rs6000.h revision 90075
1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002 Free Software Foundation, Inc.
4   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING.  If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA.  */
22
23
24/* Note that some other tm.h files include this one and then override
25   many of the definitions.  */
26
27/* Definitions for the object file format.  These are set at
28   compile-time.  */
29
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
33#define OBJECT_MACHO 4
34
35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
44/* Default string to use for cpu if not specified.  */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
49/* Common CPP definitions used by CPP_SPEC among the various targets
50   for handling -mcpu=xxx switches.  */
51#define CPP_CPU_SPEC \
52"%{!mcpu*: \
53  %{mpower: %{!mpower2: -D_ARCH_PWR}} \
54  %{mpower2: -D_ARCH_PWR2} \
55  %{mpowerpc*: -D_ARCH_PPC} \
56  %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
57  %{!mno-power: %{!mpower2: %(cpp_default)}}} \
58%{mcpu=common: -D_ARCH_COM} \
59%{mcpu=power: -D_ARCH_PWR} \
60%{mcpu=power2: -D_ARCH_PWR2} \
61%{mcpu=powerpc: -D_ARCH_PPC} \
62%{mcpu=rios: -D_ARCH_PWR} \
63%{mcpu=rios1: -D_ARCH_PWR} \
64%{mcpu=rios2: -D_ARCH_PWR2} \
65%{mcpu=rsc: -D_ARCH_PWR} \
66%{mcpu=rsc1: -D_ARCH_PWR} \
67%{mcpu=401: -D_ARCH_PPC} \
68%{mcpu=403: -D_ARCH_PPC} \
69%{mcpu=405: -D_ARCH_PPC} \
70%{mcpu=505: -D_ARCH_PPC} \
71%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
72%{mcpu=602: -D_ARCH_PPC} \
73%{mcpu=603: -D_ARCH_PPC} \
74%{mcpu=603e: -D_ARCH_PPC} \
75%{mcpu=ec603e: -D_ARCH_PPC} \
76%{mcpu=604: -D_ARCH_PPC} \
77%{mcpu=604e: -D_ARCH_PPC} \
78%{mcpu=620: -D_ARCH_PPC} \
79%{mcpu=740: -D_ARCH_PPC} \
80%{mcpu=7400: -D_ARCH_PPC} \
81%{mcpu=7450: -D_ARCH_PPC} \
82%{mcpu=750: -D_ARCH_PPC} \
83%{mcpu=801: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
85%{mcpu=823: -D_ARCH_PPC} \
86%{mcpu=860: -D_ARCH_PPC} \
87%{maltivec: -D__ALTIVEC__}"
88
89/* Common ASM definitions used by ASM_SPEC among the various targets
90   for handling -mcpu=xxx switches.  */
91#define ASM_CPU_SPEC \
92"%{!mcpu*: \
93  %{mpower: %{!mpower2: -mpwr}} \
94  %{mpower2: -mpwrx} \
95  %{mpowerpc*: -mppc} \
96  %{mno-power: %{!mpowerpc*: -mcom}} \
97  %{!mno-power: %{!mpower2: %(asm_default)}}} \
98%{mcpu=common: -mcom} \
99%{mcpu=power: -mpwr} \
100%{mcpu=power2: -mpwrx} \
101%{mcpu=powerpc: -mppc} \
102%{mcpu=rios: -mpwr} \
103%{mcpu=rios1: -mpwr} \
104%{mcpu=rios2: -mpwrx} \
105%{mcpu=rsc: -mpwr} \
106%{mcpu=rsc1: -mpwr} \
107%{mcpu=401: -mppc} \
108%{mcpu=403: -mppc} \
109%{mcpu=405: -mppc} \
110%{mcpu=505: -mppc} \
111%{mcpu=601: -m601} \
112%{mcpu=602: -mppc} \
113%{mcpu=603: -mppc} \
114%{mcpu=603e: -mppc} \
115%{mcpu=ec603e: -mppc} \
116%{mcpu=604: -mppc} \
117%{mcpu=604e: -mppc} \
118%{mcpu=620: -mppc} \
119%{mcpu=740: -mppc} \
120%{mcpu=7400: -mppc} \
121%{mcpu=7450: -mppc} \
122%{mcpu=750: -mppc} \
123%{mcpu=801: -mppc} \
124%{mcpu=821: -mppc} \
125%{mcpu=823: -mppc} \
126%{mcpu=860: -mppc} \
127%{maltivec: -maltivec}"
128
129#define CPP_DEFAULT_SPEC ""
130
131#define ASM_DEFAULT_SPEC ""
132
133/* This macro defines names of additional specifications to put in the specs
134   that can be used in various specifications like CC1_SPEC.  Its definition
135   is an initializer with a subgrouping for each command option.
136
137   Each subgrouping contains a string constant, that defines the
138   specification name, and a string constant that used by the GNU CC driver
139   program.
140
141   Do not define this macro if it does not need to do anything.  */
142
143#define SUBTARGET_EXTRA_SPECS
144
145#define EXTRA_SPECS							\
146  { "cpp_cpu",			CPP_CPU_SPEC },				\
147  { "cpp_default",		CPP_DEFAULT_SPEC },			\
148  { "asm_cpu",			ASM_CPU_SPEC },				\
149  { "asm_default",		ASM_DEFAULT_SPEC },			\
150  SUBTARGET_EXTRA_SPECS
151
152/* Architecture type.  */
153
154extern int target_flags;
155
156/* Use POWER architecture instructions and MQ register.  */
157#define MASK_POWER		0x00000001
158
159/* Use POWER2 extensions to POWER architecture.  */
160#define MASK_POWER2		0x00000002
161
162/* Use PowerPC architecture instructions.  */
163#define MASK_POWERPC		0x00000004
164
165/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt.  */
166#define MASK_PPC_GPOPT		0x00000008
167
168/* Use PowerPC Graphics group optional instructions, e.g. fsel.  */
169#define MASK_PPC_GFXOPT		0x00000010
170
171/* Use PowerPC-64 architecture instructions.  */
172#define MASK_POWERPC64		0x00000020
173
174/* Use revised mnemonic names defined for PowerPC architecture.  */
175#define MASK_NEW_MNEMONICS	0x00000040
176
177/* Disable placing fp constants in the TOC; can be turned on when the
178   TOC overflows.  */
179#define MASK_NO_FP_IN_TOC	0x00000080
180
181/* Disable placing symbol+offset constants in the TOC; can be turned on when
182   the TOC overflows.  */
183#define MASK_NO_SUM_IN_TOC	0x00000100
184
185/* Output only one TOC entry per module.  Normally linking fails if
186   there are more than 16K unique variables/constants in an executable.  With
187   this option, linking fails only if there are more than 16K modules, or
188   if there are more than 16K unique variables/constant in a single module.
189
190   This is at the cost of having 2 extra loads and one extra store per
191   function, and one less allocable register.  */
192#define MASK_MINIMAL_TOC	0x00000200
193
194/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits.  */
195#define MASK_64BIT		0x00000400
196
197/* Disable use of FPRs.  */
198#define MASK_SOFT_FLOAT		0x00000800
199
200/* Enable load/store multiple, even on powerpc */
201#define	MASK_MULTIPLE		0x00001000
202#define	MASK_MULTIPLE_SET	0x00002000
203
204/* Use string instructions for block moves */
205#define MASK_STRING		0x00004000
206#define MASK_STRING_SET		0x00008000
207
208/* Disable update form of load/store */
209#define MASK_NO_UPDATE		0x00010000
210
211/* Disable fused multiply/add operations */
212#define MASK_NO_FUSED_MADD	0x00020000
213
214/* Nonzero if we need to schedule the prolog and epilog.  */
215#define MASK_SCHED_PROLOG	0x00040000
216
217/* Use AltiVec instructions.  */
218#define MASK_ALTIVEC		0x00080000
219
220/* Return small structures in memory (as the AIX ABI requires).  */
221#define MASK_AIX_STRUCT_RET	0x00100000
222#define MASK_AIX_STRUCT_RET_SET	0x00200000
223
224/* The only remaining free bit is 0x00400000. sysv4.h uses
225   0x00800000 -> 0x40000000, and 0x80000000 is not available
226   because target_flags is signed.  */
227
228#define TARGET_POWER		(target_flags & MASK_POWER)
229#define TARGET_POWER2		(target_flags & MASK_POWER2)
230#define TARGET_POWERPC		(target_flags & MASK_POWERPC)
231#define TARGET_PPC_GPOPT	(target_flags & MASK_PPC_GPOPT)
232#define TARGET_PPC_GFXOPT	(target_flags & MASK_PPC_GFXOPT)
233#define TARGET_NEW_MNEMONICS	(target_flags & MASK_NEW_MNEMONICS)
234#define TARGET_NO_FP_IN_TOC	(target_flags & MASK_NO_FP_IN_TOC)
235#define TARGET_NO_SUM_IN_TOC	(target_flags & MASK_NO_SUM_IN_TOC)
236#define TARGET_MINIMAL_TOC	(target_flags & MASK_MINIMAL_TOC)
237#define TARGET_64BIT		(target_flags & MASK_64BIT)
238#define TARGET_SOFT_FLOAT	(target_flags & MASK_SOFT_FLOAT)
239#define	TARGET_MULTIPLE		(target_flags & MASK_MULTIPLE)
240#define	TARGET_MULTIPLE_SET	(target_flags & MASK_MULTIPLE_SET)
241#define TARGET_STRING		(target_flags & MASK_STRING)
242#define TARGET_STRING_SET	(target_flags & MASK_STRING_SET)
243#define TARGET_NO_UPDATE	(target_flags & MASK_NO_UPDATE)
244#define TARGET_NO_FUSED_MADD	(target_flags & MASK_NO_FUSED_MADD)
245#define TARGET_SCHED_PROLOG	(target_flags & MASK_SCHED_PROLOG)
246#define TARGET_ALTIVEC		(target_flags & MASK_ALTIVEC)
247#define TARGET_AIX_STRUCT_RET	(target_flags & MASK_AIX_STRUCT_RET)
248
249#define TARGET_32BIT		(! TARGET_64BIT)
250#define TARGET_HARD_FLOAT	(! TARGET_SOFT_FLOAT)
251#define TARGET_UPDATE		(! TARGET_NO_UPDATE)
252#define TARGET_FUSED_MADD	(! TARGET_NO_FUSED_MADD)
253
254#ifdef IN_LIBGCC2
255/* For libgcc2 we make sure this is a compile time constant */
256#if defined (__64BIT__) || defined (__powerpc64__)
257#define TARGET_POWERPC64	1
258#else
259#define TARGET_POWERPC64	0
260#endif
261#else
262#define TARGET_POWERPC64	(target_flags & MASK_POWERPC64)
263#endif
264
265#define TARGET_XL_CALL 0
266
267/* Run-time compilation parameters selecting different hardware subsets.
268
269   Macro to define tables used to set the flags.
270   This is a list in braces of pairs in braces,
271   each pair being { "NAME", VALUE }
272   where VALUE is the bits to set or minus the bits to clear.
