1/* Definitions of target machine for GNU compiler, for ARM.
2   Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4   Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
5   and Martin Simmons (@harleqn.co.uk).
6   More major hacks by Richard Earnshaw (rearnsha@arm.com)
7   Minor hacks by Nick Clifton (nickc@cygnus.com)
8
9   This file is part of GCC.
10
11   GCC is free software; you can redistribute it and/or modify it
12   under the terms of the GNU General Public License as published
13   by the Free Software Foundation; either version 2, or (at your
14   option) any later version.
15
16   GCC is distributed in the hope that it will be useful, but WITHOUT
17   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
19   License for more details.
20
21   You should have received a copy of the GNU General Public License
22   along with GCC; see the file COPYING.  If not, write to
23   the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
24   MA 02110-1301, USA.  */
25
26#ifndef GCC_ARM_H
27#define GCC_ARM_H
28
29/* The architecture define.  */
30extern char arm_arch_name[];
31
32/* Target CPU builtins.  */
33#define TARGET_CPU_CPP_BUILTINS()			\
34  do							\
35    {							\
36	/* Define __arm__ even when in thumb mode, for	\
37	   consistency with armcc.  */			\
38	builtin_define ("__arm__");			\
39	builtin_define ("__APCS_32__");			\
40	if (TARGET_THUMB)				\
41	  builtin_define ("__thumb__");			\
42							\
43	if (TARGET_BIG_END)				\
44	  {						\
45	    builtin_define ("__ARMEB__");		\
46	    if (TARGET_THUMB)				\
47	      builtin_define ("__THUMBEB__");		\
48	    if (TARGET_LITTLE_WORDS)			\
49	      builtin_define ("__ARMWEL__");		\
50	  }						\
51        else						\
52	  {						\
53	    builtin_define ("__ARMEL__");		\
54	    if (TARGET_THUMB)				\
55	      builtin_define ("__THUMBEL__");		\
56	  }						\
57							\
58	if (TARGET_SOFT_FLOAT)				\
59	  builtin_define ("__SOFTFP__");		\
60							\
61	if (TARGET_VFP)					\
62	  builtin_define ("__VFP_FP__");		\
63							\
64	/* Add a define for interworking.		\
65	   Needed when building libgcc.a.  */		\
66	if (arm_cpp_interwork)				\
67	  builtin_define ("__THUMB_INTERWORK__");	\
68							\
69	builtin_assert ("cpu=arm");			\
70	builtin_assert ("machine=arm");			\
71							\
72	builtin_define (arm_arch_name);			\
73	if (arm_arch_cirrus)				\
74	  builtin_define ("__MAVERICK__");		\
75	if (arm_arch_xscale)				\
76	  builtin_define ("__XSCALE__");		\
77	if (arm_arch_iwmmxt)				\
78	  builtin_define ("__IWMMXT__");		\
79	if (TARGET_AAPCS_BASED)				\
80	  builtin_define ("__ARM_EABI__");		\
81    } while (0)
82
83/* The various ARM cores.  */
84enum processor_type
85{
86#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
87  IDENT,
88#include "arm-cores.def"
89#undef ARM_CORE
90  /* Used to indicate that no processor has been specified.  */
91  arm_none
92};
93
94enum target_cpus
95{
96#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
97  TARGET_CPU_##IDENT,
98#include "arm-cores.def"
99#undef ARM_CORE
100  TARGET_CPU_generic
101};
102
103/* The processor for which instructions should be scheduled.  */
104extern enum processor_type arm_tune;
105
106typedef enum arm_cond_code
107{
108  ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
109  ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
110}
111arm_cc;
112
113extern arm_cc arm_current_cc;
114
115#define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
116
117extern int arm_target_label;
118extern int arm_ccfsm_state;
119extern GTY(()) rtx arm_target_insn;
120/* Define the information needed to generate branch insns.  This is
121   stored from the compare operation.  */
122extern GTY(()) rtx arm_compare_op0;
123extern GTY(()) rtx arm_compare_op1;
124/* The label of the current constant pool.  */
125extern rtx pool_vector_label;
126/* Set to 1 when a return insn is output, this means that the epilogue
127   is not needed.  */
128extern int return_used_this_function;
129/* Used to produce AOF syntax assembler.  */
130extern GTY(()) rtx aof_pic_label;
131
132/* Just in case configure has failed to define anything.  */
133#ifndef TARGET_CPU_DEFAULT
134#define TARGET_CPU_DEFAULT TARGET_CPU_generic
135#endif
136
137
138#undef  CPP_SPEC
139#define CPP_SPEC "%(subtarget_cpp_spec)					\
140%{msoft-float:%{mhard-float:						\
141	%e-msoft-float and -mhard_float may not be used together}}	\
142%{mbig-endian:%{mlittle-endian:						\
143	%e-mbig-endian and -mlittle-endian may not be used together}}"
144
145#ifndef CC1_SPEC
146#define CC1_SPEC ""
147#endif
148
149/* This macro defines names of additional specifications to put in the specs
150   that can be used in various specifications like CC1_SPEC.  Its definition
151   is an initializer with a subgrouping for each command option.
152
153   Each subgrouping contains a string constant, that defines the
154   specification name, and a string constant that used by the GCC driver
155   program.
156
157   Do not define this macro if it does not need to do anything.  */
158#define EXTRA_SPECS						\
159  { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
160  SUBTARGET_EXTRA_SPECS
161
162#ifndef SUBTARGET_EXTRA_SPECS
163#define SUBTARGET_EXTRA_SPECS
164#endif
165
166#ifndef SUBTARGET_CPP_SPEC
167#define SUBTARGET_CPP_SPEC      ""
168#endif
169
170/* Run-time Target Specification.  */
171#ifndef TARGET_VERSION
172#define TARGET_VERSION fputs (" (ARM/generic)", stderr);
173#endif
174
175#define TARGET_SOFT_FLOAT		(arm_float_abi == ARM_FLOAT_ABI_SOFT)
176/* Use hardware floating point instructions. */
177#define TARGET_HARD_FLOAT		(arm_float_abi != ARM_FLOAT_ABI_SOFT)
178/* Use hardware floating point calling convention.  */
179#define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
180#define TARGET_FPA			(arm_fp_model == ARM_FP_MODEL_FPA)
181#define TARGET_MAVERICK			(arm_fp_model == ARM_FP_MODEL_MAVERICK)
182#define TARGET_VFP			(arm_fp_model == ARM_FP_MODEL_VFP)
183#define TARGET_IWMMXT			(arm_arch_iwmmxt)
184#define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_ARM)
185#define TARGET_IWMMXT_ABI (TARGET_ARM && arm_abi == ARM_ABI_IWMMXT)
186#define TARGET_ARM                      (! TARGET_THUMB)
187#define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
188#define TARGET_BACKTRACE	        (leaf_function_p () \
189				         ? TARGET_TPCS_LEAF_FRAME \
190				         : TARGET_TPCS_FRAME)
191#define TARGET_LDRD			(arm_arch5e && ARM_DOUBLEWORD_ALIGN)
192#define TARGET_AAPCS_BASED \
193    (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
194
195#define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
196#define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
197
198/* True iff the full BPABI is being used.  If TARGET_BPABI is true,
199   then TARGET_AAPCS_BASED must be true -- but the converse does not
200   hold.  TARGET_BPABI implies the use of the BPABI runtime library,
201   etc., in addition to just the AAPCS calling conventions.  */
202#ifndef TARGET_BPABI
203#define TARGET_BPABI false
204#endif
205
206/* Support for a compile-time default CPU, et cetera.  The rules are:
207   --with-arch is ignored if -march or -mcpu are specified.
208   --with-cpu is ignored if -march or -mcpu are specified, and is overridden
209    by --with-arch.
210   --with-tune is ignored if -mtune or -mcpu are specified (but not affected
211     by -march).
212   --with-float is ignored if -mhard-float, -msoft-float or -mfloat-abi are
213   specified.
214   --with-fpu is ignored if -mfpu is specified.
