REGNO    69
910#define CR2_REGNO    70
911#define CR3_REGNO    71
912#define CR4_REGNO    72
913#define MAX_CR_REGNO 75
914#define XER_REGNO    76
915#define FIRST_ALTIVEC_REGNO	77
916#define LAST_ALTIVEC_REGNO	108
917#define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
918#define VRSAVE_REGNO		109
919#define VSCR_REGNO		110
920#define SPE_ACC_REGNO		111
921#define SPEFSCR_REGNO		112
922
923/* List the order in which to allocate registers.  Each register must be
924   listed once, even those in FIXED_REGISTERS.
925
926   We allocate in the following order:
927	fp0		(not saved or used for anything)
928	fp13 - fp2	(not saved; incoming fp arg registers)
929	fp1		(not saved; return value)
930 	fp31 - fp14	(saved; order given to save least number)
931	cr7, cr6	(not saved or special)
932	cr1		(not saved, but used for FP operations)
933	cr0		(not saved, but used for arithmetic operations)
934	cr4, cr3, cr2	(saved)
935        r0		(not saved; cannot be base reg)
936	r9		(not saved; best for TImode)
937	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
938	r3     		(not saved; return value register)
939	r31 - r13	(saved; order given to save least number)
940	r12		(not saved; if used for DImode or DFmode would use r13)
941	mq		(not saved; best to use it if we can)
942	ctr		(not saved; when we have the choice ctr is better)
943	lr		(saved)
944        cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
945	spe_acc, spefscr (fixed)
946
947	AltiVec registers:
948	v0 - v1         (not saved or used for anything)
949	v13 - v3        (not saved; incoming vector arg registers)
950	v2              (not saved; incoming vector arg reg; return value)
951	v19 - v14       (not saved or used for anything)
952	v31 - v20       (saved; order given to save least number)
953*/
954
955#if FIXED_R2 == 1
956#define MAYBE_R2_AVAILABLE
957#define MAYBE_R2_FIXED 2,
958#else
959#define MAYBE_R2_AVAILABLE 2,
960#define MAYBE_R2_FIXED
961#endif
962
963#define REG_ALLOC_ORDER					\
964  {32, 							\
965   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,	\
966   33,							\
967   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,	\
968   50, 49, 48, 47, 46, 					\
969   75, 74, 69, 68, 72, 71, 70,				\
970   0, MAYBE_R2_AVAILABLE				\
971   9, 11, 10, 8, 7, 6, 5, 4,				\
972   3,							\
973   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,	\
974   18, 17, 16, 15, 14, 13, 12,				\
975   64, 66, 65, 						\
976   73, 1, MAYBE_R2_FIXED 67, 76,			\
977   /* AltiVec registers.  */				\
978   77, 78,						\
979   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,		\
980   79,							\
981   96, 95, 94, 93, 92, 91,				\
982   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98,	\
983   97, 109, 110						\
984   , 111, 112                                              \
985}
986
987/* True if register is floating-point.  */
988#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
989
990/* True if register is a condition register.  */
991#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
992
993/* True if register is a condition register, but not cr0.  */
994#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
995
996/* True if register is an integer register.  */
997#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
998
999/* SPE SIMD registers are just the GPRs.  */
1000#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1001
1002/* True if register is the XER register.  */
1003#define XER_REGNO_P(N) ((N) == XER_REGNO)
1004
1005/* True if register is an AltiVec register.  */
1006#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1007
1008/* Return number of consecutive hard regs needed starting at reg REGNO
1009   to hold something of mode MODE.
1010   This is ordinarily the length in words of a value of mode MODE
1011   but can be less for certain modes in special long registers.
1012
1013   For the SPE, GPRs are 64 bits but only 32 bits are visible in
1014   scalar instructions.  The upper 32 bits are only available to the
1015   SIMD instructions.
1016
1017   POWER and PowerPC GPRs hold 32 bits worth;
1018   PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */
1019
1020#define HARD_REGNO_NREGS(REGNO, MODE)					\
1021  (FP_REGNO_P (REGNO)							\
1022   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1023   : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE))   \
1024   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
1025   : ALTIVEC_REGNO_P (REGNO)						\
1026   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
1027   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1028
1029#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)	\
1030  ((TARGET_32BIT && TARGET_POWERPC64			\
1031    && (MODE == DImode || MODE == DFmode)		\
1032    && INT_REGNO_P (REGNO)) ? 1 : 0)
1033
1034#define ALTIVEC_VECTOR_MODE(MODE)	\
1035	 ((MODE) == V16QImode		\
1036	  || (MODE) == V8HImode		\
1037	  || (MODE) == V4SFmode		\
1038	  || (MODE) == V4SImode)
1039
1040#define SPE_VECTOR_MODE(MODE)		\
1041	((MODE) == V4HImode          	\
1042         || (MODE) == V2SFmode          \
1043         || (MODE) == V1DImode          \
1044         || (MODE) == V2SImode)
1045
1046/* Define this macro to be nonzero if the port is prepared to handle
1047   insns involving vector mode MODE.  At the very least, it must have
1048   move patterns for this mode.  */
1049
1050#define VECTOR_MODE_SUPPORTED_P(MODE)			\
1051        ((TARGET_SPE && SPE_VECTOR_MODE (MODE))		\
1052	 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
1053
1054/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1055   For POWER and PowerPC, the GPRs can hold any mode, but values bigger
1056   than one register cannot go past R31.  The float
1057   registers only can hold floating modes and DImode, and CR register only
1058   can hold CC modes.  We cannot put TImode anywhere except general
1059   register and it must be able to fit within the register set.  */
1060
1061#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1062  (INT_REGNO_P (REGNO) ?						\
1063     INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1)	        \
1064   : FP_REGNO_P (REGNO) ?						\
1065     ((GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1066       && FP_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1))	\
1067      || (GET_MODE_CLASS (MODE) == MODE_INT				\
1068	  && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD))		\
1069   : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE)		\
1070   : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
1071   : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC		\
1072   : XER_REGNO_P (REGNO) ? (MODE) == PSImode				\
1073   : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
1074
1075/* Value is 1 if it is a good idea to tie two pseudo registers
1076   when one has mode MODE1 and one has mode MODE2.
1077   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1078   for any hard reg, then this must be 0 for correct output.  */
1079#define MODES_TIEABLE_P(MODE1, MODE2) \
1080  (GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
1081   ? GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
1082   : GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
1083   ? GET_MODE_CLASS (MODE1) == MODE_FLOAT	\
1084   : GET_MODE_CLASS (MODE1) == MODE_CC		\
1085   ? GET_MODE_CLASS (MODE2) == MODE_CC		\
1086   : GET_MODE_CLASS (MODE2) == MODE_CC		\
1087   ? GET_MODE_CLASS (MODE1) == MODE_CC		\
1088   : SPE_VECTOR_MODE (MODE1)			\
1089   ? SPE_VECTOR_MODE (MODE2)			\
1090   : SPE_VECTOR_MODE (MODE2)			\
1091   ? SPE_VECTOR_MODE (MODE1)			\
1092   : ALTIVEC_VECTOR_MODE (MODE1)		\
1093   ? ALTIVEC_VECTOR_MODE (MODE2)		\
1094   : ALTIVEC_VECTOR_MODE (MODE2)		\
1095   ? ALTIVEC_VECTOR_MODE (MODE1)		\
1096   : 1)
1097
1098/* Post-reload, we can't use any new AltiVec registers, as we already
1099   emitted the vrsave mask.  */
1100
1101#define HARD_REGNO_RENAME_OK(SRC, DST) \
1102  (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1103
1104/* A C expression returning the cost of moving data from a register of class
1105   CLASS1 to one of CLASS2.  */
1106
1107#define REGISTER_MOVE_COST rs6000_register_move_cost
1108
1109/* A C expressions returning the cost of moving data of MODE from a register to
1110   or from memory.  */
1111
1112#define MEMORY_MOVE_COST rs6000_memory_move_cost
1113
1114/* Specify the cost of a branch insn; roughly the number of extra insns that
1115   should be added to avoid a branch.
1116
1117   Set this to 3 on the RS/6000 since that is roughly the average cost of an
1118   unscheduled conditional branch.  */
1119
1120#define BRANCH_COST 3
1121
1122/* Override BRANCH_COST heuristic which empirically produces worse
1123   performance for fold_range_test().  */
1124
1125#define RANGE_TEST_NON_SHORT_CIRCUIT 0
1126
1127/* A fixed register used at prologue and epilogue generation to fix
1128   addressing modes.  The SPE needs heavy addressing fixes at the last
1129   minute, and it's best to save a register for it.
1130
1131   AltiVec also needs fixes, but we've gotten around using r11, which
1132   is actually wrong because when use_backchain_to_restore_sp is true,
1133   we end up clobbering r11.
1134
1135   The AltiVec case needs to be fixed.  Dunno if we should break ABI
1136   compatibility and reserve a register for it as well..  */
1137
1138#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1139
1140/* Define this macro to change register usage conditional on target flags.
1141   Set MQ register fixed (already call_used) if not POWER architecture
1142   (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
1143   64-bit AIX reserves GPR13 for thread-private data.
1144   Conditionally disable FPRs.  */
1145
1146#define CONDITIONAL_REGISTER_USAGE					\
1147{									\
1148  int i;								\
1149  if (! TARGET_POWER)							\
1150    fixed_regs[64] = 1;							\
1151  if (TARGET_64BIT)							\
1152    fixed_regs[13] = call_used_regs[13]					\
1153      = call_really_used_regs[13] = 1; 					\
1154  if (TARGET_SOFT_FLOAT || !TARGET_FPRS)				\
1155    for (i = 32; i < 64; i++)						\
1156      fixed_regs[i] = call_used_regs[i]					\
1157        = call_really_used_regs[i] = 1;					\
1158  if (DEFAULT_ABI == ABI_V4						\
1159      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1160      && flag_pic == 2)							\
1161    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;			\
1162  if (DEFAULT_ABI == ABI_V4						\
1163      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1164      && flag_pic == 1)							\
1165    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1166      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1167      = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1168  if (DEFAULT_ABI == ABI_DARWIN						\
1169      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
1170    global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1171      = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1172      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1173      = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1174  if (TARGET_TOC && TARGET_MINIMAL_TOC)					\
1175    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1176      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;		\
1177  if (TARGET_ALTIVEC)                                                   \
1178    global_regs[VSCR_REGNO] = 1;                                        \
1179  if (TARGET_SPE)							\
1180    {                                                                   \
1181      global_regs[SPEFSCR_REGNO] = 1;					\
1182      fixed_regs[FIXED_SCRATCH]						\
1183        = call_used_regs[FIXED_SCRATCH]					\
1184	= call_really_used_regs[FIXED_SCRATCH] = 1; 			\
1185    }                                                                   \
1186  if (! TARGET_ALTIVEC)							\
1187    {									\
1188      for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)	\
1189	fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1190      call_really_used_regs[VRSAVE_REGNO] = 1;				\
1191    }									\
1192  if (TARGET_ALTIVEC_ABI)						\
1193    for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)	\
1194      call_used_regs[i] = call_really_used_regs[i] = 1;			\
1195}
1196
1197/* Specify the registers used for certain standard purposes.
1198   The values of these macros are register numbers.  */
1199
1200/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1201/* #define PC_REGNUM  */
1202
1203/* Register to use for pushing function arguments.  */
1204#define STACK_POINTER_REGNUM 1
1205
1206/* Base register for access to local variables of the function.  */
1207#define FRAME_POINTER_REGNUM 31
1208
1209/* Value should be nonzero if functions must have frame pointers.
1210   Zero means the frame pointer need not be set up (and parms
1211   may be accessed via the stack pointer) in functions that seem suitable.
1212   This is computed in `reload', in reload1.c.  */
1213#define FRAME_POINTER_REQUIRED 0
1214
1215/* Base register for access to arguments of the function.  */
1216#define ARG_POINTER_REGNUM 67
1217
1218/* Place to put static chain when calling a function that requires it.  */
1219#define STATIC_CHAIN_REGNUM 11
1220
1221/* Link register number.  */
1222#define LINK_REGISTER_REGNUM 65
1223
1224/* Count register number.  */
1225#define COUNT_REGISTER_REGNUM 66
1226
1227/* Define the classes of registers for register constraints in the
1228   machine description.  Also define ranges of constants.