273   An empty string NAME is used to identify the default VALUE.  */
274
275#define TARGET_SWITCHES							\
276 {{"power",		MASK_POWER  | MASK_MULTIPLE | MASK_STRING,	\
277			N_("Use POWER instruction set")},		\
278  {"power2",		(MASK_POWER | MASK_MULTIPLE | MASK_STRING	\
279			 | MASK_POWER2),				\
280			N_("Use POWER2 instruction set")},		\
281  {"no-power2",		- MASK_POWER2,					\
282			N_("Do not use POWER2 instruction set")},	\
283  {"no-power",		- (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE	\
284			   | MASK_STRING),				\
285			N_("Do not use POWER instruction set")},	\
286  {"powerpc",		MASK_POWERPC,					\
287			N_("Use PowerPC instruction set")},		\
288  {"no-powerpc",	- (MASK_POWERPC | MASK_PPC_GPOPT		\
289			   | MASK_PPC_GFXOPT | MASK_POWERPC64),		\
290			N_("Do not use PowerPC instruction set")},	\
291  {"powerpc-gpopt",	MASK_POWERPC | MASK_PPC_GPOPT,			\
292			N_("Use PowerPC General Purpose group optional instructions")},\
293  {"no-powerpc-gpopt",	- MASK_PPC_GPOPT,				\
294			N_("Don't use PowerPC General Purpose group optional instructions")},\
295  {"powerpc-gfxopt",	MASK_POWERPC | MASK_PPC_GFXOPT,			\
296			N_("Use PowerPC Graphics group optional instructions")},\
297  {"no-powerpc-gfxopt",	- MASK_PPC_GFXOPT,				\
298			N_("Don't use PowerPC Graphics group optional instructions")},\
299  {"powerpc64",		MASK_POWERPC64,					\
300			N_("Use PowerPC-64 instruction set")},		\
301  {"no-powerpc64",	- MASK_POWERPC64,				\
302			N_("Don't use PowerPC-64 instruction set")},	\
303  {"altivec",		MASK_ALTIVEC ,					\
304			N_("Use AltiVec instructions")},		\
305  {"no-altivec",	- MASK_ALTIVEC ,					\
306			N_("Don't use AltiVec instructions")},	\
307  {"new-mnemonics",	MASK_NEW_MNEMONICS,				\
308			N_("Use new mnemonics for PowerPC architecture")},\
309  {"old-mnemonics",	-MASK_NEW_MNEMONICS,				\
310			N_("Use old mnemonics for PowerPC architecture")},\
311  {"full-toc",		- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC	\
312			   | MASK_MINIMAL_TOC),				\
313			N_("Put everything in the regular TOC")},	\
314  {"fp-in-toc",		- MASK_NO_FP_IN_TOC,				\
315			N_("Place floating point constants in TOC")},	\
316  {"no-fp-in-toc",	MASK_NO_FP_IN_TOC,				\
317			N_("Don't place floating point constants in TOC")},\
318  {"sum-in-toc",	- MASK_NO_SUM_IN_TOC,				\
319			N_("Place symbol+offset constants in TOC")},	\
320  {"no-sum-in-toc",	MASK_NO_SUM_IN_TOC,				\
321			N_("Don't place symbol+offset constants in TOC")},\
322  {"minimal-toc",	MASK_MINIMAL_TOC,				\
323			"Use only one TOC entry per procedure"},	\
324  {"minimal-toc",	- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC),	\
325			""},						\
326  {"no-minimal-toc",	- MASK_MINIMAL_TOC,				\
327			N_("Place variable addresses in the regular TOC")},\
328  {"hard-float",	- MASK_SOFT_FLOAT,				\
329			N_("Use hardware fp")},				\
330  {"soft-float",	MASK_SOFT_FLOAT,				\
331			N_("Do not use hardware fp")},			\
332  {"multiple",		MASK_MULTIPLE | MASK_MULTIPLE_SET,		\
333			N_("Generate load/store multiple instructions")},	\
334  {"no-multiple",	- MASK_MULTIPLE,				\
335			N_("Do not generate load/store multiple instructions")},\
336  {"no-multiple",	MASK_MULTIPLE_SET,				\
337			""},						\
338  {"string",		MASK_STRING | MASK_STRING_SET,			\
339			N_("Generate string instructions for block moves")},\
340  {"no-string",		- MASK_STRING,					\
341			N_("Do not generate string instructions for block moves")},\
342  {"no-string",		MASK_STRING_SET,				\
343			""},						\
344  {"update",		- MASK_NO_UPDATE,				\
345			N_("Generate load/store with update instructions")},\
346  {"no-update",		MASK_NO_UPDATE,					\
347			N_("Do not generate load/store with update instructions")},\
348  {"fused-madd",	- MASK_NO_FUSED_MADD,				\
349			N_("Generate fused multiply/add instructions")},\
350  {"no-fused-madd",	MASK_NO_FUSED_MADD,				\
351			N_("Don't generate fused multiply/add instructions")},\
352  {"sched-prolog",      MASK_SCHED_PROLOG,                              \
353			""},						\
354  {"no-sched-prolog",   -MASK_SCHED_PROLOG,                             \
355			N_("Don't schedule the start and end of the procedure")},\
356  {"sched-epilog",      MASK_SCHED_PROLOG,                              \
357			""},						\
358  {"no-sched-epilog",   -MASK_SCHED_PROLOG,                             \
359			""},						\
360  {"aix-struct-return",	MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,	\
361			N_("Return all structures in memory (AIX default)")},\
362  {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
363			N_("Return small structures in registers (SVR4 default)")},\
364  {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
365			""},\
366  {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
367			""},\
368  {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
369			""},\
370  {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
371			""},\
372  SUBTARGET_SWITCHES							\
373  {"",			TARGET_DEFAULT | MASK_SCHED_PROLOG,		\
374			""}}
375
376#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
377
378/* This is meant to be redefined in the host dependent files */
379#define SUBTARGET_SWITCHES
380
381/* Processor type.  Order must match cpu attribute in MD file.  */
382enum processor_type
383 {
384   PROCESSOR_RIOS1,
385   PROCESSOR_RIOS2,
386   PROCESSOR_RS64A,
387   PROCESSOR_MPCCORE,
388   PROCESSOR_PPC403,
389   PROCESSOR_PPC405,
390   PROCESSOR_PPC601,
391   PROCESSOR_PPC603,
392   PROCESSOR_PPC604,
393   PROCESSOR_PPC604e,
394   PROCESSOR_PPC620,
395   PROCESSOR_PPC630,
396   PROCESSOR_PPC750,
397   PROCESSOR_PPC7400,
398   PROCESSOR_PPC7450
399};
400
401extern enum processor_type rs6000_cpu;
402
403/* Recast the processor type to the cpu attribute.  */
404#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
405
406/* Define generic processor types based upon current deployment.  */
407#define PROCESSOR_COMMON    PROCESSOR_PPC601
408#define PROCESSOR_POWER     PROCESSOR_RIOS1
409#define PROCESSOR_POWERPC   PROCESSOR_PPC604
410#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
411
412/* Define the default processor.  This is overridden by other tm.h files.  */
413#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
414#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
415
416/* Specify the dialect of assembler to use.  New mnemonics is dialect one
417   and the old mnemonics are dialect zero.  */
418#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
419
420/* This is meant to be overridden in target specific files.  */
421#define	SUBTARGET_OPTIONS
422
423#define TARGET_OPTIONS							\
424{									\
425   {"cpu=",  &rs6000_select[1].string,					\
426    N_("Use features of and schedule code for given CPU") },		\
427   {"tune=", &rs6000_select[2].string,					\
428    N_("Schedule code for given CPU") },				\
429   {"debug=", &rs6000_debug_name, N_("Enable debug output") },		\
430   {"abi=", &rs6000_abi_string, N_("Specify ABI to use") },		\
431   {"long-double-", &rs6000_long_double_size_string,			\
432    N_("Specify size of long double (64 or 128 bits)") },		\
433   SUBTARGET_OPTIONS							\
434}
435
436/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
437struct rs6000_cpu_select
438{
439  const char *string;
440  const char *name;
441  int set_tune_p;
442  int set_arch_p;
443};
444
445extern struct rs6000_cpu_select rs6000_select[];
446
447/* Debug support */
448extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
449extern const char *rs6000_abi_string;	/* for -mabi={sysv,darwin,eabi,aix,altivec} */
450extern int rs6000_debug_stack;		/* debug stack applications */
451extern int rs6000_debug_arg;		/* debug argument handling */
452
453#define	TARGET_DEBUG_STACK	rs6000_debug_stack
454#define	TARGET_DEBUG_ARG	rs6000_debug_arg
455
456/* These are separate from target_flags because we've run out of bits
457   there.  */
458extern const char *rs6000_long_double_size_string;
459extern int rs6000_long_double_type_size;
460extern int rs6000_altivec_abi;
461
462#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
463#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
464
465/* Sometimes certain combinations of command options do not make sense
466   on a particular target machine.  You can define a macro
467   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
468   defined, is executed once just after all the command options have
469   been parsed.
470
471   Don't use this macro to turn on various extra optimizations for
472   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
473
474   On the RS/6000 this is used to define the target cpu type.  */
475
476#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
477
478/* Define this to change the optimizations performed by default.  */
479#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
480
481/* Show we can debug even without a frame pointer.  */
482#define CAN_DEBUG_WITHOUT_FP
483
484/* target machine storage layout */
485
486/* Define to support cross compilation to an RS6000 target.  */
487#define REAL_ARITHMETIC
488
489/* Define this macro if it is advisable to hold scalars in registers
490   in a wider mode than that declared by the program.  In such cases,
491   the value is constrained to be within the bounds of the declared
492   type, but kept valid in the wider mode.  The signedness of the
493   extension may differ from that of the type.  */
494
495#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
496  if (GET_MODE_CLASS (MODE) == MODE_INT		\
497      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
498    (MODE) = word_mode;
499
500/* Define this if function arguments should also be promoted using the above
501   procedure.  */
502
503#define PROMOTE_FUNCTION_ARGS
504
505/* Likewise, if the function return value is promoted.  */
506
507#define PROMOTE_FUNCTION_RETURN
508
509/* Define this if most significant bit is lowest numbered
510   in instructions that operate on numbered bit-fields.  */
511/* That is true on RS/6000.  */
512#define BITS_BIG_ENDIAN 1
513
514/* Define this if most significant byte of a word is the lowest numbered.  */
515/* That is true on RS/6000.  */
516#define BYTES_BIG_ENDIAN 1
517
518/* Define this if most significant word of a multiword number is lowest
519   numbered.
520
521   For RS/6000 we can decide arbitrarily since there are no machine
522   instructions for them.  Might as well be consistent with bits and bytes.  */
523#define WORDS_BIG_ENDIAN 1
524
525/* number of bits in an addressable storage unit */
526#define BITS_PER_UNIT 8
527
528/* Width in bits of a "word", which is the contents of a machine register.
529   Note that this is not necessarily the width of data type `int';
530   if using 16-bit ints on a 68000, this would still be 32.
531   But on a machine with 16-bit registers, this would be 16.  */
532#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
533#define MAX_BITS_PER_WORD 64
534
535/* Width of a word, in units (bytes).  */
536#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
537#define MIN_UNITS_PER_WORD 4
538#define UNITS_PER_FP_WORD 8
539#define UNITS_PER_ALTIVEC_WORD 16
540
541/* Type used for ptrdiff_t, as a string used in a declaration.  */
542#define PTRDIFF_TYPE "int"
543
544/* Type used for size_t, as a string used in a declaration.  */
545#define SIZE_TYPE "long unsigned int"
546
547/* Type used for wchar_t, as a string used in a declaration.  */
548#define WCHAR_TYPE "short unsigned int"
549
550/* Width of wchar_t in bits.  */
551#define WCHAR_TYPE_SIZE 16
552
553/* A C expression for the size in bits of the type `short' on the
554   target machine.  If you don't define this, the default is half a
555   word.  (If this would be less than one storage unit, it is
556   rounded up to one unit.)  */
557#define SHORT_TYPE_SIZE 16
558
559/* A C expression for the size in bits of the type `int' on the
560   target machine.  If you don't define this, the default is one
561   word.  */
562#define INT_TYPE_SIZE 32
563
564/* A C expression for the size in bits of the type `long' on the
565   target machine.  If you don't define this, the default is one
566   word.  */
567#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
568#define MAX_LONG_TYPE_SIZE 64
569
570/* A C expression for the size in bits of the type `long long' on the
571   target machine.  If you don't define this, the default is two
572   words.  */
573#define LONG_LONG_TYPE_SIZE 64
574
575/* A C expression for the size in bits of the type `char' on the
576   target machine.  If you don't define this, the default is one
577   quarter of a word.  (If this would be less than one storage unit,
578   it is rounded up to one unit.)  */
579#define CHAR_TYPE_SIZE BITS_PER_UNIT
580
581/* A C expression for the size in bits of the type `float' on the
582   target machine.  If you don't define this, the default is one
583   word.  */
584#define FLOAT_TYPE_SIZE 32
585
586/* A C expression for the size in bits of the type `double' on the
587   target machine.  If you don't define this, the default is two
588   words.  */
589#define DOUBLE_TYPE_SIZE 64
590
591/* A C expression for the size in bits of the type `long double' on
592   the target machine.  If you don't define this, the default is two
593   words.  */
594#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
595
596/* Constant which presents upper bound of the above value.  */
597#define MAX_LONG_DOUBLE_TYPE_SIZE 128
598
599/* Define this to set long double type size to use in libgcc2.c, which can
600   not depend on target_flags.  */
601#ifdef __LONG_DOUBLE_128__
602#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
603#else
604#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
605#endif
606
607/* Width in bits of a pointer.
608   See also the macro `Pmode' defined below.  */
609#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
610
611/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
612#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
613
614/* Boundary (in *bits*) on which stack pointer should be aligned.  */
615#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
616
617/* Allocation boundary (in *bits*) for the code of a function.  */
618#define FUNCTION_BOUNDARY 32
619
620/* No data type wants to be aligned rounder than this.  */
621#define BIGGEST_ALIGNMENT 128
622
623/* A C expression to compute the alignment for a variables in the
624   local store.  TYPE is the data type, and ALIGN is the alignment
625   that the object would ordinarily have.  */
626#define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
627  ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
628
629/* Handle #pragma pack.  */
630#define HANDLE_PRAGMA_PACK 1
631
632/* Alignment of field after `int : 0' in a structure.  */
633#define EMPTY_FIELD_BOUNDARY 32
634
635/* Every structure's size must be a multiple of this.  */
636#define STRUCTURE_SIZE_BOUNDARY 8
637
638/* A bitfield declared as `int' forces `int' alignment for the struct.  */
639#define PCC_BITFIELD_TYPE_MATTERS 1
640
641/* Make strings word-aligned so strcpy from constants will be faster.  */
642#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
643  (TREE_CODE (EXP) == STRING_CST	\
644   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
645
646/* Make arrays of chars word-aligned for the same reasons.
647   Align vectors to 128 bits.  */
648#define DATA_ALIGNMENT(TYPE, ALIGN)		\
649  (TREE_CODE (TYPE) == VECTOR_TYPE ? 128	\
650   : TREE_CODE (TYPE) == ARRAY_TYPE		\
651   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
652   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
653
654/* Non-zero if move instructions will actually fail to work
655   when given unaligned data.  */
656#define STRICT_ALIGNMENT 0
657
658/* Define this macro to be the value 1 if unaligned accesses have a cost
659   many times greater than aligned accesses, for example if they are
660   emulated in a trap handler.  */
661#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
662  (STRICT_ALIGNMENT							\
663   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode)	\
664       && (ALIGN) < 32))
665
666/* Standard register usage.  */
667
668/* Number of actual hardware registers.
669   The hardware registers are assigned numbers for the compiler
670   from 0 to just below FIRST_PSEUDO_REGISTER.
671   All registers that the compiler knows about must be given numbers,
672   even those that are not normally considered general registers.
673
674   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
675   an MQ register, a count register, a link register, and 8 condition
676   register fields, which we view here as separate registers.
677
678   In addition, the difference between the frame and argument pointers is
679   a function of the number of registers saved, so we need to have a
680   register for AP that will later be eliminated in favor of SP or FP.
681   This is a normal register, but it is fixed.
682
683   We also create a pseudo register for float/int conversions, that will
684   really represent the memory location used.  It is represented here as
685   a register, in order to work around problems in allocating stack storage
686   in inline functions.  */
687
688#define FIRST_PSEUDO_REGISTER 110
689
690/* This must be included for pre gcc 3.0 glibc compatibility.  */
691#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
692
693/* 1 for registers that have pervasive standard uses
694   and are not available for the register allocator.
695
696   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
697   as a local register; for all other OS's r2 is the TOC pointer.
698
699   cr5 is not supposed to be used.
700
701   On System V implementations, r13 is fixed and not available for use.  */
702
703#define FIXED_REGISTERS  \
704  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
705   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
706   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
708   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
709   /* AltiVec registers.  */			   \
710   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
711   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
712   1						   \
713}
714
715/* 1 for registers not available across function calls.
716   These must include the FIXED_REGISTERS and also any
717   registers that can be used without being saved.
718   The latter must include the registers where values are returned
719   and the register where structure-value addresses are passed.
720   Aside from that, you can include as many other registers as you like.  */
721
722#define CALL_USED_REGISTERS  \
723  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
724   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
725   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
726   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
727   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
728   /* AltiVec registers.  */			   \
729   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
730   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
731   1						   \
732}
733
734/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
735   the entire set of `FIXED_REGISTERS' be included.
736   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
737   This macro is optional.  If not specified, it defaults to the value
738   of `CALL_USED_REGISTERS'.  */
739
740#define CALL_REALLY_USED_REGISTERS  \
741  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
742   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
744   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
745   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
746   /* AltiVec registers.  */			   \
747   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
749   0						   \
750}
751
752#define MQ_REGNO     64
753#define CR0_REGNO    68
754#define CR1_REGNO    69
755#define CR2_REGNO    70
756#define CR3_REGNO    71
757#define CR4_REGNO    72
758#define MAX_CR_REGNO 75
759#define XER_REGNO    76
760#define FIRST_ALTIVEC_REGNO	77
761#define LAST_ALTIVEC_REGNO	108
762#define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO)
763#define VRSAVE_REGNO		109
764
765/* List the order in which to allocate registers.  Each register must be
766   listed once, even those in FIXED_REGISTERS.
