1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7   This file is part of GCC.
8
9   GCC is free software; you can redistribute it and/or modify it
10   under the terms of the GNU General Public License as published
11   by the Free Software Foundation; either version 2, or (at your
12   option) any later version.
13
14   GCC is distributed in the hope that it will be useful, but WITHOUT
15   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
17   License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with GCC; see the file COPYING.  If not, write to the
21   Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
22   MA 02110-1301, USA.  */
23
24/* Note that some other tm.h files include this one and then override
25   many of the definitions.  */
26
27/* Definitions for the object file format.  These are set at
28   compile-time.  */
29
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
33#define OBJECT_MACHO 4
34
35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
44/* Control whether function entry points use a "dot" symbol when
45   ABI_AIX.  */
46#define DOT_SYMBOLS 1
47
48/* Default string to use for cpu if not specified.  */
49#ifndef TARGET_CPU_DEFAULT
50#define TARGET_CPU_DEFAULT ((char *)0)
51#endif
52
53/* If configured for PPC405, support PPC405CR Erratum77.  */
54#ifdef CONFIG_PPC405CR
55#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
56#else
57#define PPC405_ERRATUM77 0
58#endif
59
60/* Common ASM definitions used by ASM_SPEC among the various targets
61   for handling -mcpu=xxx switches.  */
62#define ASM_CPU_SPEC \
63"%{!mcpu*: \
64  %{mpower: %{!mpower2: -mpwr}} \
65  %{mpower2: -mpwrx} \
66  %{mpowerpc64*: -mppc64} \
67  %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
68  %{mno-power: %{!mpowerpc*: -mcom}} \
69  %{!mno-power: %{!mpower*: %(asm_default)}}} \
70%{mcpu=common: -mcom} \
71%{mcpu=power: -mpwr} \
72%{mcpu=power2: -mpwrx} \
73%{mcpu=power3: -mppc64} \
74%{mcpu=power4: -mpower4} \
75%{mcpu=power5: -mpower4} \
76%{mcpu=power5+: -mpower4} \
77%{mcpu=power6: -mpower4 -maltivec} \
78%{mcpu=powerpc: -mppc} \
79%{mcpu=rios: -mpwr} \
80%{mcpu=rios1: -mpwr} \
81%{mcpu=rios2: -mpwrx} \
82%{mcpu=rsc: -mpwr} \
83%{mcpu=rsc1: -mpwr} \
84%{mcpu=rs64a: -mppc64} \
85%{mcpu=401: -mppc} \
86%{mcpu=403: -m403} \
87%{mcpu=405: -m405} \
88%{mcpu=405fp: -m405} \
89%{mcpu=440: -m440} \
90%{mcpu=440fp: -m440} \
91%{mcpu=505: -mppc} \
92%{mcpu=601: -m601} \
93%{mcpu=602: -mppc} \
94%{mcpu=603: -mppc} \
95%{mcpu=603e: -mppc} \
96%{mcpu=ec603e: -mppc} \
97%{mcpu=604: -mppc} \
98%{mcpu=604e: -mppc} \
99%{mcpu=620: -mppc64} \
100%{mcpu=630: -mppc64} \
101%{mcpu=740: -mppc} \
102%{mcpu=750: -mppc} \
103%{mcpu=G3: -mppc} \
104%{mcpu=7400: -mppc -maltivec} \
105%{mcpu=7450: -mppc -maltivec} \
106%{mcpu=G4: -mppc -maltivec} \
107%{mcpu=801: -mppc} \
108%{mcpu=821: -mppc} \
109%{mcpu=823: -mppc} \
110%{mcpu=860: -mppc} \
111%{mcpu=970: -mpower4 -maltivec} \
112%{mcpu=G5: -mpower4 -maltivec} \
113%{mcpu=8540: -me500} \
114%{maltivec: -maltivec} \
115-many"
116
117#define CPP_DEFAULT_SPEC ""
118
119#define ASM_DEFAULT_SPEC ""
120
121/* This macro defines names of additional specifications to put in the specs
122   that can be used in various specifications like CC1_SPEC.  Its definition
123   is an initializer with a subgrouping for each command option.
124
125   Each subgrouping contains a string constant, that defines the
126   specification name, and a string constant that used by the GCC driver
127   program.
128
129   Do not define this macro if it does not need to do anything.  */
130
131#define SUBTARGET_EXTRA_SPECS
132
133#define EXTRA_SPECS							\
134  { "cpp_default",		CPP_DEFAULT_SPEC },			\
135  { "asm_cpu",			ASM_CPU_SPEC },				\
136  { "asm_default",		ASM_DEFAULT_SPEC },			\
137  SUBTARGET_EXTRA_SPECS
138
139/* Architecture type.  */
140
141/* Define TARGET_MFCRF if the target assembler does not support the
142   optional field operand for mfcr.  */
143
144#ifndef HAVE_AS_MFCRF
145#undef  TARGET_MFCRF
146#define TARGET_MFCRF 0
147#endif
148
149/* Define TARGET_POPCNTB if the target assembler does not support the
150   popcount byte instruction.  */
151
152#ifndef HAVE_AS_POPCNTB
153#undef  TARGET_POPCNTB
154#define TARGET_POPCNTB 0
155#endif
156
157/* Define TARGET_FPRND if the target assembler does not support the
158   fp rounding instructions.  */
159
160#ifndef HAVE_AS_FPRND
161#undef  TARGET_FPRND
162#define TARGET_FPRND 0
163#endif
164
165#ifndef TARGET_SECURE_PLT
166#define TARGET_SECURE_PLT 0
167#endif
168
169#define TARGET_32BIT		(! TARGET_64BIT)
170
171#ifndef HAVE_AS_TLS
172#define HAVE_AS_TLS 0
173#endif
174
175/* Return 1 for a symbol ref for a thread-local storage symbol.  */
176#define RS6000_SYMBOL_REF_TLS_P(RTX) \
177  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
178
179#ifdef IN_LIBGCC2
180/* For libgcc2 we make sure this is a compile time constant */
181#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
182#undef TARGET_POWERPC64
183#define TARGET_POWERPC64	1
184#else
185#undef TARGET_POWERPC64
186#define TARGET_POWERPC64	0
187#endif
188#else
189    /* The option machinery will define this.  */
190#endif
191
192#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
193
194/* Processor type.  Order must match cpu attribute in MD file.  */
195enum processor_type
196 {
197   PROCESSOR_RIOS1,
198   PROCESSOR_RIOS2,
199   PROCESSOR_RS64A,
200   PROCESSOR_MPCCORE,
201   PROCESSOR_PPC403,
202   PROCESSOR_PPC405,
203   PROCESSOR_PPC440,
204   PROCESSOR_PPC601,
205   PROCESSOR_PPC603,
206   PROCESSOR_PPC604,
207   PROCESSOR_PPC604e,
208   PROCESSOR_PPC620,
209   PROCESSOR_PPC630,
210   PROCESSOR_PPC750,
211   PROCESSOR_PPC7400,
212   PROCESSOR_PPC7450,
213   PROCESSOR_PPC8540,
214   PROCESSOR_POWER4,
215   PROCESSOR_POWER5
216};
217
218extern enum processor_type rs6000_cpu;
219
220/* Recast the processor type to the cpu attribute.  */
221#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
222
223/* Define generic processor types based upon current deployment.  */
224#define PROCESSOR_COMMON    PROCESSOR_PPC601
225#define PROCESSOR_POWER     PROCESSOR_RIOS1
226#define PROCESSOR_POWERPC   PROCESSOR_PPC604
227#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
228
229/* Define the default processor.  This is overridden by other tm.h files.  */
230#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
231#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
232
233/* Specify the dialect of assembler to use.  New mnemonics is dialect one
234   and the old mnemonics are dialect zero.  */
235#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
236
237/* Types of costly dependences.  */
238enum rs6000_dependence_cost
239 {
240   max_dep_latency = 1000,
241   no_dep_costly,
242   all_deps_costly,
243   true_store_to_load_dep_costly,
244   store_to_load_dep_costly
245 };
246
247/* Types of nop insertion schemes in sched target hook sched_finish.  */
248enum rs6000_nop_insertion
249  {
250    sched_finish_regroup_exact = 1000,
251    sched_finish_pad_groups,
252    sched_finish_none
253  };
254
255/* Dispatch group termination caused by an insn.  */
256enum group_termination
257  {
258    current_group,
259    previous_group
260  };
261
262/* Support for a compile-time default CPU, et cetera.  The rules are:
263   --with-cpu is ignored if -mcpu is specified.
264   --with-tune is ignored if -mtune is specified.
265   --with-float is ignored if -mhard-float or -msoft-float are
266    specified.  */
267#define OPTION_DEFAULT_SPECS \
268  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
269  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
270  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
271
272/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
273struct rs6000_cpu_select
274{
275  const char *string;
276  const char *name;
277  int set_tune_p;
278  int set_arch_p;
279};
280
281extern struct rs6000_cpu_select rs6000_select[];
282
283/* Debug support */
284extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
285extern int rs6000_debug_stack;		/* debug stack applications */
286extern int rs6000_debug_arg;		/* debug argument handling */
287
288#define	TARGET_DEBUG_STACK	rs6000_debug_stack
289#define	TARGET_DEBUG_ARG	rs6000_debug_arg
290
291extern const char *rs6000_traceback_name; /* Type of traceback table.  */
292
293/* These are separate from target_flags because we've run out of bits
294   there.  */
295extern int rs6000_long_double_type_size;
296extern int rs6000_ieeequad;
297extern int rs6000_altivec_abi;
298extern int rs6000_spe_abi;
299extern int rs6000_float_gprs;
300extern int rs6000_alignment_flags;
301extern const char *rs6000_sched_insert_nops_str;
302extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
303
304/* Alignment options for fields in structures for sub-targets following
305   AIX-like ABI.
306   ALIGN_POWER word-aligns FP doubles (default AIX ABI).
307   ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
308
309   Override the macro definitions when compiling libobjc to avoid undefined
310   reference to rs6000_alignment_flags due to library's use of GCC alignment
311   macros which use the macros below.  */
312
313#ifndef IN_TARGET_LIBS
314#define MASK_ALIGN_POWER   0x00000000
315#define MASK_ALIGN_NATURAL 0x00000001
316#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
317#else
318#define TARGET_ALIGN_NATURAL 0
319#endif
320
321#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
322#define TARGET_IEEEQUAD rs6000_ieeequad
323#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
324
325#define TARGET_SPE_ABI 0
326#define TARGET_SPE 0
327#define TARGET_E500 0
328#define TARGET_ISEL 0
329#define TARGET_FPRS 1
330#define TARGET_E500_SINGLE 0
331#define TARGET_E500_DOUBLE 0
332
333/* E500 processors only support plain "sync", not lwsync.  */
334#define TARGET_NO_LWSYNC TARGET_E500
335
336/* Sometimes certain combinations of command options do not make sense
337   on a particular target machine.  You can define a macro
338   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
339   defined, is executed once just after all the command options have
340   been parsed.
341
342   Do not use this macro to turn on various extra optimizations for
343   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
344
345   On the RS/6000 this is used to define the target cpu type.  */
346
347#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
348
349/* Define this to change the optimizations performed by default.  */
350#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
351
352/* Show we can debug even without a frame pointer.  */
353#define CAN_DEBUG_WITHOUT_FP
354
355/* Target pragma.  */
356#define REGISTER_TARGET_PRAGMAS() do {				\
357  c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
358  targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
359} while (0)
360
361/* Target #defines.  */
362#define TARGET_CPU_CPP_BUILTINS() \
363  rs6000_cpu_cpp_builtins (pfile)
364
365/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
366   we're compiling for.  Some configurations may need to override it.  */
367#define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
368  do						\
369    {						\
370      if (BYTES_BIG_ENDIAN)			\
371	{					\
372	  builtin_define ("__BIG_ENDIAN__");	\
373	  builtin_define ("_BIG_ENDIAN");	\
374	  builtin_assert ("machine=bigendian");	\
375	}					\
376      else					\
377	{					\
378	  builtin_define ("__LITTLE_ENDIAN__");	\
379	  builtin_define ("_LITTLE_ENDIAN");	\
380	  builtin_assert ("machine=littleendian"); \
381	}					\
382    }						\
383  while (0)
384
385/* Target machine storage layout.  */
386
387/* Define this macro if it is advisable to hold scalars in registers
388   in a wider mode than that declared by the program.  In such cases,
389   the value is constrained to be within the bounds of the declared
390   type, but kept valid in the wider mode.  The signedness of the
391   extension may differ from that of the type.  */
392
393#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
394  if (GET_MODE_CLASS (MODE) == MODE_INT		\
395      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
396    (MODE) = TARGET_32BIT ? SImode : DImode;
397
398/* Define this if most significant bit is lowest numbered
399   in instructions that operate on numbered bit-fields.  */
400/* That is true on RS/6000.  */
401#define BITS_BIG_ENDIAN 1
402
403/* Define this if most significant byte of a word is the lowest numbered.  */
404/* That is true on RS/6000.  */
405#define BYTES_BIG_ENDIAN 1
406
407/* Define this if most significant word of a multiword number is lowest
408   numbered.
409
410   For RS/6000 we can decide arbitrarily since there are no machine
411   instructions for them.  Might as well be consistent with bits and bytes.  */
412#define WORDS_BIG_ENDIAN 1
413
414#define MAX_BITS_PER_WORD 64
415
416/* Width of a word, in units (bytes).  */
417#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
418#ifdef IN_LIBGCC2
419#define MIN_UNITS_PER_WORD UNITS_PER_WORD
420#else
421#define MIN_UNITS_PER_WORD 4
422#endif
423#define UNITS_PER_FP_WORD 8
424#define UNITS_PER_ALTIVEC_WORD 16
425#define UNITS_PER_SPE_WORD 8
426
427/* Type used for ptrdiff_t, as a string used in a declaration.  */
428#define PTRDIFF_TYPE "int"
429
430/* Type used for size_t, as a string used in a declaration.  */
431#define SIZE_TYPE "long unsigned int"
432
433/* Type used for wchar_t, as a string used in a declaration.  */
434#define WCHAR_TYPE "short unsigned int"
435
436/* Width of wchar_t in bits.  */
437#define WCHAR_TYPE_SIZE 16
438
439/* A C expression for the size in bits of the type `short' on the
440   target machine.  If you don't define this, the default is half a
441   word.  (If this would be less than one storage unit, it is
442   rounded up to one unit.)  */
443#define SHORT_TYPE_SIZE 16
444
445/* A C expression for the size in bits of the type `int' on the
446   target machine.  If you don't define this, the default is one
447   word.  */
448#define INT_TYPE_SIZE 32
449
450/* A C expression for the size in bits of the type `long' on the
451   target machine.  If you don't define this, the default is one
452   word.  */
453#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
454
455/* A C expression for the size in bits of the type `long long' on the
456   target machine.  If you don't define this, the default is two
457   words.  */
458#define LONG_LONG_TYPE_SIZE 64
459
460/* A C expression for the size in bits of the type `float' on the
461   target machine.  If you don't define this, the default is one
462   word.  */
463#define FLOAT_TYPE_SIZE 32
464
465/* A C expression for the size in bits of the type `double' on the
466   target machine.  If you don't define this, the default is two
467   words.  */
468#define DOUBLE_TYPE_SIZE 64
469
470/* A C expression for the size in bits of the type `long double' on
471   the target machine.  If you don't define this, the default is two
472   words.  */
473#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
474
475/* Define this to set long double type size to use in libgcc2.c, which can
476   not depend on target_flags.  */
477#ifdef __LONG_DOUBLE_128__
478#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
479#else
480#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
481#endif
482
483/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
484#define WIDEST_HARDWARE_FP_SIZE 64
485
486/* Width in bits of a pointer.