1229
1230   One of the classes must always be named ALL_REGS and include all hard regs.
1231   If there is more than one class, another class must be named NO_REGS
1232   and contain no registers.
1233
1234   The name GENERAL_REGS must be the name of a class (or an alias for
1235   another name such as ALL_REGS).  This is the class of registers
1236   that is allowed by "g" or "r" in a register constraint.
1237   Also, registers outside this class are allocated only when
1238   instructions express preferences for them.
1239
1240   The classes must be numbered in nondecreasing order; that is,
1241   a larger-numbered class must never be contained completely
1242   in a smaller-numbered class.
1243
1244   For any two classes, it is very desirable that there be another
1245   class that represents their union.  */
1246
1247/* The RS/6000 has three types of registers, fixed-point, floating-point,
1248   and condition registers, plus three special registers, MQ, CTR, and the
1249   link register.  AltiVec adds a vector register class.
1250
1251   However, r0 is special in that it cannot be used as a base register.
1252   So make a class for registers valid as base registers.
1253
1254   Also, cr0 is the only condition code register that can be used in
1255   arithmetic insns, so make a separate class for it.  */
1256
1257enum reg_class
1258{
1259  NO_REGS,
1260  BASE_REGS,
1261  GENERAL_REGS,
1262  FLOAT_REGS,
1263  ALTIVEC_REGS,
1264  VRSAVE_REGS,
1265  VSCR_REGS,
1266  SPE_ACC_REGS,
1267  SPEFSCR_REGS,
1268  NON_SPECIAL_REGS,
1269  MQ_REGS,
1270  LINK_REGS,
1271  CTR_REGS,
1272  LINK_OR_CTR_REGS,
1273  SPECIAL_REGS,
1274  SPEC_OR_GEN_REGS,
1275  CR0_REGS,
1276  CR_REGS,
1277  NON_FLOAT_REGS,
1278  XER_REGS,
1279  ALL_REGS,
1280  LIM_REG_CLASSES
1281};
1282
1283#define N_REG_CLASSES (int) LIM_REG_CLASSES
1284
1285/* Give names of register classes as strings for dump file.  */
1286
1287#define REG_CLASS_NAMES							\
1288{									\
1289  "NO_REGS",								\
1290  "BASE_REGS",								\
1291  "GENERAL_REGS",							\
1292  "FLOAT_REGS",								\
1293  "ALTIVEC_REGS",							\
1294  "VRSAVE_REGS",							\
1295  "VSCR_REGS",								\
1296  "SPE_ACC_REGS",                                                       \
1297  "SPEFSCR_REGS",                                                       \
1298  "NON_SPECIAL_REGS",							\
1299  "MQ_REGS",								\
1300  "LINK_REGS",								\
1301  "CTR_REGS",								\
1302  "LINK_OR_CTR_REGS",							\
1303  "SPECIAL_REGS",							\
1304  "SPEC_OR_GEN_REGS",							\
1305  "CR0_REGS",								\
1306  "CR_REGS",								\
1307  "NON_FLOAT_REGS",							\
1308  "XER_REGS",								\
1309  "ALL_REGS"								\
1310}
1311
1312/* Define which registers fit in which classes.
1313   This is an initializer for a vector of HARD_REG_SET
1314   of length N_REG_CLASSES.  */
1315
1316#define REG_CLASS_CONTENTS						     \
1317{									     \
1318  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1319  { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */	     \
1320  { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */     \
1321  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1322  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1323  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1324  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1325  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1326  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1327  { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1328  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1329  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1330  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1331  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1332  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1333  { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1334  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1335  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1336  { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \
1337  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1338  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff }  /* ALL_REGS */	     \
1339}
1340
1341/* The same information, inverted:
1342   Return the class number of the smallest class containing
1343   reg number REGNO.  This could be a conditional expression
1344   or could index an array.  */
1345
1346#define REGNO_REG_CLASS(REGNO)			\
1347 ((REGNO) == 0 ? GENERAL_REGS			\
1348  : (REGNO) < 32 ? BASE_REGS			\
1349  : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1350  : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1351  : (REGNO) == CR0_REGNO ? CR0_REGS		\
1352  : CR_REGNO_P (REGNO) ? CR_REGS		\
1353  : (REGNO) == MQ_REGNO ? MQ_REGS		\
1354  : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1355  : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1356  : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1357  : (REGNO) == XER_REGNO ? XER_REGS		\
1358  : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1359  : (REGNO) == VSCR_REGNO ? VRSAVE_REGS	\
1360  : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\
1361  : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\
1362  : NO_REGS)
1363
1364/* The class value for index registers, and the one for base regs.  */
1365#define INDEX_REG_CLASS GENERAL_REGS
1366#define BASE_REG_CLASS BASE_REGS
1367
1368/* Get reg_class from a letter such as appears in the machine description.  */
1369
1370#define REG_CLASS_FROM_LETTER(C) \
1371  ((C) == 'f' ? FLOAT_REGS	\
1372   : (C) == 'b' ? BASE_REGS	\
1373   : (C) == 'h' ? SPECIAL_REGS	\
1374   : (C) == 'q' ? MQ_REGS	\
1375   : (C) == 'c' ? CTR_REGS	\
1376   : (C) == 'l' ? LINK_REGS	\
1377   : (C) == 'v' ? ALTIVEC_REGS	\
1378   : (C) == 'x' ? CR0_REGS	\
1379   : (C) == 'y' ? CR_REGS	\
1380   : (C) == 'z' ? XER_REGS	\
1381   : NO_REGS)
1382
1383/* The letters I, J, K, L, M, N, and P in a register constraint string
1384   can be used to stand for particular ranges of immediate operands.
1385   This macro defines what the ranges are.
1386   C is the letter, and VALUE is a constant value.
1387   Return 1 if VALUE is in the range specified by C.
1388
1389   `I' is a signed 16-bit constant
1390   `J' is a constant with only the high-order 16 bits nonzero
1391   `K' is a constant with only the low-order 16 bits nonzero
1392   `L' is a signed 16-bit constant shifted left 16 bits
1393   `M' is a constant that is greater than 31
1394   `N' is a positive constant that is an exact power of two
1395   `O' is the constant zero
1396   `P' is a constant whose negation is a signed 16-bit constant */
1397
1398#define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1399   ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
1400   : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1401   : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\
1402   : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\
1403		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\
1404   : (C) == 'M' ? (VALUE) > 31						\
1405   : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\
1406   : (C) == 'O' ? (VALUE) == 0						\
1407   : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1408   : 0)
1409
1410/* Similar, but for floating constants, and defining letters G and H.
1411   Here VALUE is the CONST_DOUBLE rtx itself.
1412
1413   We flag for special constants when we can copy the constant into
1414   a general register in two insns for DF/DI and one insn for SF.
1415
1416   'H' is used for DI/DF constants that take 3 insns.  */
1417
1418#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1419  (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\
1420		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\
1421   : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\
1422   : 0)
1423
1424/* Optional extra constraints for this machine.
1425
1426   'Q' means that is a memory operand that is just an offset from a reg.
1427   'R' is for AIX TOC entries.
1428   'S' is a constant that can be placed into a 64-bit mask operand
1429   'T' is a constant that can be placed into a 32-bit mask operand
1430   'U' is for V.4 small data references.
1431   'W' is a vector constant that can be easily generated (no mem refs).
1432   'Y' is a indexed or word-aligned displacement memory operand.
1433   't' is for AND masks that can be performed by two rldic{l,r} insns.  */
1434
1435#define EXTRA_CONSTRAINT(OP, C)						\
1436  ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\
1437   : (C) == 'R' ? legitimate_constant_pool_address_p (OP)		\
1438   : (C) == 'S' ? mask64_operand (OP, DImode)				\
1439   : (C) == 'T' ? mask_operand (OP, SImode)				\
1440   : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\
1441		   && small_data_operand (OP, GET_MODE (OP)))		\
1442   : (C) == 't' ? (mask64_2_operand (OP, DImode)			\
1443		   && (fixed_regs[CR0_REGNO]				\
1444		       || !logical_operand (OP, DImode))		\
1445		   && !mask64_operand (OP, DImode))			\
1446   : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP)))		\
1447   : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP)))      \
1448   : 0)
1449
1450/* Defining, which contraints are memory contraints. Tells reload,
1451   that any memory address can be reloaded by copying the
1452   memory address into a base register if required.  */
1453
1454#define EXTRA_MEMORY_CONSTRAINT(C, STR)				\
1455  ((C) == 'Q' || (C) == 'Y')
1456
1457/* Given an rtx X being reloaded into a reg required to be
1458   in class CLASS, return the class of reg to actually use.
1459   In general this is just CLASS; but on some machines
1460   in some cases it is preferable to use a more restrictive class.
1461
1462   On the RS/6000, we have to return NO_REGS when we want to reload a
1463   floating-point CONST_DOUBLE to force it to be copied to memory.
1464
1465   We also don't want to reload integer values into floating-point
1466   registers if we can at all help it.  In fact, this can
1467   cause reload to abort, if it tries to generate a reload of CTR
1468   into a FP register and discovers it doesn't have the memory location
1469   required.
1470
1471   ??? Would it be a good idea to have reload do the converse, that is
1472   try to reload floating modes into FP registers if possible?
1473 */
1474
1475#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1476  (((GET_CODE (X) == CONST_DOUBLE			\
1477     && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)	\
1478    ? NO_REGS 						\
1479    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1480       && (CLASS) == NON_SPECIAL_REGS)			\
1481    ? GENERAL_REGS					\
1482    : (CLASS)))
1483
1484#define DISPARAGE_RELOAD_CLASS(X, CLASS)			\
1485  (GET_CODE (X) == REG						\
1486   && REGNO (X) < FIRST_PSEUDO_REGISTER				\
1487   && SECONDARY_MEMORY_NEEDED (GET_MODE_CLASS (GET_MODE (X)),	\
1488			       CLASS, GET_MODE (X))		\
1489   ? 6 : 0)
1490
1491/* Return the register class of a scratch register needed to copy IN into
1492   or out of a register in CLASS in MODE.  If it can be done directly,
1493   NO_REGS is returned.  */
1494
1495#define SECONDARY_RELOAD_CLASS(CLASS, MODE, IN) \
1496  secondary_reload_class (CLASS, MODE, IN)
1497
1498/* If we are copying between FP or AltiVec registers and anything
1499   else, we need a memory location.  */
1500
1501#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1502 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1503			   || (CLASS2) == FLOAT_REGS		\
1504			   || (CLASS1) == ALTIVEC_REGS		\
1505			   || (CLASS2) == ALTIVEC_REGS))
1506
1507/* Return the maximum number of consecutive registers
1508   needed to represent mode MODE in a register of class CLASS.
1509
1510   On RS/6000, this is the size of MODE in words,
1511   except in the FP regs, where a single reg is enough for two words.  */
1512#define CLASS_MAX_NREGS(CLASS, MODE)					\
1513 (((CLASS) == FLOAT_REGS) 						\
1514  ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1515  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1516
1517
1518/* Return a class of registers that cannot change FROM mode to TO mode.  */
1519
1520#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			  \
1521  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN)		  \
1522    && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8)		  \
1523   ? 0									  \
1524   : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				  \
1525   ? reg_classes_intersect_p (FLOAT_REGS, CLASS)			  \
1526   : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
1527   ? reg_classes_intersect_p (GENERAL_REGS, CLASS)			  \
1528   : 0)
1529
1530/* Stack layout; function entry, exit and calling.  */
1531
1532/* Enumeration to give which calling sequence to use.  */
1533enum rs6000_abi {
1534  ABI_NONE,
1535  ABI_AIX,			/* IBM's AIX */
1536  ABI_V4,			/* System V.4/eabi */
1537  ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1538};
1539
1540extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1541
1542/* Define this if pushing a word on the stack
1543   makes the stack pointer a smaller address.  */
1544#define STACK_GROWS_DOWNWARD
1545
1546/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1547#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1548
1549/* Define this if the nominal address of the stack frame
1550   is at the high-address end of the local variables;
1551   that is, each additional local variable allocated
1552   goes at a more negative offset in the frame.