767
768   We allocate in the following order:
769	fp0		(not saved or used for anything)
770	fp13 - fp2	(not saved; incoming fp arg registers)
771	fp1		(not saved; return value)
772 	fp31 - fp14	(saved; order given to save least number)
773	cr7, cr6	(not saved or special)
774	cr1		(not saved, but used for FP operations)
775	cr0		(not saved, but used for arithmetic operations)
776	cr4, cr3, cr2	(saved)
777        r0		(not saved; cannot be base reg)
778	r9		(not saved; best for TImode)
779	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
780	r3     		(not saved; return value register)
781	r31 - r13	(saved; order given to save least number)
782	r12		(not saved; if used for DImode or DFmode would use r13)
783	mq		(not saved; best to use it if we can)
784	ctr		(not saved; when we have the choice ctr is better)
785	lr		(saved)
786        cr5, r1, r2, ap, xer, vrsave (fixed)
787
788	AltiVec registers:
789	v0 - v1         (not saved or used for anything)
790	v13 - v3        (not saved; incoming vector arg registers)
791	v2              (not saved; incoming vector arg reg; return value)
792	v19 - v14       (not saved or used for anything)
793	v31 - v20       (saved; order given to save least number)
794*/
795
796
797#define REG_ALLOC_ORDER					\
798  {32, 							\
799   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,	\
800   33,							\
801   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,	\
802   50, 49, 48, 47, 46, 					\
803   75, 74, 69, 68, 72, 71, 70,				\
804   0,							\
805   9, 11, 10, 8, 7, 6, 5, 4,				\
806   3,							\
807   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,	\
808   18, 17, 16, 15, 14, 13, 12,				\
809   64, 66, 65, 						\
810   73, 1, 2, 67, 76,					\
811   /* AltiVec registers.  */				\
812   77, 78,						\
813   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,		\
814   79,							\
815   96, 95, 94, 93, 92, 91,				\
816   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98,	\
817   97, 109						\
818}
819
820/* True if register is floating-point.  */
821#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
822
823/* True if register is a condition register.  */
824#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
825
826/* True if register is a condition register, but not cr0.  */
827#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
828
829/* True if register is an integer register.  */
830#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
831
832/* True if register is the XER register.  */
833#define XER_REGNO_P(N) ((N) == XER_REGNO)
834
835/* True if register is an AltiVec register.  */
836#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
837
838/* Return number of consecutive hard regs needed starting at reg REGNO
839   to hold something of mode MODE.
840   This is ordinarily the length in words of a value of mode MODE
841   but can be less for certain modes in special long registers.
842
843   POWER and PowerPC GPRs hold 32 bits worth;
844   PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */
845
846#define HARD_REGNO_NREGS(REGNO, MODE)					\
847  (FP_REGNO_P (REGNO)							\
848   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
849   : ALTIVEC_REGNO_P (REGNO)						\
850   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
851   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
852
853#define ALTIVEC_VECTOR_MODE(MODE)	\
854	((MODE) == V16QImode		\
855	 || (MODE) == V8HImode		\
856	 || (MODE) == V4SFmode		\
857	 || (MODE) == V4SImode)
858
859/* Define this macro to be nonzero if the port is prepared to handle
860   insns involving vector mode MODE.  At the very least, it must have
861   move patterns for this mode.  */
862
863#define VECTOR_MODE_SUPPORTED_P(MODE)	\
864	(TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
865
866/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
867   For POWER and PowerPC, the GPRs can hold any mode, but the float
868   registers only can hold floating modes and DImode, and CR register only
869   can hold CC modes.  We cannot put TImode anywhere except general
870   register and it must be able to fit within the register set.  */
871
872#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
873  (FP_REGNO_P (REGNO) ?							\
874   (GET_MODE_CLASS (MODE) == MODE_FLOAT					\
875    || (GET_MODE_CLASS (MODE) == MODE_INT				\
876	&& GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD))			\
877   : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE)		\
878   : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC		\
879   : XER_REGNO_P (REGNO) ? (MODE) == PSImode				\
880   : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT		\
881			      && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
882   : 1)
883
884/* Value is 1 if it is a good idea to tie two pseudo registers
885   when one has mode MODE1 and one has mode MODE2.
886   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
887   for any hard reg, then this must be 0 for correct output.  */
888#define MODES_TIEABLE_P(MODE1, MODE2) \
889  (GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
890   ? GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
891   : GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
892   ? GET_MODE_CLASS (MODE1) == MODE_FLOAT	\
893   : GET_MODE_CLASS (MODE1) == MODE_CC		\
894   ? GET_MODE_CLASS (MODE2) == MODE_CC		\
895   : GET_MODE_CLASS (MODE2) == MODE_CC		\
896   ? GET_MODE_CLASS (MODE1) == MODE_CC		\
897   : ALTIVEC_VECTOR_MODE (MODE1)		\
898   ? ALTIVEC_VECTOR_MODE (MODE2)		\
899   : ALTIVEC_VECTOR_MODE (MODE2)		\
900   ? ALTIVEC_VECTOR_MODE (MODE1)		\
901   : 1)
902
903/* A C expression returning the cost of moving data from a register of class
904   CLASS1 to one of CLASS2.
905
906   On the RS/6000, copying between floating-point and fixed-point
907   registers is expensive.  */
908
909#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)		\
910   ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2	\
911   : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10	\
912   : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10	\
913   : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20	\
914   : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20	\
915   : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS		\
916       || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS		\
917       || (CLASS1) == LINK_OR_CTR_REGS)				\
918      && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS	\
919	  || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS	\
920	  || (CLASS2) == LINK_OR_CTR_REGS)) ? 10		\
921   : 2)
922
923/* A C expressions returning the cost of moving data of MODE from a register to
924   or from memory.
925
926   On the RS/6000, bump this up a bit.  */
927
928#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
929  ((GET_MODE_CLASS (MODE) == MODE_FLOAT		\
930    && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
931    ? 3 : 2) \
932   + 4)
933
934/* Specify the cost of a branch insn; roughly the number of extra insns that
935   should be added to avoid a branch.
936
937   Set this to 3 on the RS/6000 since that is roughly the average cost of an
938   unscheduled conditional branch.  */
939
940#define BRANCH_COST 3
941
942/* Define this macro to change register usage conditional on target flags.
943   Set MQ register fixed (already call_used) if not POWER architecture
944   (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
945   64-bit AIX reserves GPR13 for thread-private data.
946   Conditionally disable FPRs.  */
947
948#define CONDITIONAL_REGISTER_USAGE					\
949{									\
950  int i;								\
951  if (! TARGET_POWER)							\
952    fixed_regs[64] = 1;							\
953  if (TARGET_64BIT)							\
954    fixed_regs[13] = call_used_regs[13]					\
955      = call_really_used_regs[13] = 1; 					\
956  if (TARGET_SOFT_FLOAT)						\
957    for (i = 32; i < 64; i++)						\
958      fixed_regs[i] = call_used_regs[i]					\
959        = call_really_used_regs[i] = 1;					\
960  if (DEFAULT_ABI == ABI_V4 && flag_pic == 1)				\
961    fixed_regs[PIC_OFFSET_TABLE_REGNUM]					\
962      = call_used_regs[PIC_OFFSET_TABLE_REGNUM]				\
963      = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
964  if (DEFAULT_ABI == ABI_DARWIN && flag_pic)				\
965    global_regs[PIC_OFFSET_TABLE_REGNUM]				\
966      = fixed_regs[PIC_OFFSET_TABLE_REGNUM]				\
967      = call_used_regs[PIC_OFFSET_TABLE_REGNUM]				\
968      = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
969  if (! TARGET_ALTIVEC)							\
970    for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)		\
971      fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;	\
972  if (TARGET_ALTIVEC_ABI)						\
973    for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)	\
974      call_used_regs[i] = call_really_used_regs[i] = 1;			\
975}
976
977/* Specify the registers used for certain standard purposes.
978   The values of these macros are register numbers.  */
979
980/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
981/* #define PC_REGNUM  */
982
983/* Register to use for pushing function arguments.  */
984#define STACK_POINTER_REGNUM 1
985
986/* Base register for access to local variables of the function.  */
987#define FRAME_POINTER_REGNUM 31
988
989/* Value should be nonzero if functions must have frame pointers.
990   Zero means the frame pointer need not be set up (and parms
991   may be accessed via the stack pointer) in functions that seem suitable.
992   This is computed in `reload', in reload1.c.  */
993#define FRAME_POINTER_REQUIRED 0
994
995/* Base register for access to arguments of the function.  */
996#define ARG_POINTER_REGNUM 67
997
998/* Place to put static chain when calling a function that requires it.  */
999#define STATIC_CHAIN_REGNUM 11
1000
1001/* Link register number.  */
1002#define LINK_REGISTER_REGNUM 65
1003
1004/* Count register number.  */
1005#define COUNT_REGISTER_REGNUM 66
1006
1007/* Place that structure value return address is placed.
1008
1009   On the RS/6000, it is passed as an extra parameter.  */
1010#define STRUCT_VALUE 0
1011
1012/* Define the classes of registers for register constraints in the
1013   machine description.  Also define ranges of constants.
1014
1015   One of the classes must always be named ALL_REGS and include all hard regs.
1016   If there is more than one class, another class must be named NO_REGS
1017   and contain no registers.
1018
1019   The name GENERAL_REGS must be the name of a class (or an alias for
1020   another name such as ALL_REGS).  This is the class of registers
1021   that is allowed by "g" or "r" in a register constraint.
1022   Also, registers outside this class are allocated only when
1023   instructions express preferences for them.
1024
1025   The classes must be numbered in nondecreasing order; that is,
1026   a larger-numbered class must never be contained completely
1027   in a smaller-numbered class.
1028
1029   For any two classes, it is very desirable that there be another
1030   class that represents their union.  */
1031
1032/* The RS/6000 has three types of registers, fixed-point, floating-point,
1033   and condition registers, plus three special registers, MQ, CTR, and the
1034   link register.
1035
1036   However, r0 is special in that it cannot be used as a base register.
1037   So make a class for registers valid as base registers.
1038
1039   Also, cr0 is the only condition code register that can be used in
1040   arithmetic insns, so make a separate class for it.  */
1041
1042enum reg_class
1043{
1044  NO_REGS,
1045  BASE_REGS,
1046  GENERAL_REGS,
1047  FLOAT_REGS,
1048  ALTIVEC_REGS,
1049  VRSAVE_REGS,
1050  NON_SPECIAL_REGS,
1051  MQ_REGS,
1052  LINK_REGS,
1053  CTR_REGS,
1054  LINK_OR_CTR_REGS,
1055  SPECIAL_REGS,
1056  SPEC_OR_GEN_REGS,
1057  CR0_REGS,
1058  CR_REGS,
1059  NON_FLOAT_REGS,
1060  XER_REGS,
1061  ALL_REGS,
1062  LIM_REG_CLASSES
1063};
1064
1065#define N_REG_CLASSES (int) LIM_REG_CLASSES
1066
1067/* Give names of register classes as strings for dump file.  */
1068
1069#define REG_CLASS_NAMES							\
1070{									\
1071  "NO_REGS",								\
1072  "BASE_REGS",								\
1073  "GENERAL_REGS",							\
1074  "FLOAT_REGS",								\
1075  "ALTIVEC_REGS",							\
1076  "VRSAVE_REGS",							\
1077  "NON_SPECIAL_REGS",							\
1078  "MQ_REGS",								\
1079  "LINK_REGS",								\
1080  "CTR_REGS",								\
1081  "LINK_OR_CTR_REGS",							\
1082  "SPECIAL_REGS",							\
1083  "SPEC_OR_GEN_REGS",							\
1084  "CR0_REGS",								\
1085  "CR_REGS",								\
1086  "NON_FLOAT_REGS",							\
1087  "XER_REGS",								\
1088  "ALL_REGS"								\
1089}
1090
1091/* Define which registers fit in which classes.
1092   This is an initializer for a vector of HARD_REG_SET
1093   of length N_REG_CLASSES.  */
1094
1095#define REG_CLASS_CONTENTS						     \
1096{									     \
1097  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1098  { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */	     \
1099  { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */     \
1100  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1101  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1102  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1103  { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1104  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1105  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1106  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1107  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1108  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1109  { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1110  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1111  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1112  { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \
1113  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1114  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff }  /* ALL_REGS */	     \
1115}
1116
1117/* The same information, inverted:
1118   Return the class number of the smallest class containing
1119   reg number REGNO.  This could be a conditional expression
1120   or could index an array.  */
1121
1122#define REGNO_REG_CLASS(REGNO)			\
1123 ((REGNO) == 0 ? GENERAL_REGS			\
1124  : (REGNO) < 32 ? BASE_REGS			\
1125  : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1126  : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1127  : (REGNO) == CR0_REGNO ? CR0_REGS		\
1128  : CR_REGNO_P (REGNO) ? CR_REGS		\
1129  : (REGNO) == MQ_REGNO ? MQ_REGS		\
1130  : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1131  : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1132  : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1133  : (REGNO) == XER_REGNO ? XER_REGS		\
1134  : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1135  : NO_REGS)
1136
1137/* The class value for index registers, and the one for base regs.  */
1138#define INDEX_REG_CLASS GENERAL_REGS
1139#define BASE_REG_CLASS BASE_REGS
1140
1141/* Get reg_class from a letter such as appears in the machine description.  */
1142
1143#define REG_CLASS_FROM_LETTER(C) \
1144  ((C) == 'f' ? FLOAT_REGS	\
1145   : (C) == 'b' ? BASE_REGS	\
1146   : (C) == 'h' ? SPECIAL_REGS	\
1147   : (C) == 'q' ? MQ_REGS	\
1148   : (C) == 'c' ? CTR_REGS	\
1149   : (C) == 'l' ? LINK_REGS	\
1150   : (C) == 'v' ? ALTIVEC_REGS	\
1151   : (C) == 'x' ? CR0_REGS	\
1152   : (C) == 'y' ? CR_REGS	\
1153   : (C) == 'z' ? XER_REGS	\
1154   : NO_REGS)
1155
1156/* The letters I, J, K, L, M, N, and P in a register constraint string
1157   can be used to stand for particular ranges of immediate operands.
1158   This macro defines what the ranges are.
1159   C is the letter, and VALUE is a constant value.
1160   Return 1 if VALUE is in the range specified by C.
1161
1162   `I' is a signed 16-bit constant
1163   `J' is a constant with only the high-order 16 bits non-zero
1164   `K' is a constant with only the low-order 16 bits non-zero
1165   `L' is a signed 16-bit constant shifted left 16 bits
1166   `M' is a constant that is greater than 31
1167   `N' is a positive constant that is an exact power of two
1168   `O' is the constant zero
1169   `P' is a constant whose negation is a signed 16-bit constant */
1170
1171#define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1172   ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
1173   : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1174   : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\
1175   : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\
1176		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\
1177   : (C) == 'M' ? (VALUE) > 31						\
1178   : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\
1179   : (C) == 'O' ? (VALUE) == 0						\
1180   : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1181   : 0)
1182
1183/* Similar, but for floating constants, and defining letters G and H.
1184   Here VALUE is the CONST_DOUBLE rtx itself.
1185
1186   We flag for special constants when we can copy the constant into
1187   a general register in two insns for DF/DI and one insn for SF.
1188
1189   'H' is used for DI/DF constants that take 3 insns.  */
1190
1191#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1192  (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\
1193		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\
1194   : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\
1195   : 0)
1196
1197/* Optional extra constraints for this machine.
1198
1199   'Q' means that is a memory operand that is just an offset from a reg.
1200   'R' is for AIX TOC entries.