487   See also the macro `Pmode' defined below.  */
488#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
489
490/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
491#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
492
493/* Boundary (in *bits*) on which stack pointer should be aligned.  */
494#define STACK_BOUNDARY \
495  ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
496
497/* Allocation boundary (in *bits*) for the code of a function.  */
498#define FUNCTION_BOUNDARY 32
499
500/* No data type wants to be aligned rounder than this.  */
501#define BIGGEST_ALIGNMENT 128
502
503/* A C expression to compute the alignment for a variables in the
504   local store.  TYPE is the data type, and ALIGN is the alignment
505   that the object would ordinarily have.  */
506#define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
507  ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :	\
508    (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
509    (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
510     && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) ? 64 : ALIGN)
511
512/* Alignment of field after `int : 0' in a structure.  */
513#define EMPTY_FIELD_BOUNDARY 32
514
515/* Every structure's size must be a multiple of this.  */
516#define STRUCTURE_SIZE_BOUNDARY 8
517
518/* Return 1 if a structure or array containing FIELD should be
519   accessed using `BLKMODE'.
520
521   For the SPE, simd types are V2SI, and gcc can be tempted to put the
522   entire thing in a DI and use subregs to access the internals.
523   store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
524   back-end.  Because a single GPR can hold a V2SI, but not a DI, the
525   best thing to do is set structs to BLKmode and avoid Severe Tire
526   Damage.
527
528   On e500 v2, DF and DI modes suffer from the same anomaly.  DF can
529   fit into 1, whereas DI still needs two.  */
530#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
531  ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
532   || (TARGET_E500_DOUBLE && (MODE) == DFmode))
533
534/* A bit-field declared as `int' forces `int' alignment for the struct.  */
535#define PCC_BITFIELD_TYPE_MATTERS 1
536
537/* Make strings word-aligned so strcpy from constants will be faster.
538   Make vector constants quadword aligned.  */
539#define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
540  (TREE_CODE (EXP) == STRING_CST	                         \
541   && (ALIGN) < BITS_PER_WORD                                    \
542   ? BITS_PER_WORD                                               \
543   : (ALIGN))
544
545/* Make arrays of chars word-aligned for the same reasons.
546   Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
547   64 bits.  */
548#define DATA_ALIGNMENT(TYPE, ALIGN)		\
549  (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)	\
550   : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
551   : TREE_CODE (TYPE) == ARRAY_TYPE		\
552   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
553   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
554
555/* Nonzero if move instructions will actually fail to work
556   when given unaligned data.  */
557#define STRICT_ALIGNMENT 0
558
559/* Define this macro to be the value 1 if unaligned accesses have a cost
560   many times greater than aligned accesses, for example if they are
561   emulated in a trap handler.  */
562#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
563  (STRICT_ALIGNMENT							\
564   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
565	|| (MODE) == DImode)						\
566       && (ALIGN) < 32))
567
568/* Standard register usage.  */
569
570/* Number of actual hardware registers.
571   The hardware registers are assigned numbers for the compiler
572   from 0 to just below FIRST_PSEUDO_REGISTER.
573   All registers that the compiler knows about must be given numbers,
574   even those that are not normally considered general registers.
575
576   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
577   an MQ register, a count register, a link register, and 8 condition
578   register fields, which we view here as separate registers.  AltiVec
579   adds 32 vector registers and a VRsave register.
580
581   In addition, the difference between the frame and argument pointers is
582   a function of the number of registers saved, so we need to have a
583   register for AP that will later be eliminated in favor of SP or FP.
584   This is a normal register, but it is fixed.
585
586   We also create a pseudo register for float/int conversions, that will
587   really represent the memory location used.  It is represented here as
588   a register, in order to work around problems in allocating stack storage
589   in inline functions.
590
591   Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
592   pointer, which is eventually eliminated in favor of SP or FP.  */
593
594#define FIRST_PSEUDO_REGISTER 114
595
596/* This must be included for pre gcc 3.0 glibc compatibility.  */
597#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
598
599/* Add 32 dwarf columns for synthetic SPE registers.  */
600#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
601
602/* The SPE has an additional 32 synthetic registers, with DWARF debug
603   info numbering for these registers starting at 1200.  While eh_frame
604   register numbering need not be the same as the debug info numbering,
605   we choose to number these regs for eh_frame at 1200 too.  This allows
606   future versions of the rs6000 backend to add hard registers and
607   continue to use the gcc hard register numbering for eh_frame.  If the
608   extra SPE registers in eh_frame were numbered starting from the
609   current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
610   changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
611   avoid invalidating older SPE eh_frame info.
612
613   We must map them here to avoid huge unwinder tables mostly consisting
614   of unused space.  */
615#define DWARF_REG_TO_UNWIND_COLUMN(r) \
616  ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
617
618/* Use standard DWARF numbering for DWARF debugging information.  */
619#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
620
621/* Use gcc hard register numbering for eh_frame.  */
622#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
623
624/* Map register numbers held in the call frame info that gcc has
625   collected using DWARF_FRAME_REGNUM to those that should be output in
626   .debug_frame and .eh_frame.  We continue to use gcc hard reg numbers
627   for .eh_frame, but use the numbers mandated by the various ABIs for
628   .debug_frame.  rs6000_emit_prologue has translated any combination of
629   CR2, CR3, CR4 saves to a save of CR2.  The actual code emitted saves
630   the whole of CR, so we map CR2_REGNO to the DWARF reg for CR.  */
631#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)	\
632  ((FOR_EH) ? (REGNO)				\
633   : (REGNO) == CR2_REGNO ? 64			\
634   : DBX_REGISTER_NUMBER (REGNO))
635
636/* 1 for registers that have pervasive standard uses
637   and are not available for the register allocator.
638
639   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
640   as a local register; for all other OS's r2 is the TOC pointer.
641
642   cr5 is not supposed to be used.
643
644   On System V implementations, r13 is fixed and not available for use.  */
645
646#define FIXED_REGISTERS  \
647  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
648   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
649   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
650   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
652   /* AltiVec registers.  */			   \
653   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
654   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
655   1, 1						   \
656   , 1, 1, 1                                       \
657}
658
659/* 1 for registers not available across function calls.
660   These must include the FIXED_REGISTERS and also any
661   registers that can be used without being saved.
662   The latter must include the registers where values are returned
663   and the register where structure-value addresses are passed.
664   Aside from that, you can include as many other registers as you like.  */
665
666#define CALL_USED_REGISTERS  \
667  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
668   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
669   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
670   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
671   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
672   /* AltiVec registers.  */			   \
673   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
674   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
675   1, 1						   \
676   , 1, 1, 1                                       \
677}
678
679/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
680   the entire set of `FIXED_REGISTERS' be included.
681   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
682   This macro is optional.  If not specified, it defaults to the value
683   of `CALL_USED_REGISTERS'.  */
684
685#define CALL_REALLY_USED_REGISTERS  \
686  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
687   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
688   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
689   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
690   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
691   /* AltiVec registers.  */			   \
692   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
693   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
694   0, 0						   \
695   , 0, 0, 0                                       \
696}
697
698#define MQ_REGNO     64
699#define CR0_REGNO    68
700#define CR1_REGNO    69
701#define CR2_REGNO    70
702#define CR3_REGNO    71
703#define CR4_REGNO    72
704#define MAX_CR_REGNO 75
705#define XER_REGNO    76
706#define FIRST_ALTIVEC_REGNO	77
707#define LAST_ALTIVEC_REGNO	108
708#define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
709#define VRSAVE_REGNO		109
710#define VSCR_REGNO		110
711#define SPE_ACC_REGNO		111
712#define SPEFSCR_REGNO		112
713
714#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
715#define FIRST_SAVED_FP_REGNO    (14+32)
716#define FIRST_SAVED_GP_REGNO 13
717
718/* List the order in which to allocate registers.  Each register must be
719   listed once, even those in FIXED_REGISTERS.
720
721   We allocate in the following order:
722	fp0		(not saved or used for anything)
723	fp13 - fp2	(not saved; incoming fp arg registers)
724	fp1		(not saved; return value)
725	fp31 - fp14	(saved; order given to save least number)
726	cr7, cr6	(not saved or special)
727	cr1		(not saved, but used for FP operations)
728	cr0		(not saved, but used for arithmetic operations)
729	cr4, cr3, cr2	(saved)
730	r0		(not saved; cannot be base reg)
731	r9		(not saved; best for TImode)
732	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
733	r3		(not saved; return value register)
734	r31 - r13	(saved; order given to save least number)
735	r12		(not saved; if used for DImode or DFmode would use r13)
736	mq		(not saved; best to use it if we can)
737	ctr		(not saved; when we have the choice ctr is better)
738	lr		(saved)
739	cr5, r1, r2, ap, xer (fixed)
740	v0 - v1		(not saved or used for anything)
741	v13 - v3	(not saved; incoming vector arg registers)
742	v2		(not saved; incoming vector arg reg; return value)
743	v19 - v14	(not saved or used for anything)
744	v31 - v20	(saved; order given to save least number)
745	vrsave, vscr	(fixed)
746	spe_acc, spefscr (fixed)
747	sfp		(fixed)
748*/
749
750#if FIXED_R2 == 1
751#define MAYBE_R2_AVAILABLE
752#define MAYBE_R2_FIXED 2,
753#else
754#define MAYBE_R2_AVAILABLE 2,
755#define MAYBE_R2_FIXED
756#endif
757
758#define REG_ALLOC_ORDER						\
759  {32,								\
760   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,		\
761   33,								\
762   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
763   50, 49, 48, 47, 46,						\
764   75, 74, 69, 68, 72, 71, 70,					\
765   0, MAYBE_R2_AVAILABLE					\
766   9, 11, 10, 8, 7, 6, 5, 4,					\
767   3,								\
768   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
769   18, 17, 16, 15, 14, 13, 12,					\
770   64, 66, 65,							\
771   73, 1, MAYBE_R2_FIXED 67, 76,				\
772   /* AltiVec registers.  */					\
773   77, 78,							\
774   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,			\
775   79,								\
776   96, 95, 94, 93, 92, 91,					\
777   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,	\
778   109, 110,							\
779   111, 112, 113						\
780}
781
782/* True if register is floating-point.  */
783#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
784
785/* True if register is a condition register.  */
786#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
787
788/* True if register is a condition register, but not cr0.  */
789#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
790
791/* True if register is an integer register.  */
792#define INT_REGNO_P(N) \
793  ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
794
795/* SPE SIMD registers are just the GPRs.  */
796#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
797
798/* True if register is the XER register.  */
799#define XER_REGNO_P(N) ((N) == XER_REGNO)
800
801/* True if register is an AltiVec register.  */
802#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
803
804/* Return number of consecutive hard regs needed starting at reg REGNO
805   to hold something of mode MODE.  */
806
807#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
808
809#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)	\
810  ((TARGET_32BIT && TARGET_POWERPC64			\
811    && (GET_MODE_SIZE (MODE) > 4)  \
812    && INT_REGNO_P (REGNO)) ? 1 : 0)
813
814#define ALTIVEC_VECTOR_MODE(MODE)	\
815	 ((MODE) == V16QImode		\
816	  || (MODE) == V8HImode		\
817	  || (MODE) == V4SFmode		\
818	  || (MODE) == V4SImode)
819
820#define SPE_VECTOR_MODE(MODE)		\
821	((MODE) == V4HImode          	\
822         || (MODE) == V2SFmode          \
823         || (MODE) == V1DImode          \
824         || (MODE) == V2SImode)
825
826#define UNITS_PER_SIMD_WORD					\
827        (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD		\
828	 : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
829
830/* Value is TRUE if hard register REGNO can hold a value of
831   machine-mode MODE.  */
832#define HARD_REGNO_MODE_OK(REGNO, MODE) \
833  rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
834
835/* Value is 1 if it is a good idea to tie two pseudo registers
836   when one has mode MODE1 and one has mode MODE2.
837   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
838   for any hard reg, then this must be 0 for correct output.  */
839#define MODES_TIEABLE_P(MODE1, MODE2) \
840  (SCALAR_FLOAT_MODE_P (MODE1)			\
841   ? SCALAR_FLOAT_MODE_P (MODE2)		\
842   : SCALAR_FLOAT_MODE_P (MODE2)		\
843   ? SCALAR_FLOAT_MODE_P (MODE1)		\
844   : GET_MODE_CLASS (MODE1) == MODE_CC		\
845   ? GET_MODE_CLASS (MODE2) == MODE_CC		\
846   : GET_MODE_CLASS (MODE2) == MODE_CC		\
847   ? GET_MODE_CLASS (MODE1) == MODE_CC		\
848   : SPE_VECTOR_MODE (MODE1)			\
849   ? SPE_VECTOR_MODE (MODE2)			\
850   : SPE_VECTOR_MODE (MODE2)			\
851   ? SPE_VECTOR_MODE (MODE1)			\
852   : ALTIVEC_VECTOR_MODE (MODE1)		\
853   ? ALTIVEC_VECTOR_MODE (MODE2)		\
854   : ALTIVEC_VECTOR_MODE (MODE2)		\
855   ? ALTIVEC_VECTOR_MODE (MODE1)		\
856   : 1)
857
858/* Post-reload, we can't use any new AltiVec registers, as we already
859   emitted the vrsave mask.  */
860
861#define HARD_REGNO_RENAME_OK(SRC, DST) \
862  (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
863
864/* A C expression returning the cost of moving data from a register of class
865   CLASS1 to one of CLASS2.  */
866
867#define REGISTER_MOVE_COST rs6000_register_move_cost
868
869/* A C expressions returning the cost of moving data of MODE from a register to
870   or from memory.  */
871
872#define MEMORY_MOVE_COST rs6000_memory_move_cost
873
874/* Specify the cost of a branch insn; roughly the number of extra insns that
875   should be added to avoid a branch.
876
877   Set this to 3 on the RS/6000 since that is roughly the average cost of an
878   unscheduled conditional branch.  */
879
880#define BRANCH_COST 3
881
882/* Override BRANCH_COST heuristic which empirically produces worse
883   performance for removing short circuiting from the logical ops.  */
884
885#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
886
887/* A fixed register used at prologue and epilogue generation to fix
888   addressing modes.  The SPE needs heavy addressing fixes at the last
889   minute, and it's best to save a register for it.
890
891   AltiVec also needs fixes, but we've gotten around using r11, which
892   is actually wrong because when use_backchain_to_restore_sp is true,
893   we end up clobbering r11.
894
895   The AltiVec case needs to be fixed.  Dunno if we should break ABI
896   compatibility and reserve a register for it as well..  */
897
898#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
899
900/* Define this macro to change register usage conditional on target
901   flags.  */
902
903#define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
904
905/* Specify the registers used for certain standard purposes.