215   --with-abi is ignored is -mabi is specified.  */
216#define OPTION_DEFAULT_SPECS \
217  {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
218  {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
219  {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
220  {"float", \
221    "%{!msoft-float:%{!mhard-float:%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}}}" }, \
222  {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
223  {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
224  {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
225
226/* Which floating point model to use.  */
227enum arm_fp_model
228{
229  ARM_FP_MODEL_UNKNOWN,
230  /* FPA model (Hardware or software).  */
231  ARM_FP_MODEL_FPA,
232  /* Cirrus Maverick floating point model.  */
233  ARM_FP_MODEL_MAVERICK,
234  /* VFP floating point model.  */
235  ARM_FP_MODEL_VFP
236};
237
238extern enum arm_fp_model arm_fp_model;
239
240/* Which floating point hardware is available.  Also update
241   fp_model_for_fpu in arm.c when adding entries to this list.  */
242enum fputype
243{
244  /* No FP hardware.  */
245  FPUTYPE_NONE,
246  /* Full FPA support.  */
247  FPUTYPE_FPA,
248  /* Emulated FPA hardware, Issue 2 emulator (no LFM/SFM).  */
249  FPUTYPE_FPA_EMU2,
250  /* Emulated FPA hardware, Issue 3 emulator.  */
251  FPUTYPE_FPA_EMU3,
252  /* Cirrus Maverick floating point co-processor.  */
253  FPUTYPE_MAVERICK,
254  /* VFP.  */
255  FPUTYPE_VFP
256};
257
258/* Recast the floating point class to be the floating point attribute.  */
259#define arm_fpu_attr ((enum attr_fpu) arm_fpu_tune)
260
261/* What type of floating point to tune for */
262extern enum fputype arm_fpu_tune;
263
264/* What type of floating point instructions are available */
265extern enum fputype arm_fpu_arch;
266
267enum float_abi_type
268{
269  ARM_FLOAT_ABI_SOFT,
270  ARM_FLOAT_ABI_SOFTFP,
271  ARM_FLOAT_ABI_HARD
272};
273
274extern enum float_abi_type arm_float_abi;
275
276#ifndef TARGET_DEFAULT_FLOAT_ABI
277#define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
278#endif
279
280/* Which ABI to use.  */
281enum arm_abi_type
282{
283  ARM_ABI_APCS,
284  ARM_ABI_ATPCS,
285  ARM_ABI_AAPCS,
286  ARM_ABI_IWMMXT,
287  ARM_ABI_AAPCS_LINUX
288};
289
290extern enum arm_abi_type arm_abi;
291
292#ifndef ARM_DEFAULT_ABI
293#define ARM_DEFAULT_ABI ARM_ABI_APCS
294#endif
295
296/* Which thread pointer access sequence to use.  */
297enum arm_tp_type {
298  TP_AUTO,
299  TP_SOFT,
300  TP_CP15
301};
302
303extern enum arm_tp_type target_thread_pointer;
304
305/* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
306extern int arm_arch3m;
307
308/* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
309extern int arm_arch4;
310
311/* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
312extern int arm_arch4t;
313
314/* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
315extern int arm_arch5;
316
317/* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
318extern int arm_arch5e;
319
320/* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
321extern int arm_arch6;
322
323/* Nonzero if this chip can benefit from load scheduling.  */
324extern int arm_ld_sched;
325
326/* Nonzero if generating thumb code.  */
327extern int thumb_code;
328
329/* Nonzero if this chip is a StrongARM.  */
330extern int arm_tune_strongarm;
331
332/* Nonzero if this chip is a Cirrus variant.  */
333extern int arm_arch_cirrus;
334
335/* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
336extern int arm_arch_iwmmxt;
337
338/* Nonzero if this chip is an XScale.  */
339extern int arm_arch_xscale;
340
341/* Nonzero if tuning for XScale.  */
342extern int arm_tune_xscale;
343
344/* Nonzero if tuning for stores via the write buffer.  */
345extern int arm_tune_wbuf;
346
347/* Nonzero if we should define __THUMB_INTERWORK__ in the
348   preprocessor.
349   XXX This is a bit of a hack, it's intended to help work around
350   problems in GLD which doesn't understand that armv5t code is
351   interworking clean.  */
352extern int arm_cpp_interwork;
353
354#ifndef TARGET_DEFAULT
355#define TARGET_DEFAULT  (MASK_APCS_FRAME)
356#endif
357
358/* The frame pointer register used in gcc has nothing to do with debugging;
359   that is controlled by the APCS-FRAME option.  */
360#define CAN_DEBUG_WITHOUT_FP
361
362#define OVERRIDE_OPTIONS  arm_override_options ()
363
364/* Nonzero if PIC code requires explicit qualifiers to generate
365   PLT and GOT relocs rather than the assembler doing so implicitly.
366   Subtargets can override these if required.  */
367#ifndef NEED_GOT_RELOC
368#define NEED_GOT_RELOC	0
369#endif
370#ifndef NEED_PLT_RELOC
371#define NEED_PLT_RELOC	0
372#endif
373
374/* Nonzero if we need to refer to the GOT with a PC-relative
375   offset.  In other words, generate
376
377   .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
378
379   rather than
380
381   .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
382
383   The default is true, which matches NetBSD.  Subtargets can
384   override this if required.  */
385#ifndef GOT_PCREL
386#define GOT_PCREL   1
387#endif
388
389/* Target machine storage Layout.  */
390
391
392/* Define this macro if it is advisable to hold scalars in registers
393   in a wider mode than that declared by the program.  In such cases,
394   the value is constrained to be within the bounds of the declared
395   type, but kept valid in the wider mode.  The signedness of the
396   extension may differ from that of the type.  */
397
398/* It is far faster to zero extend chars than to sign extend them */
399
400#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
401  if (GET_MODE_CLASS (MODE) == MODE_INT		\
402      && GET_MODE_SIZE (MODE) < 4)      	\
403    {						\
404      if (MODE == QImode)			\
405	UNSIGNEDP = 1;				\
406      else if (MODE == HImode)			\
407	UNSIGNEDP = 1;				\
408      (MODE) = SImode;				\
409    }
410
411#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE)	\
412  if ((GET_MODE_CLASS (MODE) == MODE_INT		\
413       || GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT)    \
414      && GET_MODE_SIZE (MODE) < 4)                      \
415    (MODE) = SImode;				        \
416
417/* Define this if most significant bit is lowest numbered
418   in instructions that operate on numbered bit-fields.  */
419#define BITS_BIG_ENDIAN  0
420
421/* Define this if most significant byte of a word is the lowest numbered.
422   Most ARM processors are run in little endian mode, so that is the default.
423   If you want to have it run-time selectable, change the definition in a
424   cover file to be TARGET_BIG_ENDIAN.  */
425#define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
426
427/* Define this if most significant word of a multiword number is the lowest
428   numbered.
429   This is always false, even when in big-endian mode.  */
430#define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
431
432/* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
433   on processor pre-defineds when compiling libgcc2.c.  */
434#if defined(__ARMEB__) && !defined(__ARMWEL__)
435#define LIBGCC2_WORDS_BIG_ENDIAN 1
436#else
437#define LIBGCC2_WORDS_BIG_ENDIAN 0
438#endif
439
440/* Define this if most significant word of doubles is the lowest numbered.
441   The rules are different based on whether or not we use FPA-format,
442   VFP-format or some other floating point co-processor's format doubles.  */
443#define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
444
445#define UNITS_PER_WORD	4
446
447/* True if natural alignment is used for doubleword types.  */
448#define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
449
450#define DOUBLEWORD_ALIGNMENT 64
451
452#define PARM_BOUNDARY  	32
453
454#define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
455
456#define PREFERRED_STACK_BOUNDARY \
457    (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
458
459#define FUNCTION_BOUNDARY  32
460
461/* The lowest bit is used to indicate Thumb-mode functions, so the
462   vbit must go into the delta field of pointers to member
463   functions.  */
464#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
465
466#define EMPTY_FIELD_BOUNDARY  32
467
468#define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
469
470/* XXX Blah -- this macro is used directly by libobjc.  Since it
471   supports no vector modes, cut out the complexity and fall back
472   on BIGGEST_FIELD_ALIGNMENT.  */
473#ifdef IN_TARGET_LIBS
474#define BIGGEST_FIELD_ALIGNMENT 64
475#endif
476
477/* Make strings word-aligned so strcpy from constants will be faster.  */
478#define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
479
480#define CONSTANT_ALIGNMENT(EXP, ALIGN)				\
481   ((TREE_CODE (EXP) == STRING_CST				\
482     && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR)	\
483    ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
484
485/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
486   value set in previous versions of this toolchain was 8, which produces more
487   compact structures.  The command line option -mstructure_size_boundary=<n>
488   can be used to change this value.  For compatibility with the ARM SDK
489   however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
490   0020D) page 2-20 says "Structures are aligned on word boundaries".
491   The AAPCS specifies a value of 8.  */
492#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
493extern int arm_structure_size_boundary;
494
495/* This is the value used to initialize arm_structure_size_boundary.  If a
496   particular arm target wants to change the default value it should change
497   the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
498   for an example of this.  */
499#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
500#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
501#endif
502
503/* Nonzero if move instructions will actually fail to work
504   when given unaligned data.  */
505#define STRICT_ALIGNMENT 1
506
507/* wchar_t is unsigned under the AAPCS.  */
508#ifndef WCHAR_TYPE
509#define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
510#undef  WCHAR_TYPE_SIZE
511#define WCHAR_TYPE_SIZE BITS_PER_WORD
512#endif
513
514#ifndef SIZE_TYPE
515#define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
516#endif
517
518#ifndef PTRDIFF_TYPE
519#define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
520#endif
521
522/* AAPCS requires that structure alignment is affected by bitfields.  */
523#ifndef PCC_BITFIELD_TYPE_MATTERS
524#define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
525#endif
526
527
528/* Standard register usage.  */
529
530/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
531   (S - saved over call).
532
533	r0	   *	argument word/integer result
534	r1-r3		argument word
535
536	r4-r8	     S	register variable
537	r9	     S	(rfp) register variable (real frame pointer)
538
539	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
540	r11 	   F S	(fp) argument pointer
541	r12		(ip) temp workspace
542	r13  	   F S	(sp) lower end of current stack frame
543	r14		(lr) link address/workspace
544	r15	   F	(pc) program counter
545
546	f0		floating point result
547	f1-f3		floating point scratch
548
549	f4-f7	     S	floating point variable
550
551	cc		This is NOT a real register, but is used internally
552	                to represent things that use or set the condition
553			codes.
554	sfp             This isn't either.  It is used during rtl generation
555	                since the offset between the frame pointer and the
556			auto's isn't known until after register allocation.