1201   'S' is a constant that can be placed into a 64-bit mask operand
1202   'T' is a consatnt that can be placed into a 32-bit mask operand
1203   'U' is for V.4 small data references.  */
1204
1205#define EXTRA_CONSTRAINT(OP, C)						\
1206  ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\
1207   : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP)		\
1208   : (C) == 'S' ? mask64_operand (OP, VOIDmode)				\
1209   : (C) == 'T' ? mask_operand (OP, VOIDmode)				\
1210   : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\
1211		   && small_data_operand (OP, GET_MODE (OP)))		\
1212   : 0)
1213
1214/* Given an rtx X being reloaded into a reg required to be
1215   in class CLASS, return the class of reg to actually use.
1216   In general this is just CLASS; but on some machines
1217   in some cases it is preferable to use a more restrictive class.
1218
1219   On the RS/6000, we have to return NO_REGS when we want to reload a
1220   floating-point CONST_DOUBLE to force it to be copied to memory.
1221
1222   We also don't want to reload integer values into floating-point
1223   registers if we can at all help it.  In fact, this can
1224   cause reload to abort, if it tries to generate a reload of CTR
1225   into a FP register and discovers it doesn't have the memory location
1226   required.
1227
1228   ??? Would it be a good idea to have reload do the converse, that is
1229   try to reload floating modes into FP registers if possible?
1230 */
1231
1232#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1233  (((GET_CODE (X) == CONST_DOUBLE			\
1234     && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)	\
1235    ? NO_REGS 						\
1236    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1237       && (CLASS) == NON_SPECIAL_REGS)			\
1238    ? GENERAL_REGS					\
1239    : (CLASS)))
1240
1241/* Return the register class of a scratch register needed to copy IN into
1242   or out of a register in CLASS in MODE.  If it can be done directly,
1243   NO_REGS is returned.  */
1244
1245#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1246  secondary_reload_class (CLASS, MODE, IN)
1247
1248/* If we are copying between FP or AltiVec registers and anything
1249   else, we need a memory location.  */
1250
1251#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1252 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1253			   || (CLASS2) == FLOAT_REGS		\
1254			   || (CLASS1) == ALTIVEC_REGS		\
1255			   || (CLASS2) == ALTIVEC_REGS))
1256
1257/* Return the maximum number of consecutive registers
1258   needed to represent mode MODE in a register of class CLASS.
1259
1260   On RS/6000, this is the size of MODE in words,
1261   except in the FP regs, where a single reg is enough for two words.  */
1262#define CLASS_MAX_NREGS(CLASS, MODE)					\
1263 (((CLASS) == FLOAT_REGS) 						\
1264  ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1265  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1266
1267/* If defined, gives a class of registers that cannot be used as the
1268   operand of a SUBREG that changes the mode of the object illegally.  */
1269
1270#define CLASS_CANNOT_CHANGE_MODE        FLOAT_REGS
1271
1272/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.  */
1273
1274#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1275  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
1276
1277/* Stack layout; function entry, exit and calling.  */
1278
1279/* Enumeration to give which calling sequence to use.  */
1280enum rs6000_abi {
1281  ABI_NONE,
1282  ABI_AIX,			/* IBM's AIX */
1283  ABI_AIX_NODESC,		/* AIX calling sequence minus
1284				   function descriptors */
1285  ABI_V4,			/* System V.4/eabi */
1286  ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1287};
1288
1289extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1290
1291/* Structure used to define the rs6000 stack */
1292typedef struct rs6000_stack {
1293  int first_gp_reg_save;	/* first callee saved GP register used */
1294  int first_fp_reg_save;	/* first callee saved FP register used */
1295  int first_altivec_reg_save;	/* first callee saved AltiVec register used */
1296  int lr_save_p;		/* true if the link reg needs to be saved */
1297  int cr_save_p;		/* true if the CR reg needs to be saved */
1298  unsigned int vrsave_mask;	/* mask of vec registers to save */
1299  int toc_save_p;		/* true if the TOC needs to be saved */
1300  int push_p;			/* true if we need to allocate stack space */
1301  int calls_p;			/* true if the function makes any calls */
1302  enum rs6000_abi abi;		/* which ABI to use */
1303  int gp_save_offset;		/* offset to save GP regs from initial SP */
1304  int fp_save_offset;		/* offset to save FP regs from initial SP */
1305  int altivec_save_offset;	/* offset to save AltiVec regs from inital SP */
1306  int lr_save_offset;		/* offset to save LR from initial SP */
1307  int cr_save_offset;		/* offset to save CR from initial SP */
1308  int vrsave_save_offset;	/* offset to save VRSAVE from initial SP */
1309  int toc_save_offset;		/* offset to save the TOC pointer */
1310  int varargs_save_offset;	/* offset to save the varargs registers */
1311  int ehrd_offset;		/* offset to EH return data */
1312  int reg_size;			/* register size (4 or 8) */
1313  int varargs_size;		/* size to hold V.4 args passed in regs */
1314  int vars_size;		/* variable save area size */
1315  int parm_size;		/* outgoing parameter size */
1316  int save_size;		/* save area size */
1317  int fixed_size;		/* fixed size of stack frame */
1318  int gp_size;			/* size of saved GP registers */
1319  int fp_size;			/* size of saved FP registers */
1320  int altivec_size;		/* size of saved AltiVec registers */
1321  int cr_size;			/* size to hold CR if not in save_size */
1322  int lr_size;			/* size to hold LR if not in save_size */
1323  int vrsave_size;		/* size to hold VRSAVE if not in save_size */
1324  int altivec_padding_size;	/* size of altivec alignment padding if
1325				   not in save_size */
1326  int toc_size;			/* size to hold TOC if not in save_size */
1327  int total_size;		/* total bytes allocated for stack */
1328} rs6000_stack_t;
1329
1330/* Define this if pushing a word on the stack
1331   makes the stack pointer a smaller address.  */
1332#define STACK_GROWS_DOWNWARD
1333
1334/* Define this if the nominal address of the stack frame
1335   is at the high-address end of the local variables;
1336   that is, each additional local variable allocated
1337   goes at a more negative offset in the frame.
1338
1339   On the RS/6000, we grow upwards, from the area after the outgoing
1340   arguments.  */
1341/* #define FRAME_GROWS_DOWNWARD */
1342
1343/* Size of the outgoing register save area */
1344#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1345			  || DEFAULT_ABI == ABI_AIX_NODESC		\
1346			  || DEFAULT_ABI == ABI_DARWIN)			\
1347			 ? (TARGET_64BIT ? 64 : 32)			\
1348			 : 0)
1349
1350/* Size of the fixed area on the stack */
1351#define RS6000_SAVE_AREA \
1352  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1353   << (TARGET_64BIT ? 1 : 0))
1354
1355/* MEM representing address to save the TOC register */
1356#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1357				     plus_constant (stack_pointer_rtx, \
1358						    (TARGET_32BIT ? 20 : 40)))
1359
1360/* Size of the V.4 varargs area if needed */
1361#define RS6000_VARARGS_AREA 0
1362
1363/* Align an address */
1364#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1365
1366/* Size of V.4 varargs area in bytes */
1367#define RS6000_VARARGS_SIZE \
1368  ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1369
1370/* Offset within stack frame to start allocating local variables at.
1371   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1372   first local allocated.  Otherwise, it is the offset to the BEGINNING
1373   of the first local allocated.
1374
1375   On the RS/6000, the frame pointer is the same as the stack pointer,
1376   except for dynamic allocations.  So we start after the fixed area and
1377   outgoing parameter area.  */
1378
1379#define STARTING_FRAME_OFFSET						\
1380  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1381		 TARGET_ALTIVEC ? 16 : 8)				\
1382   + RS6000_VARARGS_AREA						\
1383   + RS6000_SAVE_AREA)
1384
1385/* Offset from the stack pointer register to an item dynamically
1386   allocated on the stack, e.g., by `alloca'.
1387
1388   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1389   length of the outgoing arguments.  The default is correct for most
1390   machines.  See `function.c' for details.  */
1391#define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1392  (RS6000_ALIGN (current_function_outgoing_args_size,			\
1393		 TARGET_ALTIVEC ? 16 : 8)				\
1394   + (STACK_POINTER_OFFSET))
1395
1396/* If we generate an insn to push BYTES bytes,
1397   this says how many the stack pointer really advances by.
1398   On RS/6000, don't define this because there are no push insns.  */
1399/*  #define PUSH_ROUNDING(BYTES) */
1400
1401/* Offset of first parameter from the argument pointer register value.
1402   On the RS/6000, we define the argument pointer to the start of the fixed
1403   area.  */
1404#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1405
1406/* Offset from the argument pointer register value to the top of
1407   stack.  This is different from FIRST_PARM_OFFSET because of the
1408   register save area.  */
1409#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1410
1411/* Define this if stack space is still allocated for a parameter passed
1412   in a register.  The value is the number of bytes allocated to this
1413   area.  */
1414#define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1415
1416/* Define this if the above stack space is to be considered part of the
1417   space allocated by the caller.  */
1418#define OUTGOING_REG_PARM_STACK_SPACE
1419
1420/* This is the difference between the logical top of stack and the actual sp.
1421
1422   For the RS/6000, sp points past the fixed area.  */
1423#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1424
1425/* Define this if the maximum size of all the outgoing args is to be
1426   accumulated and pushed during the prologue.  The amount can be
1427   found in the variable current_function_outgoing_args_size.  */
1428#define ACCUMULATE_OUTGOING_ARGS 1
1429
1430/* Value is the number of bytes of arguments automatically
1431   popped when returning from a subroutine call.
1432   FUNDECL is the declaration node of the function (as a tree),
1433   FUNTYPE is the data type of the function (as a tree),
1434   or for a library call it is an identifier node for the subroutine name.
1435   SIZE is the number of bytes of arguments passed on the stack.  */
1436
1437#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1438
1439/* Define how to find the value returned by a function.
1440   VALTYPE is the data type of the value (as a tree).
1441   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1442   otherwise, FUNC is 0.
1443
1444   On RS/6000 an integer value is in r3 and a floating-point value is in
1445   fp1, unless -msoft-float.  */
1446
1447#define FUNCTION_VALUE(VALTYPE, FUNC)				\
1448  gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE)			\
1449		&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)	\
1450	       || POINTER_TYPE_P (VALTYPE)			\
1451	       ? word_mode : TYPE_MODE (VALTYPE),		\
1452	       TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
1453	       : TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
1454               ? FP_ARG_RETURN : GP_ARG_RETURN)
1455
1456/* Define how to find the value returned by a library function
1457   assuming the value has mode MODE.  */
1458
1459#define LIBCALL_VALUE(MODE)						\
1460  gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN	\
1461		     : GET_MODE_CLASS (MODE) == MODE_FLOAT		\
1462		     && TARGET_HARD_FLOAT				\
1463		     ? FP_ARG_RETURN : GP_ARG_RETURN)
1464
1465/* The AIX ABI for the RS/6000 specifies that all structures are
1466   returned in memory.  The Darwin ABI does the same.  The SVR4 ABI
1467   specifies that structures <= 8 bytes are returned in r3/r4, but a
1468   draft put them in memory, and GCC used to implement the draft
1469   instead of the final standard.  Therefore, TARGET_AIX_STRUCT_RET
1470   controls this instead of DEFAULT_ABI; V.4 targets needing backward
1471   compatibility can change DRAFT_V4_STRUCT_RET to override the
1472   default, and -m switches get the final word.  See
1473   rs6000_override_options for more details.
1474
1475   int_size_in_bytes returns -1 for variable size objects, which go in
1476   memory always.  The cast to unsigned makes -1 > 8.  */
1477
1478#define RETURN_IN_MEMORY(TYPE) \
1479  (AGGREGATE_TYPE_P (TYPE) && \
1480   (TARGET_AIX_STRUCT_RET || \
1481    (unsigned HOST_WIDEST_INT) int_size_in_bytes (TYPE) > 8))
1482
1483/* DRAFT_V4_STRUCT_RET defaults off.  */
1484#define DRAFT_V4_STRUCT_RET 0
1485
1486/* Let RETURN_IN_MEMORY control what happens.  */
1487#define DEFAULT_PCC_STRUCT_RETURN 0
1488
1489/* Mode of stack savearea.
1490   FUNCTION is VOIDmode because calling convention maintains SP.
1491   BLOCK needs Pmode for SP.
1492   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1493#define STACK_SAVEAREA_MODE(LEVEL)	\
1494  (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1495  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1496
1497/* Minimum and maximum general purpose registers used to hold arguments.  */
1498#define GP_ARG_MIN_REG 3
1499#define GP_ARG_MAX_REG 10
1500#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1501
1502/* Minimum and maximum floating point registers used to hold arguments.  */
1503#define FP_ARG_MIN_REG 33
1504#define	FP_ARG_AIX_MAX_REG 45
1505#define	FP_ARG_V4_MAX_REG  40
1506#define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1507			 || DEFAULT_ABI == ABI_AIX_NODESC		\
1508			 || DEFAULT_ABI == ABI_DARWIN)			\
1509			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1510#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1511
1512/* Minimum and maximum AltiVec registers used to hold arguments.  */
1513#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1514#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1515#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1516
1517/* Return registers */
1518#define GP_ARG_RETURN GP_ARG_MIN_REG
1519#define FP_ARG_RETURN FP_ARG_MIN_REG
1520#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1521
1522/* Flags for the call/call_value rtl operations set up by function_arg */
1523#define CALL_NORMAL		0x00000000	/* no special processing */
1524/* Bits in 0x00000001 are unused.  */
1525#define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1526#define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1527#define CALL_LONG		0x00000008	/* always call indirect */
1528
1529/* 1 if N is a possible register number for a function value
1530   as seen by the caller.
1531
1532   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1533#define FUNCTION_VALUE_REGNO_P(N)  ((N) == GP_ARG_RETURN	\
1534				    || ((N) == FP_ARG_RETURN)	\
1535				    || (TARGET_ALTIVEC &&	\
1536					(N) == ALTIVEC_ARG_RETURN))
1537
1538/* 1 if N is a possible register number for function argument passing.
1539   On RS/6000, these are r3-r10 and fp1-fp13.
1540   On AltiVec, v2 - v13 are used for passing vectors.  */
1541#define FUNCTION_ARG_REGNO_P(N)						\
1542  ((unsigned)(((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG))	\
1543   || (TARGET_ALTIVEC &&						\
1544       (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
1545   || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1546
1547
1548/* A C structure for machine-specific, per-function data.
1549   This is added to the cfun structure.  */
1550typedef struct machine_function
1551{
1552  /* Whether a System V.4 varargs area was created.  */
1553  int sysv_varargs_p;
1554  /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
1555  int ra_needs_full_frame;
1556} machine_function;
1557
1558/* Define a data type for recording info about an argument list
1559   during the scan of that argument list.  This data type should
1560   hold all necessary information about the function itself
1561   and about the args processed so far, enough to enable macros
1562   such as FUNCTION_ARG to determine where the next arg should go.
1563
1564   On the RS/6000, this is a structure.  The first element is the number of
1565   total argument words, the second is used to store the next
1566   floating-point register number, and the third says how many more args we
1567   have prototype types for.
1568
1569   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1570   the next availible GP register, `fregno' is the next available FP
1571   register, and `words' is the number of words used on the stack.