1553
1554   On the RS/6000, we grow upwards, from the area after the outgoing
1555   arguments.  */
1556/* #define FRAME_GROWS_DOWNWARD */
1557
1558/* Size of the outgoing register save area */
1559#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1560			  || DEFAULT_ABI == ABI_DARWIN)			\
1561			 ? (TARGET_64BIT ? 64 : 32)			\
1562			 : 0)
1563
1564/* Size of the fixed area on the stack */
1565#define RS6000_SAVE_AREA \
1566  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1567   << (TARGET_64BIT ? 1 : 0))
1568
1569/* MEM representing address to save the TOC register */
1570#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1571				     plus_constant (stack_pointer_rtx, \
1572						    (TARGET_32BIT ? 20 : 40)))
1573
1574/* Size of the V.4 varargs area if needed */
1575#define RS6000_VARARGS_AREA 0
1576
1577/* Align an address */
1578#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1579
1580/* Size of V.4 varargs area in bytes */
1581#define RS6000_VARARGS_SIZE \
1582  ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1583
1584/* Offset within stack frame to start allocating local variables at.
1585   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1586   first local allocated.  Otherwise, it is the offset to the BEGINNING
1587   of the first local allocated.
1588
1589   On the RS/6000, the frame pointer is the same as the stack pointer,
1590   except for dynamic allocations.  So we start after the fixed area and
1591   outgoing parameter area.  */
1592
1593#define STARTING_FRAME_OFFSET						\
1594  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1595		 TARGET_ALTIVEC ? 16 : 8)				\
1596   + RS6000_VARARGS_AREA						\
1597   + RS6000_SAVE_AREA)
1598
1599/* Offset from the stack pointer register to an item dynamically
1600   allocated on the stack, e.g., by `alloca'.
1601
1602   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1603   length of the outgoing arguments.  The default is correct for most
1604   machines.  See `function.c' for details.  */
1605#define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1606  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1607		 TARGET_ALTIVEC ? 16 : 8)				\
1608   + (STACK_POINTER_OFFSET))
1609
1610/* If we generate an insn to push BYTES bytes,
1611   this says how many the stack pointer really advances by.
1612   On RS/6000, don't define this because there are no push insns.  */
1613/*  #define PUSH_ROUNDING(BYTES) */
1614
1615/* Offset of first parameter from the argument pointer register value.
1616   On the RS/6000, we define the argument pointer to the start of the fixed
1617   area.  */
1618#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1619
1620/* Offset from the argument pointer register value to the top of
1621   stack.  This is different from FIRST_PARM_OFFSET because of the
1622   register save area.  */
1623#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1624
1625/* Define this if stack space is still allocated for a parameter passed
1626   in a register.  The value is the number of bytes allocated to this
1627   area.  */
1628#define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1629
1630/* Define this if the above stack space is to be considered part of the
1631   space allocated by the caller.  */
1632#define OUTGOING_REG_PARM_STACK_SPACE
1633
1634/* This is the difference between the logical top of stack and the actual sp.
1635
1636   For the RS/6000, sp points past the fixed area.  */
1637#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1638
1639/* Define this if the maximum size of all the outgoing args is to be
1640   accumulated and pushed during the prologue.  The amount can be
1641   found in the variable current_function_outgoing_args_size.  */
1642#define ACCUMULATE_OUTGOING_ARGS 1
1643
1644/* Value is the number of bytes of arguments automatically
1645   popped when returning from a subroutine call.
1646   FUNDECL is the declaration node of the function (as a tree),
1647   FUNTYPE is the data type of the function (as a tree),
1648   or for a library call it is an identifier node for the subroutine name.
1649   SIZE is the number of bytes of arguments passed on the stack.  */
1650
1651#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1652
1653/* Define how to find the value returned by a function.
1654   VALTYPE is the data type of the value (as a tree).
1655   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1656   otherwise, FUNC is 0.  */
1657
1658#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1659
1660/* Define how to find the value returned by a library function
1661   assuming the value has mode MODE.  */
1662
1663#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1664
1665/* DRAFT_V4_STRUCT_RET defaults off.  */
1666#define DRAFT_V4_STRUCT_RET 0
1667
1668/* Let RETURN_IN_MEMORY control what happens.  */
1669#define DEFAULT_PCC_STRUCT_RETURN 0
1670
1671/* Mode of stack savearea.
1672   FUNCTION is VOIDmode because calling convention maintains SP.
1673   BLOCK needs Pmode for SP.
1674   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1675#define STACK_SAVEAREA_MODE(LEVEL)	\
1676  (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1677  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1678
1679/* Minimum and maximum general purpose registers used to hold arguments.  */
1680#define GP_ARG_MIN_REG 3
1681#define GP_ARG_MAX_REG 10
1682#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1683
1684/* Minimum and maximum floating point registers used to hold arguments.  */
1685#define FP_ARG_MIN_REG 33
1686#define	FP_ARG_AIX_MAX_REG 45
1687#define	FP_ARG_V4_MAX_REG  40
1688#define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1689			 || DEFAULT_ABI == ABI_DARWIN)			\
1690			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1691#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1692
1693/* Minimum and maximum AltiVec registers used to hold arguments.  */
1694#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1695#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1696#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1697
1698/* Return registers */
1699#define GP_ARG_RETURN GP_ARG_MIN_REG
1700#define FP_ARG_RETURN FP_ARG_MIN_REG
1701#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1702
1703/* Flags for the call/call_value rtl operations set up by function_arg */
1704#define CALL_NORMAL		0x00000000	/* no special processing */
1705/* Bits in 0x00000001 are unused.  */
1706#define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1707#define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1708#define CALL_LONG		0x00000008	/* always call indirect */
1709#define CALL_LIBCALL		0x00000010	/* libcall */
1710
1711/* 1 if N is a possible register number for a function value
1712   as seen by the caller.
1713
1714   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1715#define FUNCTION_VALUE_REGNO_P(N)					\
1716  ((N) == GP_ARG_RETURN							\
1717   || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT)			\
1718   || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1719
1720/* 1 if N is a possible register number for function argument passing.
1721   On RS/6000, these are r3-r10 and fp1-fp13.
1722   On AltiVec, v2 - v13 are used for passing vectors.  */
1723#define FUNCTION_ARG_REGNO_P(N)						\
1724  ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1725   || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1726       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1727   || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1728       && TARGET_HARD_FLOAT))
1729
1730/* A C structure for machine-specific, per-function data.
1731   This is added to the cfun structure.  */
1732typedef struct machine_function GTY(())
1733{
1734  /* Whether a System V.4 varargs area was created.  */
1735  int sysv_varargs_p;
1736  /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
1737  int ra_needs_full_frame;
1738  /* Some local-dynamic symbol.  */
1739  const char *some_ld_name;
1740  /* Whether the instruction chain has been scanned already.  */
1741  int insn_chain_scanned_p;
1742  /* Flags if __builtin_return_address (0) was used.  */
1743  int ra_need_lr;
1744} machine_function;
1745
1746/* Define a data type for recording info about an argument list
1747   during the scan of that argument list.  This data type should
1748   hold all necessary information about the function itself
1749   and about the args processed so far, enough to enable macros
1750   such as FUNCTION_ARG to determine where the next arg should go.
1751
1752   On the RS/6000, this is a structure.  The first element is the number of
1753   total argument words, the second is used to store the next
1754   floating-point register number, and the third says how many more args we
1755   have prototype types for.
1756
1757   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1758   the next available GP register, `fregno' is the next available FP
1759   register, and `words' is the number of words used on the stack.
1760
1761   The varargs/stdarg support requires that this structure's size
1762   be a multiple of sizeof(int).  */
1763
1764typedef struct rs6000_args
1765{
1766  int words;			/* # words used for passing GP registers */
1767  int fregno;			/* next available FP register */
1768  int vregno;			/* next available AltiVec register */
1769  int nargs_prototype;		/* # args left in the current prototype */
1770  int prototype;		/* Whether a prototype was defined */
1771  int stdarg;			/* Whether function is a stdarg function.  */
1772  int call_cookie;		/* Do special things for this call */
1773  int sysv_gregno;		/* next available GP register */
1774} CUMULATIVE_ARGS;
1775
1776/* Initialize a variable CUM of type CUMULATIVE_ARGS
1777   for a call to a function whose data type is FNTYPE.
1778   For a library call, FNTYPE is 0.  */
1779
1780#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1781  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1782
1783/* Similar, but when scanning the definition of a procedure.  We always
1784   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1785
1786#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1787  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1788
1789/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1790
1791#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1792  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1793
1794/* Update the data in CUM to advance over an argument
1795   of mode MODE and data type TYPE.
1796   (TYPE is null for libcalls where that information may not be available.)  */
1797
1798#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1799  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1800
1801/* Determine where to put an argument to a function.
1802   Value is zero to push the argument on the stack,
1803   or a hard register in which to store the argument.
1804
1805   MODE is the argument's machine mode.
1806   TYPE is the data type of the argument (as a tree).
1807    This is null for libcalls where that information may
1808    not be available.
1809   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1810    the preceding args and about the function being called.
1811   NAMED is nonzero if this argument is a named parameter
1812    (otherwise it is an extra parameter matching an ellipsis).
1813
1814   On RS/6000 the first eight words of non-FP are normally in registers
1815   and the rest are pushed.  The first 13 FP args are in registers.
1816
1817   If this is floating-point and no prototype is specified, we use
1818   both an FP and integer register (or possibly FP reg and stack).  Library
1819   functions (when TYPE is zero) always have the proper types for args,
1820   so we can pass the FP value just in one register.  emit_library_function
1821   doesn't support EXPR_LIST anyway.  */
1822
1823#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1824  function_arg (&CUM, MODE, TYPE, NAMED)
1825
1826/* For an arg passed partly in registers and partly in memory,
1827   this is the number of registers used.
1828   For args passed entirely in registers or entirely in memory, zero.  */
1829
1830#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1831  function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1832
1833/* A C expression that indicates when an argument must be passed by
1834   reference.  If nonzero for an argument, a copy of that argument is
1835   made in memory and a pointer to the argument is passed instead of
1836   the argument itself.  The pointer is passed in whatever way is
1837   appropriate for passing a pointer to that type.  */
1838
1839#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1840  function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1841
1842/* If defined, a C expression which determines whether, and in which
1843   direction, to pad out an argument with extra space.  The value
1844   should be of type `enum direction': either `upward' to pad above
1845   the argument, `downward' to pad below, or `none' to inhibit
1846   padding.  */
1847
1848#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1849
1850/* If defined, a C expression that gives the alignment boundary, in bits,
1851   of an argument with the specified mode and type.  If it is not defined,
1852   PARM_BOUNDARY is used for all arguments.  */
1853
1854#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1855  function_arg_boundary (MODE, TYPE)
1856
1857/* Implement `va_start' for varargs and stdarg.  */
1858#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1859  rs6000_va_start (valist, nextarg)
1860
1861/* Implement `va_arg'.  */
1862#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1863  rs6000_va_arg (valist, type)
1864
1865#define PAD_VARARGS_DOWN \
1866   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1867
1868/* Define this macro to be a nonzero value if the location where a function
1869   argument is passed depends on whether or not it is a named argument.  */
1870#define STRICT_ARGUMENT_NAMING 1
1871
1872/* Output assembler code to FILE to increment profiler label # LABELNO
1873   for profiling a function entry.  */
1874
1875#define FUNCTION_PROFILER(FILE, LABELNO)	\
1876  output_function_profiler ((FILE), (LABELNO));
1877
1878/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1879   the stack pointer does not matter. No definition is equivalent to
1880   always zero.