557	afp		Nor this, we only need this because of non-local
558	                goto.  Without it fp appears to be used and the
559			elimination code won't get rid of sfp.  It tracks
560			fp exactly at all times.
561
562   *: See CONDITIONAL_REGISTER_USAGE  */
563
564/*
565  	mvf0		Cirrus floating point result
566	mvf1-mvf3	Cirrus floating point scratch
567	mvf4-mvf15   S	Cirrus floating point variable.  */
568
569/*	s0-s15		VFP scratch (aka d0-d7).
570	s16-s31	      S	VFP variable (aka d8-d15).
571	vfpcc		Not a real register.  Represents the VFP condition
572			code flags.  */
573
574/* The stack backtrace structure is as follows:
575  fp points to here:  |  save code pointer  |      [fp]
576                      |  return link value  |      [fp, #-4]
577                      |  return sp value    |      [fp, #-8]
578                      |  return fp value    |      [fp, #-12]
579                     [|  saved r10 value    |]
580                     [|  saved r9 value     |]
581                     [|  saved r8 value     |]
582                     [|  saved r7 value     |]
583                     [|  saved r6 value     |]
584                     [|  saved r5 value     |]
585                     [|  saved r4 value     |]
586                     [|  saved r3 value     |]
587                     [|  saved r2 value     |]
588                     [|  saved r1 value     |]
589                     [|  saved r0 value     |]
590                     [|  saved f7 value     |]     three words
591                     [|  saved f6 value     |]     three words
592                     [|  saved f5 value     |]     three words
593                     [|  saved f4 value     |]     three words
594  r0-r3 are not normally saved in a C function.  */
595
596/* 1 for registers that have pervasive standard uses
597   and are not available for the register allocator.  */
598#define FIXED_REGISTERS \
599{                       \
600  0,0,0,0,0,0,0,0,	\
601  0,0,0,0,0,1,0,1,	\
602  0,0,0,0,0,0,0,0,	\
603  1,1,1,		\
604  1,1,1,1,1,1,1,1,	\
605  1,1,1,1,1,1,1,1,	\
606  1,1,1,1,1,1,1,1,	\
607  1,1,1,1,1,1,1,1,	\
608  1,1,1,1,		\
609  1,1,1,1,1,1,1,1,	\
610  1,1,1,1,1,1,1,1,	\
611  1,1,1,1,1,1,1,1,	\
612  1,1,1,1,1,1,1,1,	\
613  1			\
614}
615
616/* 1 for registers not available across function calls.
617   These must include the FIXED_REGISTERS and also any
618   registers that can be used without being saved.
619   The latter must include the registers where values are returned
620   and the register where structure-value addresses are passed.
621   Aside from that, you can include as many other registers as you like.
622   The CC is not preserved over function calls on the ARM 6, so it is
623   easier to assume this for all.  SFP is preserved, since FP is.  */
624#define CALL_USED_REGISTERS  \
625{                            \
626  1,1,1,1,0,0,0,0,	     \
627  0,0,0,0,1,1,1,1,	     \
628  1,1,1,1,0,0,0,0,	     \
629  1,1,1,		     \
630  1,1,1,1,1,1,1,1,	     \
631  1,1,1,1,1,1,1,1,	     \
632  1,1,1,1,1,1,1,1,	     \
633  1,1,1,1,1,1,1,1,	     \
634  1,1,1,1,		     \
635  1,1,1,1,1,1,1,1,	     \
636  1,1,1,1,1,1,1,1,	     \
637  1,1,1,1,1,1,1,1,	     \
638  1,1,1,1,1,1,1,1,	     \
639  1			     \
640}
641
642#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
643#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
644#endif
645
646#define CONDITIONAL_REGISTER_USAGE				\
647{								\
648  int regno;							\
649								\
650  if (TARGET_SOFT_FLOAT || TARGET_THUMB || !TARGET_FPA)		\
651    {								\
652      for (regno = FIRST_FPA_REGNUM;				\
653	   regno <= LAST_FPA_REGNUM; ++regno)			\
654	fixed_regs[regno] = call_used_regs[regno] = 1;		\
655    }								\
656								\
657  if (TARGET_THUMB && optimize_size)				\
658    {								\
659      /* When optimizing for size, it's better not to use	\
660	 the HI regs, because of the overhead of stacking 	\
661	 them.  */						\
662      for (regno = FIRST_HI_REGNUM;				\
663	   regno <= LAST_HI_REGNUM; ++regno)			\
664	fixed_regs[regno] = call_used_regs[regno] = 1;		\
665    }								\
666								\
667  /* The link register can be clobbered by any branch insn,	\
668     but we have no way to track that at present, so mark	\
669     it as unavailable.  */					\
670  if (TARGET_THUMB)						\
671    fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1;	\
672								\
673  if (TARGET_ARM && TARGET_HARD_FLOAT)				\
674    {								\
675      if (TARGET_MAVERICK)					\
676	{							\
677	  for (regno = FIRST_FPA_REGNUM;			\
678	       regno <= LAST_FPA_REGNUM; ++ regno)		\
679	    fixed_regs[regno] = call_used_regs[regno] = 1;	\
680	  for (regno = FIRST_CIRRUS_FP_REGNUM;			\
681	       regno <= LAST_CIRRUS_FP_REGNUM; ++ regno)	\
682	    {							\
683	      fixed_regs[regno] = 0;				\
684	      call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4; \
685	    }							\
686	}							\
687      if (TARGET_VFP)						\
688	{							\
689	  for (regno = FIRST_VFP_REGNUM;			\
690	       regno <= LAST_VFP_REGNUM; ++ regno)		\
691	    {							\
692	      fixed_regs[regno] = 0;				\
693	      call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16; \
694	    }							\
695	}							\
696    }								\
697								\
698  if (TARGET_REALLY_IWMMXT)					\
699    {								\
700      regno = FIRST_IWMMXT_GR_REGNUM;				\
701      /* The 2002/10/09 revision of the XScale ABI has wCG0     \
702         and wCG1 as call-preserved registers.  The 2002/11/21  \
703         revision changed this so that all wCG registers are    \
704         scratch registers.  */					\
705      for (regno = FIRST_IWMMXT_GR_REGNUM;			\
706	   regno <= LAST_IWMMXT_GR_REGNUM; ++ regno)		\
707	fixed_regs[regno] = 0;					\
708      /* The XScale ABI has wR0 - wR9 as scratch registers,     \
709	 the rest as call-preserved registers.  */		\
710      for (regno = FIRST_IWMMXT_REGNUM;				\
711	   regno <= LAST_IWMMXT_REGNUM; ++ regno)		\
712	{							\
713	  fixed_regs[regno] = 0;				\
714	  call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10; \
715	}							\
716    }								\
717								\
718  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)	\
719    {								\
720      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
721      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
722    }								\
723  else if (TARGET_APCS_STACK)					\
724    {								\
725      fixed_regs[10]     = 1;					\
726      call_used_regs[10] = 1;					\
727    }								\
728  /* -mcaller-super-interworking reserves r11 for calls to	\
729     _interwork_r11_call_via_rN().  Making the register global	\
730     is an easy way of ensuring that it remains valid for all	\
731     calls.  */							\
732  if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING		\
733      || TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME)		\
734    {								\
735      fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;		\
736      call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;	\
737      if (TARGET_CALLER_INTERWORKING)				\
738	global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;		\
739    }								\
740  SUBTARGET_CONDITIONAL_REGISTER_USAGE				\
741}
742
743/* These are a couple of extensions to the formats accepted
744   by asm_fprintf:
745     %@ prints out ASM_COMMENT_START
746     %r prints out REGISTER_PREFIX reg_names[arg]  */
747#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
748  case '@':						\
749    fputs (ASM_COMMENT_START, FILE);			\
750    break;						\
751							\
752  case 'r':						\
753    fputs (REGISTER_PREFIX, FILE);			\
754    fputs (reg_names [va_arg (ARGS, int)], FILE);	\
755    break;
756
757/* Round X up to the nearest word.  */
758#define ROUND_UP_WORD(X) (((X) + 3) & ~3)
759
760/* Convert fron bytes to ints.  */
761#define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
762
763/* The number of (integer) registers required to hold a quantity of type MODE.
764   Also used for VFP registers.  */
765#define ARM_NUM_REGS(MODE)				\
766  ARM_NUM_INTS (GET_MODE_SIZE (MODE))
767
768/* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
769#define ARM_NUM_REGS2(MODE, TYPE)                   \
770  ARM_NUM_INTS ((MODE) == BLKmode ? 		\
771  int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
772
773/* The number of (integer) argument register available.  */
774#define NUM_ARG_REGS		4
775
776/* Return the register number of the N'th (integer) argument.  */
777#define ARG_REGISTER(N) 	(N - 1)
778
779/* Specify the registers used for certain standard purposes.