1572
1573   The varargs/stdarg support requires that this structure's size
1574   be a multiple of sizeof(int).  */
1575
1576typedef struct rs6000_args
1577{
1578  int words;			/* # words used for passing GP registers */
1579  int fregno;			/* next available FP register */
1580  int vregno;			/* next available AltiVec register */
1581  int nargs_prototype;		/* # args left in the current prototype */
1582  int orig_nargs;		/* Original value of nargs_prototype */
1583  int prototype;		/* Whether a prototype was defined */
1584  int call_cookie;		/* Do special things for this call */
1585  int sysv_gregno;		/* next available GP register */
1586} CUMULATIVE_ARGS;
1587
1588/* Define intermediate macro to compute the size (in registers) of an argument
1589   for the RS/6000.  */
1590
1591#define RS6000_ARG_SIZE(MODE, TYPE)					\
1592((MODE) != BLKmode							\
1593 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD	\
1594 : ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) 			\
1595    + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1596
1597/* Initialize a variable CUM of type CUMULATIVE_ARGS
1598   for a call to a function whose data type is FNTYPE.
1599   For a library call, FNTYPE is 0.  */
1600
1601#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1602  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1603
1604/* Similar, but when scanning the definition of a procedure.  We always
1605   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1606
1607#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1608  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1609
1610/* Update the data in CUM to advance over an argument
1611   of mode MODE and data type TYPE.
1612   (TYPE is null for libcalls where that information may not be available.)  */
1613
1614#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1615  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1616
1617/* Non-zero if we can use a floating-point register to pass this arg.  */
1618#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1619  (GET_MODE_CLASS (MODE) == MODE_FLOAT  \
1620   && (CUM).fregno <= FP_ARG_MAX_REG    \
1621   && TARGET_HARD_FLOAT)
1622
1623/* Non-zero if we can use an AltiVec register to pass this arg.  */
1624#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE)	\
1625  (ALTIVEC_VECTOR_MODE (MODE)			\
1626   && (CUM).vregno <= ALTIVEC_ARG_MAX_REG	\
1627   && TARGET_ALTIVEC_ABI)
1628
1629/* Determine where to put an argument to a function.
1630   Value is zero to push the argument on the stack,
1631   or a hard register in which to store the argument.
1632
1633   MODE is the argument's machine mode.
1634   TYPE is the data type of the argument (as a tree).
1635    This is null for libcalls where that information may
1636    not be available.
1637   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1638    the preceding args and about the function being called.
1639   NAMED is nonzero if this argument is a named parameter
1640    (otherwise it is an extra parameter matching an ellipsis).
1641
1642   On RS/6000 the first eight words of non-FP are normally in registers
1643   and the rest are pushed.  The first 13 FP args are in registers.
1644
1645   If this is floating-point and no prototype is specified, we use
1646   both an FP and integer register (or possibly FP reg and stack).  Library
1647   functions (when TYPE is zero) always have the proper types for args,
1648   so we can pass the FP value just in one register.  emit_library_function
1649   doesn't support EXPR_LIST anyway.  */
1650
1651#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1652  function_arg (&CUM, MODE, TYPE, NAMED)
1653
1654/* For an arg passed partly in registers and partly in memory,
1655   this is the number of registers used.
1656   For args passed entirely in registers or entirely in memory, zero.  */
1657
1658#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1659  function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1660
1661/* A C expression that indicates when an argument must be passed by
1662   reference.  If nonzero for an argument, a copy of that argument is
1663   made in memory and a pointer to the argument is passed instead of
1664   the argument itself.  The pointer is passed in whatever way is
1665   appropriate for passing a pointer to that type.  */
1666
1667#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1668  function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1669
1670/* If defined, a C expression which determines whether, and in which
1671   direction, to pad out an argument with extra space.  The value
1672   should be of type `enum direction': either `upward' to pad above
1673   the argument, `downward' to pad below, or `none' to inhibit
1674   padding.  */
1675
1676#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1677
1678/* If defined, a C expression that gives the alignment boundary, in bits,
1679   of an argument with the specified mode and type.  If it is not defined,
1680   PARM_BOUNDARY is used for all arguments.  */
1681
1682#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1683  function_arg_boundary (MODE, TYPE)
1684
1685/* Perform any needed actions needed for a function that is receiving a
1686   variable number of arguments.
1687
1688   CUM is as above.
1689
1690   MODE and TYPE are the mode and type of the current parameter.
1691
1692   PRETEND_SIZE is a variable that should be set to the amount of stack
1693   that must be pushed by the prolog to pretend that our caller pushed
1694   it.
1695
1696   Normally, this macro will push all remaining incoming registers on the
1697   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1698
1699#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1700  setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1701
1702/* Define the `__builtin_va_list' type for the ABI.  */
1703#define BUILD_VA_LIST_TYPE(VALIST) \
1704  (VALIST) = rs6000_build_va_list ()
1705
1706/* Implement `va_start' for varargs and stdarg.  */
1707#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1708  rs6000_va_start (stdarg, valist, nextarg)
1709
1710/* Implement `va_arg'.  */
1711#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1712  rs6000_va_arg (valist, type)
1713
1714/* Define this macro to be a nonzero value if the location where a function
1715   argument is passed depends on whether or not it is a named argument.  */
1716#define STRICT_ARGUMENT_NAMING 1
1717
1718/* Output assembler code to FILE to increment profiler label # LABELNO
1719   for profiling a function entry.  */
1720
1721#define FUNCTION_PROFILER(FILE, LABELNO)	\
1722  output_function_profiler ((FILE), (LABELNO));
1723
1724/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1725   the stack pointer does not matter. No definition is equivalent to
1726   always zero.
1727
1728   On the RS/6000, this is non-zero because we can restore the stack from
1729   its backpointer, which we maintain.  */
1730#define EXIT_IGNORE_STACK	1
1731
1732/* Define this macro as a C expression that is nonzero for registers
1733   that are used by the epilogue or the return' pattern.  The stack
1734   and frame pointer registers are already be assumed to be used as
1735   needed.  */
1736
1737#define	EPILOGUE_USES(REGNO)					\
1738  ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1739   || (REGNO) == VRSAVE_REGNO					\
1740   || (current_function_calls_eh_return				\
1741       && TARGET_AIX						\
1742       && (REGNO) == TOC_REGISTER))
1743
1744
1745/* TRAMPOLINE_TEMPLATE deleted */
1746
1747/* Length in units of the trampoline for entering a nested function.  */
1748
1749#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1750
1751/* Emit RTL insns to initialize the variable parts of a trampoline.
1752   FNADDR is an RTX for the address of the function's pure code.
1753   CXT is an RTX for the static chain value for the function.  */
1754
1755#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1756  rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1757
1758/* Definitions for __builtin_return_address and __builtin_frame_address.
1759   __builtin_return_address (0) should give link register (65), enable
1760   this.  */
1761/* This should be uncommented, so that the link register is used, but
1762   currently this would result in unmatched insns and spilling fixed
1763   registers so we'll leave it for another day.  When these problems are
1764   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1765   (mrs) */
1766/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1767
1768/* Number of bytes into the frame return addresses can be found.  See
1769   rs6000_stack_info in rs6000.c for more information on how the different
1770   abi's store the return address.  */
1771#define RETURN_ADDRESS_OFFSET						\
1772 ((DEFAULT_ABI == ABI_AIX						\
1773   || DEFAULT_ABI == ABI_DARWIN						\
1774   || DEFAULT_ABI == ABI_AIX_NODESC)	? (TARGET_32BIT ? 8 : 16) :	\
1775  (DEFAULT_ABI == ABI_V4)		? 4 :				\
1776  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1777
1778/* The current return address is in link register (65).  The return address
1779   of anything farther back is accessed normally at an offset of 8 from the
1780   frame pointer.  */
1781#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1782  (rs6000_return_addr (COUNT, FRAME))
1783
1784
1785/* Definitions for register eliminations.
1786
1787   We have two registers that can be eliminated on the RS/6000.  First, the
1788   frame pointer register can often be eliminated in favor of the stack
1789   pointer register.  Secondly, the argument pointer register can always be
1790   eliminated; it is replaced with either the stack or frame pointer.
1791
1792   In addition, we use the elimination mechanism to see if r30 is needed
1793   Initially we assume that it isn't.  If it is, we spill it.  This is done
1794   by making it an eliminable register.  We replace it with itself so that
1795   if it isn't needed, then existing uses won't be modified.  */
1796
1797/* This is an array of structures.  Each structure initializes one pair
1798   of eliminable registers.  The "from" register number is given first,
1799   followed by "to".  Eliminations of the same "from" register are listed
1800   in order of preference.  */
1801#define ELIMINABLE_REGS				\
1802{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1803 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1804 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
1805 { 30, 30} }
1806
1807/* Given FROM and TO register numbers, say whether this elimination is allowed.
1808   Frame pointer elimination is automatically handled.
1809
1810   For the RS/6000, if frame pointer elimination is being done, we would like
1811   to convert ap into fp, not sp.
1812
1813   We need r30 if -mminimal-toc was specified, and there are constant pool
1814   references.  */
1815
1816#define CAN_ELIMINATE(FROM, TO)					\
1817 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM	\
1818  ? ! frame_pointer_needed					\
1819  : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1820  : 1)
1821
1822/* Define the offset between two registers, one to be eliminated, and the other
1823   its replacement, at the start of a routine.  */
1824#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1825{									\
1826  rs6000_stack_t *info = rs6000_stack_info ();				\
1827									\
1828 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
1829   (OFFSET) = (info->push_p) ? 0 : - info->total_size;			\
1830 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)	\
1831   (OFFSET) = info->total_size;						\
1832 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
1833   (OFFSET) = (info->push_p) ? info->total_size : 0;			\
1834  else if ((FROM) == 30)						\
1835    (OFFSET) = 0;							\
1836  else									\
1837    abort ();								\
1838}
1839
1840/* Addressing modes, and classification of registers for them.  */
1841
1842/* #define HAVE_POST_INCREMENT 0 */
1843/* #define HAVE_POST_DECREMENT 0 */
1844
1845#define HAVE_PRE_DECREMENT 1
1846#define HAVE_PRE_INCREMENT 1
1847
1848/* Macros to check register numbers against specific register classes.  */
1849
1850/* These assume that REGNO is a hard or pseudo reg number.
1851   They give nonzero only if REGNO is a hard reg of the suitable class
1852   or a pseudo reg currently allocated to a suitable hard reg.
1853   Since they use reg_renumber, they are safe only once reg_renumber
1854   has been allocated, which happens in local-alloc.c.  */
1855
1856#define REGNO_OK_FOR_INDEX_P(REGNO)				\
1857((REGNO) < FIRST_PSEUDO_REGISTER				\
1858 ? (REGNO) <= 31 || (REGNO) == 67				\
1859 : (reg_renumber[REGNO] >= 0					\
1860    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1861
1862#define REGNO_OK_FOR_BASE_P(REGNO)				\
1863((REGNO) < FIRST_PSEUDO_REGISTER				\
1864 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1865 : (reg_renumber[REGNO] > 0					\
1866    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1867
1868/* Maximum number of registers that can appear in a valid memory address.  */
1869
1870#define MAX_REGS_PER_ADDRESS 2
1871
1872/* Recognize any constant value that is a valid address.  */
1873
1874#define CONSTANT_ADDRESS_P(X)   \
1875  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1876   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1877   || GET_CODE (X) == HIGH)
1878
1879/* Nonzero if the constant value X is a legitimate general operand.
1880   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1881
1882   On the RS/6000, all integer constants are acceptable, most won't be valid
1883   for particular insns, though.  Only easy FP constants are
1884   acceptable.  */
1885
1886#define LEGITIMATE_CONSTANT_P(X)				\
1887  (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode	\
1888   || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
1889   || easy_fp_constant (X, GET_MODE (X)))
1890
1891/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1892   and check its validity for a certain class.
1893   We have two alternate definitions for each of them.
1894   The usual definition accepts all pseudo regs; the other rejects
1895   them unless they have been allocated suitable hard regs.
1896   The symbol REG_OK_STRICT causes the latter definition to be used.
1897
1898   Most source files want to accept pseudo regs in the hope that
1899   they will get allocated to the class that the insn wants them to be in.
1900   Source files for reload pass need to be strict.
1901   After reload, it makes no difference, since pseudo regs have
1902   been eliminated by then.  */
1903
1904#ifdef REG_OK_STRICT
1905# define REG_OK_STRICT_FLAG 1
1906#else
1907# define REG_OK_STRICT_FLAG 0
1908#endif
1909
1910/* Nonzero if X is a hard reg that can be used as an index
1911   or if it is a pseudo reg in the non-strict case.  */
1912#define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1913  ((! (STRICT)							\
1914    && (REGNO (X) <= 31						\
1915	|| REGNO (X) == ARG_POINTER_REGNUM			\
1916	|| REGNO (X) >= FIRST_PSEUDO_REGISTER))			\
1917   || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
1918
1919/* Nonzero if X is a hard reg that can be used as a base reg
1920   or if it is a pseudo reg in the non-strict case.  */
1921#define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1922  (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
1923
1924#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1925#define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1926
1927/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1928   that is a valid memory address for an instruction.
1929   The MODE argument is the machine mode for the MEM expression
1930   that wants to use this address.
1931
1932   On the RS/6000, there are four valid address: a SYMBOL_REF that
1933   refers to a constant pool entry of an address (or the sum of it
1934   plus a constant), a short (16-bit signed) constant plus a register,
1935   the sum of two registers, or a register indirect, possibly with an
1936   auto-increment.  For DFmode and DImode with an constant plus register,
1937   we must ensure that both words are addressable or PowerPC64 with offset
1938   word aligned.
1939
1940   For modes spanning multiple registers (DFmode in 32-bit GPRs,
1941   32-bit DImode, TImode), indexed addressing cannot be used because
1942   adjacent memory cells are accessed by adding word-sized offsets
1943   during assembly output.  */
1944
1945#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
1946
1947#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
1948
1949#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X)				\
1950  (TARGET_TOC								\
1951  && GET_CODE (X) == PLUS						\
1952  && GET_CODE (XEXP (X, 0)) == REG					\
1953  && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER)	\
1954  && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
1955
1956#define LEGITIMATE_SMALL_DATA_P(MODE, X)				\
1957  (DEFAULT_ABI == ABI_V4						\
1958   && !flag_pic && !TARGET_TOC						\
1959   && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST)		\
1960   && small_data_operand (X, MODE))
1961
1962#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET)				\
1963 (GET_CODE (X) == CONST_INT						\
1964  && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1965
1966#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT)		\
1967 (GET_CODE (X) == PLUS						\
1968  && GET_CODE (XEXP (X, 0)) == REG				\
1969  && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))		\
1970  && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0)		\
1971  && (! ALTIVEC_VECTOR_MODE (MODE) || INTVAL (X) == 0)		\
1972  && (((MODE) != DFmode && (MODE) != DImode)			\
1973      || (TARGET_32BIT						\
1974	  ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) 	\
1975	  : ! (INTVAL (XEXP (X, 1)) & 3)))			\
1976  && ((MODE) != TImode						\
1977      || (TARGET_32BIT						\
1978	  ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) 	\
1979	  : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) 	\
1980	     && ! (INTVAL (XEXP (X, 1)) & 3)))))
1981
1982#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT)			\
1983 (GET_CODE (X) == PLUS						\
1984  && GET_CODE (XEXP (X, 0)) == REG				\
1985  && GET_CODE (XEXP (X, 1)) == REG				\
1986  && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))		\
1987       && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT)))	\
1988      || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT))		\
1989	  && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
1990
1991#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT)		\
1992  (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
1993
1994#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT)	\
1995  (TARGET_ELF						\
1996   && ! flag_pic && ! TARGET_TOC			\
1997   && GET_MODE_NUNITS (MODE) == 1			\
1998   && (GET_MODE_BITSIZE (MODE) <= 32 			\
1999       || (TARGET_HARD_FLOAT && (MODE) == DFmode))	\
2000   && GET_CODE (X) == LO_SUM				\
2001   && GET_CODE (XEXP (X, 0)) == REG			\
2002   && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))	\
2003   && CONSTANT_P (XEXP (X, 1)))
2004
2005#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
2006{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
2007    goto ADDR;							\
2008}
2009
2010/* Try machine-dependent ways of modifying an illegitimate address
2011   to be legitimate.  If we find one, return the new, valid address.