906   The values of these macros are register numbers.  */
907
908/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
909/* #define PC_REGNUM  */
910
911/* Register to use for pushing function arguments.  */
912#define STACK_POINTER_REGNUM 1
913
914/* Base register for access to local variables of the function.  */
915#define HARD_FRAME_POINTER_REGNUM 31
916
917/* Base register for access to local variables of the function.  */
918#define FRAME_POINTER_REGNUM 113
919
920/* Value should be nonzero if functions must have frame pointers.
921   Zero means the frame pointer need not be set up (and parms
922   may be accessed via the stack pointer) in functions that seem suitable.
923   This is computed in `reload', in reload1.c.  */
924#define FRAME_POINTER_REQUIRED 0
925
926/* Base register for access to arguments of the function.  */
927#define ARG_POINTER_REGNUM 67
928
929/* Place to put static chain when calling a function that requires it.  */
930#define STATIC_CHAIN_REGNUM 11
931
932/* Link register number.  */
933#define LINK_REGISTER_REGNUM 65
934
935/* Count register number.  */
936#define COUNT_REGISTER_REGNUM 66
937
938/* Define the classes of registers for register constraints in the
939   machine description.  Also define ranges of constants.
940
941   One of the classes must always be named ALL_REGS and include all hard regs.
942   If there is more than one class, another class must be named NO_REGS
943   and contain no registers.
944
945   The name GENERAL_REGS must be the name of a class (or an alias for
946   another name such as ALL_REGS).  This is the class of registers
947   that is allowed by "g" or "r" in a register constraint.
948   Also, registers outside this class are allocated only when
949   instructions express preferences for them.
950
951   The classes must be numbered in nondecreasing order; that is,
952   a larger-numbered class must never be contained completely
953   in a smaller-numbered class.
954
955   For any two classes, it is very desirable that there be another
956   class that represents their union.  */
957
958/* The RS/6000 has three types of registers, fixed-point, floating-point,
959   and condition registers, plus three special registers, MQ, CTR, and the
960   link register.  AltiVec adds a vector register class.
961
962   However, r0 is special in that it cannot be used as a base register.
963   So make a class for registers valid as base registers.
964
965   Also, cr0 is the only condition code register that can be used in
966   arithmetic insns, so make a separate class for it.  */
967
968enum reg_class
969{
970  NO_REGS,
971  BASE_REGS,
972  GENERAL_REGS,
973  FLOAT_REGS,
974  ALTIVEC_REGS,
975  VRSAVE_REGS,
976  VSCR_REGS,
977  SPE_ACC_REGS,
978  SPEFSCR_REGS,
979  NON_SPECIAL_REGS,
980  MQ_REGS,
981  LINK_REGS,
982  CTR_REGS,
983  LINK_OR_CTR_REGS,
984  SPECIAL_REGS,
985  SPEC_OR_GEN_REGS,
986  CR0_REGS,
987  CR_REGS,
988  NON_FLOAT_REGS,
989  XER_REGS,
990  ALL_REGS,
991  LIM_REG_CLASSES
992};
993
994#define N_REG_CLASSES (int) LIM_REG_CLASSES
995
996/* Give names of register classes as strings for dump file.  */
997
998#define REG_CLASS_NAMES							\
999{									\
1000  "NO_REGS",								\
1001  "BASE_REGS",								\
1002  "GENERAL_REGS",							\
1003  "FLOAT_REGS",								\
1004  "ALTIVEC_REGS",							\
1005  "VRSAVE_REGS",							\
1006  "VSCR_REGS",								\
1007  "SPE_ACC_REGS",                                                       \
1008  "SPEFSCR_REGS",                                                       \
1009  "NON_SPECIAL_REGS",							\
1010  "MQ_REGS",								\
1011  "LINK_REGS",								\
1012  "CTR_REGS",								\
1013  "LINK_OR_CTR_REGS",							\
1014  "SPECIAL_REGS",							\
1015  "SPEC_OR_GEN_REGS",							\
1016  "CR0_REGS",								\
1017  "CR_REGS",								\
1018  "NON_FLOAT_REGS",							\
1019  "XER_REGS",								\
1020  "ALL_REGS"								\
1021}
1022
1023/* Define which registers fit in which classes.
1024   This is an initializer for a vector of HARD_REG_SET
1025   of length N_REG_CLASSES.  */
1026
1027#define REG_CLASS_CONTENTS						     \
1028{									     \
1029  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1030  { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */	     \
1031  { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */     \
1032  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1033  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1034  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1035  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1036  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1037  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1038  { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1039  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1040  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1041  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1042  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1043  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1044  { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1045  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1046  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1047  { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */   \
1048  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1049  { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff }  /* ALL_REGS */	     \
1050}
1051
1052/* The same information, inverted:
1053   Return the class number of the smallest class containing
1054   reg number REGNO.  This could be a conditional expression
1055   or could index an array.  */
1056
1057#define REGNO_REG_CLASS(REGNO)			\
1058 ((REGNO) == 0 ? GENERAL_REGS			\
1059  : (REGNO) < 32 ? BASE_REGS			\
1060  : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1061  : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1062  : (REGNO) == CR0_REGNO ? CR0_REGS		\
1063  : CR_REGNO_P (REGNO) ? CR_REGS		\
1064  : (REGNO) == MQ_REGNO ? MQ_REGS		\
1065  : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1066  : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1067  : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1068  : (REGNO) == XER_REGNO ? XER_REGS		\
1069  : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1070  : (REGNO) == VSCR_REGNO ? VRSAVE_REGS		\
1071  : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\
1072  : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\
1073  : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS	\
1074  : NO_REGS)
1075
1076/* The class value for index registers, and the one for base regs.  */
1077#define INDEX_REG_CLASS GENERAL_REGS
1078#define BASE_REG_CLASS BASE_REGS
1079
1080/* Given an rtx X being reloaded into a reg required to be
1081   in class CLASS, return the class of reg to actually use.
1082   In general this is just CLASS; but on some machines
1083   in some cases it is preferable to use a more restrictive class.
1084
1085   On the RS/6000, we have to return NO_REGS when we want to reload a
1086   floating-point CONST_DOUBLE to force it to be copied to memory.
1087
1088   We also don't want to reload integer values into floating-point
1089   registers if we can at all help it.  In fact, this can
1090   cause reload to die, if it tries to generate a reload of CTR
1091   into a FP register and discovers it doesn't have the memory location
1092   required.
1093
1094   ??? Would it be a good idea to have reload do the converse, that is
1095   try to reload floating modes into FP registers if possible?
1096 */
1097
1098#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1099  ((CONSTANT_P (X)					\
1100    && reg_classes_intersect_p ((CLASS), FLOAT_REGS))	\
1101   ? NO_REGS 						\
1102   : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1103      && (CLASS) == NON_SPECIAL_REGS)			\
1104   ? GENERAL_REGS					\
1105   : (CLASS))
1106
1107/* Return the register class of a scratch register needed to copy IN into
1108   or out of a register in CLASS in MODE.  If it can be done directly,
1109   NO_REGS is returned.  */
1110
1111#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1112  rs6000_secondary_reload_class (CLASS, MODE, IN)
1113
1114/* If we are copying between FP or AltiVec registers and anything
1115   else, we need a memory location.  */
1116
1117#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1118 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1119			   || (CLASS2) == FLOAT_REGS		\
1120			   || (CLASS1) == ALTIVEC_REGS		\
1121			   || (CLASS2) == ALTIVEC_REGS))
1122
1123/* Return the maximum number of consecutive registers
1124   needed to represent mode MODE in a register of class CLASS.
1125
1126   On RS/6000, this is the size of MODE in words,
1127   except in the FP regs, where a single reg is enough for two words.  */
1128#define CLASS_MAX_NREGS(CLASS, MODE)					\
1129 (((CLASS) == FLOAT_REGS) 						\
1130  ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1131  : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1132  ? 1                                                                   \
1133  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1134
1135/* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1136
1137#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\
1138  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				\
1139   ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8		\
1140       || TARGET_IEEEQUAD)						\
1141      && reg_classes_intersect_p (FLOAT_REGS, CLASS))			\
1142   : (((TARGET_E500_DOUBLE						\
1143	&& ((((TO) == DFmode) + ((FROM) == DFmode)) == 1		\
1144	    || (((TO) == DImode) + ((FROM) == DImode)) == 1))		\
1145       || (TARGET_SPE							\
1146	   && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1))	\
1147      && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1148
1149/* Stack layout; function entry, exit and calling.  */
1150
1151/* Enumeration to give which calling sequence to use.  */
1152enum rs6000_abi {
1153  ABI_NONE,
1154  ABI_AIX,			/* IBM's AIX */
1155  ABI_V4,			/* System V.4/eabi */
1156  ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1157};
1158
1159extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1160
1161/* Define this if pushing a word on the stack
1162   makes the stack pointer a smaller address.  */
1163#define STACK_GROWS_DOWNWARD
1164
1165/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1166#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1167
1168/* Define this to nonzero if the nominal address of the stack frame
1169   is at the high-address end of the local variables;
1170   that is, each additional local variable allocated
1171   goes at a more negative offset in the frame.
1172
1173   On the RS/6000, we grow upwards, from the area after the outgoing
1174   arguments.  */
1175#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1176
1177/* Size of the outgoing register save area */
1178#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1179			  || DEFAULT_ABI == ABI_DARWIN)			\
1180			 ? (TARGET_64BIT ? 64 : 32)			\
1181			 : 0)
1182
1183/* Size of the fixed area on the stack */
1184#define RS6000_SAVE_AREA \
1185  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1186   << (TARGET_64BIT ? 1 : 0))
1187
1188/* MEM representing address to save the TOC register */
1189#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1190				     plus_constant (stack_pointer_rtx, \
1191						    (TARGET_32BIT ? 20 : 40)))
1192
1193/* Align an address */
1194#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1195
1196/* Offset within stack frame to start allocating local variables at.
1197   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1198   first local allocated.  Otherwise, it is the offset to the BEGINNING
1199   of the first local allocated.
1200
1201   On the RS/6000, the frame pointer is the same as the stack pointer,
1202   except for dynamic allocations.  So we start after the fixed area and
1203   outgoing parameter area.  */
1204
1205#define STARTING_FRAME_OFFSET						\
1206  (FRAME_GROWS_DOWNWARD							\
1207   ? 0									\
1208   : (RS6000_ALIGN (current_function_outgoing_args_size,		\
1209		    TARGET_ALTIVEC ? 16 : 8)				\
1210      + RS6000_SAVE_AREA))
1211
1212/* Offset from the stack pointer register to an item dynamically
1213   allocated on the stack, e.g., by `alloca'.
1214
1215   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1216   length of the outgoing arguments.  The default is correct for most
1217   machines.  See `function.c' for details.  */
1218#define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1219  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1220		 TARGET_ALTIVEC ? 16 : 8)				\
1221   + (STACK_POINTER_OFFSET))
1222
1223/* If we generate an insn to push BYTES bytes,
1224   this says how many the stack pointer really advances by.
1225   On RS/6000, don't define this because there are no push insns.  */
1226/*  #define PUSH_ROUNDING(BYTES) */
1227
1228/* Offset of first parameter from the argument pointer register value.
1229   On the RS/6000, we define the argument pointer to the start of the fixed
1230   area.  */
1231#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1232
1233/* Offset from the argument pointer register value to the top of
1234   stack.  This is different from FIRST_PARM_OFFSET because of the
1235   register save area.  */
1236#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1237
1238/* Define this if stack space is still allocated for a parameter passed
1239   in a register.  The value is the number of bytes allocated to this
1240   area.  */
1241#define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1242
1243/* Define this if the above stack space is to be considered part of the
1244   space allocated by the caller.  */
1245#define OUTGOING_REG_PARM_STACK_SPACE
1246
1247/* This is the difference between the logical top of stack and the actual sp.
1248
1249   For the RS/6000, sp points past the fixed area.  */
1250#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1251
1252/* Define this if the maximum size of all the outgoing args is to be
1253   accumulated and pushed during the prologue.  The amount can be
1254   found in the variable current_function_outgoing_args_size.  */
1255#define ACCUMULATE_OUTGOING_ARGS 1
1256
1257/* Value is the number of bytes of arguments automatically
1258   popped when returning from a subroutine call.
1259   FUNDECL is the declaration node of the function (as a tree),
1260   FUNTYPE is the data type of the function (as a tree),
1261   or for a library call it is an identifier node for the subroutine name.
1262   SIZE is the number of bytes of arguments passed on the stack.  */
1263
1264#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1265
1266/* Define how to find the value returned by a function.
1267   VALTYPE is the data type of the value (as a tree).
1268   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1269   otherwise, FUNC is 0.  */
1270
1271#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1272
1273/* Define how to find the value returned by a library function
1274   assuming the value has mode MODE.  */
1275
1276#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1277
1278/* DRAFT_V4_STRUCT_RET defaults off.  */
1279#define DRAFT_V4_STRUCT_RET 0
1280
1281/* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1282#define DEFAULT_PCC_STRUCT_RETURN 0
1283
1284/* Mode of stack savearea.
1285   FUNCTION is VOIDmode because calling convention maintains SP.
1286   BLOCK needs Pmode for SP.
1287   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1288#define STACK_SAVEAREA_MODE(LEVEL)	\
1289  (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1290  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1291
1292/* Minimum and maximum general purpose registers used to hold arguments.  */
1293#define GP_ARG_MIN_REG 3
1294#define GP_ARG_MAX_REG 10
1295#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1296
1297/* Minimum and maximum floating point registers used to hold arguments.  */
1298#define FP_ARG_MIN_REG 33
1299#define	FP_ARG_AIX_MAX_REG 45
1300#define	FP_ARG_V4_MAX_REG  40
1301#define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1302			 || DEFAULT_ABI == ABI_DARWIN)			\
1303			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1304#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1305
1306/* Minimum and maximum AltiVec registers used to hold arguments.  */
1307#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1308#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1309#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1310
1311/* Return registers */
1312#define GP_ARG_RETURN GP_ARG_MIN_REG
1313#define FP_ARG_RETURN FP_ARG_MIN_REG
1314#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1315
1316/* Flags for the call/call_value rtl operations set up by function_arg */
1317#define CALL_NORMAL		0x00000000	/* no special processing */
1318/* Bits in 0x00000001 are unused.  */
1319#define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1320#define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1321#define CALL_LONG		0x00000008	/* always call indirect */
1322#define CALL_LIBCALL		0x00000010	/* libcall */
1323
1324/* We don't have prologue and epilogue functions to save/restore
1325   everything for most ABIs.  */
1326#define WORLD_SAVE_P(INFO) 0
1327
1328/* 1 if N is a possible register number for a function value
1329   as seen by the caller.
1330
1331   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1332#define FUNCTION_VALUE_REGNO_P(N)					\
1333  ((N) == GP_ARG_RETURN							\
1334   || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS)	\
1335   || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1336
1337/* 1 if N is a possible register number for function argument passing.
1338   On RS/6000, these are r3-r10 and fp1-fp13.
1339   On AltiVec, v2 - v13 are used for passing vectors.  */
1340#define FUNCTION_ARG_REGNO_P(N)						\
1341  ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1342   || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1343       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1344   || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1345       && TARGET_HARD_FLOAT && TARGET_FPRS))
1346
1347/* Define a data type for recording info about an argument list
1348   during the scan of that argument list.  This data type should
1349   hold all necessary information about the function itself
1350   and about the args processed so far, enough to enable macros
1351   such as FUNCTION_ARG to determine where the next arg should go.