780   The values of these macros are register numbers.  */
781
782/* The number of the last argument register.  */
783#define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
784
785/* The numbers of the Thumb register ranges.  */
786#define FIRST_LO_REGNUM  	0
787#define LAST_LO_REGNUM  	7
788#define FIRST_HI_REGNUM		8
789#define LAST_HI_REGNUM		11
790
791#ifndef TARGET_UNWIND_INFO
792/* We use sjlj exceptions for backwards compatibility.  */
793#define MUST_USE_SJLJ_EXCEPTIONS 1
794#endif
795
796/* We can generate DWARF2 Unwind info, even though we don't use it.  */
797#define DWARF2_UNWIND_INFO 1
798
799/* Use r0 and r1 to pass exception handling information.  */
800#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
801
802/* The register that holds the return address in exception handlers.  */
803#define ARM_EH_STACKADJ_REGNUM	2
804#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
805
806/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
807   as an invisible last argument (possible since varargs don't exist in
808   Pascal), so the following is not true.  */
809#define STATIC_CHAIN_REGNUM	(TARGET_ARM ? 12 : 9)
810
811/* Define this to be where the real frame pointer is if it is not possible to
812   work out the offset between the frame pointer and the automatic variables
813   until after register allocation has taken place.  FRAME_POINTER_REGNUM
814   should point to a special register that we will make sure is eliminated.
815
816   For the Thumb we have another problem.  The TPCS defines the frame pointer
817   as r11, and GCC believes that it is always possible to use the frame pointer
818   as base register for addressing purposes.  (See comments in
819   find_reloads_address()).  But - the Thumb does not allow high registers,
820   including r11, to be used as base address registers.  Hence our problem.
821
822   The solution used here, and in the old thumb port is to use r7 instead of
823   r11 as the hard frame pointer and to have special code to generate
824   backtrace structures on the stack (if required to do so via a command line
825   option) using r11.  This is the only 'user visible' use of r11 as a frame
826   pointer.  */
827#define ARM_HARD_FRAME_POINTER_REGNUM	11
828#define THUMB_HARD_FRAME_POINTER_REGNUM	 7
829
830#define HARD_FRAME_POINTER_REGNUM		\
831  (TARGET_ARM					\
832   ? ARM_HARD_FRAME_POINTER_REGNUM		\
833   : THUMB_HARD_FRAME_POINTER_REGNUM)
834
835#define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
836
837/* Register to use for pushing function arguments.  */
838#define STACK_POINTER_REGNUM	SP_REGNUM
839
840/* ARM floating pointer registers.  */
841#define FIRST_FPA_REGNUM 	16
842#define LAST_FPA_REGNUM  	23
843#define IS_FPA_REGNUM(REGNUM) \
844  (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
845
846#define FIRST_IWMMXT_GR_REGNUM	43
847#define LAST_IWMMXT_GR_REGNUM	46
848#define FIRST_IWMMXT_REGNUM	47
849#define LAST_IWMMXT_REGNUM	62
850#define IS_IWMMXT_REGNUM(REGNUM) \
851  (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
852#define IS_IWMMXT_GR_REGNUM(REGNUM) \
853  (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
854
855/* Base register for access to local variables of the function.  */
856#define FRAME_POINTER_REGNUM	25
857
858/* Base register for access to arguments of the function.  */
859#define ARG_POINTER_REGNUM	26
860
861#define FIRST_CIRRUS_FP_REGNUM	27
862#define LAST_CIRRUS_FP_REGNUM	42
863#define IS_CIRRUS_REGNUM(REGNUM) \
864  (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
865
866#define FIRST_VFP_REGNUM	63
867#define LAST_VFP_REGNUM		94
868#define IS_VFP_REGNUM(REGNUM) \
869  (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
870
871/* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP.  */
872/* + 16 Cirrus registers take us up to 43.  */
873/* Intel Wireless MMX Technology registers add 16 + 4 more.  */
874/* VFP adds 32 + 1 more.  */
875#define FIRST_PSEUDO_REGISTER   96
876
877#define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
878
879/* Value should be nonzero if functions must have frame pointers.
880   Zero means the frame pointer need not be set up (and parms may be accessed
881   via the stack pointer) in functions that seem suitable.
882   If we have to have a frame pointer we might as well make use of it.
883   APCS says that the frame pointer does not need to be pushed in leaf
884   functions, or simple tail call functions.  */
885
886#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
887#define SUBTARGET_FRAME_POINTER_REQUIRED 0
888#endif
889
890#define FRAME_POINTER_REQUIRED					\
891  (current_function_has_nonlocal_label				\
892   || SUBTARGET_FRAME_POINTER_REQUIRED				\
893   || (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()))
894
895/* Return number of consecutive hard regs needed starting at reg REGNO
896   to hold something of mode MODE.
897   This is ordinarily the length in words of a value of mode MODE
898   but can be less for certain modes in special long registers.
899
900   On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
901   mode.  */
902#define HARD_REGNO_NREGS(REGNO, MODE)  	\
903  ((TARGET_ARM 				\
904    && REGNO >= FIRST_FPA_REGNUM	\
905    && REGNO != FRAME_POINTER_REGNUM	\
906    && REGNO != ARG_POINTER_REGNUM)	\
907    && !IS_VFP_REGNUM (REGNO)		\
908   ? 1 : ARM_NUM_REGS (MODE))
909
910/* Return true if REGNO is suitable for holding a quantity of type MODE.  */
911#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
912  arm_hard_regno_mode_ok ((REGNO), (MODE))
913
914/* Value is 1 if it is a good idea to tie two pseudo registers
915   when one has mode MODE1 and one has mode MODE2.
916   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
917   for any hard reg, then this must be 0 for correct output.  */
918#define MODES_TIEABLE_P(MODE1, MODE2)  \
919  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
920
921#define VALID_IWMMXT_REG_MODE(MODE) \
922 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
923
924/* The order in which register should be allocated.  It is good to use ip
925   since no saving is required (though calls clobber it) and it never contains
926   function parameters.  It is quite good to use lr since other calls may
927   clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
928   least likely to contain a function parameter; in addition results are
929   returned in r0.  */
930
931#define REG_ALLOC_ORDER  	    \
932{                                   \
933     3,  2,  1,  0, 12, 14,  4,  5, \
934     6,  7,  8, 10,  9, 11, 13, 15, \
935    16, 17, 18, 19, 20, 21, 22, 23, \
936    27, 28, 29, 30, 31, 32, 33, 34, \
937    35, 36, 37, 38, 39, 40, 41, 42, \
938    43, 44, 45, 46, 47, 48, 49, 50, \
939    51, 52, 53, 54, 55, 56, 57, 58, \
940    59, 60, 61, 62,		    \
941    24, 25, 26,			    \
942    78, 77, 76, 75, 74, 73, 72, 71, \
943    70, 69, 68, 67, 66, 65, 64, 63, \
944    79, 80, 81, 82, 83, 84, 85, 86, \
945    87, 88, 89, 90, 91, 92, 93, 94, \
946    95				    \
947}
948
949/* Interrupt functions can only use registers that have already been
950   saved by the prologue, even if they would normally be
951   call-clobbered.  */
952#define HARD_REGNO_RENAME_OK(SRC, DST)					\
953	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
954		regs_ever_live[DST])
955
956/* Register and constant classes.  */
957
958/* Register classes: used to be simple, just all ARM regs or all FPA regs
959   Now that the Thumb is involved it has become more complicated.  */
960enum reg_class
961{
962  NO_REGS,
963  FPA_REGS,
964  CIRRUS_REGS,
965  VFP_REGS,
966  IWMMXT_GR_REGS,
967  IWMMXT_REGS,
968  LO_REGS,
969  STACK_REG,
970  BASE_REGS,
971  HI_REGS,
972  CC_REG,
973  VFPCC_REG,
974  GENERAL_REGS,
975  ALL_REGS,
976  LIM_REG_CLASSES
977};
978
979#define N_REG_CLASSES  (int) LIM_REG_CLASSES
980
981/* Give names of register classes as strings for dump file.  */
982#define REG_CLASS_NAMES  \
983{			\
984  "NO_REGS",		\
985  "FPA_REGS",		\
986  "CIRRUS_REGS",	\
987  "VFP_REGS",		\
988  "IWMMXT_GR_REGS",	\
989  "IWMMXT_REGS",	\
990  "LO_REGS",		\
991  "STACK_REG",		\
992  "BASE_REGS",		\
993  "HI_REGS",		\
994  "CC_REG",		\
995  "VFPCC_REG",		\
996  "GENERAL_REGS",	\
997  "ALL_REGS",		\
998}
999
1000/* Define which registers fit in which classes.