2012   This macro is used in only one place: `memory_address' in explow.c.
2013
2014   OLDX is the address as it was before break_out_memory_refs was called.
2015   In some cases it is useful to look at this to decide what needs to be done.
2016
2017   MODE and WIN are passed so that this macro can use
2018   GO_IF_LEGITIMATE_ADDRESS.
2019
2020   It is always safe for this macro to do nothing.  It exists to recognize
2021   opportunities to optimize the output.
2022
2023   On RS/6000, first check for the sum of a register with a constant
2024   integer that is out of range.  If so, generate code to add the
2025   constant with the low-order 16 bits masked to the register and force
2026   this result into another register (this can be done with `cau').
2027   Then generate an address of REG+(CONST&0xffff), allowing for the
2028   possibility of bit 16 being a one.
2029
2030   Then check for the sum of a register and something not constant, try to
2031   load the other things into a register and return the sum.  */
2032
2033#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2034{  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
2035   if (result != NULL_RTX)					\
2036     {								\
2037       (X) = result;						\
2038       goto WIN;						\
2039     }								\
2040}
2041
2042/* Try a machine-dependent way of reloading an illegitimate address
2043   operand.  If we find one, push the reload and jump to WIN.  This
2044   macro is used in only one place: `find_reloads_address' in reload.c.
2045
2046   Implemented on rs6000 by rs6000_legitimize_reload_address.
2047   Note that (X) is evaluated twice; this is safe in current usage.  */
2048
2049#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
2050do {									     \
2051  int win;								     \
2052  (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
2053			(int)(TYPE), (IND_LEVELS), &win);		     \
2054  if ( win )								     \
2055    goto WIN;								     \
2056} while (0)
2057
2058/* Go to LABEL if ADDR (a legitimate address expression)
2059   has an effect that depends on the machine mode it is used for.
2060
2061   On the RS/6000 this is true if the address is valid with a zero offset
2062   but not with an offset of four (this means it cannot be used as an
2063   address for DImode or DFmode) or is a pre-increment or decrement.  Since
2064   we know it is valid, we just check for an address that is not valid with
2065   an offset of four.  */
2066
2067#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
2068{ if (GET_CODE (ADDR) == PLUS					\
2069      && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0)	\
2070      && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1),	\
2071					 (TARGET_32BIT ? 4 : 8))) \
2072    goto LABEL;							\
2073  if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC)		\
2074    goto LABEL;							\
2075  if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC)		\
2076    goto LABEL;							\
2077  if (GET_CODE (ADDR) == LO_SUM)				\
2078    goto LABEL;							\
2079}
2080
2081/* The register number of the register used to address a table of
2082   static data addresses in memory.  In some cases this register is
2083   defined by a processor's "application binary interface" (ABI).
2084   When this macro is defined, RTL is generated for this register
2085   once, as with the stack pointer and frame pointer registers.  If
2086   this macro is not defined, it is up to the machine-dependent files
2087   to allocate such a register (if necessary).  */
2088
2089#define PIC_OFFSET_TABLE_REGNUM 30
2090
2091#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2092
2093/* Define this macro if the register defined by
2094   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
2095   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
2096
2097/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2098
2099/* By generating position-independent code, when two different
2100   programs (A and B) share a common library (libC.a), the text of
2101   the library can be shared whether or not the library is linked at
2102   the same address for both programs.  In some of these
2103   environments, position-independent code requires not only the use
2104   of different addressing modes, but also special code to enable the
2105   use of these addressing modes.
2106
2107   The `FINALIZE_PIC' macro serves as a hook to emit these special
2108   codes once the function is being compiled into assembly code, but
2109   not before.  (It is not done before, because in the case of
2110   compiling an inline function, it would lead to multiple PIC
2111   prologues being included in functions which used inline functions
2112   and were compiled to assembly language.)  */
2113
2114/* #define FINALIZE_PIC */
2115
2116/* A C expression that is nonzero if X is a legitimate immediate
2117   operand on the target machine when generating position independent
2118   code.  You can assume that X satisfies `CONSTANT_P', so you need
2119   not check this.  You can also assume FLAG_PIC is true, so you need
2120   not check it either.  You need not define this macro if all
2121   constants (including `SYMBOL_REF') can be immediate operands when
2122   generating position independent code.  */
2123
2124/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2125
2126/* In rare cases, correct code generation requires extra machine
2127   dependent processing between the second jump optimization pass and
2128   delayed branch scheduling.  On those machines, define this macro
2129   as a C statement to act on the code starting at INSN.  */
2130
2131/* #define MACHINE_DEPENDENT_REORG(INSN) */
2132
2133
2134/* Define this if some processing needs to be done immediately before
2135   emitting code for an insn.  */
2136
2137/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2138
2139/* Specify the machine mode that this machine uses
2140   for the index in the tablejump instruction.  */
2141#define CASE_VECTOR_MODE SImode
2142
2143/* Define as C expression which evaluates to nonzero if the tablejump
2144   instruction expects the table to contain offsets from the address of the
2145   table.
2146   Do not define this if the table should contain absolute addresses.  */
2147#define CASE_VECTOR_PC_RELATIVE 1
2148
2149/* Define this as 1 if `char' should by default be signed; else as 0.  */
2150#define DEFAULT_SIGNED_CHAR 0
2151
2152/* This flag, if defined, says the same insns that convert to a signed fixnum
2153   also convert validly to an unsigned one.  */
2154
2155/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2156
2157/* Max number of bytes we can move from memory to memory
2158   in one reasonably fast instruction.  */
2159#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2160#define MAX_MOVE_MAX 8
2161
2162/* Nonzero if access to memory by bytes is no faster than for words.
2163   Also non-zero if doing byte operations (specifically shifts) in registers
2164   is undesirable.  */
2165#define SLOW_BYTE_ACCESS 1
2166
2167/* Define if operations between registers always perform the operation
2168   on the full register even if a narrower mode is specified.  */
2169#define WORD_REGISTER_OPERATIONS
2170
2171/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2172   will either zero-extend or sign-extend.  The value of this macro should
2173   be the code that says which one of the two operations is implicitly
2174   done, NIL if none.  */
2175#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2176
2177/* Define if loading short immediate values into registers sign extends.  */
2178#define SHORT_IMMEDIATES_SIGN_EXTEND
2179
2180/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2181   is done just by pretending it is already truncated.  */
2182#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2183
2184/* Specify the machine mode that pointers have.
2185   After generation of rtl, the compiler makes no further distinction
2186   between pointers and any other objects of this machine mode.  */
2187#define Pmode (TARGET_32BIT ? SImode : DImode)
2188
2189/* Mode of a function address in a call instruction (for indexing purposes).
2190   Doesn't matter on RS/6000.  */
2191#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2192
2193/* Define this if addresses of constant functions
2194   shouldn't be put through pseudo regs where they can be cse'd.
2195   Desirable on machines where ordinary constants are expensive
2196   but a CALL with constant address is cheap.  */
2197#define NO_FUNCTION_CSE
2198
2199/* Define this to be nonzero if shift instructions ignore all but the low-order
2200   few bits.
2201
2202   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2203   have been dropped from the PowerPC architecture.  */
2204
2205#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2206
2207/* Compute the cost of computing a constant rtl expression RTX
2208   whose rtx-code is CODE.  The body of this macro is a portion
2209   of a switch statement.  If the code is computed here,
2210   return it with a return statement.  Otherwise, break from the switch.
2211
2212   On the RS/6000, if it is valid in the insn, it is free.  So this
2213   always returns 0.  */
2214
2215#define CONST_COSTS(RTX,CODE,OUTER_CODE)			\
2216  case CONST_INT:						\
2217  case CONST:							\
2218  case LABEL_REF:						\
2219  case SYMBOL_REF:						\
2220  case CONST_DOUBLE:						\
2221  case HIGH:							\
2222    return 0;
2223
2224/* Provide the costs of a rtl expression.  This is in the body of a
2225   switch on CODE.  */
2226
2227#define RTX_COSTS(X,CODE,OUTER_CODE)					\
2228  case PLUS:								\
2229    return ((GET_CODE (XEXP (X, 1)) == CONST_INT			\
2230	     && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1))		\
2231					   + 0x8000) >= 0x10000)	\
2232	     && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0))			\
2233	    ? COSTS_N_INSNS (2)						\
2234	    : COSTS_N_INSNS (1));					\
2235  case AND:								\
2236  case IOR:								\
2237  case XOR:								\
2238    return ((GET_CODE (XEXP (X, 1)) == CONST_INT			\
2239	     && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2240	     && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0))			\
2241	    ? COSTS_N_INSNS (2)						\
2242	    : COSTS_N_INSNS (1));					\
2243  case MULT:								\
2244    switch (rs6000_cpu)							\
2245      {									\
2246      case PROCESSOR_RIOS1:						\
2247      case PROCESSOR_PPC405:						\
2248        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2249		? COSTS_N_INSNS (5)					\
2250		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2251		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4));		\
2252      case PROCESSOR_RS64A:						\
2253        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2254		? GET_MODE (XEXP (X, 1)) != DImode			\
2255		? COSTS_N_INSNS (20) : COSTS_N_INSNS (34)		\
2256		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2257		? COSTS_N_INSNS (8) : COSTS_N_INSNS (12));		\
2258      case PROCESSOR_RIOS2:						\
2259      case PROCESSOR_MPCCORE:						\
2260      case PROCESSOR_PPC604e:						\
2261        return COSTS_N_INSNS (2);					\
2262      case PROCESSOR_PPC601:						\
2263        return COSTS_N_INSNS (5);					\
2264      case PROCESSOR_PPC603:						\
2265      case PROCESSOR_PPC7400:						\
2266      case PROCESSOR_PPC750:						\
2267        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2268		? COSTS_N_INSNS (5)					\
2269		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2270		? COSTS_N_INSNS (2) : COSTS_N_INSNS (3));		\
2271      case PROCESSOR_PPC7450:						\
2272        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2273		? COSTS_N_INSNS (4)					\
2274		: COSTS_N_INSNS (3));			    		\
2275      case PROCESSOR_PPC403:						\
2276      case PROCESSOR_PPC604:						\
2277        return COSTS_N_INSNS (4);					\
2278      case PROCESSOR_PPC620:						\
2279      case PROCESSOR_PPC630:						\
2280        return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2281		? GET_MODE (XEXP (X, 1)) != DImode			\
2282		? COSTS_N_INSNS (5) : COSTS_N_INSNS (7)			\
2283		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2284		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4));		\
2285      }									\
2286  case DIV:								\
2287  case MOD:								\
2288    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2289	&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0)			\
2290      return COSTS_N_INSNS (2);						\
2291    /* otherwise fall through to normal divide.  */			\
2292  case UDIV:								\
2293  case UMOD:								\
2294    switch (rs6000_cpu)							\
2295      {									\
2296      case PROCESSOR_RIOS1:						\
2297	return COSTS_N_INSNS (19);					\
2298      case PROCESSOR_RIOS2:						\
2299	return COSTS_N_INSNS (13);					\
2300      case PROCESSOR_RS64A:						\
2301        return (GET_MODE (XEXP (X, 1)) != DImode			\
2302		? COSTS_N_INSNS (65)					\
2303		: COSTS_N_INSNS (67));					\
2304      case PROCESSOR_MPCCORE:						\
2305	return COSTS_N_INSNS (6);					\
2306      case PROCESSOR_PPC403:						\
2307	return COSTS_N_INSNS (33);					\
2308      case PROCESSOR_PPC405:						\
2309	return COSTS_N_INSNS (35);					\
2310      case PROCESSOR_PPC601:						\
2311	return COSTS_N_INSNS (36);					\
2312      case PROCESSOR_PPC603:						\
2313	return COSTS_N_INSNS (37);					\
2314      case PROCESSOR_PPC604:						\
2315      case PROCESSOR_PPC604e:						\
2316	return COSTS_N_INSNS (20);					\
2317      case PROCESSOR_PPC620:						\
2318      case PROCESSOR_PPC630:						\
2319        return (GET_MODE (XEXP (X, 1)) != DImode			\
2320		? COSTS_N_INSNS (21)					\
2321		: COSTS_N_INSNS (37));					\
2322      case PROCESSOR_PPC750:						\
2323      case PROCESSOR_PPC7400:						\
2324        return COSTS_N_INSNS (19);					\
2325      case PROCESSOR_PPC7450:						\
2326        return COSTS_N_INSNS (23);					\
2327      }									\
2328  case FFS:								\
2329    return COSTS_N_INSNS (4);						\
2330  case MEM:								\
2331    /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2332    return 5;
2333
2334/* Compute the cost of an address.  This is meant to approximate the size
2335   and/or execution delay of an insn using that address.  If the cost is
2336   approximated by the RTL complexity, including CONST_COSTS above, as
2337   is usually the case for CISC machines, this macro should not be defined.
2338   For aggressively RISCy machines, only one insn format is allowed, so
2339   this macro should be a constant.  The value of this macro only matters
2340   for valid addresses.
2341
2342   For the RS/6000, everything is cost 0.  */
2343
2344#define ADDRESS_COST(RTX) 0
2345
2346/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2347   should be adjusted to reflect any required changes.  This macro is used when
2348   there is some systematic length adjustment required that would be difficult
2349   to express in the length attribute.  */
2350
2351/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2352
2353/* Add any extra modes needed to represent the condition code.