1881
1882   On the RS/6000, this is nonzero because we can restore the stack from
1883   its backpointer, which we maintain.  */
1884#define EXIT_IGNORE_STACK	1
1885
1886/* Define this macro as a C expression that is nonzero for registers
1887   that are used by the epilogue or the return' pattern.  The stack
1888   and frame pointer registers are already be assumed to be used as
1889   needed.  */
1890
1891#define	EPILOGUE_USES(REGNO)					\
1892  ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1893   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1894   || (current_function_calls_eh_return				\
1895       && TARGET_AIX						\
1896       && (REGNO) == 2))
1897
1898
1899/* TRAMPOLINE_TEMPLATE deleted */
1900
1901/* Length in units of the trampoline for entering a nested function.  */
1902
1903#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1904
1905/* Emit RTL insns to initialize the variable parts of a trampoline.
1906   FNADDR is an RTX for the address of the function's pure code.
1907   CXT is an RTX for the static chain value for the function.  */
1908
1909#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1910  rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1911
1912/* Definitions for __builtin_return_address and __builtin_frame_address.
1913   __builtin_return_address (0) should give link register (65), enable
1914   this.  */
1915/* This should be uncommented, so that the link register is used, but
1916   currently this would result in unmatched insns and spilling fixed
1917   registers so we'll leave it for another day.  When these problems are
1918   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1919   (mrs) */
1920/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1921
1922/* Number of bytes into the frame return addresses can be found.  See
1923   rs6000_stack_info in rs6000.c for more information on how the different
1924   abi's store the return address.  */
1925#define RETURN_ADDRESS_OFFSET						\
1926 ((DEFAULT_ABI == ABI_AIX						\
1927   || DEFAULT_ABI == ABI_DARWIN)	? (TARGET_32BIT ? 8 : 16) :	\
1928  (DEFAULT_ABI == ABI_V4)		? 4 :				\
1929  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1930
1931/* The current return address is in link register (65).  The return address
1932   of anything farther back is accessed normally at an offset of 8 from the
1933   frame pointer.  */
1934#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1935  (rs6000_return_addr (COUNT, FRAME))
1936
1937
1938/* Definitions for register eliminations.
1939
1940   We have two registers that can be eliminated on the RS/6000.  First, the
1941   frame pointer register can often be eliminated in favor of the stack
1942   pointer register.  Secondly, the argument pointer register can always be
1943   eliminated; it is replaced with either the stack or frame pointer.
1944
1945   In addition, we use the elimination mechanism to see if r30 is needed
1946   Initially we assume that it isn't.  If it is, we spill it.  This is done
1947   by making it an eliminable register.  We replace it with itself so that
1948   if it isn't needed, then existing uses won't be modified.  */
1949
1950/* This is an array of structures.  Each structure initializes one pair
1951   of eliminable registers.  The "from" register number is given first,
1952   followed by "to".  Eliminations of the same "from" register are listed
1953   in order of preference.  */
1954#define ELIMINABLE_REGS				\
1955{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1956 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1957 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
1958 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1959
1960/* Given FROM and TO register numbers, say whether this elimination is allowed.
1961   Frame pointer elimination is automatically handled.
1962
1963   For the RS/6000, if frame pointer elimination is being done, we would like
1964   to convert ap into fp, not sp.
1965
1966   We need r30 if -mminimal-toc was specified, and there are constant pool
1967   references.  */
1968
1969#define CAN_ELIMINATE(FROM, TO)						\
1970 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1971  ? ! frame_pointer_needed						\
1972  : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM 				\
1973  ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0	\
1974  : 1)
1975
1976/* Define the offset between two registers, one to be eliminated, and the other
1977   its replacement, at the start of a routine.  */
1978#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1979  ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1980
1981/* Addressing modes, and classification of registers for them.  */
1982
1983#define HAVE_PRE_DECREMENT 1
1984#define HAVE_PRE_INCREMENT 1
1985
1986/* Macros to check register numbers against specific register classes.  */
1987
1988/* These assume that REGNO is a hard or pseudo reg number.
1989   They give nonzero only if REGNO is a hard reg of the suitable class
1990   or a pseudo reg currently allocated to a suitable hard reg.
1991   Since they use reg_renumber, they are safe only once reg_renumber
1992   has been allocated, which happens in local-alloc.c.  */
1993
1994#define REGNO_OK_FOR_INDEX_P(REGNO)				\
1995((REGNO) < FIRST_PSEUDO_REGISTER				\
1996 ? (REGNO) <= 31 || (REGNO) == 67				\
1997 : (reg_renumber[REGNO] >= 0					\
1998    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1999
2000#define REGNO_OK_FOR_BASE_P(REGNO)				\
2001((REGNO) < FIRST_PSEUDO_REGISTER				\
2002 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
2003 : (reg_renumber[REGNO] > 0					\
2004    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2005
2006/* Maximum number of registers that can appear in a valid memory address.  */
2007
2008#define MAX_REGS_PER_ADDRESS 2
2009
2010/* Recognize any constant value that is a valid address.  */
2011
2012#define CONSTANT_ADDRESS_P(X)   \
2013  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
2014   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
2015   || GET_CODE (X) == HIGH)
2016
2017/* Nonzero if the constant value X is a legitimate general operand.
2018   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2019
2020   On the RS/6000, all integer constants are acceptable, most won't be valid
2021   for particular insns, though.  Only easy FP constants are
2022   acceptable.  */
2023
2024#define LEGITIMATE_CONSTANT_P(X)				\
2025  (((GET_CODE (X) != CONST_DOUBLE				\
2026     && GET_CODE (X) != CONST_VECTOR)				\
2027    || GET_MODE (X) == VOIDmode					\
2028    || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
2029    || easy_fp_constant (X, GET_MODE (X))			\
2030    || easy_vector_constant (X, GET_MODE (X)))			\
2031   && !rs6000_tls_referenced_p (X))
2032
2033/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2034   and check its validity for a certain class.
2035   We have two alternate definitions for each of them.
2036   The usual definition accepts all pseudo regs; the other rejects
2037   them unless they have been allocated suitable hard regs.
2038   The symbol REG_OK_STRICT causes the latter definition to be used.
2039
2040   Most source files want to accept pseudo regs in the hope that
2041   they will get allocated to the class that the insn wants them to be in.
2042   Source files for reload pass need to be strict.
2043   After reload, it makes no difference, since pseudo regs have
2044   been eliminated by then.  */
2045
2046#ifdef REG_OK_STRICT
2047# define REG_OK_STRICT_FLAG 1
2048#else
2049# define REG_OK_STRICT_FLAG 0
2050#endif
2051
2052/* Nonzero if X is a hard reg that can be used as an index
2053   or if it is a pseudo reg in the non-strict case.  */
2054#define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
2055  ((! (STRICT)							\
2056    && (REGNO (X) <= 31						\
2057	|| REGNO (X) == ARG_POINTER_REGNUM			\
2058	|| REGNO (X) >= FIRST_PSEUDO_REGISTER))			\
2059   || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2060
2061/* Nonzero if X is a hard reg that can be used as a base reg
2062   or if it is a pseudo reg in the non-strict case.  */
2063#define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
2064  (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2065
2066#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2067#define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2068
2069/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2070   that is a valid memory address for an instruction.
2071   The MODE argument is the machine mode for the MEM expression
2072   that wants to use this address.
2073
2074   On the RS/6000, there are four valid address: a SYMBOL_REF that
2075   refers to a constant pool entry of an address (or the sum of it
2076   plus a constant), a short (16-bit signed) constant plus a register,
2077   the sum of two registers, or a register indirect, possibly with an
2078   auto-increment.  For DFmode and DImode with a constant plus register,
2079   we must ensure that both words are addressable or PowerPC64 with offset
2080   word aligned.
2081
2082   For modes spanning multiple registers (DFmode in 32-bit GPRs,
2083   32-bit DImode, TImode), indexed addressing cannot be used because
2084   adjacent memory cells are accessed by adding word-sized offsets
2085   during assembly output.  */
2086
2087#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
2088{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
2089    goto ADDR;							\
2090}
2091
2092/* Try machine-dependent ways of modifying an illegitimate address
2093   to be legitimate.  If we find one, return the new, valid address.
2094   This macro is used in only one place: `memory_address' in explow.c.
2095
2096   OLDX is the address as it was before break_out_memory_refs was called.
2097   In some cases it is useful to look at this to decide what needs to be done.
2098
2099   MODE and WIN are passed so that this macro can use
2100   GO_IF_LEGITIMATE_ADDRESS.
2101
2102   It is always safe for this macro to do nothing.  It exists to recognize
2103   opportunities to optimize the output.
2104
2105   On RS/6000, first check for the sum of a register with a constant
2106   integer that is out of range.  If so, generate code to add the
2107   constant with the low-order 16 bits masked to the register and force
2108   this result into another register (this can be done with `cau').
2109   Then generate an address of REG+(CONST&0xffff), allowing for the
2110   possibility of bit 16 being a one.
2111
2112   Then check for the sum of a register and something not constant, try to
2113   load the other things into a register and return the sum.  */
2114
2115#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2116{  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
2117   if (result != NULL_RTX)					\
2118     {								\
2119       (X) = result;						\
2120       goto WIN;						\
2121     }								\
2122}
2123
2124/* Try a machine-dependent way of reloading an illegitimate address
2125   operand.  If we find one, push the reload and jump to WIN.  This
2126   macro is used in only one place: `find_reloads_address' in reload.c.
2127
2128   Implemented on rs6000 by rs6000_legitimize_reload_address.
2129   Note that (X) is evaluated twice; this is safe in current usage.  */
2130
2131#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
2132do {									     \
2133  int win;								     \
2134  (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
2135			(int)(TYPE), (IND_LEVELS), &win);		     \
2136  if ( win )								     \
2137    goto WIN;								     \
2138} while (0)
2139
2140/* Go to LABEL if ADDR (a legitimate address expression)
2141   has an effect that depends on the machine mode it is used for.  */
2142
2143#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
2144do {								\
2145  if (rs6000_mode_dependent_address (ADDR))			\
2146    goto LABEL;							\
2147} while (0)
2148
2149/* The register number of the register used to address a table of
2150   static data addresses in memory.  In some cases this register is
2151   defined by a processor's "application binary interface" (ABI).
2152   When this macro is defined, RTL is generated for this register
2153   once, as with the stack pointer and frame pointer registers.  If
2154   this macro is not defined, it is up to the machine-dependent files
2155   to allocate such a register (if necessary).  */
2156
2157#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2158#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2159
2160#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2161
2162/* Define this macro if the register defined by
2163   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
2164   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
2165
2166/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2167
2168/* By generating position-independent code, when two different
2169   programs (A and B) share a common library (libC.a), the text of
2170   the library can be shared whether or not the library is linked at
2171   the same address for both programs.  In some of these
2172   environments, position-independent code requires not only the use
2173   of different addressing modes, but also special code to enable the
2174   use of these addressing modes.
2175
2176   The `FINALIZE_PIC' macro serves as a hook to emit these special
2177   codes once the function is being compiled into assembly code, but
2178   not before.  (It is not done before, because in the case of
2179   compiling an inline function, it would lead to multiple PIC
2180   prologues being included in functions which used inline functions
2181   and were compiled to assembly language.)  */
2182
2183/* #define FINALIZE_PIC */
2184
2185/* A C expression that is nonzero if X is a legitimate immediate
2186   operand on the target machine when generating position independent
2187   code.  You can assume that X satisfies `CONSTANT_P', so you need
2188   not check this.  You can also assume FLAG_PIC is true, so you need
2189   not check it either.  You need not define this macro if all
2190   constants (including `SYMBOL_REF') can be immediate operands when
2191   generating position independent code.  */
2192
2193/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2194
2195/* Define this if some processing needs to be done immediately before
2196   emitting code for an insn.  */
2197
2198/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2199
2200/* Specify the machine mode that this machine uses
2201   for the index in the tablejump instruction.  */
2202#define CASE_VECTOR_MODE SImode
2203
2204/* Define as C expression which evaluates to nonzero if the tablejump
2205   instruction expects the table to contain offsets from the address of the
2206   table.
2207   Do not define this if the table should contain absolute addresses.  */
2208#define CASE_VECTOR_PC_RELATIVE 1
2209
2210/* Define this as 1 if `char' should by default be signed; else as 0.  */
2211#define DEFAULT_SIGNED_CHAR 0
2212
2213/* This flag, if defined, says the same insns that convert to a signed fixnum
2214   also convert validly to an unsigned one.  */
2215
2216/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2217
2218/* Max number of bytes we can move from memory to memory
2219   in one reasonably fast instruction.  */
2220#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2221#define MAX_MOVE_MAX 8
2222
2223/* Nonzero if access to memory by bytes is no faster than for words.