1352
1353   On the RS/6000, this is a structure.  The first element is the number of
1354   total argument words, the second is used to store the next
1355   floating-point register number, and the third says how many more args we
1356   have prototype types for.
1357
1358   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1359   the next available GP register, `fregno' is the next available FP
1360   register, and `words' is the number of words used on the stack.
1361
1362   The varargs/stdarg support requires that this structure's size
1363   be a multiple of sizeof(int).  */
1364
1365typedef struct rs6000_args
1366{
1367  int words;			/* # words used for passing GP registers */
1368  int fregno;			/* next available FP register */
1369  int vregno;			/* next available AltiVec register */
1370  int nargs_prototype;		/* # args left in the current prototype */
1371  int prototype;		/* Whether a prototype was defined */
1372  int stdarg;			/* Whether function is a stdarg function.  */
1373  int call_cookie;		/* Do special things for this call */
1374  int sysv_gregno;		/* next available GP register */
1375  int intoffset;		/* running offset in struct (darwin64) */
1376  int use_stack;		/* any part of struct on stack (darwin64) */
1377  int named;			/* false for varargs params */
1378} CUMULATIVE_ARGS;
1379
1380/* Initialize a variable CUM of type CUMULATIVE_ARGS
1381   for a call to a function whose data type is FNTYPE.
1382   For a library call, FNTYPE is 0.  */
1383
1384#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1385  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1386
1387/* Similar, but when scanning the definition of a procedure.  We always
1388   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1389
1390#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1391  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1392
1393/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1394
1395#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1396  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1397
1398/* Update the data in CUM to advance over an argument
1399   of mode MODE and data type TYPE.
1400   (TYPE is null for libcalls where that information may not be available.)  */
1401
1402#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1403  function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1404
1405/* Determine where to put an argument to a function.
1406   Value is zero to push the argument on the stack,
1407   or a hard register in which to store the argument.
1408
1409   MODE is the argument's machine mode.
1410   TYPE is the data type of the argument (as a tree).
1411    This is null for libcalls where that information may
1412    not be available.
1413   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1414    the preceding args and about the function being called.
1415   NAMED is nonzero if this argument is a named parameter
1416    (otherwise it is an extra parameter matching an ellipsis).
1417
1418   On RS/6000 the first eight words of non-FP are normally in registers
1419   and the rest are pushed.  The first 13 FP args are in registers.
1420
1421   If this is floating-point and no prototype is specified, we use
1422   both an FP and integer register (or possibly FP reg and stack).  Library
1423   functions (when TYPE is zero) always have the proper types for args,
1424   so we can pass the FP value just in one register.  emit_library_function
1425   doesn't support EXPR_LIST anyway.  */
1426
1427#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1428  function_arg (&CUM, MODE, TYPE, NAMED)
1429
1430/* If defined, a C expression which determines whether, and in which
1431   direction, to pad out an argument with extra space.  The value
1432   should be of type `enum direction': either `upward' to pad above
1433   the argument, `downward' to pad below, or `none' to inhibit
1434   padding.  */
1435
1436#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1437
1438/* If defined, a C expression that gives the alignment boundary, in bits,
1439   of an argument with the specified mode and type.  If it is not defined,
1440   PARM_BOUNDARY is used for all arguments.  */
1441
1442#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1443  function_arg_boundary (MODE, TYPE)
1444
1445/* Implement `va_start' for varargs and stdarg.  */
1446#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1447  rs6000_va_start (valist, nextarg)
1448
1449#define PAD_VARARGS_DOWN \
1450   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1451
1452/* Output assembler code to FILE to increment profiler label # LABELNO
1453   for profiling a function entry.  */
1454
1455#define FUNCTION_PROFILER(FILE, LABELNO)	\
1456  output_function_profiler ((FILE), (LABELNO));
1457
1458/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1459   the stack pointer does not matter. No definition is equivalent to
1460   always zero.
1461
1462   On the RS/6000, this is nonzero because we can restore the stack from
1463   its backpointer, which we maintain.  */
1464#define EXIT_IGNORE_STACK	1
1465
1466/* Define this macro as a C expression that is nonzero for registers
1467   that are used by the epilogue or the return' pattern.  The stack
1468   and frame pointer registers are already be assumed to be used as
1469   needed.  */
1470
1471#define	EPILOGUE_USES(REGNO)					\
1472  ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1473   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1474   || (current_function_calls_eh_return				\
1475       && TARGET_AIX						\
1476       && (REGNO) == 2))
1477
1478
1479/* TRAMPOLINE_TEMPLATE deleted */
1480
1481/* Length in units of the trampoline for entering a nested function.  */
1482
1483#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1484
1485/* Emit RTL insns to initialize the variable parts of a trampoline.
1486   FNADDR is an RTX for the address of the function's pure code.
1487   CXT is an RTX for the static chain value for the function.  */
1488
1489#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1490  rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1491
1492/* Definitions for __builtin_return_address and __builtin_frame_address.
1493   __builtin_return_address (0) should give link register (65), enable
1494   this.  */
1495/* This should be uncommented, so that the link register is used, but
1496   currently this would result in unmatched insns and spilling fixed
1497   registers so we'll leave it for another day.  When these problems are
1498   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1499   (mrs) */
1500/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1501
1502/* Number of bytes into the frame return addresses can be found.  See
1503   rs6000_stack_info in rs6000.c for more information on how the different
1504   abi's store the return address.  */
1505#define RETURN_ADDRESS_OFFSET						\
1506 ((DEFAULT_ABI == ABI_AIX						\
1507   || DEFAULT_ABI == ABI_DARWIN)	? (TARGET_32BIT ? 8 : 16) :	\
1508  (DEFAULT_ABI == ABI_V4)		? 4 :				\
1509  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1510
1511/* The current return address is in link register (65).  The return address
1512   of anything farther back is accessed normally at an offset of 8 from the
1513   frame pointer.  */
1514#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1515  (rs6000_return_addr (COUNT, FRAME))
1516
1517
1518/* Definitions for register eliminations.
1519
1520   We have two registers that can be eliminated on the RS/6000.  First, the
1521   frame pointer register can often be eliminated in favor of the stack
1522   pointer register.  Secondly, the argument pointer register can always be
1523   eliminated; it is replaced with either the stack or frame pointer.
1524
1525   In addition, we use the elimination mechanism to see if r30 is needed
1526   Initially we assume that it isn't.  If it is, we spill it.  This is done
1527   by making it an eliminable register.  We replace it with itself so that
1528   if it isn't needed, then existing uses won't be modified.  */
1529
1530/* This is an array of structures.  Each structure initializes one pair
1531   of eliminable registers.  The "from" register number is given first,
1532   followed by "to".  Eliminations of the same "from" register are listed
1533   in order of preference.  */
1534#define ELIMINABLE_REGS					\
1535{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1536 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1537 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1538 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1539 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1540 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1541
1542/* Given FROM and TO register numbers, say whether this elimination is allowed.
1543   Frame pointer elimination is automatically handled.
1544
1545   For the RS/6000, if frame pointer elimination is being done, we would like
1546   to convert ap into fp, not sp.
1547
1548   We need r30 if -mminimal-toc was specified, and there are constant pool
1549   references.  */
1550
1551#define CAN_ELIMINATE(FROM, TO)						\
1552 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1553  ? ! frame_pointer_needed						\
1554  : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM 				\
1555  ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0	\
1556  : 1)
1557
1558/* Define the offset between two registers, one to be eliminated, and the other
1559   its replacement, at the start of a routine.  */
1560#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1561  ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1562
1563/* Addressing modes, and classification of registers for them.  */
1564
1565#define HAVE_PRE_DECREMENT 1
1566#define HAVE_PRE_INCREMENT 1
1567
1568/* Macros to check register numbers against specific register classes.  */
1569
1570/* These assume that REGNO is a hard or pseudo reg number.
1571   They give nonzero only if REGNO is a hard reg of the suitable class
1572   or a pseudo reg currently allocated to a suitable hard reg.
1573   Since they use reg_renumber, they are safe only once reg_renumber
1574   has been allocated, which happens in local-alloc.c.  */
1575
1576#define REGNO_OK_FOR_INDEX_P(REGNO)				\
1577((REGNO) < FIRST_PSEUDO_REGISTER				\
1578 ? (REGNO) <= 31 || (REGNO) == 67				\
1579   || (REGNO) == FRAME_POINTER_REGNUM				\
1580 : (reg_renumber[REGNO] >= 0					\
1581    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1582	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1583
1584#define REGNO_OK_FOR_BASE_P(REGNO)				\
1585((REGNO) < FIRST_PSEUDO_REGISTER				\
1586 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1587   || (REGNO) == FRAME_POINTER_REGNUM				\
1588 : (reg_renumber[REGNO] > 0					\
1589    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1590	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1591
1592/* Maximum number of registers that can appear in a valid memory address.  */
1593
1594#define MAX_REGS_PER_ADDRESS 2
1595
1596/* Recognize any constant value that is a valid address.  */
1597
1598#define CONSTANT_ADDRESS_P(X)   \
1599  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1600   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1601   || GET_CODE (X) == HIGH)
1602
1603/* Nonzero if the constant value X is a legitimate general operand.
1604   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1605
1606   On the RS/6000, all integer constants are acceptable, most won't be valid
1607   for particular insns, though.  Only easy FP constants are
1608   acceptable.  */
1609
1610#define LEGITIMATE_CONSTANT_P(X)				\
1611  (((GET_CODE (X) != CONST_DOUBLE				\
1612     && GET_CODE (X) != CONST_VECTOR)				\
1613    || GET_MODE (X) == VOIDmode					\
1614    || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
1615    || easy_fp_constant (X, GET_MODE (X))			\
1616    || easy_vector_constant (X, GET_MODE (X)))			\
1617   && !rs6000_tls_referenced_p (X))
1618
1619#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1620#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1621				    && EASY_VECTOR_15((n) >> 1) \
1622				    && ((n) & 1) == 0)
1623
1624/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1625   and check its validity for a certain class.
1626   We have two alternate definitions for each of them.
1627   The usual definition accepts all pseudo regs; the other rejects
1628   them unless they have been allocated suitable hard regs.
1629   The symbol REG_OK_STRICT causes the latter definition to be used.
1630
1631   Most source files want to accept pseudo regs in the hope that
1632   they will get allocated to the class that the insn wants them to be in.
1633   Source files for reload pass need to be strict.
1634   After reload, it makes no difference, since pseudo regs have
1635   been eliminated by then.  */
1636
1637#ifdef REG_OK_STRICT
1638# define REG_OK_STRICT_FLAG 1
1639#else
1640# define REG_OK_STRICT_FLAG 0
1641#endif
1642
1643/* Nonzero if X is a hard reg that can be used as an index
1644   or if it is a pseudo reg in the non-strict case.  */
1645#define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1646  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1647   || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1648
1649/* Nonzero if X is a hard reg that can be used as a base reg
1650   or if it is a pseudo reg in the non-strict case.  */
1651#define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1652  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1653   || REGNO_OK_FOR_BASE_P (REGNO (X)))
1654
1655#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1656#define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1657
1658/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1659   that is a valid memory address for an instruction.
1660   The MODE argument is the machine mode for the MEM expression
1661   that wants to use this address.
1662
1663   On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1664   refers to a constant pool entry of an address (or the sum of it
1665   plus a constant), a short (16-bit signed) constant plus a register,
1666   the sum of two registers, or a register indirect, possibly with an
1667   auto-increment.  For DFmode and DImode with a constant plus register,
1668   we must ensure that both words are addressable or PowerPC64 with offset
1669   word aligned.
1670
1671   For modes spanning multiple registers (DFmode in 32-bit GPRs,
1672   32-bit DImode, TImode), indexed addressing cannot be used because
1673   adjacent memory cells are accessed by adding word-sized offsets
1674   during assembly output.  */
1675
1676#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
1677{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
1678    goto ADDR;							\
1679}
1680
1681/* Try machine-dependent ways of modifying an illegitimate address
1682   to be legitimate.  If we find one, return the new, valid address.
1683   This macro is used in only one place: `memory_address' in explow.c.
1684
1685   OLDX is the address as it was before break_out_memory_refs was called.
1686   In some cases it is useful to look at this to decide what needs to be done.
1687
1688   MODE and WIN are passed so that this macro can use
1689   GO_IF_LEGITIMATE_ADDRESS.
1690
1691   It is always safe for this macro to do nothing.  It exists to recognize
1692   opportunities to optimize the output.
1693
1694   On RS/6000, first check for the sum of a register with a constant
1695   integer that is out of range.  If so, generate code to add the
1696   constant with the low-order 16 bits masked to the register and force
1697   this result into another register (this can be done with `cau').
1698   Then generate an address of REG+(CONST&0xffff), allowing for the
1699   possibility of bit 16 being a one.
1700
1701   Then check for the sum of a register and something not constant, try to
1702   load the other things into a register and return the sum.  */
1703
1704#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
1705{  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
1706   if (result != NULL_RTX)					\
1707     {								\
1708       (X) = result;						\
1709       goto WIN;						\
1710     }								\
1711}
1712
1713/* Try a machine-dependent way of reloading an illegitimate address
1714   operand.  If we find one, push the reload and jump to WIN.  This
1715   macro is used in only one place: `find_reloads_address' in reload.c.
1716
1717   Implemented on rs6000 by rs6000_legitimize_reload_address.
1718   Note that (X) is evaluated twice; this is safe in current usage.  */
1719
1720#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
1721do {									     \
1722  int win;								     \
1723  (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
1724			(int)(TYPE), (IND_LEVELS), &win);		     \
1725  if ( win )								     \
1726    goto WIN;								     \
1727} while (0)
1728
1729/* Go to LABEL if ADDR (a legitimate address expression)
1730   has an effect that depends on the machine mode it is used for.  */
1731
1732#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
1733do {								\
1734  if (rs6000_mode_dependent_address (ADDR))			\
1735    goto LABEL;							\
1736} while (0)
1737
1738/* The register number of the register used to address a table of
1739   static data addresses in memory.  In some cases this register is
1740   defined by a processor's "application binary interface" (ABI).
1741   When this macro is defined, RTL is generated for this register
1742   once, as with the stack pointer and frame pointer registers.  If
1743   this macro is not defined, it is up to the machine-dependent files
1744   to allocate such a register (if necessary).  */
1745
1746#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1747#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1748
1749#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1750
1751/* Define this macro if the register defined by
1752   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1753   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1754
1755/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1756
1757/* A C expression that is nonzero if X is a legitimate immediate
1758   operand on the target machine when generating position independent
1759   code.  You can assume that X satisfies `CONSTANT_P', so you need
1760   not check this.  You can also assume FLAG_PIC is true, so you need
1761   not check it either.  You need not define this macro if all
1762   constants (including `SYMBOL_REF') can be immediate operands when
1763   generating position independent code.  */
1764
1765/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1766
1767/* Define this if some processing needs to be done immediately before
1768   emitting code for an insn.  */
1769
1770/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1771
1772/* Specify the machine mode that this machine uses
1773   for the index in the tablejump instruction.  */
1774#define CASE_VECTOR_MODE SImode
1775
1776/* Define as C expression which evaluates to nonzero if the tablejump
1777   instruction expects the table to contain offsets from the address of the
1778   table.