1001   This is an initializer for a vector of HARD_REG_SET
1002   of length N_REG_CLASSES.  */
1003#define REG_CLASS_CONTENTS					\
1004{								\
1005  { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1006  { 0x00FF0000, 0x00000000, 0x00000000 }, /* FPA_REGS */	\
1007  { 0xF8000000, 0x000007FF, 0x00000000 }, /* CIRRUS_REGS */	\
1008  { 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_REGS  */	\
1009  { 0x00000000, 0x00007800, 0x00000000 }, /* IWMMXT_GR_REGS */	\
1010  { 0x00000000, 0x7FFF8000, 0x00000000 }, /* IWMMXT_REGS */	\
1011  { 0x000000FF, 0x00000000, 0x00000000 }, /* LO_REGS */		\
1012  { 0x00002000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1013  { 0x000020FF, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1014  { 0x0000FF00, 0x00000000, 0x00000000 }, /* HI_REGS */		\
1015  { 0x01000000, 0x00000000, 0x00000000 }, /* CC_REG */		\
1016  { 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */	\
1017  { 0x0200FFFF, 0x00000000, 0x00000000 }, /* GENERAL_REGS */	\
1018  { 0xFAFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF }  /* ALL_REGS */	\
1019}
1020
1021/* The same information, inverted:
1022   Return the class number of the smallest class containing
1023   reg number REGNO.  This could be a conditional expression
1024   or could index an array.  */
1025#define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1026
1027/* FPA registers can't do subreg as all values are reformatted to internal
1028   precision.  VFP registers may only be accessed in the mode they
1029   were set.  */
1030#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1031  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1032   ? reg_classes_intersect_p (FPA_REGS, (CLASS))	\
1033     || reg_classes_intersect_p (VFP_REGS, (CLASS))	\
1034   : 0)
1035
1036/* We need to define this for LO_REGS on thumb.  Otherwise we can end up
1037   using r0-r4 for function arguments, r7 for the stack frame and don't
1038   have enough left over to do doubleword arithmetic.  */
1039#define CLASS_LIKELY_SPILLED_P(CLASS)	\
1040    ((TARGET_THUMB && (CLASS) == LO_REGS)	\
1041     || (CLASS) == CC_REG)
1042
1043/* The class value for index registers, and the one for base regs.  */
1044#define INDEX_REG_CLASS  (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
1045#define BASE_REG_CLASS   (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
1046
1047/* For the Thumb the high registers cannot be used as base registers
1048   when addressing quantities in QI or HI mode; if we don't know the
1049   mode, then we must be conservative.  */
1050#define MODE_BASE_REG_CLASS(MODE)					\
1051    (TARGET_ARM ? GENERAL_REGS :					\
1052     (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1053
1054/* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1055   instead of BASE_REGS.  */
1056#define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1057
1058/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1059   registers explicitly used in the rtl to be used as spill registers
1060   but prevents the compiler from extending the lifetime of these
1061   registers.  */
1062#define SMALL_REGISTER_CLASSES   TARGET_THUMB
1063
1064/* Given an rtx X being reloaded into a reg required to be
1065   in class CLASS, return the class of reg to actually use.
1066   In general this is just CLASS, but for the Thumb we prefer
1067   a LO_REGS class or a subset.  */
1068#define PREFERRED_RELOAD_CLASS(X, CLASS)	\
1069  (TARGET_ARM ? (CLASS) :			\
1070   ((CLASS) == BASE_REGS ? (CLASS) : LO_REGS))
1071
1072/* Must leave BASE_REGS reloads alone */
1073#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1074  ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1075   ? ((true_regnum (X) == -1 ? LO_REGS					\
1076       : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1077       : NO_REGS)) 							\
1078   : NO_REGS)
1079
1080#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1081  ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1082   ? ((true_regnum (X) == -1 ? LO_REGS					\
1083       : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1084       : NO_REGS)) 							\
1085   : NO_REGS)
1086
1087/* Return the register class of a scratch register needed to copy IN into
1088   or out of a register in CLASS in MODE.  If it can be done directly,
1089   NO_REGS is returned.  */
1090#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1091  /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1092  ((TARGET_VFP && TARGET_HARD_FLOAT				\
1093    && (CLASS) == VFP_REGS)					\
1094   ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1095   : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1096   ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1097   : TARGET_ARM							\
1098   ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1099    ? GENERAL_REGS : NO_REGS)					\
1100   : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1101
1102/* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1103#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1104  /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1105  ((TARGET_VFP && TARGET_HARD_FLOAT				\
1106    && (CLASS) == VFP_REGS)					\
1107    ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1108    (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1109    coproc_secondary_reload_class (MODE, X, TRUE) :		\
1110  /* Cannot load constants into Cirrus registers.  */		\
1111   (TARGET_MAVERICK && TARGET_HARD_FLOAT			\
1112     && (CLASS) == CIRRUS_REGS					\
1113     && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF))		\
1114    ? GENERAL_REGS :						\
1115  (TARGET_ARM ?							\
1116   (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1117      && CONSTANT_P (X))					\
1118   ? GENERAL_REGS :						\
1119   (((MODE) == HImode && ! arm_arch4				\
1120     && (GET_CODE (X) == MEM					\
1121	 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG)	\
1122	     && true_regnum (X) == -1)))			\
1123    ? GENERAL_REGS : NO_REGS)					\
1124   : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1125
1126/* Try a machine-dependent way of reloading an illegitimate address
1127   operand.  If we find one, push the reload and jump to WIN.  This
1128   macro is used in only one place: `find_reloads_address' in reload.c.
1129
1130   For the ARM, we wish to handle large displacements off a base
1131   register by splitting the addend across a MOV and the mem insn.
1132   This can cut the number of reloads needed.  */
1133#define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN)	   \
1134  do									   \
1135    {									   \
1136      if (GET_CODE (X) == PLUS						   \
1137	  && GET_CODE (XEXP (X, 0)) == REG				   \
1138	  && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER		   \
1139	  && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE)			   \
1140	  && GET_CODE (XEXP (X, 1)) == CONST_INT)			   \
1141	{								   \
1142	  HOST_WIDE_INT val = INTVAL (XEXP (X, 1));			   \
1143	  HOST_WIDE_INT low, high;					   \
1144									   \
1145	  if (MODE == DImode || (MODE == DFmode && TARGET_SOFT_FLOAT))	   \
1146	    low = ((val & 0xf) ^ 0x8) - 0x8;				   \
1147	  else if (TARGET_MAVERICK && TARGET_HARD_FLOAT)		   \
1148	    /* Need to be careful, -256 is not a valid offset.  */	   \
1149	    low = val >= 0 ? (val & 0xff) : -((-val) & 0xff);		   \
1150	  else if (MODE == SImode					   \
1151		   || (MODE == SFmode && TARGET_SOFT_FLOAT)		   \
1152		   || ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
1153	    /* Need to be careful, -4096 is not a valid offset.  */	   \
1154	    low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff);		   \
1155	  else if ((MODE == HImode || MODE == QImode) && arm_arch4)	   \
1156	    /* Need to be careful, -256 is not a valid offset.  */	   \
1157	    low = val >= 0 ? (val & 0xff) : -((-val) & 0xff);		   \
1158	  else if (GET_MODE_CLASS (MODE) == MODE_FLOAT			   \
1159		   && TARGET_HARD_FLOAT && TARGET_FPA)			   \
1160	    /* Need to be careful, -1024 is not a valid offset.  */	   \
1161	    low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff);		   \
1162	  else								   \
1163	    break;							   \
1164									   \
1165	  high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff)	   \
1166		   ^ (unsigned HOST_WIDE_INT) 0x80000000)		   \
1167		  - (unsigned HOST_WIDE_INT) 0x80000000);		   \
1168	  /* Check for overflow or zero */				   \
1169	  if (low == 0 || high == 0 || (high + low != val))		   \
1170	    break;							   \
1171									   \
1172	  /* Reload the high part into a base reg; leave the low part	   \
1173	     in the mem.  */						   \
1174	  X = gen_rtx_PLUS (GET_MODE (X),				   \
1175			    gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0),	   \
1176					  GEN_INT (high)),		   \
1177			    GEN_INT (low));				   \
1178	  push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,	   \
1179		       MODE_BASE_REG_CLASS (MODE), GET_MODE (X), 	   \
1180		       VOIDmode, 0, 0, OPNUM, TYPE);			   \
1181	  goto WIN;							   \
1182	}								   \
1183    }									   \
1184  while (0)
1185
1186/* XXX If an HImode FP+large_offset address is converted to an HImode
1187   SP+large_offset address, then reload won't know how to fix it.  It sees
1188   only that SP isn't valid for HImode, and so reloads the SP into an index
1189   register, but the resulting address is still invalid because the offset
1190   is too big.  We fix it here instead by reloading the entire address.  */
1191/* We could probably achieve better results by defining PROMOTE_MODE to help
1192   cope with the variances between the Thumb's signed and unsigned byte and
1193   halfword load instructions.  */
1194#define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN)     \
1195do {									      \
1196  rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1197  if (new_x)								      \
1198    {									      \
1199      X = new_x;							      \
1200      goto WIN;								      \
1201    }									      \
1202} while (0)
1203
1204#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)   \
1205  if (TARGET_ARM)							   \
1206    ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1207  else									   \
1208    THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1209
1210/* Return the maximum number of consecutive registers
1211   needed to represent mode MODE in a register of class CLASS.
1212   ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1213#define CLASS_MAX_NREGS(CLASS, MODE)  \
1214  (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1215
1216/* If defined, gives a class of registers that cannot be used as the
1217   operand of a SUBREG that changes the mode of the object illegally.  */
1218
1219/* Moves between FPA_REGS and GENERAL_REGS are two memory insns.  */
1220#define REGISTER_MOVE_COST(MODE, FROM, TO)		\
1221  (TARGET_ARM ?						\
1222   ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 :	\
1223    (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 :	\
1224    (FROM) == VFP_REGS && (TO) != VFP_REGS ? 10 :  \
1225    (FROM) != VFP_REGS && (TO) == VFP_REGS ? 10 :  \
1226    (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 :  \
1227    (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 :  \
1228    (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 :  \
1229    (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 :	\
1230    (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 :	\
1231   2)							\
1232   :							\
1233   ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1234
1235/* Stack layout; function entry, exit and calling.  */
1236
1237/* Define this if pushing a word on the stack
1238   makes the stack pointer a smaller address.  */
1239#define STACK_GROWS_DOWNWARD  1
1240
1241/* Define this to nonzero if the nominal address of the stack frame
1242   is at the high-address end of the local variables;
1243   that is, each additional local variable allocated
1244   goes at a more negative offset in the frame.  */
1245#define FRAME_GROWS_DOWNWARD 1
1246
1247/* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1248   When present, it is one word in size, and sits at the top of the frame,
1249   between the soft frame pointer and either r7 or r11.