2224   Also nonzero if doing byte operations (specifically shifts) in registers
2225   is undesirable.  */
2226#define SLOW_BYTE_ACCESS 1
2227
2228/* Define if operations between registers always perform the operation
2229   on the full register even if a narrower mode is specified.  */
2230#define WORD_REGISTER_OPERATIONS
2231
2232/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2233   will either zero-extend or sign-extend.  The value of this macro should
2234   be the code that says which one of the two operations is implicitly
2235   done, NIL if none.  */
2236#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2237
2238/* Define if loading short immediate values into registers sign extends.  */
2239#define SHORT_IMMEDIATES_SIGN_EXTEND
2240
2241/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2242   is done just by pretending it is already truncated.  */
2243#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2244
2245/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
2246#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2247  ((VALUE) = ((MODE) == SImode ? 32 : 64))
2248
2249/* The CTZ patterns return -1 for input of zero.  */
2250#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2251
2252/* Specify the machine mode that pointers have.
2253   After generation of rtl, the compiler makes no further distinction
2254   between pointers and any other objects of this machine mode.  */
2255#define Pmode (TARGET_32BIT ? SImode : DImode)
2256
2257/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
2258#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2259
2260/* Mode of a function address in a call instruction (for indexing purposes).
2261   Doesn't matter on RS/6000.  */
2262#define FUNCTION_MODE SImode
2263
2264/* Define this if addresses of constant functions
2265   shouldn't be put through pseudo regs where they can be cse'd.
2266   Desirable on machines where ordinary constants are expensive
2267   but a CALL with constant address is cheap.  */
2268#define NO_FUNCTION_CSE
2269
2270/* Define this to be nonzero if shift instructions ignore all but the low-order
2271   few bits.
2272
2273   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2274   have been dropped from the PowerPC architecture.  */
2275
2276#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2277
2278/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2279   should be adjusted to reflect any required changes.  This macro is used when
2280   there is some systematic length adjustment required that would be difficult
2281   to express in the length attribute.  */
2282
2283/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2284
2285/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2286   COMPARE, return the mode to be used for the comparison.  For
2287   floating-point, CCFPmode should be used.  CCUNSmode should be used
2288   for unsigned comparisons.  CCEQmode should be used when we are
2289   doing an inequality comparison on the result of a
2290   comparison.  CCmode should be used in all other cases.  */
2291
2292#define SELECT_CC_MODE(OP,X,Y) \
2293  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode	\
2294   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2295   : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<'   \
2296      ? CCEQmode : CCmode))
2297
2298/* Can the condition code MODE be safely reversed?  This is safe in
2299   all cases on this port, because at present it doesn't use the
2300   trapping FP comparisons (fcmpo).  */
2301#define REVERSIBLE_CC_MODE(MODE) 1
2302
2303/* Given a condition code and a mode, return the inverse condition.  */
2304#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2305
2306/* Define the information needed to generate branch and scc insns.  This is
2307   stored from the compare operation.  */
2308
2309extern GTY(()) rtx rs6000_compare_op0;
2310extern GTY(()) rtx rs6000_compare_op1;
2311extern int rs6000_compare_fp_p;
2312
2313/* Control the assembler format that we output.  */
2314
2315/* A C string constant describing how to begin a comment in the target
2316   assembler language.  The compiler assumes that the comment will end at
2317   the end of the line.  */
2318#define ASM_COMMENT_START " #"
2319
2320/* Implicit library calls should use memcpy, not bcopy, etc.  */
2321
2322#define TARGET_MEM_FUNCTIONS
2323
2324/* Flag to say the TOC is initialized */
2325extern int toc_initialized;
2326
2327/* Macro to output a special constant pool entry.  Go to WIN if we output
2328   it.  Otherwise, it is written the usual way.
2329
2330   On the RS/6000, toc entries are handled this way.  */
2331
2332#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2333{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2334    {									  \
2335      output_toc (FILE, X, LABELNO, MODE);				  \
2336      goto WIN;								  \
2337    }									  \
2338}
2339
2340#ifdef HAVE_GAS_WEAK
2341#define RS6000_WEAK 1
2342#else
2343#define RS6000_WEAK 0
2344#endif
2345
2346#if RS6000_WEAK
2347/* Used in lieu of ASM_WEAKEN_LABEL.  */
2348#define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2349  do									\
2350    {									\
2351      fputs ("\t.weak\t", (FILE));					\
2352      RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2353      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2354	  && DEFAULT_ABI == ABI_AIX)					\
2355	{								\
2356	  if (TARGET_XCOFF)						\
2357	    fputs ("[DS]", (FILE));					\
2358	  fputs ("\n\t.weak\t.", (FILE));				\
2359	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2360	}								\
2361      fputc ('\n', (FILE));						\
2362      if (VAL)								\
2363	{								\
2364	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2365	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2366	      && DEFAULT_ABI == ABI_AIX)				\
2367	    {								\
2368	      fputs ("\t.set\t.", (FILE));				\
2369	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2370	      fputs (",.", (FILE));					\
2371	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2372	      fputc ('\n', (FILE));					\
2373	    }								\
2374	}								\
2375    }									\
2376  while (0)
2377#endif
2378
2379/* This implements the `alias' attribute.  */
2380#undef	ASM_OUTPUT_DEF_FROM_DECLS
2381#define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2382  do									\
2383    {									\
2384      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2385      const char *name = IDENTIFIER_POINTER (TARGET);			\
2386      if (TREE_CODE (DECL) == FUNCTION_DECL				\
2387	  && DEFAULT_ABI == ABI_AIX)					\
2388	{								\
2389	  if (TREE_PUBLIC (DECL))					\
2390	    {								\
2391	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2392		{							\
2393		  fputs ("\t.globl\t.", FILE);				\
2394		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2395		  putc ('\n', FILE);					\
2396		}							\
2397	    }								\
2398	  else if (TARGET_XCOFF)					\
2399	    {								\
2400	      fputs ("\t.lglobl\t.", FILE);				\
2401	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
2402	      putc ('\n', FILE);					\
2403	    }								\
2404	  fputs ("\t.set\t.", FILE);					\
2405	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2406	  fputs (",.", FILE);						\
2407	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2408	  fputc ('\n', FILE);						\
2409	}								\
2410      ASM_OUTPUT_DEF (FILE, alias, name);				\
2411    }									\
2412   while (0)
2413
2414#define TARGET_ASM_FILE_START rs6000_file_start
2415
2416/* Output to assembler file text saying following lines
2417   may contain character constants, extra white space, comments, etc.  */
2418
2419#define ASM_APP_ON ""
2420
2421/* Output to assembler file text saying following lines
2422   no longer contain unusual constructs.  */
2423
2424#define ASM_APP_OFF ""
2425
2426/* How to refer to registers in assembler output.
2427   This sequence is indexed by compiler's hard-register-number (see above).  */
2428
2429extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2430
2431#define REGISTER_NAMES							\
2432{									\
2433  &rs6000_reg_names[ 0][0],	/* r0   */				\
2434  &rs6000_reg_names[ 1][0],	/* r1	*/				\
2435  &rs6000_reg_names[ 2][0],     /* r2	*/				\
2436  &rs6000_reg_names[ 3][0],	/* r3	*/				\
2437  &rs6000_reg_names[ 4][0],	/* r4	*/				\
2438  &rs6000_reg_names[ 5][0],	/* r5	*/				\
2439  &rs6000_reg_names[ 6][0],	/* r6	*/				\
2440  &rs6000_reg_names[ 7][0],	/* r7	*/				\
2441  &rs6000_reg_names[ 8][0],	/* r8	*/				\
2442  &rs6000_reg_names[ 9][0],	/* r9	*/				\
2443  &rs6000_reg_names[10][0],	/* r10  */				\
2444  &rs6000_reg_names[11][0],	/* r11  */				\
2445  &rs6000_reg_names[12][0],	/* r12  */				\
2446  &rs6000_reg_names[13][0],	/* r13  */				\