2354
2355   For the RS/6000, we need separate modes when unsigned (logical) comparisons
2356   are being done and we need a separate mode for floating-point.  We also
2357   use a mode for the case when we are comparing the results of two
2358   comparisons, as then only the EQ bit is valid in the register.  */
2359
2360#define EXTRA_CC_MODES		\
2361    CC(CCUNSmode,  "CCUNS")	\
2362    CC(CCFPmode,   "CCFP")	\
2363    CC(CCEQmode,   "CCEQ")
2364
2365/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2366   COMPARE, return the mode to be used for the comparison.  For
2367   floating-point, CCFPmode should be used.  CCUNSmode should be used
2368   for unsigned comparisons.  CCEQmode should be used when we are
2369   doing an inequality comparison on the result of a
2370   comparison.  CCmode should be used in all other cases.  */
2371
2372#define SELECT_CC_MODE(OP,X,Y) \
2373  (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode	\
2374   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2375   : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<'   \
2376      ? CCEQmode : CCmode))
2377
2378/* Define the information needed to generate branch and scc insns.  This is
2379   stored from the compare operation.  Note that we can't use "rtx" here
2380   since it hasn't been defined!  */
2381
2382extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2383extern int rs6000_compare_fp_p;
2384
2385/* Control the assembler format that we output.  */
2386
2387/* A C string constant describing how to begin a comment in the target
2388   assembler language.  The compiler assumes that the comment will end at
2389   the end of the line.  */
2390#define ASM_COMMENT_START " #"
2391
2392/* Implicit library calls should use memcpy, not bcopy, etc.  */
2393
2394#define TARGET_MEM_FUNCTIONS
2395
2396/* Flag to say the TOC is initialized */
2397extern int toc_initialized;
2398
2399/* Macro to output a special constant pool entry.  Go to WIN if we output
2400   it.  Otherwise, it is written the usual way.
2401
2402   On the RS/6000, toc entries are handled this way.  */
2403
2404#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2405{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2406    {									  \
2407      output_toc (FILE, X, LABELNO, MODE);				  \
2408      goto WIN;								  \
2409    }									  \
2410}
2411
2412#ifdef HAVE_GAS_WEAK
2413#define RS6000_WEAK 1
2414#else
2415#define RS6000_WEAK 0
2416#endif
2417
2418/* This implementes the `alias' attribute.  */
2419#define ASM_OUTPUT_DEF_FROM_DECLS(FILE,decl,target)	\
2420do {							\
2421  const char * alias = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2422  char * name = IDENTIFIER_POINTER (target);		\
2423  if (TREE_CODE (decl) == FUNCTION_DECL			\
2424      && DEFAULT_ABI == ABI_AIX)			\
2425    {							\
2426      if (TREE_PUBLIC (decl))				\
2427	{						\
2428	  if (RS6000_WEAK && DECL_WEAK (decl))		\
2429	    {						\
2430	      fputs ("\t.weak .", FILE);		\
2431	      assemble_name (FILE, alias);		\
2432	      putc ('\n', FILE);			\
2433	    }						\
2434	  else						\
2435	    {						\
2436	      fputs ("\t.globl .", FILE);		\
2437	      assemble_name (FILE, alias);		\
2438	      putc ('\n', FILE);			\
2439	    }						\
2440	}						\
2441      else						\
2442	{						\
2443	  fputs ("\t.lglobl .", FILE);			\
2444	  assemble_name (FILE, alias);			\
2445	  putc ('\n', FILE);				\
2446	}						\
2447      fputs ("\t.set .", FILE);				\
2448      assemble_name (FILE, alias);			\
2449      fputs (",.", FILE);				\
2450      assemble_name (FILE, name);			\
2451      fputc ('\n', FILE);				\
2452    }							\
2453  ASM_OUTPUT_DEF (FILE, alias, name);			\
2454} while (0)
2455
2456/* Output to assembler file text saying following lines
2457   may contain character constants, extra white space, comments, etc.  */
2458
2459#define ASM_APP_ON ""
2460
2461/* Output to assembler file text saying following lines
2462   no longer contain unusual constructs.  */
2463
2464#define ASM_APP_OFF ""
2465
2466/* How to refer to registers in assembler output.
2467   This sequence is indexed by compiler's hard-register-number (see above).  */
2468
2469extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2470
2471#define REGISTER_NAMES							\
2472{									\
2473  &rs6000_reg_names[ 0][0],	/* r0   */				\
2474  &rs6000_reg_names[ 1][0],	/* r1	*/				\
2475  &rs6000_reg_names[ 2][0],     /* r2	*/				\
2476  &rs6000_reg_names[ 3][0],	/* r3	*/				\
2477  &rs6000_reg_names[ 4][0],	/* r4	*/				\
2478  &rs6000_reg_names[ 5][0],	/* r5	*/				\
2479  &rs6000_reg_names[ 6][0],	/* r6	*/				\
2480  &rs6000_reg_names[ 7][0],	/* r7	*/				\
2481  &rs6000_reg_names[ 8][0],	/* r8	*/				\
2482  &rs6000_reg_names[ 9][0],	/* r9	*/				\
2483  &rs6000_reg_names[10][0],	/* r10  */				\
2484  &rs6000_reg_names[11][0],	/* r11  */				\
2485  &rs6000_reg_names[12][0],	/* r12  */				\
2486  &rs6000_reg_names[13][0],	/* r13  */				\
2487  &rs6000_reg_names[14][0],	/* r14  */				\
2488  &rs6000_reg_names[15][0],	/* r15  */				\
2489  &rs6000_reg_names[16][0],	/* r16  */				\
2490  &rs6000_reg_names[17][0],	/* r17  */				\
2491  &rs6000_reg_names[18][0],	/* r18  */				\
2492  &rs6000_reg_names[19][0],	/* r19  */				\
2493  &rs6000_reg_names[20][0],	/* r20  */				\
2494  &rs6000_reg_names[21][0],	/* r21  */				\
2495  &rs6000_reg_names[22][0],	/* r22  */				\
2496  &rs6000_reg_names[23][0],	/* r23  */				\
2497  &rs6000_reg_names[24][0],	/* r24  */				\
2498  &rs6000_reg_names[25][0],	/* r25  */				\
2499  &rs6000_reg_names[26][0],	/* r26  */				\
2500  &rs6000_reg_names[27][0],	/* r27  */				\
2501  &rs6000_reg_names[28][0],	/* r28  */				\
2502  &rs6000_reg_names[29][0],	/* r29  */				\
2503  &rs6000_reg_names[30][0],	/* r30  */				\
2504  &rs6000_reg_names[31][0],	/* r31  */				\
2505									\
2506  &rs6000_reg_names[32][0],     /* fr0  */				\
2507  &rs6000_reg_names[33][0],	/* fr1  */				\
2508  &rs6000_reg_names[34][0],	/* fr2  */				\
2509  &rs6000_reg_names[35][0],	/* fr3  */				\
2510  &rs6000_reg_names[36][0],	/* fr4  */				\
2511  &rs6000_reg_names[37][0],	/* fr5  */				\
2512  &rs6000_reg_names[38][0],	/* fr6  */				\
2513  &rs6000_reg_names[39][0],	/* fr7  */				\
2514  &rs6000_reg_names[40][0],	/* fr8  */				\
2515  &rs6000_reg_names[41][0],	/* fr9  */				\
2516  &rs6000_reg_names[42][0],	/* fr10 */				\
2517  &rs6000_reg_names[43][0],	/* fr11 */				\
2518  &rs6000_reg_names[44][0],	/* fr12 */				\
2519  &rs6000_reg_names[45][0],	/* fr13 */				\
2520  &rs6000_reg_names[46][0],	/* fr14 */				\
2521  &rs6000_reg_names[47][0],	/* fr15 */				\
2522  &rs6000_reg_names[48][0],	/* fr16 */				\
2523  &rs6000_reg_names[49][0],	/* fr17 */				\
2524  &rs6000_reg_names[50][0],	/* fr18 */				\
2525  &rs6000_reg_names[51][0],	/* fr19 */				\
2526  &rs6000_reg_names[52][0],	/* fr20 */				\
2527  &rs6000_reg_names[53][0],	/* fr21 */				\
2528  &rs6000_reg_names[54][0],	/* fr22 */				\
2529  &rs6000_reg_names[55][0],	/* fr23 */				\
2530  &rs6000_reg_names[56][0],	/* fr24 */				\
2531  &rs6000_reg_names[57][0],	/* fr25 */				\
2532  &rs6000_reg_names[58][0],	/* fr26 */				\
2533  &rs6000_reg_names[59][0],	/* fr27 */				\
2534  &rs6000_reg_names[60][0],	/* fr28 */				\
2535  &rs6000_reg_names[61][0],	/* fr29 */				\
2536  &rs6000_reg_names[62][0],	/* fr30 */				\
2537  &rs6000_reg_names[63][0],	/* fr31 */				\
2538									\
2539  &rs6000_reg_names[64][0],     /* mq   */				\
2540  &rs6000_reg_names[65][0],	/* lr   */				\
2541  &rs6000_reg_names[66][0],	/* ctr  */				\
2542  &rs6000_reg_names[67][0],	/* ap   */				\
2543									\
2544  &rs6000_reg_names[68][0],	/* cr0  */				\
2545  &rs6000_reg_names[69][0],	/* cr1  */				\
2546  &rs6000_reg_names[70][0],	/* cr2  */				\
2547  &rs6000_reg_names[71][0],	/* cr3  */				\
2548  &rs6000_reg_names[72][0],	/* cr4  */				\
2549  &rs6000_reg_names[73][0],	/* cr5  */				\
2550  &rs6000_reg_names[74][0],	/* cr6  */				\
2551  &rs6000_reg_names[75][0],	/* cr7  */				\
2552									\
2553  &rs6000_reg_names[76][0],	/* xer  */				\
2554									\
2555  &rs6000_reg_names[77][0],	/* v0  */				\
2556  &rs6000_reg_names[78][0],	/* v1  */				\
2557  &rs6000_reg_names[79][0],	/* v2  */				\
2558  &rs6000_reg_names[80][0],	/* v3  */				\
2559  &rs6000_reg_names[81][0],	/* v4  */				\
2560  &rs6000_reg_names[82][0],	/* v5  */				\
2561  &rs6000_reg_names[83][0],	/* v6  */				\
2562  &rs6000_reg_names[84][0],	/* v7  */				\
2563  &rs6000_reg_names[85][0],	/* v8  */				\
2564  &rs6000_reg_names[86][0],	/* v9  */				\
2565  &rs6000_reg_names[87][0],	/* v10  */				\
2566  &rs6000_reg_names[88][0],	/* v11  */				\
2567  &rs6000_reg_names[89][0],	/* v12  */				\
2568  &rs6000_reg_names[90][0],	/* v13  */				\
2569  &rs6000_reg_names[91][0],	/* v14  */				\
2570  &rs6000_reg_names[92][0],	/* v15  */				\
2571  &rs6000_reg_names[93][0],	/* v16  */				\
2572  &rs6000_reg_names[94][0],	/* v17  */				\
2573  &rs6000_reg_names[95][0],	/* v18  */				\
2574  &rs6000_reg_names[96][0],	/* v19  */				\
2575  &rs6000_reg_names[97][0],	/* v20  */				\
2576  &rs6000_reg_names[98][0],	/* v21  */				\
2577  &rs6000_reg_names[99][0],	/* v22  */				\
2578  &rs6000_reg_names[100][0],	/* v23  */				\
2579  &rs6000_reg_names[101][0],	/* v24  */				\
2580  &rs6000_reg_names[102][0],	/* v25  */				\
2581  &rs6000_reg_names[103][0],	/* v26  */				\
2582  &rs6000_reg_names[104][0],	/* v27  */				\
2583  &rs6000_reg_names[105][0],	/* v28  */				\
2584  &rs6000_reg_names[106][0],	/* v29  */				\
2585  &rs6000_reg_names[107][0],	/* v30  */				\
2586  &rs6000_reg_names[108][0],	/* v31  */				\
2587  &rs6000_reg_names[109][0],	/* vrsave  */				\
2588}
2589
2590/* print-rtl can't handle the above REGISTER_NAMES, so define the
2591   following for it.  Switch to use the alternate names since
2592   they are more mnemonic.  */
2593
2594#define DEBUG_REGISTER_NAMES						\
2595{									\
2596     "r0", "r1",   "r2",  "r3",  "r4",  "r5",  "r6",  "r7",		\
2597     "r8", "r9",  "r10", "r11", "r12", "r13", "r14", "r15",		\
2598    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",		\
2599    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",		\
2600     "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",		\
2601     "f8",  "f9", "f10", "f11", "f12", "f13", "f14", "f15",		\
2602    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",		\
2603    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",		\
2604     "mq",  "lr", "ctr",  "ap",						\
2605    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",		\
2606  "xer",								\
2607     "v0",  "v1",  "v2",  "v3",  "v4",  "v5",  "v6",  "v7",             \
2608     "v8",  "v9", "v10", "v11", "v12", "v13", "v14", "v15",             \
2609    "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",             \
2610    "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",             \
2611    "vrsave"								\
2612}
2613
2614/* Table of additional register names to use in user input.  */
2615
2616#define ADDITIONAL_REGISTER_NAMES \
2617 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2618  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2619  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2620  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2621  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2622  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2623  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2624  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2625  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2626  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2627  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2628  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2629  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2630  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2631  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2632  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2633  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2634  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2635  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2636  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2637  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2638  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2639  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2640  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2641  {"vrsave", 109},						\
2642  /* no additional names for: mq, lr, ctr, ap */		\
2643  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2644  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2645  {"cc",   68}, {"sp",    1}, {"toc",   2} }
2646
2647/* Text to write out after a CALL that may be replaced by glue code by
2648   the loader.  This depends on the AIX version.  */
2649#define RS6000_CALL_GLUE "cror 31,31,31"
2650
2651/* This is how to output an element of a case-vector that is relative.  */
2652
2653#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2654  do { char buf[100];					\
2655       fputs ("\t.long ", FILE);			\
2656       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2657       assemble_name (FILE, buf);			\
2658       putc ('-', FILE);				\
2659       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2660       assemble_name (FILE, buf);			\
2661       putc ('\n', FILE);				\
2662     } while (0)
2663
2664/* This is how to output an assembler line
2665   that says to advance the location counter
2666   to a multiple of 2**LOG bytes.  */
2667
2668#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2669  if ((LOG) != 0)			\
2670    fprintf (FILE, "\t.align %d\n", (LOG))
2671
2672/* Store in OUTPUT a string (made with alloca) containing
2673   an assembler-name for a local static variable named NAME.
2674   LABELNO is an integer which is different for each call.  */
2675
2676#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2677( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2678  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2679
2680/* Pick up the return address upon entry to a procedure. Used for
2681   dwarf2 unwind information.  This also enables the table driven
2682   mechanism.  */
2683
2684#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2685#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2686
2687/* Describe how we implement __builtin_eh_return.  */
2688#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2689#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2690
2691/* Print operand X (an rtx) in assembler syntax to file FILE.
2692   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2693   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2694
2695#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2696
2697/* Define which CODE values are valid.  */
2698
2699#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2700  ((CODE) == '.')