1250
1251   We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1252   and only then if some outgoing arguments are passed on the stack.  It would
1253   be tempting to also check whether the stack arguments are passed by indirect
1254   calls, but there seems to be no reason in principle why a post-reload pass
1255   couldn't convert a direct call into an indirect one.  */
1256#define CALLER_INTERWORKING_SLOT_SIZE			\
1257  (TARGET_CALLER_INTERWORKING				\
1258   && current_function_outgoing_args_size != 0		\
1259   ? UNITS_PER_WORD : 0)
1260
1261/* Offset within stack frame to start allocating local variables at.
1262   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1263   first local allocated.  Otherwise, it is the offset to the BEGINNING
1264   of the first local allocated.  */
1265#define STARTING_FRAME_OFFSET  0
1266
1267/* If we generate an insn to push BYTES bytes,
1268   this says how many the stack pointer really advances by.  */
1269/* The push insns do not do this rounding implicitly.
1270   So don't define this.  */
1271/* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1272
1273/* Define this if the maximum size of all the outgoing args is to be
1274   accumulated and pushed during the prologue.  The amount can be
1275   found in the variable current_function_outgoing_args_size.  */
1276#define ACCUMULATE_OUTGOING_ARGS 1
1277
1278/* Offset of first parameter from the argument pointer register value.  */
1279#define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1280
1281/* Value is the number of byte of arguments automatically
1282   popped when returning from a subroutine call.
1283   FUNDECL is the declaration node of the function (as a tree),
1284   FUNTYPE is the data type of the function (as a tree),
1285   or for a library call it is an identifier node for the subroutine name.
1286   SIZE is the number of bytes of arguments passed on the stack.
1287
1288   On the ARM, the caller does not pop any of its arguments that were passed
1289   on the stack.  */
1290#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE)  0
1291
1292/* Define how to find the value returned by a library function
1293   assuming the value has mode MODE.  */
1294#define LIBCALL_VALUE(MODE)  \
1295  (TARGET_ARM && TARGET_HARD_FLOAT_ABI && TARGET_FPA			\
1296   && GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1297   ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM)				\
1298   : TARGET_ARM && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK		\
1299     && GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1300   ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) 			\
1301   : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE)    	\
1302   ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) 				\
1303   : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1304
1305/* Define how to find the value returned by a function.
1306   VALTYPE is the data type of the value (as a tree).
1307   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1308   otherwise, FUNC is 0.  */
1309#define FUNCTION_VALUE(VALTYPE, FUNC) \
1310  arm_function_value (VALTYPE, FUNC);
1311
1312/* 1 if N is a possible register number for a function value.
1313   On the ARM, only r0 and f0 can return results.  */
1314/* On a Cirrus chip, mvf0 can return results.  */
1315#define FUNCTION_VALUE_REGNO_P(REGNO)  \
1316  ((REGNO) == ARG_REGISTER (1) \
1317   || (TARGET_ARM && ((REGNO) == FIRST_CIRRUS_FP_REGNUM)		\
1318       && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK)			\
1319   || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1320   || (TARGET_ARM && ((REGNO) == FIRST_FPA_REGNUM)			\
1321       && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1322
1323/* Amount of memory needed for an untyped call to save all possible return
1324   registers.  */
1325#define APPLY_RESULT_SIZE arm_apply_result_size()
1326
1327/* How large values are returned */
1328/* A C expression which can inhibit the returning of certain function values
1329   in registers, based on the type of value.  */
1330#define RETURN_IN_MEMORY(TYPE) arm_return_in_memory (TYPE)
1331
1332/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1333   values must be in memory.  On the ARM, they need only do so if larger
1334   than a word, or if they contain elements offset from zero in the struct.  */
1335#define DEFAULT_PCC_STRUCT_RETURN 0
1336
1337/* Flags for the call/call_value rtl operations set up by function_arg.  */
1338#define CALL_NORMAL		0x00000000	/* No special processing.  */
1339#define CALL_LONG		0x00000001	/* Always call indirect.  */
1340#define CALL_SHORT		0x00000002	/* Never call indirect.  */
1341
1342/* These bits describe the different types of function supported
1343   by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1344   normal function and an interworked function, for example.  Knowing the
1345   type of a function is important for determining its prologue and
1346   epilogue sequences.
1347   Note value 7 is currently unassigned.  Also note that the interrupt
1348   function types all have bit 2 set, so that they can be tested for easily.
1349   Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1350   machine_function structure is initialized (to zero) func_type will
1351   default to unknown.  This will force the first use of arm_current_func_type
1352   to call arm_compute_func_type.  */
1353#define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1354#define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1355#define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1356#define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1357#define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1358#define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1359
1360#define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1361
1362/* In addition functions can have several type modifiers,
1363   outlined by these bit masks:  */
1364#define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1365#define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1366#define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1367#define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1368
1369/* Some macros to test these flags.  */
1370#define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1371#define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1372#define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1373#define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1374#define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1375
1376
1377/* Structure used to hold the function stack frame layout.  Offsets are
1378   relative to the stack pointer on function entry.  Positive offsets are
1379   in the direction of stack growth.
1380   Only soft_frame is used in thumb mode.  */
1381
1382typedef struct arm_stack_offsets GTY(())
1383{
1384  int saved_args;	/* ARG_POINTER_REGNUM.  */
1385  int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1386  int saved_regs;
1387  int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1388  int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1389  int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1390}
1391arm_stack_offsets;
1392
1393/* A C structure for machine-specific, per-function data.
1394   This is added to the cfun structure.  */
1395typedef struct machine_function GTY(())
1396{
1397  /* Additional stack adjustment in __builtin_eh_throw.  */
1398  rtx eh_epilogue_sp_ofs;
1399  /* Records if LR has to be saved for far jumps.  */
1400  int far_jump_used;
1401  /* Records if ARG_POINTER was ever live.  */
1402  int arg_pointer_live;
1403  /* Records if the save of LR has been eliminated.  */
1404  int lr_save_eliminated;
1405  /* The size of the stack frame.  Only valid after reload.  */
1406  arm_stack_offsets stack_offsets;
1407  /* Records the type of the current function.  */
1408  unsigned long func_type;
1409  /* Record if the function has a variable argument list.  */
1410  int uses_anonymous_args;
1411  /* Records if sibcalls are blocked because an argument
1412     register is needed to preserve stack alignment.  */
1413  int sibcall_blocked;
1414  /* The PIC register for this function.  This might be a pseudo.  */
1415  rtx pic_reg;
1416  /* Labels for per-function Thumb call-via stubs.  One per potential calling
1417     register.  We can never call via LR or PC.  We can call via SP if a
1418     trampoline happens to be on the top of the stack.  */
1419  rtx call_via[14];
1420}
1421machine_function;
1422
1423/* As in the machine_function, a global set of call-via labels, for code
1424   that is in text_section.  */
1425extern GTY(()) rtx thumb_call_via_label[14];
1426
1427/* A C type for declaring a variable that is used as the first argument of
1428   `FUNCTION_ARG' and other related values.  For some target machines, the
1429   type `int' suffices and can hold the number of bytes of argument so far.  */
1430typedef struct
1431{
1432  /* This is the number of registers of arguments scanned so far.  */
1433  int nregs;
1434  /* This is the number of iWMMXt register arguments scanned so far.  */
1435  int iwmmxt_nregs;
1436  int named_count;
1437  int nargs;
1438  /* One of CALL_NORMAL, CALL_LONG or CALL_SHORT.  */
1439  int call_cookie;
1440  int can_split;
1441} CUMULATIVE_ARGS;
1442
1443/* Define where to put the arguments to a function.
1444   Value is zero to push the argument on the stack,
1445   or a hard register in which to store the argument.
1446
1447   MODE is the argument's machine mode.
1448   TYPE is the data type of the argument (as a tree).
1449    This is null for libcalls where that information may
1450    not be available.
1451   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1452    the preceding args and about the function being called.
1453   NAMED is nonzero if this argument is a named parameter
1454    (otherwise it is an extra parameter matching an ellipsis).
1455
1456   On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
1457   other arguments are passed on the stack.  If (NAMED == 0) (which happens
1458   only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
1459   defined), say it is passed in the stack (function_prologue will
1460   indeed make it pass in the stack if necessary).  */
1461#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1462  arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1463
1464#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1465  (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1466
1467#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1468  (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1469
1470/* For AAPCS, padding should never be below the argument. For other ABIs,
1471 * mimic the default.  */
1472#define PAD_VARARGS_DOWN \
1473  ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1474
1475/* Initialize a variable CUM of type CUMULATIVE_ARGS
1476   for a call to a function whose data type is FNTYPE.
1477   For a library call, FNTYPE is 0.
1478   On the ARM, the offset starts at 0.  */
1479#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1480  arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1481
1482/* Update the data in CUM to advance over an argument
1483   of mode MODE and data type TYPE.