2447  &rs6000_reg_names[14][0],	/* r14  */				\
2448  &rs6000_reg_names[15][0],	/* r15  */				\
2449  &rs6000_reg_names[16][0],	/* r16  */				\
2450  &rs6000_reg_names[17][0],	/* r17  */				\
2451  &rs6000_reg_names[18][0],	/* r18  */				\
2452  &rs6000_reg_names[19][0],	/* r19  */				\
2453  &rs6000_reg_names[20][0],	/* r20  */				\
2454  &rs6000_reg_names[21][0],	/* r21  */				\
2455  &rs6000_reg_names[22][0],	/* r22  */				\
2456  &rs6000_reg_names[23][0],	/* r23  */				\
2457  &rs6000_reg_names[24][0],	/* r24  */				\
2458  &rs6000_reg_names[25][0],	/* r25  */				\
2459  &rs6000_reg_names[26][0],	/* r26  */				\
2460  &rs6000_reg_names[27][0],	/* r27  */				\
2461  &rs6000_reg_names[28][0],	/* r28  */				\
2462  &rs6000_reg_names[29][0],	/* r29  */				\
2463  &rs6000_reg_names[30][0],	/* r30  */				\
2464  &rs6000_reg_names[31][0],	/* r31  */				\
2465									\
2466  &rs6000_reg_names[32][0],     /* fr0  */				\
2467  &rs6000_reg_names[33][0],	/* fr1  */				\
2468  &rs6000_reg_names[34][0],	/* fr2  */				\
2469  &rs6000_reg_names[35][0],	/* fr3  */				\
2470  &rs6000_reg_names[36][0],	/* fr4  */				\
2471  &rs6000_reg_names[37][0],	/* fr5  */				\
2472  &rs6000_reg_names[38][0],	/* fr6  */				\
2473  &rs6000_reg_names[39][0],	/* fr7  */				\
2474  &rs6000_reg_names[40][0],	/* fr8  */				\
2475  &rs6000_reg_names[41][0],	/* fr9  */				\
2476  &rs6000_reg_names[42][0],	/* fr10 */				\
2477  &rs6000_reg_names[43][0],	/* fr11 */				\
2478  &rs6000_reg_names[44][0],	/* fr12 */				\
2479  &rs6000_reg_names[45][0],	/* fr13 */				\
2480  &rs6000_reg_names[46][0],	/* fr14 */				\
2481  &rs6000_reg_names[47][0],	/* fr15 */				\
2482  &rs6000_reg_names[48][0],	/* fr16 */				\
2483  &rs6000_reg_names[49][0],	/* fr17 */				\
2484  &rs6000_reg_names[50][0],	/* fr18 */				\
2485  &rs6000_reg_names[51][0],	/* fr19 */				\
2486  &rs6000_reg_names[52][0],	/* fr20 */				\
2487  &rs6000_reg_names[53][0],	/* fr21 */				\
2488  &rs6000_reg_names[54][0],	/* fr22 */				\
2489  &rs6000_reg_names[55][0],	/* fr23 */				\
2490  &rs6000_reg_names[56][0],	/* fr24 */				\
2491  &rs6000_reg_names[57][0],	/* fr25 */				\
2492  &rs6000_reg_names[58][0],	/* fr26 */				\
2493  &rs6000_reg_names[59][0],	/* fr27 */				\
2494  &rs6000_reg_names[60][0],	/* fr28 */				\
2495  &rs6000_reg_names[61][0],	/* fr29 */				\
2496  &rs6000_reg_names[62][0],	/* fr30 */				\
2497  &rs6000_reg_names[63][0],	/* fr31 */				\
2498									\
2499  &rs6000_reg_names[64][0],     /* mq   */				\
2500  &rs6000_reg_names[65][0],	/* lr   */				\
2501  &rs6000_reg_names[66][0],	/* ctr  */				\
2502  &rs6000_reg_names[67][0],	/* ap   */				\
2503									\
2504  &rs6000_reg_names[68][0],	/* cr0  */				\
2505  &rs6000_reg_names[69][0],	/* cr1  */				\
2506  &rs6000_reg_names[70][0],	/* cr2  */				\
2507  &rs6000_reg_names[71][0],	/* cr3  */				\
2508  &rs6000_reg_names[72][0],	/* cr4  */				\
2509  &rs6000_reg_names[73][0],	/* cr5  */				\
2510  &rs6000_reg_names[74][0],	/* cr6  */				\
2511  &rs6000_reg_names[75][0],	/* cr7  */				\
2512									\
2513  &rs6000_reg_names[76][0],	/* xer  */				\
2514									\
2515  &rs6000_reg_names[77][0],	/* v0  */				\
2516  &rs6000_reg_names[78][0],	/* v1  */				\
2517  &rs6000_reg_names[79][0],	/* v2  */				\
2518  &rs6000_reg_names[80][0],	/* v3  */				\
2519  &rs6000_reg_names[81][0],	/* v4  */				\
2520  &rs6000_reg_names[82][0],	/* v5  */				\
2521  &rs6000_reg_names[83][0],	/* v6  */				\
2522  &rs6000_reg_names[84][0],	/* v7  */				\
2523  &rs6000_reg_names[85][0],	/* v8  */				\
2524  &rs6000_reg_names[86][0],	/* v9  */				\
2525  &rs6000_reg_names[87][0],	/* v10  */				\
2526  &rs6000_reg_names[88][0],	/* v11  */				\
2527  &rs6000_reg_names[89][0],	/* v12  */				\
2528  &rs6000_reg_names[90][0],	/* v13  */				\
2529  &rs6000_reg_names[91][0],	/* v14  */				\
2530  &rs6000_reg_names[92][0],	/* v15  */				\
2531  &rs6000_reg_names[93][0],	/* v16  */				\
2532  &rs6000_reg_names[94][0],	/* v17  */				\
2533  &rs6000_reg_names[95][0],	/* v18  */				\
2534  &rs6000_reg_names[96][0],	/* v19  */				\
2535  &rs6000_reg_names[97][0],	/* v20  */				\
2536  &rs6000_reg_names[98][0],	/* v21  */				\
2537  &rs6000_reg_names[99][0],	/* v22  */				\
2538  &rs6000_reg_names[100][0],	/* v23  */				\
2539  &rs6000_reg_names[101][0],	/* v24  */				\
2540  &rs6000_reg_names[102][0],	/* v25  */				\
2541  &rs6000_reg_names[103][0],	/* v26  */				\
2542  &rs6000_reg_names[104][0],	/* v27  */				\
2543  &rs6000_reg_names[105][0],	/* v28  */				\
2544  &rs6000_reg_names[106][0],	/* v29  */				\
2545  &rs6000_reg_names[107][0],	/* v30  */				\
2546  &rs6000_reg_names[108][0],	/* v31  */				\
2547  &rs6000_reg_names[109][0],	/* vrsave  */				\
2548  &rs6000_reg_names[110][0],	/* vscr  */				\
2549  &rs6000_reg_names[111][0],	/* spe_acc */				\
2550  &rs6000_reg_names[112][0],	/* spefscr */				\
2551}
2552
2553/* Table of additional register names to use in user input.  */
2554
2555#define ADDITIONAL_REGISTER_NAMES \
2556 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2557  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2558  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2559  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2560  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2561  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2562  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2563  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2564  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2565  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2566  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2567  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2568  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2569  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2570  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2571  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2572  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2573  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2574  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2575  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2576  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2577  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2578  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2579  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2580  {"vrsave", 109}, {"vscr", 110},				\
2581  {"spe_acc", 111}, {"spefscr", 112},				\
2582  /* no additional names for: mq, lr, ctr, ap */		\
2583  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2584  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2585  {"cc",   68}, {"sp",    1}, {"toc",   2} }
2586
2587/* Text to write out after a CALL that may be replaced by glue code by
2588   the loader.  This depends on the AIX version.  */
2589#define RS6000_CALL_GLUE "cror 31,31,31"
2590
2591/* This is how to output an element of a case-vector that is relative.  */
2592
2593#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2594  do { char buf[100];					\
2595       fputs ("\t.long ", FILE);			\
2596       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2597       assemble_name (FILE, buf);			\
2598       putc ('-', FILE);				\
2599       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2600       assemble_name (FILE, buf);			\
2601       putc ('\n', FILE);				\
2602     } while (0)
2603
2604/* This is how to output an assembler line
2605   that says to advance the location counter
2606   to a multiple of 2**LOG bytes.  */
2607
2608#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2609  if ((LOG) != 0)			\
2610    fprintf (FILE, "\t.align %d\n", (LOG))
2611
2612/* Pick up the return address upon entry to a procedure. Used for
2613   dwarf2 unwind information.  This also enables the table driven
2614   mechanism.  */
2615
2616#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2617#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2618
2619/* Describe how we implement __builtin_eh_return.  */
2620#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2621#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2622
2623/* Print operand X (an rtx) in assembler syntax to file FILE.
2624   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2625   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2626
2627#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2628
2629/* Define which CODE values are valid.  */
2630
2631#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2632  ((CODE) == '.' || (CODE) == '&')
2633
2634/* Print a memory address as an operand to reference that memory location.  */
2635
2636#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2637
2638/* Define the codes that are matched by predicates in rs6000.c.  */