1779   Do not define this if the table should contain absolute addresses.  */
1780#define CASE_VECTOR_PC_RELATIVE 1
1781
1782/* Define this as 1 if `char' should by default be signed; else as 0.  */
1783#define DEFAULT_SIGNED_CHAR 0
1784
1785/* This flag, if defined, says the same insns that convert to a signed fixnum
1786   also convert validly to an unsigned one.  */
1787
1788/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1789
1790/* An integer expression for the size in bits of the largest integer machine
1791   mode that should actually be used.  */
1792
1793/* Allow pairs of registers to be used, which is the intent of the default.  */
1794#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1795
1796/* Max number of bytes we can move from memory to memory
1797   in one reasonably fast instruction.  */
1798#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1799#define MAX_MOVE_MAX 8
1800
1801/* Nonzero if access to memory by bytes is no faster than for words.
1802   Also nonzero if doing byte operations (specifically shifts) in registers
1803   is undesirable.  */
1804#define SLOW_BYTE_ACCESS 1
1805
1806/* Define if operations between registers always perform the operation
1807   on the full register even if a narrower mode is specified.  */
1808#define WORD_REGISTER_OPERATIONS
1809
1810/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1811   will either zero-extend or sign-extend.  The value of this macro should
1812   be the code that says which one of the two operations is implicitly
1813   done, UNKNOWN if none.  */
1814#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1815
1816/* Define if loading short immediate values into registers sign extends.  */
1817#define SHORT_IMMEDIATES_SIGN_EXTEND
1818
1819/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1820   is done just by pretending it is already truncated.  */
1821#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1822
1823/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1824#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1825  ((VALUE) = ((MODE) == SImode ? 32 : 64))
1826
1827/* The CTZ patterns return -1 for input of zero.  */
1828#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1829
1830/* Specify the machine mode that pointers have.
1831   After generation of rtl, the compiler makes no further distinction
1832   between pointers and any other objects of this machine mode.  */
1833#define Pmode (TARGET_32BIT ? SImode : DImode)
1834
1835/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1836#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1837
1838/* Mode of a function address in a call instruction (for indexing purposes).
1839   Doesn't matter on RS/6000.  */
1840#define FUNCTION_MODE SImode
1841
1842/* Define this if addresses of constant functions
1843   shouldn't be put through pseudo regs where they can be cse'd.
1844   Desirable on machines where ordinary constants are expensive
1845   but a CALL with constant address is cheap.  */
1846#define NO_FUNCTION_CSE
1847
1848/* Define this to be nonzero if shift instructions ignore all but the low-order
1849   few bits.
1850
1851   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1852   have been dropped from the PowerPC architecture.  */
1853
1854#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1855
1856/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1857   should be adjusted to reflect any required changes.  This macro is used when
1858   there is some systematic length adjustment required that would be difficult
1859   to express in the length attribute.  */
1860
1861/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1862
1863/* Given a comparison code (EQ, NE, etc.) and the first operand of a
1864   COMPARE, return the mode to be used for the comparison.  For
1865   floating-point, CCFPmode should be used.  CCUNSmode should be used
1866   for unsigned comparisons.  CCEQmode should be used when we are
1867   doing an inequality comparison on the result of a
1868   comparison.  CCmode should be used in all other cases.  */
1869
1870#define SELECT_CC_MODE(OP,X,Y) \
1871  (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
1872   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1873   : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1874      ? CCEQmode : CCmode))
1875
1876/* Can the condition code MODE be safely reversed?  This is safe in
1877   all cases on this port, because at present it doesn't use the
1878   trapping FP comparisons (fcmpo).  */
1879#define REVERSIBLE_CC_MODE(MODE) 1
1880
1881/* Given a condition code and a mode, return the inverse condition.  */
1882#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1883
1884/* Define the information needed to generate branch and scc insns.  This is
1885   stored from the compare operation.  */
1886
1887extern GTY(()) rtx rs6000_compare_op0;
1888extern GTY(()) rtx rs6000_compare_op1;
1889extern int rs6000_compare_fp_p;
1890
1891/* Control the assembler format that we output.  */
1892
1893/* A C string constant describing how to begin a comment in the target
1894   assembler language.  The compiler assumes that the comment will end at
1895   the end of the line.  */
1896#define ASM_COMMENT_START " #"
1897
1898/* Flag to say the TOC is initialized */
1899extern int toc_initialized;
1900
1901/* Macro to output a special constant pool entry.  Go to WIN if we output
1902   it.  Otherwise, it is written the usual way.
1903
1904   On the RS/6000, toc entries are handled this way.  */
1905
1906#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1907{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1908    {									  \
1909      output_toc (FILE, X, LABELNO, MODE);				  \
1910      goto WIN;								  \
1911    }									  \
1912}
1913
1914#ifdef HAVE_GAS_WEAK
1915#define RS6000_WEAK 1
1916#else
1917#define RS6000_WEAK 0
1918#endif
1919
1920#if RS6000_WEAK
1921/* Used in lieu of ASM_WEAKEN_LABEL.  */
1922#define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
1923  do									\
1924    {									\
1925      fputs ("\t.weak\t", (FILE));					\
1926      RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1927      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1928	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1929	{								\
1930	  if (TARGET_XCOFF)						\
1931	    fputs ("[DS]", (FILE));					\
1932	  fputs ("\n\t.weak\t.", (FILE));				\
1933	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1934	}								\
1935      fputc ('\n', (FILE));						\
1936      if (VAL)								\
1937	{								\
1938	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
1939	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
1940	      && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1941	    {								\
1942	      fputs ("\t.set\t.", (FILE));				\
1943	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
1944	      fputs (",.", (FILE));					\
1945	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
1946	      fputc ('\n', (FILE));					\
1947	    }								\
1948	}								\
1949    }									\
1950  while (0)
1951#endif
1952
1953#if HAVE_GAS_WEAKREF
1954#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
1955  do									\
1956    {									\
1957      fputs ("\t.weakref\t", (FILE));					\
1958      RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1959      fputs (", ", (FILE));						\
1960      RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
1961      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1962	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1963	{								\
1964	  fputs ("\n\t.weakref\t.", (FILE));				\
1965	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1966	  fputs (", .", (FILE));					\
1967	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
1968	}								\
1969      fputc ('\n', (FILE));						\
1970    } while (0)
1971#endif
1972
1973/* This implements the `alias' attribute.  */
1974#undef	ASM_OUTPUT_DEF_FROM_DECLS
1975#define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
1976  do									\
1977    {									\
1978      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
1979      const char *name = IDENTIFIER_POINTER (TARGET);			\
1980      if (TREE_CODE (DECL) == FUNCTION_DECL				\
1981	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1982	{								\
1983	  if (TREE_PUBLIC (DECL))					\
1984	    {								\
1985	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1986		{							\
1987		  fputs ("\t.globl\t.", FILE);				\
1988		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1989		  putc ('\n', FILE);					\
1990		}							\
1991	    }								\
1992	  else if (TARGET_XCOFF)					\
1993	    {								\
1994	      fputs ("\t.lglobl\t.", FILE);				\
1995	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
1996	      putc ('\n', FILE);					\
1997	    }								\
1998	  fputs ("\t.set\t.", FILE);					\
1999	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2000	  fputs (",.", FILE);						\
2001	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2002	  fputc ('\n', FILE);						\
2003	}								\
2004      ASM_OUTPUT_DEF (FILE, alias, name);				\
2005    }									\
2006   while (0)
2007
2008#define TARGET_ASM_FILE_START rs6000_file_start
2009
2010/* Output to assembler file text saying following lines
2011   may contain character constants, extra white space, comments, etc.  */
2012
2013#define ASM_APP_ON ""
2014
2015/* Output to assembler file text saying following lines
2016   no longer contain unusual constructs.  */
2017
2018#define ASM_APP_OFF ""
2019
2020/* How to refer to registers in assembler output.
2021   This sequence is indexed by compiler's hard-register-number (see above).  */
2022
2023extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2024
2025#define REGISTER_NAMES							\
2026{									\
2027  &rs6000_reg_names[ 0][0],	/* r0   */				\
2028  &rs6000_reg_names[ 1][0],	/* r1	*/				\
2029  &rs6000_reg_names[ 2][0],     /* r2	*/				\
2030  &rs6000_reg_names[ 3][0],	/* r3	*/				\
2031  &rs6000_reg_names[ 4][0],	/* r4	*/				\
2032  &rs6000_reg_names[ 5][0],	/* r5	*/				\
2033  &rs6000_reg_names[ 6][0],	/* r6	*/				\
2034  &rs6000_reg_names[ 7][0],	/* r7	*/				\
2035  &rs6000_reg_names[ 8][0],	/* r8	*/				\
2036  &rs6000_reg_names[ 9][0],	/* r9	*/				\
2037  &rs6000_reg_names[10][0],	/* r10  */				\
2038  &rs6000_reg_names[11][0],	/* r11  */				\
2039  &rs6000_reg_names[12][0],	/* r12  */				\
2040  &rs6000_reg_names[13][0],	/* r13  */				\
2041  &rs6000_reg_names[14][0],	/* r14  */				\
2042  &rs6000_reg_names[15][0],	/* r15  */				\
2043  &rs6000_reg_names[16][0],	/* r16  */				\
2044  &rs6000_reg_names[17][0],	/* r17  */				\
2045  &rs6000_reg_names[18][0],	/* r18  */				\
2046  &rs6000_reg_names[19][0],	/* r19  */				\
2047  &rs6000_reg_names[20][0],	/* r20  */				\
2048  &rs6000_reg_names[21][0],	/* r21  */				\
2049  &rs6000_reg_names[22][0],	/* r22  */				\
2050  &rs6000_reg_names[23][0],	/* r23  */				\
2051  &rs6000_reg_names[24][0],	/* r24  */				\
2052  &rs6000_reg_names[25][0],	/* r25  */				\
2053  &rs6000_reg_names[26][0],	/* r26  */				\
2054  &rs6000_reg_names[27][0],	/* r27  */				\
2055  &rs6000_reg_names[28][0],	/* r28  */				\
2056  &rs6000_reg_names[29][0],	/* r29  */				\
2057  &rs6000_reg_names[30][0],	/* r30  */				\
2058  &rs6000_reg_names[31][0],	/* r31  */				\
2059									\
2060  &rs6000_reg_names[32][0],     /* fr0  */				\
2061  &rs6000_reg_names[33][0],	/* fr1  */				\
2062  &rs6000_reg_names[34][0],	/* fr2  */				\
2063  &rs6000_reg_names[35][0],	/* fr3  */				\
2064  &rs6000_reg_names[36][0],	/* fr4  */				\
2065  &rs6000_reg_names[37][0],	/* fr5  */				\
2066  &rs6000_reg_names[38][0],	/* fr6  */				\
2067  &rs6000_reg_names[39][0],	/* fr7  */				\
2068  &rs6000_reg_names[40][0],	/* fr8  */				\
2069  &rs6000_reg_names[41][0],	/* fr9  */				\
2070  &rs6000_reg_names[42][0],	/* fr10 */				\
2071  &rs6000_reg_names[43][0],	/* fr11 */				\
2072  &rs6000_reg_names[44][0],	/* fr12 */				\
2073  &rs6000_reg_names[45][0],	/* fr13 */				\
2074  &rs6000_reg_names[46][0],	/* fr14 */				\
2075  &rs6000_reg_names[47][0],	/* fr15 */				\
2076  &rs6000_reg_names[48][0],	/* fr16 */				\
2077  &rs6000_reg_names[49][0],	/* fr17 */				\
2078  &rs6000_reg_names[50][0],	/* fr18 */				\
2079  &rs6000_reg_names[51][0],	/* fr19 */				\
2080  &rs6000_reg_names[52][0],	/* fr20 */				\
2081  &rs6000_reg_names[53][0],	/* fr21 */				\
2082  &rs6000_reg_names[54][0],	/* fr22 */				\
2083  &rs6000_reg_names[55][0],	/* fr23 */				\
2084  &rs6000_reg_names[56][0],	/* fr24 */				\
2085  &rs6000_reg_names[57][0],	/* fr25 */				\
2086  &rs6000_reg_names[58][0],	/* fr26 */				\
2087  &rs6000_reg_names[59][0],	/* fr27 */				\
2088  &rs6000_reg_names[60][0],	/* fr28 */				\
2089  &rs6000_reg_names[61][0],	/* fr29 */				\
2090  &rs6000_reg_names[62][0],	/* fr30 */				\
2091  &rs6000_reg_names[63][0],	/* fr31 */				\
2092									\
2093  &rs6000_reg_names[64][0],     /* mq   */				\
2094  &rs6000_reg_names[65][0],	/* lr   */				\
2095  &rs6000_reg_names[66][0],	/* ctr  */				\
2096  &rs6000_reg_names[67][0],	/* ap   */				\
2097									\
2098  &rs6000_reg_names[68][0],	/* cr0  */				\
2099  &rs6000_reg_names[69][0],	/* cr1  */				\
2100  &rs6000_reg_names[70][0],	/* cr2  */				\
2101  &rs6000_reg_names[71][0],	/* cr3  */				\
2102  &rs6000_reg_names[72][0],	/* cr4  */				\
2103  &rs6000_reg_names[73][0],	/* cr5  */				\
2104  &rs6000_reg_names[74][0],	/* cr6  */				\
2105  &rs6000_reg_names[75][0],	/* cr7  */				\
2106									\
2107  &rs6000_reg_names[76][0],	/* xer  */				\
2108									\
2109  &rs6000_reg_names[77][0],	/* v0  */				\
2110  &rs6000_reg_names[78][0],	/* v1  */				\
2111  &rs6000_reg_names[79][0],	/* v2  */				\
2112  &rs6000_reg_names[80][0],	/* v3  */				\
2113  &rs6000_reg_names[81][0],	/* v4  */				\
2114  &rs6000_reg_names[82][0],	/* v5  */				\
2115  &rs6000_reg_names[83][0],	/* v6  */				\
2116  &rs6000_reg_names[84][0],	/* v7  */				\
2117  &rs6000_reg_names[85][0],	/* v8  */				\
2118  &rs6000_reg_names[86][0],	/* v9  */				\
2119  &rs6000_reg_names[87][0],	/* v10  */				\
2120  &rs6000_reg_names[88][0],	/* v11  */				\
2121  &rs6000_reg_names[89][0],	/* v12  */				\
2122  &rs6000_reg_names[90][0],	/* v13  */				\
2123  &rs6000_reg_names[91][0],	/* v14  */				\
2124  &rs6000_reg_names[92][0],	/* v15  */				\
2125  &rs6000_reg_names[93][0],	/* v16  */				\
2126  &rs6000_reg_names[94][0],	/* v17  */				\
2127  &rs6000_reg_names[95][0],	/* v18  */				\
2128  &rs6000_reg_names[96][0],	/* v19  */				\
2129  &rs6000_reg_names[97][0],	/* v20  */				\
2130  &rs6000_reg_names[98][0],	/* v21  */				\
2131  &rs6000_reg_names[99][0],	/* v22  */				\
2132  &rs6000_reg_names[100][0],	/* v23  */				\
2133  &rs6000_reg_names[101][0],	/* v24  */				\
2134  &rs6000_reg_names[102][0],	/* v25  */				\
2135  &rs6000_reg_names[103][0],	/* v26  */				\
2136  &rs6000_reg_names[104][0],	/* v27  */				\
2137  &rs6000_reg_names[105][0],	/* v28  */				\
2138  &rs6000_reg_names[106][0],	/* v29  */				\
2139  &rs6000_reg_names[107][0],	/* v30  */				\
2140  &rs6000_reg_names[108][0],	/* v31  */				\
2141  &rs6000_reg_names[109][0],	/* vrsave  */				\
2142  &rs6000_reg_names[110][0],	/* vscr  */				\
2143  &rs6000_reg_names[111][0],	/* spe_acc */				\
2144  &rs6000_reg_names[112][0],	/* spefscr */				\
2145  &rs6000_reg_names[113][0],	/* sfp  */				\
2146}
2147
2148/* Table of additional register names to use in user input.  */
2149
2150#define ADDITIONAL_REGISTER_NAMES \
2151 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2152  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2153  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2154  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2155  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2156  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2157  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2158  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2159  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2160  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2161  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2162  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2163  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2164  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2165  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2166  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2167  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2168  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2169  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2170  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2171  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2172  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2173  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2174  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2175  {"vrsave", 109}, {"vscr", 110},				\
2176  {"spe_acc", 111}, {"spefscr", 112},				\
2177  /* no additional names for: mq, lr, ctr, ap */		\
2178  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2179  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2180  {"cc",   68}, {"sp",    1}, {"toc",   2} }
2181
2182/* Text to write out after a CALL that may be replaced by glue code by
2183   the loader.  This depends on the AIX version.  */
2184#define RS6000_CALL_GLUE "cror 31,31,31"
2185
2186/* This is how to output an element of a case-vector that is relative.  */
2187
2188#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2189  do { char buf[100];					\
2190       fputs ("\t.long ", FILE);			\
2191       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2192       assemble_name (FILE, buf);			\
2193       putc ('-', FILE);				\
2194       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2195       assemble_name (FILE, buf);			\
2196       putc ('\n', FILE);				\
2197     } while (0)
2198
2199/* This is how to output an assembler line
2200   that says to advance the location counter
2201   to a multiple of 2**LOG bytes.  */
2202
2203#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2204  if ((LOG) != 0)			\
2205    fprintf (FILE, "\t.align %d\n", (LOG))
2206
2207/* Pick up the return address upon entry to a procedure. Used for
2208   dwarf2 unwind information.  This also enables the table driven
2209   mechanism.  */
2210
2211#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2212#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2213
2214/* Describe how we implement __builtin_eh_return.  */
2215#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2216#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2217
2218/* Print operand X (an rtx) in assembler syntax to file FILE.