1484   (TYPE is null for libcalls where that information may not be available.)  */
1485#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1486  (CUM).nargs += 1;					\
1487  if (arm_vector_mode_supported_p (MODE)	       	\
1488      && (CUM).named_count > (CUM).nargs)		\
1489    (CUM).iwmmxt_nregs += 1;				\
1490  else							\
1491    (CUM).nregs += ARM_NUM_REGS2 (MODE, TYPE)
1492
1493/* If defined, a C expression that gives the alignment boundary, in bits, of an
1494   argument with the specified mode and type.  If it is not defined,
1495   `PARM_BOUNDARY' is used for all arguments.  */
1496#define FUNCTION_ARG_BOUNDARY(MODE,TYPE) \
1497   ((ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (MODE, TYPE)) \
1498   ? DOUBLEWORD_ALIGNMENT \
1499   : PARM_BOUNDARY )
1500
1501/* 1 if N is a possible register number for function argument passing.
1502   On the ARM, r0-r3 are used to pass args.  */
1503#define FUNCTION_ARG_REGNO_P(REGNO)	\
1504   (IN_RANGE ((REGNO), 0, 3)		\
1505    || (TARGET_IWMMXT_ABI		\
1506	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1507
1508
1509/* If your target environment doesn't prefix user functions with an
1510   underscore, you may wish to re-define this to prevent any conflicts.
1511   e.g. AOF may prefix mcount with an underscore.  */
1512#ifndef ARM_MCOUNT_NAME
1513#define ARM_MCOUNT_NAME "*mcount"
1514#endif
1515
1516/* Call the function profiler with a given profile label.  The Acorn
1517   compiler puts this BEFORE the prolog but gcc puts it afterwards.
1518   On the ARM the full profile code will look like:
1519	.data
1520	LP1
1521		.word	0
1522	.text
1523		mov	ip, lr
1524		bl	mcount
1525		.word	LP1
1526
1527   profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1528   will output the .text section.
1529
1530   The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1531   ``prof'' doesn't seem to mind about this!
1532
1533   Note - this version of the code is designed to work in both ARM and
1534   Thumb modes.  */
1535#ifndef ARM_FUNCTION_PROFILER
1536#define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1537{							\
1538  char temp[20];					\
1539  rtx sym;						\
1540							\
1541  asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1542	   IP_REGNUM, LR_REGNUM);			\
1543  assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1544  fputc ('\n', STREAM);					\
1545  ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1546  sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1547  assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1548}
1549#endif
1550
1551#ifdef THUMB_FUNCTION_PROFILER
1552#define FUNCTION_PROFILER(STREAM, LABELNO)		\
1553  if (TARGET_ARM)					\
1554    ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1555  else							\
1556    THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1557#else
1558#define FUNCTION_PROFILER(STREAM, LABELNO)		\
1559    ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1560#endif
1561
1562/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1563   the stack pointer does not matter.  The value is tested only in
1564   functions that have frame pointers.
1565   No definition is equivalent to always zero.
1566
1567   On the ARM, the function epilogue recovers the stack pointer from the
1568   frame.  */
1569#define EXIT_IGNORE_STACK 1
1570
1571#define EPILOGUE_USES(REGNO) (reload_completed && (REGNO) == LR_REGNUM)
1572
1573/* Determine if the epilogue should be output as RTL.
1574   You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1575#define USE_RETURN_INSN(ISCOND)				\
1576  (TARGET_ARM ? use_return_insn (ISCOND, NULL) : 0)
1577
1578/* Definitions for register eliminations.
1579
1580   This is an array of structures.  Each structure initializes one pair
1581   of eliminable registers.  The "from" register number is given first,
1582   followed by "to".  Eliminations of the same "from" register are listed
1583   in order of preference.
1584
1585   We have two registers that can be eliminated on the ARM.  First, the
1586   arg pointer register can often be eliminated in favor of the stack
1587   pointer register.  Secondly, the pseudo frame pointer register can always
1588   be eliminated; it is replaced with either the stack or the real frame
1589   pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1590   because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1591
1592#define ELIMINABLE_REGS						\
1593{{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1594 { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1595 { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1596 { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1597 { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1598 { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1599 { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1600
1601/* Given FROM and TO register numbers, say whether this elimination is
1602   allowed.  Frame pointer elimination is automatically handled.
1603
1604   All eliminations are permissible.  Note that ARG_POINTER_REGNUM and
1605   HARD_FRAME_POINTER_REGNUM are in fact the same thing.  If we need a frame
1606   pointer, we must eliminate FRAME_POINTER_REGNUM into
1607   HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
1608   ARG_POINTER_REGNUM.  */
1609#define CAN_ELIMINATE(FROM, TO)						\
1610  (((TO) == FRAME_POINTER_REGNUM && (FROM) == ARG_POINTER_REGNUM) ? 0 :	\
1611   ((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 :		\
1612   ((TO) == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? 0 :	\
1613   ((TO) == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? 0 :	\
1614   1)
1615
1616/* Define the offset between two registers, one to be eliminated, and the
1617   other its replacement, at the start of a routine.  */
1618#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1619  if (TARGET_ARM)							\
1620    (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1621  else									\
1622    (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1623
1624/* Special case handling of the location of arguments passed on the stack.  */
1625#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1626
1627/* Initialize data used by insn expanders.  This is called from insn_emit,
1628   once for every function before code is generated.  */
1629#define INIT_EXPANDERS  arm_init_expanders ()
1630
1631/* Output assembler code for a block containing the constant parts
1632   of a trampoline, leaving space for the variable parts.
1633
1634   On the ARM, (if r8 is the static chain regnum, and remembering that
1635   referencing pc adds an offset of 8) the trampoline looks like:
1636	   ldr 		r8, [pc, #0]
1637	   ldr		pc, [pc]
1638	   .word	static chain value
1639	   .word	function's address
1640   XXX FIXME: When the trampoline returns, r8 will be clobbered.  */
1641#define ARM_TRAMPOLINE_TEMPLATE(FILE)				\
1642{								\
1643  asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n",			\
1644	       STATIC_CHAIN_REGNUM, PC_REGNUM);			\
1645  asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n",			\
1646	       PC_REGNUM, PC_REGNUM);				\
1647  assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);	\
1648  assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);	\
1649}
1650
1651/* On the Thumb we always switch into ARM mode to execute the trampoline.
1652   Why - because it is easier.  This code will always be branched to via
1653   a BX instruction and since the compiler magically generates the address
1654   of the function the linker has no opportunity to ensure that the
1655   bottom bit is set.  Thus the processor will be in ARM mode when it
1656   reaches this code.  So we duplicate the ARM trampoline code and add
1657   a switch into Thumb mode as well.  */
1658#define THUMB_TRAMPOLINE_TEMPLATE(FILE)		\
1659{						\
1660  fprintf (FILE, "\t.code 32\n");		\
1661  fprintf (FILE, ".Ltrampoline_start:\n");	\
1662  asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n",	\
1663	       STATIC_CHAIN_REGNUM, PC_REGNUM);	\
1664  asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n",	\
1665	       IP_REGNUM, PC_REGNUM);		\
1666  asm_fprintf (FILE, "\torr\t%r, %r, #1\n",     \
1667	       IP_REGNUM, IP_REGNUM);     	\
1668  asm_fprintf (FILE, "\tbx\t%r\n", IP_REGNUM);	\
1669  fprintf (FILE, "\t.word\t0\n");		\
1670  fprintf (FILE, "\t.word\t0\n");		\
1671  fprintf (FILE, "\t.code 16\n");		\
1672}
1673
1674#define TRAMPOLINE_TEMPLATE(FILE)		\
1675  if (TARGET_ARM)				\
1676    ARM_TRAMPOLINE_TEMPLATE (FILE)		\
1677  else						\
1678    THUMB_TRAMPOLINE_TEMPLATE (FILE)
1679
1680/* Length in units of the trampoline for entering a nested function.  */
1681#define TRAMPOLINE_SIZE  (TARGET_ARM ? 16 : 24)
1682
1683/* Alignment required for a trampoline in bits.  */
1684#define TRAMPOLINE_ALIGNMENT  32
1685
1686
1687/* Emit RTL insns to initialize the variable parts of a trampoline.
1688   FNADDR is an RTX for the address of the function's pure code.
1689   CXT is an RTX for the static chain value for the function.  */
1690#ifndef INITIALIZE_TRAMPOLINE
1691#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
1692{									\
1693  emit_move_insn (gen_rtx_MEM (SImode,					\
1694			       plus_constant (TRAMP,			\
1695					      TARGET_ARM ? 8 : 16)),	\
1696		  CXT);							\
1697  emit_move_insn (gen_rtx_MEM (SImode,					\
1698			       plus_constant (TRAMP,			\
1699					      TARGET_ARM ? 12 : 20)),	\
1700		  FNADDR);						\
1701  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"),	\
1702		     0, VOIDmode, 2, TRAMP, Pmode,			\
1703		     plus_constant (TRAMP, TRAMPOLINE_SIZE), Pmode);	\
1704}
1705#endif
1706
1707
1708/* Addressing modes, and classification of registers for them.  */
1709#define HAVE_POST_INCREMENT   1
1710#define HAVE_PRE_INCREMENT    TARGET_ARM
1711#define HAVE_POST_DECREMENT   TARGET_ARM
1712#define HAVE_PRE_DECREMENT    TARGET_ARM
1713#define HAVE_PRE_MODIFY_DISP  TARGET_ARM
1714#define HAVE_POST_MODIFY_DISP TARGET_ARM
1715#define HAVE_PRE_MODIFY_REG   TARGET_ARM
1716#define HAVE_POST_MODIFY_REG  TARGET_ARM
1717
1718/* Macros to check register numbers against specific register classes.  */
1719
1720/* These assume that REGNO is a hard or pseudo reg number.