2701
2702/* Print a memory address as an operand to reference that memory location.  */
2703
2704#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2705
2706/* Define the codes that are matched by predicates in rs6000.c.  */
2707
2708#define PREDICATE_CODES							   \
2709  {"short_cint_operand", {CONST_INT}},					   \
2710  {"u_short_cint_operand", {CONST_INT}},				   \
2711  {"non_short_cint_operand", {CONST_INT}},				   \
2712  {"exact_log2_cint_operand", {CONST_INT}},				   \
2713  {"gpc_reg_operand", {SUBREG, REG}},					   \
2714  {"cc_reg_operand", {SUBREG, REG}},					   \
2715  {"cc_reg_not_cr0_operand", {SUBREG, REG}},				   \
2716  {"reg_or_short_operand", {SUBREG, REG, CONST_INT}},			   \
2717  {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}},		   \
2718  {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}},			   \
2719  {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			   \
2720  {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}},		   \
2721  {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2722  {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2723  {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2724  {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}},			   \
2725  {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}},			   \
2726  {"easy_fp_constant", {CONST_DOUBLE}},					   \
2727  {"zero_fp_constant", {CONST_DOUBLE}},					   \
2728  {"reg_or_mem_operand", {SUBREG, MEM, REG}},				   \
2729  {"lwa_operand", {SUBREG, MEM, REG}},					   \
2730  {"volatile_mem_operand", {MEM}},					   \
2731  {"offsettable_mem_operand", {MEM}},					   \
2732  {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}},		   \
2733  {"add_operand", {SUBREG, REG, CONST_INT}},				   \
2734  {"non_add_cint_operand", {CONST_INT}},				   \
2735  {"and_operand", {SUBREG, REG, CONST_INT}},				   \
2736  {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2737  {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2738  {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}},		   \
2739  {"mask_operand", {CONST_INT}},					   \
2740  {"mask64_operand", {CONST_INT, CONST_DOUBLE}},			   \
2741  {"count_register_operand", {REG}},					   \
2742  {"xer_operand", {REG}},						   \
2743  {"call_operand", {SYMBOL_REF, REG}},					   \
2744  {"current_file_function_operand", {SYMBOL_REF}},			   \
2745  {"input_operand", {SUBREG, MEM, REG, CONST_INT,			   \
2746		     CONST_DOUBLE, SYMBOL_REF}},			   \
2747  {"load_multiple_operation", {PARALLEL}},				   \
2748  {"store_multiple_operation", {PARALLEL}},				   \
2749  {"vrsave_operation", {PARALLEL}},					   \
2750  {"branch_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2751				  GT, LEU, LTU, GEU, GTU,		   \
2752				  UNORDERED, ORDERED,			   \
2753				  UNGE, UNLE }},			   \
2754  {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU,	   \
2755					   UNORDERED }},		   \
2756  {"scc_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2757			       GT, LEU, LTU, GEU, GTU,			   \
2758			       UNORDERED, ORDERED,			   \
2759			       UNGE, UNLE }},				   \
2760  {"trap_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2761				GT, LEU, LTU, GEU, GTU}},		   \
2762  {"boolean_operator", {AND, IOR, XOR}},				   \
2763  {"boolean_or_operator", {IOR, XOR}},					   \
2764  {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2765
2766/* uncomment for disabling the corresponding default options */
2767/* #define  MACHINE_no_sched_interblock */
2768/* #define  MACHINE_no_sched_speculative */
2769/* #define  MACHINE_no_sched_speculative_load */
2770
2771/* General flags.  */
2772extern int flag_pic;
2773extern int optimize;
2774extern int flag_expensive_optimizations;
2775extern int frame_pointer_needed;
2776
2777enum rs6000_builtins
2778{
2779  /* AltiVec builtins.  */
2780  ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2781  ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2782  ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2783  ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2784  ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2785  ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2786  ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2787  ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2788  ALTIVEC_BUILTIN_VADDUBM,
2789  ALTIVEC_BUILTIN_VADDUHM,
2790  ALTIVEC_BUILTIN_VADDUWM,
2791  ALTIVEC_BUILTIN_VADDFP,
2792  ALTIVEC_BUILTIN_VADDCUW,
2793  ALTIVEC_BUILTIN_VADDUBS,
2794  ALTIVEC_BUILTIN_VADDSBS,
2795  ALTIVEC_BUILTIN_VADDUHS,
2796  ALTIVEC_BUILTIN_VADDSHS,
2797  ALTIVEC_BUILTIN_VADDUWS,
2798  ALTIVEC_BUILTIN_VADDSWS,
2799  ALTIVEC_BUILTIN_VAND,
2800  ALTIVEC_BUILTIN_VANDC,
2801  ALTIVEC_BUILTIN_VAVGUB,
2802  ALTIVEC_BUILTIN_VAVGSB,
2803  ALTIVEC_BUILTIN_VAVGUH,
2804  ALTIVEC_BUILTIN_VAVGSH,
2805  ALTIVEC_BUILTIN_VAVGUW,
2806  ALTIVEC_BUILTIN_VAVGSW,
2807  ALTIVEC_BUILTIN_VCFUX,
2808  ALTIVEC_BUILTIN_VCFSX,
2809  ALTIVEC_BUILTIN_VCTSXS,
2810  ALTIVEC_BUILTIN_VCTUXS,
2811  ALTIVEC_BUILTIN_VCMPBFP,
2812  ALTIVEC_BUILTIN_VCMPEQUB,
2813  ALTIVEC_BUILTIN_VCMPEQUH,
2814  ALTIVEC_BUILTIN_VCMPEQUW,
2815  ALTIVEC_BUILTIN_VCMPEQFP,
2816  ALTIVEC_BUILTIN_VCMPGEFP,
2817  ALTIVEC_BUILTIN_VCMPGTUB,
2818  ALTIVEC_BUILTIN_VCMPGTSB,
2819  ALTIVEC_BUILTIN_VCMPGTUH,
2820  ALTIVEC_BUILTIN_VCMPGTSH,
2821  ALTIVEC_BUILTIN_VCMPGTUW,
2822  ALTIVEC_BUILTIN_VCMPGTSW,
2823  ALTIVEC_BUILTIN_VCMPGTFP,
2824  ALTIVEC_BUILTIN_VEXPTEFP,
2825  ALTIVEC_BUILTIN_VLOGEFP,
2826  ALTIVEC_BUILTIN_VMADDFP,
2827  ALTIVEC_BUILTIN_VMAXUB,
2828  ALTIVEC_BUILTIN_VMAXSB,
2829  ALTIVEC_BUILTIN_VMAXUH,
2830  ALTIVEC_BUILTIN_VMAXSH,
2831  ALTIVEC_BUILTIN_VMAXUW,
2832  ALTIVEC_BUILTIN_VMAXSW,
2833  ALTIVEC_BUILTIN_VMAXFP,
2834  ALTIVEC_BUILTIN_VMHADDSHS,
2835  ALTIVEC_BUILTIN_VMHRADDSHS,
2836  ALTIVEC_BUILTIN_VMLADDUHM,
2837  ALTIVEC_BUILTIN_VMRGHB,
2838  ALTIVEC_BUILTIN_VMRGHH,
2839  ALTIVEC_BUILTIN_VMRGHW,
2840  ALTIVEC_BUILTIN_VMRGLB,
2841  ALTIVEC_BUILTIN_VMRGLH,
2842  ALTIVEC_BUILTIN_VMRGLW,
2843  ALTIVEC_BUILTIN_VMSUMUBM,
2844  ALTIVEC_BUILTIN_VMSUMMBM,
2845  ALTIVEC_BUILTIN_VMSUMUHM,
2846  ALTIVEC_BUILTIN_VMSUMSHM,
2847  ALTIVEC_BUILTIN_VMSUMUHS,
2848  ALTIVEC_BUILTIN_VMSUMSHS,
2849  ALTIVEC_BUILTIN_VMINUB,
2850  ALTIVEC_BUILTIN_VMINSB,
2851  ALTIVEC_BUILTIN_VMINUH,
2852  ALTIVEC_BUILTIN_VMINSH,
2853  ALTIVEC_BUILTIN_VMINUW,
2854  ALTIVEC_BUILTIN_VMINSW,
2855  ALTIVEC_BUILTIN_VMINFP,
2856  ALTIVEC_BUILTIN_VMULEUB,
2857  ALTIVEC_BUILTIN_VMULESB,
2858  ALTIVEC_BUILTIN_VMULEUH,
2859  ALTIVEC_BUILTIN_VMULESH,
2860  ALTIVEC_BUILTIN_VMULOUB,
2861  ALTIVEC_BUILTIN_VMULOSB,
2862  ALTIVEC_BUILTIN_VMULOUH,
2863  ALTIVEC_BUILTIN_VMULOSH,
2864  ALTIVEC_BUILTIN_VNMSUBFP,
2865  ALTIVEC_BUILTIN_VNOR,
2866  ALTIVEC_BUILTIN_VOR,
2867  ALTIVEC_BUILTIN_VSEL_4SI,
2868  ALTIVEC_BUILTIN_VSEL_4SF,
2869  ALTIVEC_BUILTIN_VSEL_8HI,
2870  ALTIVEC_BUILTIN_VSEL_16QI,
2871  ALTIVEC_BUILTIN_VPERM_4SI,
2872  ALTIVEC_BUILTIN_VPERM_4SF,
2873  ALTIVEC_BUILTIN_VPERM_8HI,
2874  ALTIVEC_BUILTIN_VPERM_16QI,
2875  ALTIVEC_BUILTIN_VPKUHUM,
2876  ALTIVEC_BUILTIN_VPKUWUM,
2877  ALTIVEC_BUILTIN_VPKPX,
2878  ALTIVEC_BUILTIN_VPKUHSS,
2879  ALTIVEC_BUILTIN_VPKSHSS,
2880  ALTIVEC_BUILTIN_VPKUWSS,
2881  ALTIVEC_BUILTIN_VPKSWSS,
2882  ALTIVEC_BUILTIN_VPKUHUS,
2883  ALTIVEC_BUILTIN_VPKSHUS,
2884  ALTIVEC_BUILTIN_VPKUWUS,
2885  ALTIVEC_BUILTIN_VPKSWUS,
2886  ALTIVEC_BUILTIN_VREFP,
2887  ALTIVEC_BUILTIN_VRFIM,
2888  ALTIVEC_BUILTIN_VRFIN,
2889  ALTIVEC_BUILTIN_VRFIP,
2890  ALTIVEC_BUILTIN_VRFIZ,
2891  ALTIVEC_BUILTIN_VRLB,
2892  ALTIVEC_BUILTIN_VRLH,
2893  ALTIVEC_BUILTIN_VRLW,
2894  ALTIVEC_BUILTIN_VRSQRTEFP,
2895  ALTIVEC_BUILTIN_VSLB,
2896  ALTIVEC_BUILTIN_VSLH,
2897  ALTIVEC_BUILTIN_VSLW,
2898  ALTIVEC_BUILTIN_VSL,
2899  ALTIVEC_BUILTIN_VSLO,
2900  ALTIVEC_BUILTIN_VSPLTB,
2901  ALTIVEC_BUILTIN_VSPLTH,
2902  ALTIVEC_BUILTIN_VSPLTW,
2903  ALTIVEC_BUILTIN_VSPLTISB,
2904  ALTIVEC_BUILTIN_VSPLTISH,
2905  ALTIVEC_BUILTIN_VSPLTISW,
2906  ALTIVEC_BUILTIN_VSRB,
2907  ALTIVEC_BUILTIN_VSRH,
2908  ALTIVEC_BUILTIN_VSRW,
2909  ALTIVEC_BUILTIN_VSRAB,
2910  ALTIVEC_BUILTIN_VSRAH,
2911  ALTIVEC_BUILTIN_VSRAW,
2912  ALTIVEC_BUILTIN_VSR,
2913  ALTIVEC_BUILTIN_VSRO,
2914  ALTIVEC_BUILTIN_VSUBUBM,
2915  ALTIVEC_BUILTIN_VSUBUHM,
2916  ALTIVEC_BUILTIN_VSUBUWM,
2917  ALTIVEC_BUILTIN_VSUBFP,
2918  ALTIVEC_BUILTIN_VSUBCUW,
2919  ALTIVEC_BUILTIN_VSUBUBS,
2920  ALTIVEC_BUILTIN_VSUBSBS,
2921  ALTIVEC_BUILTIN_VSUBUHS,
2922  ALTIVEC_BUILTIN_VSUBSHS,
2923  ALTIVEC_BUILTIN_VSUBUWS,
2924  ALTIVEC_BUILTIN_VSUBSWS,
2925  ALTIVEC_BUILTIN_VSUM4UBS,
2926  ALTIVEC_BUILTIN_VSUM4SBS,
2927  ALTIVEC_BUILTIN_VSUM4SHS,
2928  ALTIVEC_BUILTIN_VSUM2SWS,
2929  ALTIVEC_BUILTIN_VSUMSWS,
2930  ALTIVEC_BUILTIN_VXOR,
2931  ALTIVEC_BUILTIN_VSLDOI_16QI,
2932  ALTIVEC_BUILTIN_VSLDOI_8HI,
2933  ALTIVEC_BUILTIN_VSLDOI_4SI,
2934  ALTIVEC_BUILTIN_VSLDOI_4SF,
2935  ALTIVEC_BUILTIN_VUPKHSB,
2936  ALTIVEC_BUILTIN_VUPKHPX,
2937  ALTIVEC_BUILTIN_VUPKHSH,
2938  ALTIVEC_BUILTIN_VUPKLSB,
2939  ALTIVEC_BUILTIN_VUPKLPX,
2940  ALTIVEC_BUILTIN_VUPKLSH,
2941  ALTIVEC_BUILTIN_VCMPBFP_P,
2942  ALTIVEC_BUILTIN_VCMPEQFP_P,
2943  ALTIVEC_BUILTIN_VCMPEQUB_P,
2944  ALTIVEC_BUILTIN_VCMPEQUH_P,
2945  ALTIVEC_BUILTIN_VCMPEQUW_P,
2946  ALTIVEC_BUILTIN_VCMPGEFP_P,
2947  ALTIVEC_BUILTIN_VCMPGTFP_P,
2948  ALTIVEC_BUILTIN_VCMPGTSB_P,
2949  ALTIVEC_BUILTIN_VCMPGTSH_P,
2950  ALTIVEC_BUILTIN_VCMPGTSW_P,
2951  ALTIVEC_BUILTIN_VCMPGTUB_P,
2952  ALTIVEC_BUILTIN_VCMPGTUH_P,
2953  ALTIVEC_BUILTIN_VCMPGTUW_P,
2954  ALTIVEC_BUILTIN_MTVSCR,
2955  ALTIVEC_BUILTIN_MFVSCR,
2956  ALTIVEC_BUILTIN_DSSALL,
2957  ALTIVEC_BUILTIN_DSS,
2958  ALTIVEC_BUILTIN_LVSL,
2959  ALTIVEC_BUILTIN_LVSR,
2960  ALTIVEC_BUILTIN_DSTT,
2961  ALTIVEC_BUILTIN_DSTST,
2962  ALTIVEC_BUILTIN_DSTSTT,
2963  ALTIVEC_BUILTIN_DST,
2964  ALTIVEC_BUILTIN_LVEBX,
2965  ALTIVEC_BUILTIN_LVEHX,
2966  ALTIVEC_BUILTIN_LVEWX,
2967  ALTIVEC_BUILTIN_LVXL,
2968  ALTIVEC_BUILTIN_LVX,
2969  ALTIVEC_BUILTIN_STVX,
2970  ALTIVEC_BUILTIN_STVEBX,
2971  ALTIVEC_BUILTIN_STVEHX,
2972  ALTIVEC_BUILTIN_STVEWX,
2973  ALTIVEC_BUILTIN_STVXL
2974};
2975