2639
2640#define PREDICATE_CODES							   \
2641  {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,		   \
2642		   LABEL_REF, SUBREG, REG, MEM, PARALLEL}},		   \
2643  {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	   \
2644		    LABEL_REF, SUBREG, REG, MEM}},			   \
2645  {"short_cint_operand", {CONST_INT}},					   \
2646  {"u_short_cint_operand", {CONST_INT}},				   \
2647  {"non_short_cint_operand", {CONST_INT}},				   \
2648  {"exact_log2_cint_operand", {CONST_INT}},				   \
2649  {"gpc_reg_operand", {SUBREG, REG}},					   \
2650  {"cc_reg_operand", {SUBREG, REG}},					   \
2651  {"cc_reg_not_cr0_operand", {SUBREG, REG}},				   \
2652  {"reg_or_short_operand", {SUBREG, REG, CONST_INT}},			   \
2653  {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}},		   \
2654  {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}},		   \
2655  {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}},			   \
2656  {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			   \
2657  {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}},		   \
2658  {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2659  {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2660  {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2661  {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}},			   \
2662  {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}},			   \
2663  {"easy_fp_constant", {CONST_DOUBLE}},					   \
2664  {"easy_vector_constant", {CONST_VECTOR}},				   \
2665  {"easy_vector_constant_add_self", {CONST_VECTOR}},			   \
2666  {"zero_fp_constant", {CONST_DOUBLE}},					   \
2667  {"reg_or_mem_operand", {SUBREG, MEM, REG}},				   \
2668  {"lwa_operand", {SUBREG, MEM, REG}},					   \
2669  {"volatile_mem_operand", {MEM}},					   \
2670  {"offsettable_mem_operand", {MEM}},					   \
2671  {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}},		   \
2672  {"add_operand", {SUBREG, REG, CONST_INT}},				   \
2673  {"non_add_cint_operand", {CONST_INT}},				   \
2674  {"and_operand", {SUBREG, REG, CONST_INT}},				   \
2675  {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2676  {"and64_2_operand", {SUBREG, REG, CONST_INT}},			   \
2677  {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2678  {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}},		   \
2679  {"mask_operand", {CONST_INT}},					   \
2680  {"mask_operand_wrap", {CONST_INT}},					   \
2681  {"mask64_operand", {CONST_INT}},					   \
2682  {"mask64_2_operand", {CONST_INT}},					   \
2683  {"count_register_operand", {REG}},					   \
2684  {"xer_operand", {REG}},						   \
2685  {"symbol_ref_operand", {SYMBOL_REF}},					   \
2686  {"rs6000_tls_symbol_ref", {SYMBOL_REF}},				   \
2687  {"call_operand", {SYMBOL_REF, REG}},					   \
2688  {"current_file_function_operand", {SYMBOL_REF}},			   \
2689  {"input_operand", {SUBREG, MEM, REG, CONST_INT,			   \
2690		     CONST_DOUBLE, SYMBOL_REF}},			   \
2691  {"load_multiple_operation", {PARALLEL}},				   \
2692  {"store_multiple_operation", {PARALLEL}},				   \
2693  {"vrsave_operation", {PARALLEL}},					   \
2694  {"branch_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2695				  GT, LEU, LTU, GEU, GTU,		   \
2696				  UNORDERED, ORDERED,			   \
2697				  UNGE, UNLE }},			   \
2698  {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU,	   \
2699					   UNORDERED }},		   \
2700  {"scc_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2701			       GT, LEU, LTU, GEU, GTU,			   \
2702			       UNORDERED, ORDERED,			   \
2703			       UNGE, UNLE }},				   \
2704  {"trap_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2705				GT, LEU, LTU, GEU, GTU}},		   \
2706  {"boolean_operator", {AND, IOR, XOR}},				   \
2707  {"boolean_or_operator", {IOR, XOR}},					   \
2708  {"altivec_register_operand", {REG}},	                                   \
2709  {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2710
2711/* uncomment for disabling the corresponding default options */
2712/* #define  MACHINE_no_sched_interblock */
2713/* #define  MACHINE_no_sched_speculative */
2714/* #define  MACHINE_no_sched_speculative_load */
2715
2716/* General flags.  */
2717extern int flag_pic;
2718extern int optimize;
2719extern int flag_expensive_optimizations;
2720extern int frame_pointer_needed;
2721
2722enum rs6000_builtins
2723{
2724  /* AltiVec builtins.  */
2725  ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2726  ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2727  ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2728  ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2729  ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2730  ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2731  ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2732  ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2733  ALTIVEC_BUILTIN_VADDUBM,
2734  ALTIVEC_BUILTIN_VADDUHM,
2735  ALTIVEC_BUILTIN_VADDUWM,
2736  ALTIVEC_BUILTIN_VADDFP,
2737  ALTIVEC_BUILTIN_VADDCUW,
2738  ALTIVEC_BUILTIN_VADDUBS,
2739  ALTIVEC_BUILTIN_VADDSBS,
2740  ALTIVEC_BUILTIN_VADDUHS,
2741  ALTIVEC_BUILTIN_VADDSHS,
2742  ALTIVEC_BUILTIN_VADDUWS,
2743  ALTIVEC_BUILTIN_VADDSWS,
2744  ALTIVEC_BUILTIN_VAND,
2745  ALTIVEC_BUILTIN_VANDC,
2746  ALTIVEC_BUILTIN_VAVGUB,
2747  ALTIVEC_BUILTIN_VAVGSB,
2748  ALTIVEC_BUILTIN_VAVGUH,
2749  ALTIVEC_BUILTIN_VAVGSH,
2750  ALTIVEC_BUILTIN_VAVGUW,
2751  ALTIVEC_BUILTIN_VAVGSW,
2752  ALTIVEC_BUILTIN_VCFUX,
2753  ALTIVEC_BUILTIN_VCFSX,
2754  ALTIVEC_BUILTIN_VCTSXS,
2755  ALTIVEC_BUILTIN_VCTUXS,
2756  ALTIVEC_BUILTIN_VCMPBFP,
2757  ALTIVEC_BUILTIN_VCMPEQUB,
2758  ALTIVEC_BUILTIN_VCMPEQUH,
2759  ALTIVEC_BUILTIN_VCMPEQUW,
2760  ALTIVEC_BUILTIN_VCMPEQFP,
2761  ALTIVEC_BUILTIN_VCMPGEFP,
2762  ALTIVEC_BUILTIN_VCMPGTUB,
2763  ALTIVEC_BUILTIN_VCMPGTSB,
2764  ALTIVEC_BUILTIN_VCMPGTUH,
2765  ALTIVEC_BUILTIN_VCMPGTSH,
2766  ALTIVEC_BUILTIN_VCMPGTUW,
2767  ALTIVEC_BUILTIN_VCMPGTSW,
2768  ALTIVEC_BUILTIN_VCMPGTFP,
2769  ALTIVEC_BUILTIN_VEXPTEFP,
2770  ALTIVEC_BUILTIN_VLOGEFP,
2771  ALTIVEC_BUILTIN_VMADDFP,
2772  ALTIVEC_BUILTIN_VMAXUB,
2773  ALTIVEC_BUILTIN_VMAXSB,
2774  ALTIVEC_BUILTIN_VMAXUH,
2775  ALTIVEC_BUILTIN_VMAXSH,
2776  ALTIVEC_BUILTIN_VMAXUW,
2777  ALTIVEC_BUILTIN_VMAXSW,
2778  ALTIVEC_BUILTIN_VMAXFP,
2779  ALTIVEC_BUILTIN_VMHADDSHS,
2780  ALTIVEC_BUILTIN_VMHRADDSHS,
2781  ALTIVEC_BUILTIN_VMLADDUHM,
2782  ALTIVEC_BUILTIN_VMRGHB,
2783  ALTIVEC_BUILTIN_VMRGHH,
2784  ALTIVEC_BUILTIN_VMRGHW,
2785  ALTIVEC_BUILTIN_VMRGLB,
2786  ALTIVEC_BUILTIN_VMRGLH,
2787  ALTIVEC_BUILTIN_VMRGLW,
2788  ALTIVEC_BUILTIN_VMSUMUBM,
2789  ALTIVEC_BUILTIN_VMSUMMBM,
2790  ALTIVEC_BUILTIN_VMSUMUHM,
2791  ALTIVEC_BUILTIN_VMSUMSHM,
2792  ALTIVEC_BUILTIN_VMSUMUHS,
2793  ALTIVEC_BUILTIN_VMSUMSHS,
2794  ALTIVEC_BUILTIN_VMINUB,
2795  ALTIVEC_BUILTIN_VMINSB,
2796  ALTIVEC_BUILTIN_VMINUH,
2797  ALTIVEC_BUILTIN_VMINSH,
2798  ALTIVEC_BUILTIN_VMINUW,
2799  ALTIVEC_BUILTIN_VMINSW,
2800  ALTIVEC_BUILTIN_VMINFP,
2801  ALTIVEC_BUILTIN_VMULEUB,
2802  ALTIVEC_BUILTIN_VMULESB,
2803  ALTIVEC_BUILTIN_VMULEUH,
2804  ALTIVEC_BUILTIN_VMULESH,
2805  ALTIVEC_BUILTIN_VMULOUB,
2806  ALTIVEC_BUILTIN_VMULOSB,
2807  ALTIVEC_BUILTIN_VMULOUH,
2808  ALTIVEC_BUILTIN_VMULOSH,
2809  ALTIVEC_BUILTIN_VNMSUBFP,
2810  ALTIVEC_BUILTIN_VNOR,
2811  ALTIVEC_BUILTIN_VOR,
2812  ALTIVEC_BUILTIN_VSEL_4SI,
2813  ALTIVEC_BUILTIN_VSEL_4SF,
2814  ALTIVEC_BUILTIN_VSEL_8HI,
2815  ALTIVEC_BUILTIN_VSEL_16QI,
2816  ALTIVEC_BUILTIN_VPERM_4SI,
2817  ALTIVEC_BUILTIN_VPERM_4SF,
2818  ALTIVEC_BUILTIN_VPERM_8HI,
2819  ALTIVEC_BUILTIN_VPERM_16QI,
2820  ALTIVEC_BUILTIN_VPKUHUM,
2821  ALTIVEC_BUILTIN_VPKUWUM,
2822  ALTIVEC_BUILTIN_VPKPX,
2823  ALTIVEC_BUILTIN_VPKUHSS,
2824  ALTIVEC_BUILTIN_VPKSHSS,
2825  ALTIVEC_BUILTIN_VPKUWSS,
2826  ALTIVEC_BUILTIN_VPKSWSS,
2827  ALTIVEC_BUILTIN_VPKUHUS,
2828  ALTIVEC_BUILTIN_VPKSHUS,
2829  ALTIVEC_BUILTIN_VPKUWUS,
2830  ALTIVEC_BUILTIN_VPKSWUS,
2831  ALTIVEC_BUILTIN_VREFP,
2832  ALTIVEC_BUILTIN_VRFIM,
2833  ALTIVEC_BUILTIN_VRFIN,
2834  ALTIVEC_BUILTIN_VRFIP,
2835  ALTIVEC_BUILTIN_VRFIZ,
2836  ALTIVEC_BUILTIN_VRLB,
2837  ALTIVEC_BUILTIN_VRLH,
2838  ALTIVEC_BUILTIN_VRLW,
2839  ALTIVEC_BUILTIN_VRSQRTEFP,
2840  ALTIVEC_BUILTIN_VSLB,
2841  ALTIVEC_BUILTIN_VSLH,
2842  ALTIVEC_BUILTIN_VSLW,
2843  ALTIVEC_BUILTIN_VSL,
2844  ALTIVEC_BUILTIN_VSLO,
2845  ALTIVEC_BUILTIN_VSPLTB,
2846  ALTIVEC_BUILTIN_VSPLTH,
2847  ALTIVEC_BUILTIN_VSPLTW,
2848  ALTIVEC_BUILTIN_VSPLTISB,
2849  ALTIVEC_BUILTIN_VSPLTISH,
2850  ALTIVEC_BUILTIN_VSPLTISW,
2851  ALTIVEC_BUILTIN_VSRB,
2852  ALTIVEC_BUILTIN_VSRH,
2853  ALTIVEC_BUILTIN_VSRW,
2854  ALTIVEC_BUILTIN_VSRAB,
2855  ALTIVEC_BUILTIN_VSRAH,
2856  ALTIVEC_BUILTIN_VSRAW,
2857  ALTIVEC_BUILTIN_VSR,
2858  ALTIVEC_BUILTIN_VSRO,
2859  ALTIVEC_BUILTIN_VSUBUBM,
2860  ALTIVEC_BUILTIN_VSUBUHM,
2861  ALTIVEC_BUILTIN_VSUBUWM,