2219   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2220   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2221
2222#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2223
2224/* Define which CODE values are valid.  */
2225
2226#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2227  ((CODE) == '.' || (CODE) == '&')
2228
2229/* Print a memory address as an operand to reference that memory location.  */
2230
2231#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2232
2233/* uncomment for disabling the corresponding default options */
2234/* #define  MACHINE_no_sched_interblock */
2235/* #define  MACHINE_no_sched_speculative */
2236/* #define  MACHINE_no_sched_speculative_load */
2237
2238/* General flags.  */
2239extern int flag_pic;
2240extern int optimize;
2241extern int flag_expensive_optimizations;
2242extern int frame_pointer_needed;
2243
2244enum rs6000_builtins
2245{
2246  /* AltiVec builtins.  */
2247  ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2248  ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2249  ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2250  ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2251  ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2252  ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2253  ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2254  ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2255  ALTIVEC_BUILTIN_VADDUBM,
2256  ALTIVEC_BUILTIN_VADDUHM,
2257  ALTIVEC_BUILTIN_VADDUWM,
2258  ALTIVEC_BUILTIN_VADDFP,
2259  ALTIVEC_BUILTIN_VADDCUW,
2260  ALTIVEC_BUILTIN_VADDUBS,
2261  ALTIVEC_BUILTIN_VADDSBS,
2262  ALTIVEC_BUILTIN_VADDUHS,
2263  ALTIVEC_BUILTIN_VADDSHS,
2264  ALTIVEC_BUILTIN_VADDUWS,
2265  ALTIVEC_BUILTIN_VADDSWS,
2266  ALTIVEC_BUILTIN_VAND,
2267  ALTIVEC_BUILTIN_VANDC,
2268  ALTIVEC_BUILTIN_VAVGUB,
2269  ALTIVEC_BUILTIN_VAVGSB,
2270  ALTIVEC_BUILTIN_VAVGUH,
2271  ALTIVEC_BUILTIN_VAVGSH,
2272  ALTIVEC_BUILTIN_VAVGUW,
2273  ALTIVEC_BUILTIN_VAVGSW,
2274  ALTIVEC_BUILTIN_VCFUX,
2275  ALTIVEC_BUILTIN_VCFSX,
2276  ALTIVEC_BUILTIN_VCTSXS,
2277  ALTIVEC_BUILTIN_VCTUXS,
2278  ALTIVEC_BUILTIN_VCMPBFP,
2279  ALTIVEC_BUILTIN_VCMPEQUB,
2280  ALTIVEC_BUILTIN_VCMPEQUH,
2281  ALTIVEC_BUILTIN_VCMPEQUW,
2282  ALTIVEC_BUILTIN_VCMPEQFP,
2283  ALTIVEC_BUILTIN_VCMPGEFP,
2284  ALTIVEC_BUILTIN_VCMPGTUB,
2285  ALTIVEC_BUILTIN_VCMPGTSB,
2286  ALTIVEC_BUILTIN_VCMPGTUH,
2287  ALTIVEC_BUILTIN_VCMPGTSH,
2288  ALTIVEC_BUILTIN_VCMPGTUW,
2289  ALTIVEC_BUILTIN_VCMPGTSW,
2290  ALTIVEC_BUILTIN_VCMPGTFP,
2291  ALTIVEC_BUILTIN_VEXPTEFP,
2292  ALTIVEC_BUILTIN_VLOGEFP,
2293  ALTIVEC_BUILTIN_VMADDFP,
2294  ALTIVEC_BUILTIN_VMAXUB,
2295  ALTIVEC_BUILTIN_VMAXSB,
2296  ALTIVEC_BUILTIN_VMAXUH,
2297  ALTIVEC_BUILTIN_VMAXSH,
2298  ALTIVEC_BUILTIN_VMAXUW,
2299  ALTIVEC_BUILTIN_VMAXSW,
2300  ALTIVEC_BUILTIN_VMAXFP,
2301  ALTIVEC_BUILTIN_VMHADDSHS,
2302  ALTIVEC_BUILTIN_VMHRADDSHS,
2303  ALTIVEC_BUILTIN_VMLADDUHM,
2304  ALTIVEC_BUILTIN_VMRGHB,
2305  ALTIVEC_BUILTIN_VMRGHH,
2306  ALTIVEC_BUILTIN_VMRGHW,
2307  ALTIVEC_BUILTIN_VMRGLB,
2308  ALTIVEC_BUILTIN_VMRGLH,
2309  ALTIVEC_BUILTIN_VMRGLW,
2310  ALTIVEC_BUILTIN_VMSUMUBM,
2311  ALTIVEC_BUILTIN_VMSUMMBM,
2312  ALTIVEC_BUILTIN_VMSUMUHM,
2313  ALTIVEC_BUILTIN_VMSUMSHM,
2314  ALTIVEC_BUILTIN_VMSUMUHS,
2315  ALTIVEC_BUILTIN_VMSUMSHS,
2316  ALTIVEC_BUILTIN_VMINUB,
2317  ALTIVEC_BUILTIN_VMINSB,
2318  ALTIVEC_BUILTIN_VMINUH,
2319  ALTIVEC_BUILTIN_VMINSH,
2320  ALTIVEC_BUILTIN_VMINUW,
2321  ALTIVEC_BUILTIN_VMINSW,
2322  ALTIVEC_BUILTIN_VMINFP,
2323  ALTIVEC_BUILTIN_VMULEUB,
2324  ALTIVEC_BUILTIN_VMULESB,
2325  ALTIVEC_BUILTIN_VMULEUH,
2326  ALTIVEC_BUILTIN_VMULESH,
2327  ALTIVEC_BUILTIN_VMULOUB,
2328  ALTIVEC_BUILTIN_VMULOSB,
2329  ALTIVEC_BUILTIN_VMULOUH,
2330  ALTIVEC_BUILTIN_VMULOSH,
2331  ALTIVEC_BUILTIN_VNMSUBFP,
2332  ALTIVEC_BUILTIN_VNOR,
2333  ALTIVEC_BUILTIN_VOR,
2334  ALTIVEC_BUILTIN_VSEL_4SI,
2335  ALTIVEC_BUILTIN_VSEL_4SF,
2336  ALTIVEC_BUILTIN_VSEL_8HI,
2337  ALTIVEC_BUILTIN_VSEL_16QI,
2338  ALTIVEC_BUILTIN_VPERM_4SI,
2339  ALTIVEC_BUILTIN_VPERM_4SF,
2340  ALTIVEC_BUILTIN_VPERM_8HI,
2341  ALTIVEC_BUILTIN_VPERM_16QI,
2342  ALTIVEC_BUILTIN_VPKUHUM,
2343  ALTIVEC_BUILTIN_VPKUWUM,
2344  ALTIVEC_BUILTIN_VPKPX,
2345  ALTIVEC_BUILTIN_VPKUHSS,
2346  ALTIVEC_BUILTIN_VPKSHSS,
2347  ALTIVEC_BUILTIN_VPKUWSS,
2348  ALTIVEC_BUILTIN_VPKSWSS,
2349  ALTIVEC_BUILTIN_VPKUHUS,
2350  ALTIVEC_BUILTIN_VPKSHUS,
2351  ALTIVEC_BUILTIN_VPKUWUS,
2352  ALTIVEC_BUILTIN_VPKSWUS,
2353  ALTIVEC_BUILTIN_VREFP,
2354  ALTIVEC_BUILTIN_VRFIM,
2355  ALTIVEC_BUILTIN_VRFIN,
2356  ALTIVEC_BUILTIN_VRFIP,
2357  ALTIVEC_BUILTIN_VRFIZ,
2358  ALTIVEC_BUILTIN_VRLB,
2359  ALTIVEC_BUILTIN_VRLH,
2360  ALTIVEC_BUILTIN_VRLW,
2361  ALTIVEC_BUILTIN_VRSQRTEFP,
2362  ALTIVEC_BUILTIN_VSLB,
2363  ALTIVEC_BUILTIN_VSLH,
2364  ALTIVEC_BUILTIN_VSLW,
2365  ALTIVEC_BUILTIN_VSL,
2366  ALTIVEC_BUILTIN_VSLO,
2367  ALTIVEC_BUILTIN_VSPLTB,
2368  ALTIVEC_BUILTIN_VSPLTH,
2369  ALTIVEC_BUILTIN_VSPLTW,
2370  ALTIVEC_BUILTIN_VSPLTISB,
2371  ALTIVEC_BUILTIN_VSPLTISH,
2372  ALTIVEC_BUILTIN_VSPLTISW,
2373  ALTIVEC_BUILTIN_VSRB,
2374  ALTIVEC_BUILTIN_VSRH,
2375  ALTIVEC_BUILTIN_VSRW,
2376  ALTIVEC_BUILTIN_VSRAB,
2377  ALTIVEC_BUILTIN_VSRAH,
2378  ALTIVEC_BUILTIN_VSRAW,
2379  ALTIVEC_BUILTIN_VSR,
2380  ALTIVEC_BUILTIN_VSRO,
2381  ALTIVEC_BUILTIN_VSUBUBM,
2382  ALTIVEC_BUILTIN_VSUBUHM,
2383  ALTIVEC_BUILTIN_VSUBUWM,
2384  ALTIVEC_BUILTIN_VSUBFP,
2385  ALTIVEC_BUILTIN_VSUBCUW,
2386  ALTIVEC_BUILTIN_VSUBUBS,
2387  ALTIVEC_BUILTIN_VSUBSBS,
2388  ALTIVEC_BUILTIN_VSUBUHS,
2389  ALTIVEC_BUILTIN_VSUBSHS,
2390  ALTIVEC_BUILTIN_VSUBUWS,
2391  ALTIVEC_BUILTIN_VSUBSWS,
2392  ALTIVEC_BUILTIN_VSUM4UBS,
2393  ALTIVEC_BUILTIN_VSUM4SBS,
2394  ALTIVEC_BUILTIN_VSUM4SHS,
2395  ALTIVEC_BUILTIN_VSUM2SWS,
2396  ALTIVEC_BUILTIN_VSUMSWS,
2397  ALTIVEC_BUILTIN_VXOR,
2398  ALTIVEC_BUILTIN_VSLDOI_16QI,
2399  ALTIVEC_BUILTIN_VSLDOI_8HI,
2400  ALTIVEC_BUILTIN_VSLDOI_4SI,
2401  ALTIVEC_BUILTIN_VSLDOI_4SF,
2402  ALTIVEC_BUILTIN_VUPKHSB,
2403  ALTIVEC_BUILTIN_VUPKHPX,
2404  ALTIVEC_BUILTIN_VUPKHSH,
2405  ALTIVEC_BUILTIN_VUPKLSB,
2406  ALTIVEC_BUILTIN_VUPKLPX,
2407  ALTIVEC_BUILTIN_VUPKLSH,
2408  ALTIVEC_BUILTIN_MTVSCR,
2409  ALTIVEC_BUILTIN_MFVSCR,
2410  ALTIVEC_BUILTIN_DSSALL,
2411  ALTIVEC_BUILTIN_DSS,
2412  ALTIVEC_BUILTIN_LVSL,
2413  ALTIVEC_BUILTIN_LVSR,
2414  ALTIVEC_BUILTIN_DSTT,
2415  ALTIVEC_BUILTIN_DSTST,
2416  ALTIVEC_BUILTIN_DSTSTT,
2417  ALTIVEC_BUILTIN_DST,
2418  ALTIVEC_BUILTIN_LVEBX,
2419  ALTIVEC_BUILTIN_LVEHX,
2420  ALTIVEC_BUILTIN_LVEWX,
2421  ALTIVEC_BUILTIN_LVXL,
2422  ALTIVEC_BUILTIN_LVX,
2423  ALTIVEC_BUILTIN_STVX,
2424  ALTIVEC_BUILTIN_STVEBX,
2425  ALTIVEC_BUILTIN_STVEHX,
2426  ALTIVEC_BUILTIN_STVEWX,
2427  ALTIVEC_BUILTIN_STVXL,
2428  ALTIVEC_BUILTIN_VCMPBFP_P,
2429  ALTIVEC_BUILTIN_VCMPEQFP_P,
2430  ALTIVEC_BUILTIN_VCMPEQUB_P,
2431  ALTIVEC_BUILTIN_VCMPEQUH_P,
2432  ALTIVEC_BUILTIN_VCMPEQUW_P,
2433  ALTIVEC_BUILTIN_VCMPGEFP_P,
2434  ALTIVEC_BUILTIN_VCMPGTFP_P,
2435  ALTIVEC_BUILTIN_VCMPGTSB_P,
2436  ALTIVEC_BUILTIN_VCMPGTSH_P,
2437  ALTIVEC_BUILTIN_VCMPGTSW_P,
2438  ALTIVEC_BUILTIN_VCMPGTUB_P,
2439  ALTIVEC_BUILTIN_VCMPGTUH_P,
2440  ALTIVEC_BUILTIN_VCMPGTUW_P,
2441  ALTIVEC_BUILTIN_ABSS_V4SI,
2442  ALTIVEC_BUILTIN_ABSS_V8HI,
2443  ALTIVEC_BUILTIN_ABSS_V16QI,
2444  ALTIVEC_BUILTIN_ABS_V4SI,
2445  ALTIVEC_BUILTIN_ABS_V4SF,
2446  ALTIVEC_BUILTIN_ABS_V8HI,
2447  ALTIVEC_BUILTIN_ABS_V16QI,
2448  ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2449  ALTIVEC_BUILTIN_MASK_FOR_STORE,
2450  ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2451  ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2452  ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2453  ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2454  ALTIVEC_BUILTIN_VEC_SET_V4SI,
2455  ALTIVEC_BUILTIN_VEC_SET_V8HI,
2456  ALTIVEC_BUILTIN_VEC_SET_V16QI,
2457  ALTIVEC_BUILTIN_VEC_SET_V4SF,
2458  ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2459  ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2460  ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2461  ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2462
2463  /* Altivec overloaded builtins.  */
2464  ALTIVEC_BUILTIN_VCMPEQ_P,
2465  ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2466  ALTIVEC_BUILTIN_VCMPGT_P,
2467  ALTIVEC_BUILTIN_VCMPGE_P,
2468  ALTIVEC_BUILTIN_VEC_ABS,
2469  ALTIVEC_BUILTIN_VEC_ABSS,
2470  ALTIVEC_BUILTIN_VEC_ADD,
2471  ALTIVEC_BUILTIN_VEC_ADDC,
2472  ALTIVEC_BUILTIN_VEC_ADDS,
2473  ALTIVEC_BUILTIN_VEC_AND,
2474  ALTIVEC_BUILTIN_VEC_ANDC,
2475  ALTIVEC_BUILTIN_VEC_AVG,
2476  ALTIVEC_BUILTIN_VEC_CEIL,
2477  ALTIVEC_BUILTIN_VEC_CMPB,
2478  ALTIVEC_BUILTIN_VEC_CMPEQ,
2479  ALTIVEC_BUILTIN_VEC_CMPEQUB,
2480  ALTIVEC_BUILTIN_VEC_CMPEQUH,
2481  ALTIVEC_BUILTIN_VEC_CMPEQUW,
2482  ALTIVEC_BUILTIN_VEC_CMPGE,
2483  ALTIVEC_BUILTIN_VEC_CMPGT,