2862  ALTIVEC_BUILTIN_VSUBFP,
2863  ALTIVEC_BUILTIN_VSUBCUW,
2864  ALTIVEC_BUILTIN_VSUBUBS,
2865  ALTIVEC_BUILTIN_VSUBSBS,
2866  ALTIVEC_BUILTIN_VSUBUHS,
2867  ALTIVEC_BUILTIN_VSUBSHS,
2868  ALTIVEC_BUILTIN_VSUBUWS,
2869  ALTIVEC_BUILTIN_VSUBSWS,
2870  ALTIVEC_BUILTIN_VSUM4UBS,
2871  ALTIVEC_BUILTIN_VSUM4SBS,
2872  ALTIVEC_BUILTIN_VSUM4SHS,
2873  ALTIVEC_BUILTIN_VSUM2SWS,
2874  ALTIVEC_BUILTIN_VSUMSWS,
2875  ALTIVEC_BUILTIN_VXOR,
2876  ALTIVEC_BUILTIN_VSLDOI_16QI,
2877  ALTIVEC_BUILTIN_VSLDOI_8HI,
2878  ALTIVEC_BUILTIN_VSLDOI_4SI,
2879  ALTIVEC_BUILTIN_VSLDOI_4SF,
2880  ALTIVEC_BUILTIN_VUPKHSB,
2881  ALTIVEC_BUILTIN_VUPKHPX,
2882  ALTIVEC_BUILTIN_VUPKHSH,
2883  ALTIVEC_BUILTIN_VUPKLSB,
2884  ALTIVEC_BUILTIN_VUPKLPX,
2885  ALTIVEC_BUILTIN_VUPKLSH,
2886  ALTIVEC_BUILTIN_MTVSCR,
2887  ALTIVEC_BUILTIN_MFVSCR,
2888  ALTIVEC_BUILTIN_DSSALL,
2889  ALTIVEC_BUILTIN_DSS,
2890  ALTIVEC_BUILTIN_LVSL,
2891  ALTIVEC_BUILTIN_LVSR,
2892  ALTIVEC_BUILTIN_DSTT,
2893  ALTIVEC_BUILTIN_DSTST,
2894  ALTIVEC_BUILTIN_DSTSTT,
2895  ALTIVEC_BUILTIN_DST,
2896  ALTIVEC_BUILTIN_LVEBX,
2897  ALTIVEC_BUILTIN_LVEHX,
2898  ALTIVEC_BUILTIN_LVEWX,
2899  ALTIVEC_BUILTIN_LVXL,
2900  ALTIVEC_BUILTIN_LVX,
2901  ALTIVEC_BUILTIN_STVX,
2902  ALTIVEC_BUILTIN_STVEBX,
2903  ALTIVEC_BUILTIN_STVEHX,
2904  ALTIVEC_BUILTIN_STVEWX,
2905  ALTIVEC_BUILTIN_STVXL,
2906  ALTIVEC_BUILTIN_VCMPBFP_P,
2907  ALTIVEC_BUILTIN_VCMPEQFP_P,
2908  ALTIVEC_BUILTIN_VCMPEQUB_P,
2909  ALTIVEC_BUILTIN_VCMPEQUH_P,
2910  ALTIVEC_BUILTIN_VCMPEQUW_P,
2911  ALTIVEC_BUILTIN_VCMPGEFP_P,
2912  ALTIVEC_BUILTIN_VCMPGTFP_P,
2913  ALTIVEC_BUILTIN_VCMPGTSB_P,
2914  ALTIVEC_BUILTIN_VCMPGTSH_P,
2915  ALTIVEC_BUILTIN_VCMPGTSW_P,
2916  ALTIVEC_BUILTIN_VCMPGTUB_P,
2917  ALTIVEC_BUILTIN_VCMPGTUH_P,
2918  ALTIVEC_BUILTIN_VCMPGTUW_P,
2919  ALTIVEC_BUILTIN_ABSS_V4SI,
2920  ALTIVEC_BUILTIN_ABSS_V8HI,
2921  ALTIVEC_BUILTIN_ABSS_V16QI,
2922  ALTIVEC_BUILTIN_ABS_V4SI,
2923  ALTIVEC_BUILTIN_ABS_V4SF,
2924  ALTIVEC_BUILTIN_ABS_V8HI,
2925  ALTIVEC_BUILTIN_ABS_V16QI,
2926  ALTIVEC_BUILTIN_COMPILETIME_ERROR,
2927  /* SPE builtins.  */
2928  SPE_BUILTIN_EVADDW,
2929  SPE_BUILTIN_EVAND,
2930  SPE_BUILTIN_EVANDC,
2931  SPE_BUILTIN_EVDIVWS,
2932  SPE_BUILTIN_EVDIVWU,
2933  SPE_BUILTIN_EVEQV,
2934  SPE_BUILTIN_EVFSADD,
2935  SPE_BUILTIN_EVFSDIV,
2936  SPE_BUILTIN_EVFSMUL,
2937  SPE_BUILTIN_EVFSSUB,
2938  SPE_BUILTIN_EVLDDX,
2939  SPE_BUILTIN_EVLDHX,
2940  SPE_BUILTIN_EVLDWX,
2941  SPE_BUILTIN_EVLHHESPLATX,
2942  SPE_BUILTIN_EVLHHOSSPLATX,
2943  SPE_BUILTIN_EVLHHOUSPLATX,
2944  SPE_BUILTIN_EVLWHEX,
2945  SPE_BUILTIN_EVLWHOSX,
2946  SPE_BUILTIN_EVLWHOUX,
2947  SPE_BUILTIN_EVLWHSPLATX,
2948  SPE_BUILTIN_EVLWWSPLATX,
2949  SPE_BUILTIN_EVMERGEHI,
2950  SPE_BUILTIN_EVMERGEHILO,
2951  SPE_BUILTIN_EVMERGELO,
2952  SPE_BUILTIN_EVMERGELOHI,
2953  SPE_BUILTIN_EVMHEGSMFAA,
2954  SPE_BUILTIN_EVMHEGSMFAN,
2955  SPE_BUILTIN_EVMHEGSMIAA,
2956  SPE_BUILTIN_EVMHEGSMIAN,
2957  SPE_BUILTIN_EVMHEGUMIAA,
2958  SPE_BUILTIN_EVMHEGUMIAN,
2959  SPE_BUILTIN_EVMHESMF,
2960  SPE_BUILTIN_EVMHESMFA,
2961  SPE_BUILTIN_EVMHESMFAAW,
2962  SPE_BUILTIN_EVMHESMFANW,
2963  SPE_BUILTIN_EVMHESMI,
2964  SPE_BUILTIN_EVMHESMIA,
2965  SPE_BUILTIN_EVMHESMIAAW,
2966  SPE_BUILTIN_EVMHESMIANW,
2967  SPE_BUILTIN_EVMHESSF,
2968  SPE_BUILTIN_EVMHESSFA,
2969  SPE_BUILTIN_EVMHESSFAAW,
2970  SPE_BUILTIN_EVMHESSFANW,
2971  SPE_BUILTIN_EVMHESSIAAW,
2972  SPE_BUILTIN_EVMHESSIANW,
2973  SPE_BUILTIN_EVMHEUMI,
2974  SPE_BUILTIN_EVMHEUMIA,
2975  SPE_BUILTIN_EVMHEUMIAAW,
2976  SPE_BUILTIN_EVMHEUMIANW,
2977  SPE_BUILTIN_EVMHEUSIAAW,
2978  SPE_BUILTIN_EVMHEUSIANW,
2979  SPE_BUILTIN_EVMHOGSMFAA,
2980  SPE_BUILTIN_EVMHOGSMFAN,
2981  SPE_BUILTIN_EVMHOGSMIAA,
2982  SPE_BUILTIN_EVMHOGSMIAN,
2983  SPE_BUILTIN_EVMHOGUMIAA,
2984  SPE_BUILTIN_EVMHOGUMIAN,
2985  SPE_BUILTIN_EVMHOSMF,
2986  SPE_BUILTIN_EVMHOSMFA,
2987  SPE_BUILTIN_EVMHOSMFAAW,
2988  SPE_BUILTIN_EVMHOSMFANW,
2989  SPE_BUILTIN_EVMHOSMI,
2990  SPE_BUILTIN_EVMHOSMIA,
2991  SPE_BUILTIN_EVMHOSMIAAW,
2992  SPE_BUILTIN_EVMHOSMIANW,
2993  SPE_BUILTIN_EVMHOSSF,
2994  SPE_BUILTIN_EVMHOSSFA,
2995  SPE_BUILTIN_EVMHOSSFAAW,
2996  SPE_BUILTIN_EVMHOSSFANW,
2997  SPE_BUILTIN_EVMHOSSIAAW,
2998  SPE_BUILTIN_EVMHOSSIANW,
2999  SPE_BUILTIN_EVMHOUMI,
3000  SPE_BUILTIN_EVMHOUMIA,
3001  SPE_BUILTIN_EVMHOUMIAAW,
3002  SPE_BUILTIN_EVMHOUMIANW,
3003  SPE_BUILTIN_EVMHOUSIAAW,
3004  SPE_BUILTIN_EVMHOUSIANW,
3005  SPE_BUILTIN_EVMWHSMF,
3006  SPE_BUILTIN_EVMWHSMFA,
3007  SPE_BUILTIN_EVMWHSMI,
3008  SPE_BUILTIN_EVMWHSMIA,
3009  SPE_BUILTIN_EVMWHSSF,
3010  SPE_BUILTIN_EVMWHSSFA,
3011  SPE_BUILTIN_EVMWHUMI,
3012  SPE_BUILTIN_EVMWHUMIA,
3013  SPE_BUILTIN_EVMWLSMIAAW,
3014  SPE_BUILTIN_EVMWLSMIANW,
3015  SPE_BUILTIN_EVMWLSSIAAW,
3016  SPE_BUILTIN_EVMWLSSIANW,
3017  SPE_BUILTIN_EVMWLUMI,
3018  SPE_BUILTIN_EVMWLUMIA,
3019  SPE_BUILTIN_EVMWLUMIAAW,
3020  SPE_BUILTIN_EVMWLUMIANW,
3021  SPE_BUILTIN_EVMWLUSIAAW,
3022  SPE_BUILTIN_EVMWLUSIANW,
3023  SPE_BUILTIN_EVMWSMF,
3024  SPE_BUILTIN_EVMWSMFA,
3025  SPE_BUILTIN_EVMWSMFAA,
3026  SPE_BUILTIN_EVMWSMFAN,
3027  SPE_BUILTIN_EVMWSMI,
3028  SPE_BUILTIN_EVMWSMIA,
3029  SPE_BUILTIN_EVMWSMIAA,
3030  SPE_BUILTIN_EVMWSMIAN,
3031  SPE_BUILTIN_EVMWHSSFAA,
3032  SPE_BUILTIN_EVMWSSF,
3033  SPE_BUILTIN_EVMWSSFA,
3034  SPE_BUILTIN_EVMWSSFAA,
3035  SPE_BUILTIN_EVMWSSFAN,
3036  SPE_BUILTIN_EVMWUMI,
3037  SPE_BUILTIN_EVMWUMIA,
3038  SPE_BUILTIN_EVMWUMIAA,
3039  SPE_BUILTIN_EVMWUMIAN,
3040  SPE_BUILTIN_EVNAND,
3041  SPE_BUILTIN_EVNOR,
3042  SPE_BUILTIN_EVOR,
3043  SPE_BUILTIN_EVORC,
3044  SPE_BUILTIN_EVRLW,
3045  SPE_BUILTIN_EVSLW,
3046  SPE_BUILTIN_EVSRWS,
3047  SPE_BUILTIN_EVSRWU,
3048  SPE_BUILTIN_EVSTDDX,
3049  SPE_BUILTIN_EVSTDHX,
3050  SPE_BUILTIN_EVSTDWX,
3051  SPE_BUILTIN_EVSTWHEX,
3052  SPE_BUILTIN_EVSTWHOX,
3053  SPE_BUILTIN_EVSTWWEX,
3054  SPE_BUILTIN_EVSTWWOX,
3055  SPE_BUILTIN_EVSUBFW,
3056  SPE_BUILTIN_EVXOR,
3057  SPE_BUILTIN_EVABS,
3058  SPE_BUILTIN_EVADDSMIAAW,
3059  SPE_BUILTIN_EVADDSSIAAW,
3060  SPE_BUILTIN_EVADDUMIAAW,
3061  SPE_BUILTIN_EVADDUSIAAW,
3062  SPE_BUILTIN_EVCNTLSW,
3063  SPE_BUILTIN_EVCNTLZW,
3064  SPE_BUILTIN_EVEXTSB,
3065  SPE_BUILTIN_EVEXTSH,
3066  SPE_BUILTIN_EVFSABS,
3067  SPE_BUILTIN_EVFSCFSF,
3068  SPE_BUILTIN_EVFSCFSI,
3069  SPE_BUILTIN_EVFSCFUF,
3070  SPE_BUILTIN_EVFSCFUI,
3071  SPE_BUILTIN_EVFSCTSF,
3072  SPE_BUILTIN_EVFSCTSI,
3073  SPE_BUILTIN_EVFSCTSIZ,
3074  SPE_BUILTIN_EVFSCTUF,
3075  SPE_BUILTIN_EVFSCTUI,
3076  SPE_BUILTIN_EVFSCTUIZ,
3077  SPE_BUILTIN_EVFSNABS,
3078  SPE_BUILTIN_EVFSNEG,
3079  SPE_BUILTIN_EVMRA,
3080  SPE_BUILTIN_EVNEG,
3081  SPE_BUILTIN_EVRNDW,
3082  SPE_BUILTIN_EVSUBFSMIAAW,
3083  SPE_BUILTIN_EVSUBFSSIAAW,
3084  SPE_BUILTIN_EVSUBFUMIAAW,
3085  SPE_BUILTIN_EVSUBFUSIAAW,
3086  SPE_BUILTIN_EVADDIW,
3087  SPE_BUILTIN_EVLDD,
3088  SPE_BUILTIN_EVLDH,
3089  SPE_BUILTIN_EVLDW,
3090  SPE_BUILTIN_EVLHHESPLAT,
3091  SPE_BUILTIN_EVLHHOSSPLAT,
3092  SPE_BUILTIN_EVLHHOUSPLAT,
3093  SPE_BUILTIN_EVLWHE,
3094  SPE_BUILTIN_EVLWHOS,
3095  SPE_BUILTIN_EVLWHOU,
3096  SPE_BUILTIN_EVLWHSPLAT,
3097  SPE_BUILTIN_EVLWWSPLAT,
3098  SPE_BUILTIN_EVRLWI,
3099  SPE_BUILTIN_EVSLWI,
3100  SPE_BUILTIN_EVSRWIS,
3101  SPE_BUILTIN_EVSRWIU,
3102  SPE_BUILTIN_EVSTDD,
3103  SPE_BUILTIN_EVSTDH,
3104  SPE_BUILTIN_EVSTDW,
3105  SPE_BUILTIN_EVSTWHE,
3106  SPE_BUILTIN_EVSTWHO,
3107  SPE_BUILTIN_EVSTWWE,
3108  SPE_BUILTIN_EVSTWWO,
3109  SPE_BUILTIN_EVSUBIFW,
3110
3111  /* Compares.  */
3112  SPE_BUILTIN_EVCMPEQ,
3113  SPE_BUILTIN_EVCMPGTS,
3114  SPE_BUILTIN_EVCMPGTU,
3115  SPE_BUILTIN_EVCMPLTS,
3116  SPE_BUILTIN_EVCMPLTU,
3117  SPE_BUILTIN_EVFSCMPEQ,
3118  SPE_BUILTIN_EVFSCMPGT,
3119  SPE_BUILTIN_EVFSCMPLT,
3120  SPE_BUILTIN_EVFSTSTEQ,
3121  SPE_BUILTIN_EVFSTSTGT,
3122  SPE_BUILTIN_EVFSTSTLT,
3123
3124  /* EVSEL compares.  */
3125  SPE_BUILTIN_EVSEL_CMPEQ,
3126  SPE_BUILTIN_EVSEL_CMPGTS,
3127  SPE_BUILTIN_EVSEL_CMPGTU,
3128  SPE_BUILTIN_EVSEL_CMPLTS,
3129  SPE_BUILTIN_EVSEL_CMPLTU,
3130  SPE_BUILTIN_EVSEL_FSCMPEQ,
3131  SPE_BUILTIN_EVSEL_FSCMPGT,
3132  SPE_BUILTIN_EVSEL_FSCMPLT,
3133  SPE_BUILTIN_EVSEL_FSTSTEQ,
3134  SPE_BUILTIN_EVSEL_FSTSTGT,
3135  SPE_BUILTIN_EVSEL_FSTSTLT,
3136
3137  SPE_BUILTIN_EVSPLATFI,
3138  SPE_BUILTIN_EVSPLATI,
3139  SPE_BUILTIN_EVMWHSSMAA,
3140  SPE_BUILTIN_EVMWHSMFAA,
3141  SPE_BUILTIN_EVMWHSMIAA,
3142  SPE_BUILTIN_EVMWHUSIAA,
3143  SPE_BUILTIN_EVMWHUMIAA,
3144  SPE_BUILTIN_EVMWHSSFAN,
3145  SPE_BUILTIN_EVMWHSSIAN,
3146  SPE_BUILTIN_EVMWHSMFAN,
3147  SPE_BUILTIN_EVMWHSMIAN,
3148  SPE_BUILTIN_EVMWHUSIAN,
3149  SPE_BUILTIN_EVMWHUMIAN,
3150  SPE_BUILTIN_EVMWHGSSFAA,
3151  SPE_BUILTIN_EVMWHGSMFAA,
3152  SPE_BUILTIN_EVMWHGSMIAA,
3153  SPE_BUILTIN_EVMWHGUMIAA,
3154  SPE_BUILTIN_EVMWHGSSFAN,
3155  SPE_BUILTIN_EVMWHGSMFAN,
3156  SPE_BUILTIN_EVMWHGSMIAN,
3157  SPE_BUILTIN_EVMWHGUMIAN,
3158  SPE_BUILTIN_MTSPEFSCR,
3159  SPE_BUILTIN_MFSPEFSCR,
3160  SPE_BUILTIN_BRINC
3161};
3162