2484  ALTIVEC_BUILTIN_VEC_CMPLE,
2485  ALTIVEC_BUILTIN_VEC_CMPLT,
2486  ALTIVEC_BUILTIN_VEC_CTF,
2487  ALTIVEC_BUILTIN_VEC_CTS,
2488  ALTIVEC_BUILTIN_VEC_CTU,
2489  ALTIVEC_BUILTIN_VEC_DST,
2490  ALTIVEC_BUILTIN_VEC_DSTST,
2491  ALTIVEC_BUILTIN_VEC_DSTSTT,
2492  ALTIVEC_BUILTIN_VEC_DSTT,
2493  ALTIVEC_BUILTIN_VEC_EXPTE,
2494  ALTIVEC_BUILTIN_VEC_FLOOR,
2495  ALTIVEC_BUILTIN_VEC_LD,
2496  ALTIVEC_BUILTIN_VEC_LDE,
2497  ALTIVEC_BUILTIN_VEC_LDL,
2498  ALTIVEC_BUILTIN_VEC_LOGE,
2499  ALTIVEC_BUILTIN_VEC_LVEBX,
2500  ALTIVEC_BUILTIN_VEC_LVEHX,
2501  ALTIVEC_BUILTIN_VEC_LVEWX,
2502  ALTIVEC_BUILTIN_VEC_LVSL,
2503  ALTIVEC_BUILTIN_VEC_LVSR,
2504  ALTIVEC_BUILTIN_VEC_MADD,
2505  ALTIVEC_BUILTIN_VEC_MADDS,
2506  ALTIVEC_BUILTIN_VEC_MAX,
2507  ALTIVEC_BUILTIN_VEC_MERGEH,
2508  ALTIVEC_BUILTIN_VEC_MERGEL,
2509  ALTIVEC_BUILTIN_VEC_MIN,
2510  ALTIVEC_BUILTIN_VEC_MLADD,
2511  ALTIVEC_BUILTIN_VEC_MPERM,
2512  ALTIVEC_BUILTIN_VEC_MRADDS,
2513  ALTIVEC_BUILTIN_VEC_MRGHB,
2514  ALTIVEC_BUILTIN_VEC_MRGHH,
2515  ALTIVEC_BUILTIN_VEC_MRGHW,
2516  ALTIVEC_BUILTIN_VEC_MRGLB,
2517  ALTIVEC_BUILTIN_VEC_MRGLH,
2518  ALTIVEC_BUILTIN_VEC_MRGLW,
2519  ALTIVEC_BUILTIN_VEC_MSUM,
2520  ALTIVEC_BUILTIN_VEC_MSUMS,
2521  ALTIVEC_BUILTIN_VEC_MTVSCR,
2522  ALTIVEC_BUILTIN_VEC_MULE,
2523  ALTIVEC_BUILTIN_VEC_MULO,
2524  ALTIVEC_BUILTIN_VEC_NMSUB,
2525  ALTIVEC_BUILTIN_VEC_NOR,
2526  ALTIVEC_BUILTIN_VEC_OR,
2527  ALTIVEC_BUILTIN_VEC_PACK,
2528  ALTIVEC_BUILTIN_VEC_PACKPX,
2529  ALTIVEC_BUILTIN_VEC_PACKS,
2530  ALTIVEC_BUILTIN_VEC_PACKSU,
2531  ALTIVEC_BUILTIN_VEC_PERM,
2532  ALTIVEC_BUILTIN_VEC_RE,
2533  ALTIVEC_BUILTIN_VEC_RL,
2534  ALTIVEC_BUILTIN_VEC_ROUND,
2535  ALTIVEC_BUILTIN_VEC_RSQRTE,
2536  ALTIVEC_BUILTIN_VEC_SEL,
2537  ALTIVEC_BUILTIN_VEC_SL,
2538  ALTIVEC_BUILTIN_VEC_SLD,
2539  ALTIVEC_BUILTIN_VEC_SLL,
2540  ALTIVEC_BUILTIN_VEC_SLO,
2541  ALTIVEC_BUILTIN_VEC_SPLAT,
2542  ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2543  ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2544  ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2545  ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2546  ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2547  ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2548  ALTIVEC_BUILTIN_VEC_SPLTB,
2549  ALTIVEC_BUILTIN_VEC_SPLTH,
2550  ALTIVEC_BUILTIN_VEC_SPLTW,
2551  ALTIVEC_BUILTIN_VEC_SR,
2552  ALTIVEC_BUILTIN_VEC_SRA,
2553  ALTIVEC_BUILTIN_VEC_SRL,
2554  ALTIVEC_BUILTIN_VEC_SRO,
2555  ALTIVEC_BUILTIN_VEC_ST,
2556  ALTIVEC_BUILTIN_VEC_STE,
2557  ALTIVEC_BUILTIN_VEC_STL,
2558  ALTIVEC_BUILTIN_VEC_STVEBX,
2559  ALTIVEC_BUILTIN_VEC_STVEHX,
2560  ALTIVEC_BUILTIN_VEC_STVEWX,
2561  ALTIVEC_BUILTIN_VEC_SUB,
2562  ALTIVEC_BUILTIN_VEC_SUBC,
2563  ALTIVEC_BUILTIN_VEC_SUBS,
2564  ALTIVEC_BUILTIN_VEC_SUM2S,
2565  ALTIVEC_BUILTIN_VEC_SUM4S,
2566  ALTIVEC_BUILTIN_VEC_SUMS,
2567  ALTIVEC_BUILTIN_VEC_TRUNC,
2568  ALTIVEC_BUILTIN_VEC_UNPACKH,
2569  ALTIVEC_BUILTIN_VEC_UNPACKL,
2570  ALTIVEC_BUILTIN_VEC_VADDFP,
2571  ALTIVEC_BUILTIN_VEC_VADDSBS,
2572  ALTIVEC_BUILTIN_VEC_VADDSHS,
2573  ALTIVEC_BUILTIN_VEC_VADDSWS,
2574  ALTIVEC_BUILTIN_VEC_VADDUBM,
2575  ALTIVEC_BUILTIN_VEC_VADDUBS,
2576  ALTIVEC_BUILTIN_VEC_VADDUHM,
2577  ALTIVEC_BUILTIN_VEC_VADDUHS,
2578  ALTIVEC_BUILTIN_VEC_VADDUWM,
2579  ALTIVEC_BUILTIN_VEC_VADDUWS,
2580  ALTIVEC_BUILTIN_VEC_VAVGSB,
2581  ALTIVEC_BUILTIN_VEC_VAVGSH,
2582  ALTIVEC_BUILTIN_VEC_VAVGSW,
2583  ALTIVEC_BUILTIN_VEC_VAVGUB,
2584  ALTIVEC_BUILTIN_VEC_VAVGUH,
2585  ALTIVEC_BUILTIN_VEC_VAVGUW,
2586  ALTIVEC_BUILTIN_VEC_VCFSX,
2587  ALTIVEC_BUILTIN_VEC_VCFUX,
2588  ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2589  ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2590  ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2591  ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2592  ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2593  ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2594  ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2595  ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2596  ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2597  ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2598  ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2599  ALTIVEC_BUILTIN_VEC_VMAXFP,
2600  ALTIVEC_BUILTIN_VEC_VMAXSB,
2601  ALTIVEC_BUILTIN_VEC_VMAXSH,
2602  ALTIVEC_BUILTIN_VEC_VMAXSW,
2603  ALTIVEC_BUILTIN_VEC_VMAXUB,
2604  ALTIVEC_BUILTIN_VEC_VMAXUH,
2605  ALTIVEC_BUILTIN_VEC_VMAXUW,
2606  ALTIVEC_BUILTIN_VEC_VMINFP,
2607  ALTIVEC_BUILTIN_VEC_VMINSB,
2608  ALTIVEC_BUILTIN_VEC_VMINSH,
2609  ALTIVEC_BUILTIN_VEC_VMINSW,
2610  ALTIVEC_BUILTIN_VEC_VMINUB,
2611  ALTIVEC_BUILTIN_VEC_VMINUH,
2612  ALTIVEC_BUILTIN_VEC_VMINUW,
2613  ALTIVEC_BUILTIN_VEC_VMRGHB,
2614  ALTIVEC_BUILTIN_VEC_VMRGHH,
2615  ALTIVEC_BUILTIN_VEC_VMRGHW,
2616  ALTIVEC_BUILTIN_VEC_VMRGLB,
2617  ALTIVEC_BUILTIN_VEC_VMRGLH,
2618  ALTIVEC_BUILTIN_VEC_VMRGLW,
2619  ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2620  ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2621  ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2622  ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2623  ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2624  ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2625  ALTIVEC_BUILTIN_VEC_VMULESB,
2626  ALTIVEC_BUILTIN_VEC_VMULESH,
2627  ALTIVEC_BUILTIN_VEC_VMULEUB,
2628  ALTIVEC_BUILTIN_VEC_VMULEUH,
2629  ALTIVEC_BUILTIN_VEC_VMULOSB,
2630  ALTIVEC_BUILTIN_VEC_VMULOSH,
2631  ALTIVEC_BUILTIN_VEC_VMULOUB,
2632  ALTIVEC_BUILTIN_VEC_VMULOUH,
2633  ALTIVEC_BUILTIN_VEC_VPKSHSS,
2634  ALTIVEC_BUILTIN_VEC_VPKSHUS,
2635  ALTIVEC_BUILTIN_VEC_VPKSWSS,
2636  ALTIVEC_BUILTIN_VEC_VPKSWUS,
2637  ALTIVEC_BUILTIN_VEC_VPKUHUM,
2638  ALTIVEC_BUILTIN_VEC_VPKUHUS,
2639  ALTIVEC_BUILTIN_VEC_VPKUWUM,
2640  ALTIVEC_BUILTIN_VEC_VPKUWUS,
2641  ALTIVEC_BUILTIN_VEC_VRLB,
2642  ALTIVEC_BUILTIN_VEC_VRLH,
2643  ALTIVEC_BUILTIN_VEC_VRLW,
2644  ALTIVEC_BUILTIN_VEC_VSLB,
2645  ALTIVEC_BUILTIN_VEC_VSLH,
2646  ALTIVEC_BUILTIN_VEC_VSLW,
2647  ALTIVEC_BUILTIN_VEC_VSPLTB,
2648  ALTIVEC_BUILTIN_VEC_VSPLTH,
2649  ALTIVEC_BUILTIN_VEC_VSPLTW,
2650  ALTIVEC_BUILTIN_VEC_VSRAB,
2651  ALTIVEC_BUILTIN_VEC_VSRAH,
2652  ALTIVEC_BUILTIN_VEC_VSRAW,
2653  ALTIVEC_BUILTIN_VEC_VSRB,
2654  ALTIVEC_BUILTIN_VEC_VSRH,
2655  ALTIVEC_BUILTIN_VEC_VSRW,
2656  ALTIVEC_BUILTIN_VEC_VSUBFP,
2657  ALTIVEC_BUILTIN_VEC_VSUBSBS,
2658  ALTIVEC_BUILTIN_VEC_VSUBSHS,
2659  ALTIVEC_BUILTIN_VEC_VSUBSWS,
2660  ALTIVEC_BUILTIN_VEC_VSUBUBM,
2661  ALTIVEC_BUILTIN_VEC_VSUBUBS,
2662  ALTIVEC_BUILTIN_VEC_VSUBUHM,
2663  ALTIVEC_BUILTIN_VEC_VSUBUHS,
2664  ALTIVEC_BUILTIN_VEC_VSUBUWM,
2665  ALTIVEC_BUILTIN_VEC_VSUBUWS,
2666  ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2667  ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2668  ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2669  ALTIVEC_BUILTIN_VEC_VUPKHPX,
2670  ALTIVEC_BUILTIN_VEC_VUPKHSB,
2671  ALTIVEC_BUILTIN_VEC_VUPKHSH,
2672  ALTIVEC_BUILTIN_VEC_VUPKLPX,
2673  ALTIVEC_BUILTIN_VEC_VUPKLSB,
2674  ALTIVEC_BUILTIN_VEC_VUPKLSH,
2675  ALTIVEC_BUILTIN_VEC_XOR,
2676  ALTIVEC_BUILTIN_VEC_STEP,
2677  ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2678
2679  /* SPE builtins.  */
2680  SPE_BUILTIN_EVADDW,
2681  SPE_BUILTIN_EVAND,
2682  SPE_BUILTIN_EVANDC,
2683  SPE_BUILTIN_EVDIVWS,
2684  SPE_BUILTIN_EVDIVWU,
2685  SPE_BUILTIN_EVEQV,
2686  SPE_BUILTIN_EVFSADD,
2687  SPE_BUILTIN_EVFSDIV,
2688  SPE_BUILTIN_EVFSMUL,
2689  SPE_BUILTIN_EVFSSUB,
2690  SPE_BUILTIN_EVLDDX,
2691  SPE_BUILTIN_EVLDHX,
2692  SPE_BUILTIN_EVLDWX,
2693  SPE_BUILTIN_EVLHHESPLATX,
2694  SPE_BUILTIN_EVLHHOSSPLATX,
2695  SPE_BUILTIN_EVLHHOUSPLATX,
2696  SPE_BUILTIN_EVLWHEX,
2697  SPE_BUILTIN_EVLWHOSX,
2698  SPE_BUILTIN_EVLWHOUX,
2699  SPE_BUILTIN_EVLWHSPLATX,
2700  SPE_BUILTIN_EVLWWSPLATX,
2701  SPE_BUILTIN_EVMERGEHI,
2702  SPE_BUILTIN_EVMERGEHILO,
2703  SPE_BUILTIN_EVMERGELO,
2704  SPE_BUILTIN_EVMERGELOHI,
2705  SPE_BUILTIN_EVMHEGSMFAA,
2706  SPE_BUILTIN_EVMHEGSMFAN,
2707  SPE_BUILTIN_EVMHEGSMIAA,
2708  SPE_BUILTIN_EVMHEGSMIAN,
2709  SPE_BUILTIN_EVMHEGUMIAA,
2710  SPE_BUILTIN_EVMHEGUMIAN,
2711  SPE_BUILTIN_EVMHESMF,
2712  SPE_BUILTIN_EVMHESMFA,
2713  SPE_BUILTIN_EVMHESMFAAW,
2714  SPE_BUILTIN_EVMHESMFANW,
2715  SPE_BUILTIN_EVMHESMI,
2716  SPE_BUILTIN_EVMHESMIA,
2717  SPE_BUILTIN_EVMHESMIAAW,
2718  SPE_BUILTIN_EVMHESMIANW,
2719  SPE_BUILTIN_EVMHESSF,
2720  SPE_BUILTIN_EVMHESSFA,
2721  SPE_BUILTIN_EVMHESSFAAW,
2722  SPE_BUILTIN_EVMHESSFANW,
2723  SPE_BUILTIN_EVMHESSIAAW,
2724  SPE_BUILTIN_EVMHESSIANW,
2725  SPE_BUILTIN_EVMHEUMI,
2726  SPE_BUILTIN_EVMHEUMIA,
2727  SPE_BUILTIN_EVMHEUMIAAW,
2728  SPE_BUILTIN_EVMHEUMIANW,
2729  SPE_BUILTIN_EVMHEUSIAAW,
2730  SPE_BUILTIN_EVMHEUSIANW,
2731  SPE_BUILTIN_EVMHOGSMFAA,
2732  SPE_BUILTIN_EVMHOGSMFAN,
2733  SPE_BUILTIN_EVMHOGSMIAA,
2734  SPE_BUILTIN_EVMHOGSMIAN,
2735  SPE_BUILTIN_EVMHOGUMIAA,
2736  SPE_BUILTIN_EVMHOGUMIAN,
2737  SPE_BUILTIN_EVMHOSMF,
2738  SPE_BUILTIN_EVMHOSMFA,
2739  SPE_BUILTIN_EVMHOSMFAAW,
2740  SPE_BUILTIN_EVMHOSMFANW,
2741  SPE_BUILTIN_EVMHOSMI,
2742  SPE_BUILTIN_EVMHOSMIA,
2743  SPE_BUILTIN_EVMHOSMIAAW,
2744  SPE_BUILTIN_EVMHOSMIANW,
2745  SPE_BUILTIN_EVMHOSSF,
2746  SPE_BUILTIN_EVMHOSSFA,
2747  SPE_BUILTIN_EVMHOSSFAAW,
2748  SPE_BUILTIN_EVMHOSSFANW,
2749  SPE_BUILTIN_EVMHOSSIAAW,
2750  SPE_BUILTIN_EVMHOSSIANW,
2751  SPE_BUILTIN_EVMHOUMI,
2752  SPE_BUILTIN_EVMHOUMIA,
2753  SPE_BUILTIN_EVMHOUMIAAW,
2754  SPE_BUILTIN_EVMHOUMIANW,
2755  SPE_BUILTIN_EVMHOUSIAAW,
2756  SPE_BUILTIN_EVMHOUSIANW,
2757  SPE_BUILTIN_EVMWHSMF,
2758  SPE_BUILTIN_EVMWHSMFA,
2759  SPE_BUILTIN_EVMWHSMI,
2760  SPE_BUILTIN_EVMWHSMIA,
2761  SPE_BUILTIN_EVMWHSSF,
2762  SPE_BUILTIN_EVMWHSSFA,
2763  SPE_BUILTIN_EVMWHUMI,
2764  SPE_BUILTIN_EVMWHUMIA,
2765  SPE_BUILTIN_EVMWLSMIAAW,
2766  SPE_BUILTIN_EVMWLSMIANW,
2767  SPE_BUILTIN_EVMWLSSIAAW,
2768  SPE_BUILTIN_EVMWLSSIANW,
2769  SPE_BUILTIN_EVMWLUMI,
2770  SPE_BUILTIN_EVMWLUMIA,
2771  SPE_BUILTIN_EVMWLUMIAAW,
2772  SPE_BUILTIN_EVMWLUMIANW,
2773  SPE_BUILTIN_EVMWLUSIAAW,
2774  SPE_BUILTIN_EVMWLUSIANW,
2775  SPE_BUILTIN_EVMWSMF,
2776  SPE_BUILTIN_EVMWSMFA,
2777  SPE_BUILTIN_EVMWSMFAA,
2778  SPE_BUILTIN_EVMWSMFAN,
2779  SPE_BUILTIN_EVMWSMI,
2780  SPE_BUILTIN_EVMWSMIA,
2781  SPE_BUILTIN_EVMWSMIAA,
2782  SPE_BUILTIN_EVMWSMIAN,
2783  SPE_BUILTIN_EVMWHSSFAA,
2784  SPE_BUILTIN_EVMWSSF,
2785  SPE_BUILTIN_EVMWSSFA,
2786  SPE_BUILTIN_EVMWSSFAA,
2787  SPE_BUILTIN_EVMWSSFAN,
2788  SPE_BUILTIN_EVMWUMI,
2789  SPE_BUILTIN_EVMWUMIA,
2790  SPE_BUILTIN_EVMWUMIAA,
2791  SPE_BUILTIN_EVMWUMIAN,
2792  SPE_BUILTIN_EVNAND,
2793  SPE_BUILTIN_EVNOR,
2794  SPE_BUILTIN_EVOR,
2795  SPE_BUILTIN_EVORC,
2796  SPE_BUILTIN_EVRLW,
2797  SPE_BUILTIN_EVSLW,
2798  SPE_BUILTIN_EVSRWS,
2799  SPE_BUILTIN_EVSRWU,
2800  SPE_BUILTIN_EVSTDDX,
2801  SPE_BUILTIN_EVSTDHX,
2802  SPE_BUILTIN_EVSTDWX,
2803  SPE_BUILTIN_EVSTWHEX,
2804  SPE_BUILTIN_EVSTWHOX,
2805  SPE_BUILTIN_EVSTWWEX,
2806  SPE_BUILTIN_EVSTWWOX,
2807  SPE_BUILTIN_EVSUBFW,
2808  SPE_BUILTIN_EVXOR,
2809  SPE_BUILTIN_EVABS,
2810  SPE_BUILTIN_EVADDSMIAAW,
2811  SPE_BUILTIN_EVADDSSIAAW,
2812  SPE_BUILTIN_EVADDUMIAAW,
2813  SPE_BUILTIN_EVADDUSIAAW,
2814  SPE_BUILTIN_EVCNTLSW,
2815  SPE_BUILTIN_EVCNTLZW,
2816  SPE_BUILTIN_EVEXTSB,
2817  SPE_BUILTIN_EVEXTSH,
2818  SPE_BUILTIN_EVFSABS,
2819  SPE_BUILTIN_EVFSCFSF,
2820  SPE_BUILTIN_EVFSCFSI,
2821  SPE_BUILTIN_EVFSCFUF,
2822  SPE_BUILTIN_EVFSCFUI,
2823  SPE_BUILTIN_EVFSCTSF,
2824  SPE_BUILTIN_EVFSCTSI,
2825  SPE_BUILTIN_EVFSCTSIZ,
2826  SPE_BUILTIN_EVFSCTUF,
2827  SPE_BUILTIN_EVFSCTUI,
2828  SPE_BUILTIN_EVFSCTUIZ,
2829  SPE_BUILTIN_EVFSNABS,
2830  SPE_BUILTIN_EVFSNEG,
2831  SPE_BUILTIN_EVMRA,
2832  SPE_BUILTIN_EVNEG,
2833  SPE_BUILTIN_EVRNDW,
2834  SPE_BUILTIN_EVSUBFSMIAAW,
2835  SPE_BUILTIN_EVSUBFSSIAAW,
2836  SPE_BUILTIN_EVSUBFUMIAAW,
2837  SPE_BUILTIN_EVSUBFUSIAAW,
2838  SPE_BUILTIN_EVADDIW,
2839  SPE_BUILTIN_EVLDD,
2840  SPE_BUILTIN_EVLDH,
2841  SPE_BUILTIN_EVLDW,
2842  SPE_BUILTIN_EVLHHESPLAT,
2843  SPE_BUILTIN_EVLHHOSSPLAT,
2844  SPE_BUILTIN_EVLHHOUSPLAT,
2845  SPE_BUILTIN_EVLWHE,
2846  SPE_BUILTIN_EVLWHOS,
2847  SPE_BUILTIN_EVLWHOU,
2848  SPE_BUILTIN_EVLWHSPLAT,
2849  SPE_BUILTIN_EVLWWSPLAT,
2850  SPE_BUILTIN_EVRLWI,
2851  SPE_BUILTIN_EVSLWI,
2852  SPE_BUILTIN_EVSRWIS,
2853  SPE_BUILTIN_EVSRWIU,
2854  SPE_BUILTIN_EVSTDD,
2855  SPE_BUILTIN_EVSTDH,
2856  SPE_BUILTIN_EVSTDW,
2857  SPE_BUILTIN_EVSTWHE,
2858  SPE_BUILTIN_EVSTWHO,
2859  SPE_BUILTIN_EVSTWWE,
2860  SPE_BUILTIN_EVSTWWO,
2861  SPE_BUILTIN_EVSUBIFW,
2862
2863  /* Compares.  */
2864  SPE_BUILTIN_EVCMPEQ,
2865  SPE_BUILTIN_EVCMPGTS,
2866  SPE_BUILTIN_EVCMPGTU,
2867  SPE_BUILTIN_EVCMPLTS,
2868  SPE_BUILTIN_EVCMPLTU,
2869  SPE_BUILTIN_EVFSCMPEQ,
2870  SPE_BUILTIN_EVFSCMPGT,
2871  SPE_BUILTIN_EVFSCMPLT,
2872  SPE_BUILTIN_EVFSTSTEQ,
2873  SPE_BUILTIN_EVFSTSTGT,
2874  SPE_BUILTIN_EVFSTSTLT,
2875
2876  /* EVSEL compares.  */
2877  SPE_BUILTIN_EVSEL_CMPEQ,
2878  SPE_BUILTIN_EVSEL_CMPGTS,
2879  SPE_BUILTIN_EVSEL_CMPGTU,
2880  SPE_BUILTIN_EVSEL_CMPLTS,
2881  SPE_BUILTIN_EVSEL_CMPLTU,
2882  SPE_BUILTIN_EVSEL_FSCMPEQ,
2883  SPE_BUILTIN_EVSEL_FSCMPGT,
2884  SPE_BUILTIN_EVSEL_FSCMPLT,
2885  SPE_BUILTIN_EVSEL_FSTSTEQ,
2886  SPE_BUILTIN_EVSEL_FSTSTGT,
2887  SPE_BUILTIN_EVSEL_FSTSTLT,
2888
2889  SPE_BUILTIN_EVSPLATFI,
2890  SPE_BUILTIN_EVSPLATI,
2891  SPE_BUILTIN_EVMWHSSMAA,
2892  SPE_BUILTIN_EVMWHSMFAA,
2893  SPE_BUILTIN_EVMWHSMIAA,
2894  SPE_BUILTIN_EVMWHUSIAA,
2895  SPE_BUILTIN_EVMWHUMIAA,
2896  SPE_BUILTIN_EVMWHSSFAN,
2897  SPE_BUILTIN_EVMWHSSIAN,
2898  SPE_BUILTIN_EVMWHSMFAN,
2899  SPE_BUILTIN_EVMWHSMIAN,
2900  SPE_BUILTIN_EVMWHUSIAN,
2901  SPE_BUILTIN_EVMWHUMIAN,
2902  SPE_BUILTIN_EVMWHGSSFAA,
2903  SPE_BUILTIN_EVMWHGSMFAA,
2904  SPE_BUILTIN_EVMWHGSMIAA,
2905  SPE_BUILTIN_EVMWHGUMIAA,
2906  SPE_BUILTIN_EVMWHGSSFAN,
2907  SPE_BUILTIN_EVMWHGSMFAN,
2908  SPE_BUILTIN_EVMWHGSMIAN,
2909  SPE_BUILTIN_EVMWHGUMIAN,
2910  SPE_BUILTIN_MTSPEFSCR,
2911  SPE_BUILTIN_MFSPEFSCR,
2912  SPE_BUILTIN_BRINC,
2913
2914  RS6000_BUILTIN_COUNT
2915};
2916
2917enum rs6000_builtin_type_index
2918{
2919  RS6000_BTI_NOT_OPAQUE,
2920  RS6000_BTI_opaque_V2SI,
2921  RS6000_BTI_opaque_V2SF,
2922  RS6000_BTI_opaque_p_V2SI,
2923  RS6000_BTI_opaque_V4SI,
2924  RS6000_BTI_V16QI,
2925  RS6000_BTI_V2SI,
2926  RS6000_BTI_V2SF,
2927  RS6000_BTI_V4HI,
2928  RS6000_BTI_V4SI,
2929  RS6000_BTI_V4SF,
2930  RS6000_BTI_V8HI,
2931  RS6000_BTI_unsigned_V16QI,
2932  RS6000_BTI_unsigned_V8HI,
2933  RS6000_BTI_unsigned_V4SI,
2934  RS6000_BTI_bool_char,          /* __bool char */
2935  RS6000_BTI_bool_short,         /* __bool short */
2936  RS6000_BTI_bool_int,           /* __bool int */
2937  RS6000_BTI_pixel,              /* __pixel */
2938  RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2939  RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2940  RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2941  RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2942  RS6000_BTI_long,	         /* long_integer_type_node */
2943  RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2944  RS6000_BTI_INTQI,	         /* intQI_type_node */
2945  RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2946  RS6000_BTI_INTHI,	         /* intHI_type_node */
2947  RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2948  RS6000_BTI_INTSI,		 /* intSI_type_node */
2949  RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2950  RS6000_BTI_float,	         /* float_type_node */
2951  RS6000_BTI_void,	         /* void_type_node */
2952  RS6000_BTI_MAX
2953};
2954
2955
2956#define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2957#define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2958#define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2959#define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2960#define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2961#define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2962#define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2963#define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2964#define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2965#define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2966#define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2967#define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2968#define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2969#define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2970#define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2971#define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2972#define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2973#define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2974#define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2975#define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2976#define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2977#define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2978
2979#define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2980#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2981#define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2982#define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2983#define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2984#define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2985#define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2986#define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2987#define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2988#define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2989
2990extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2991extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2992
2993