1721   They give nonzero only if REGNO is a hard reg of the suitable class
1722   or a pseudo reg currently allocated to a suitable hard reg.
1723   Since they use reg_renumber, they are safe only once reg_renumber
1724   has been allocated, which happens in local-alloc.c.  */
1725#define TEST_REGNO(R, TEST, VALUE) \
1726  ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1727
1728/*   On the ARM, don't allow the pc to be used.  */
1729#define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1730  (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1731   || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1732   || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1733
1734#define THUMB_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1735  (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1736   || (GET_MODE_SIZE (MODE) >= 4				\
1737       && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1738
1739#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1740  (TARGET_THUMB						\
1741   ? THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1742   : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1743
1744/* Nonzero if X can be the base register in a reg+reg addressing mode.
1745   For Thumb, we can not use SP + reg, so reject SP.  */
1746#define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1747  REGNO_OK_FOR_INDEX_P (X)
1748
1749/* For ARM code, we don't care about the mode, but for Thumb, the index
1750   must be suitable for use in a QImode load.  */
1751#define REGNO_OK_FOR_INDEX_P(REGNO)	\
1752  REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode)
1753
1754/* Maximum number of registers that can appear in a valid memory address.
1755   Shifts in addresses can't be by a register.  */
1756#define MAX_REGS_PER_ADDRESS 2
1757
1758/* Recognize any constant value that is a valid address.  */
1759/* XXX We can address any constant, eventually...  */
1760
1761#ifdef AOF_ASSEMBLER
1762
1763#define CONSTANT_ADDRESS_P(X)		\
1764  (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))
1765
1766#else
1767
1768#define CONSTANT_ADDRESS_P(X)  			\
1769  (GET_CODE (X) == SYMBOL_REF 			\
1770   && (CONSTANT_POOL_ADDRESS_P (X)		\
1771       || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1772
1773#endif /* AOF_ASSEMBLER */
1774
1775/* Nonzero if the constant value X is a legitimate general operand.
1776   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1777
1778   On the ARM, allow any integer (invalid ones are removed later by insn
1779   patterns), nice doubles and symbol_refs which refer to the function's
1780   constant pool XXX.
1781
1782   When generating pic allow anything.  */
1783#define ARM_LEGITIMATE_CONSTANT_P(X)	(flag_pic || ! label_mentioned_p (X))
1784
1785#define THUMB_LEGITIMATE_CONSTANT_P(X)	\
1786 (   GET_CODE (X) == CONST_INT		\
1787  || GET_CODE (X) == CONST_DOUBLE	\
1788  || CONSTANT_ADDRESS_P (X)		\
1789  || flag_pic)
1790
1791#define LEGITIMATE_CONSTANT_P(X)			\
1792  (!arm_tls_referenced_p (X)				\
1793   && (TARGET_ARM ? ARM_LEGITIMATE_CONSTANT_P (X)	\
1794		  : THUMB_LEGITIMATE_CONSTANT_P (X)))
1795
1796/* Special characters prefixed to function names
1797   in order to encode attribute like information.
1798   Note, '@' and '*' have already been taken.  */
1799#define SHORT_CALL_FLAG_CHAR	'^'
1800#define LONG_CALL_FLAG_CHAR	'#'
1801
1802#define ENCODED_SHORT_CALL_ATTR_P(SYMBOL_NAME)	\
1803  (*(SYMBOL_NAME) == SHORT_CALL_FLAG_CHAR)
1804
1805#define ENCODED_LONG_CALL_ATTR_P(SYMBOL_NAME)	\
1806  (*(SYMBOL_NAME) == LONG_CALL_FLAG_CHAR)
1807
1808#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1809#define SUBTARGET_NAME_ENCODING_LENGTHS
1810#endif
1811
1812/* This is a C fragment for the inside of a switch statement.
1813   Each case label should return the number of characters to
1814   be stripped from the start of a function's name, if that
1815   name starts with the indicated character.  */
1816#define ARM_NAME_ENCODING_LENGTHS		\
1817  case SHORT_CALL_FLAG_CHAR: return 1;		\
1818  case LONG_CALL_FLAG_CHAR:  return 1;		\
1819  case '*':  return 1;				\
1820  SUBTARGET_NAME_ENCODING_LENGTHS
1821
1822/* This is how to output a reference to a user-level label named NAME.
1823   `assemble_name' uses this.  */
1824#undef  ASM_OUTPUT_LABELREF
1825#define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1826   arm_asm_output_labelref (FILE, NAME)
1827
1828/* The EABI specifies that constructors should go in .init_array.
1829   Other targets use .ctors for compatibility.  */
1830#ifndef ARM_EABI_CTORS_SECTION_OP
1831#define ARM_EABI_CTORS_SECTION_OP \
1832  "\t.section\t.init_array,\"aw\",%init_array"
1833#endif
1834#ifndef ARM_EABI_DTORS_SECTION_OP
1835#define ARM_EABI_DTORS_SECTION_OP \
1836  "\t.section\t.fini_array,\"aw\",%fini_array"
1837#endif
1838#define ARM_CTORS_SECTION_OP \
1839  "\t.section\t.ctors,\"aw\",%progbits"
1840#define ARM_DTORS_SECTION_OP \
1841  "\t.section\t.dtors,\"aw\",%progbits"
1842
1843/* Define CTORS_SECTION_ASM_OP.  */
1844#undef CTORS_SECTION_ASM_OP
1845#undef DTORS_SECTION_ASM_OP
1846#ifndef IN_LIBGCC2
1847# define CTORS_SECTION_ASM_OP \
1848   (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1849# define DTORS_SECTION_ASM_OP \
1850   (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1851#else /* !defined (IN_LIBGCC2) */
1852/* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1853   so we cannot use the definition above.  */
1854# ifdef __ARM_EABI__
1855/* The .ctors section is not part of the EABI, so we do not define
1856   CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1857   from trying to use it.  We do define it when doing normal
1858   compilation, as .init_array can be used instead of .ctors.  */
1859/* There is no need to emit begin or end markers when using
1860   init_array; the dynamic linker will compute the size of the
1861   array itself based on special symbols created by the static
1862   linker.  However, we do need to arrange to set up
1863   exception-handling here.  */
1864#   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1865#   define CTOR_LIST_END /* empty */
1866#   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1867#   define DTOR_LIST_END /* empty */
1868# else /* !defined (__ARM_EABI__) */
1869#  ifndef __clang__
1870#   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1871#   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1872#  endif
1873# endif /* !defined (__ARM_EABI__) */
1874#endif /* !defined (IN_LIBCC2) */
1875
1876/* True if the operating system can merge entities with vague linkage
1877   (e.g., symbols in COMDAT group) during dynamic linking.  */
1878#ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1879#define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1880#endif
1881
1882/* Set the short-call flag for any function compiled in the current
1883   compilation unit.  We skip this for functions with the section
1884   attribute when long-calls are in effect as this tells the compiler
1885   that the section might be placed a long way from the caller.
1886   See arm_is_longcall_p() for more information.  */
1887#define ARM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL)	\
1888  if (!TARGET_LONG_CALLS || ! DECL_SECTION_NAME (DECL)) \
1889    arm_encode_call_attribute (DECL, SHORT_CALL_FLAG_CHAR)
1890
1891#define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1892
1893#ifdef TARGET_UNWIND_INFO
1894#define ARM_EABI_UNWIND_TABLES \
1895  ((!USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables)
1896#else
1897#define ARM_EABI_UNWIND_TABLES 0
1898#endif
1899
1900/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1901   and check its validity for a certain class.
1902   We have two alternate definitions for each of them.
1903   The usual definition accepts all pseudo regs; the other rejects
1904   them unless they have been allocated suitable hard regs.
1905   The symbol REG_OK_STRICT causes the latter definition to be used.  */
1906#ifndef REG_OK_STRICT
1907
1908#define ARM_REG_OK_FOR_BASE_P(X)		\
1909  (REGNO (X) <= LAST_ARM_REGNUM			\
1910   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1911   || REGNO (X) == FRAME_POINTER_REGNUM		\
1912   || REGNO (X) == ARG_POINTER_REGNUM)
1913
1914#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1915  (REGNO (X) <= LAST_LO_REGNUM			\
1916   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1917   || (GET_MODE_SIZE (MODE) >= 4		\
1918       && (REGNO (X) == STACK_POINTER_REGNUM	\
1919	   || (X) == hard_frame_pointer_rtx	\
1920	   || (X) == arg_pointer_rtx)))
1921
1922#define REG_STRICT_P 0
1923
1924#else /* REG_OK_STRICT */
1925
1926#define ARM_REG_OK_FOR_BASE_P(X) 		\
1927  ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1928
1929#define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1930  THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1931
1932#define REG_STRICT_P 1
1933
1934#endif /* REG_OK_STRICT */
1935
1936/* Now define some helpers in terms of the above.  */
1937
1938#define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1939  (TARGET_THUMB					\
1940   ? THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1941   : ARM_REG_OK_FOR_BASE_P (X))
1942
1943#define ARM_REG_OK_FOR_INDEX_P(X) ARM_REG_OK_FOR_BASE_P (X)
1944
1945/* For Thumb, a valid index register is anything that can be used in
1946   a byte load instruction.  */
1947#define THUMB_REG_OK_FOR_INDEX_P(X) THUMB_REG_MODE_OK_FOR_BASE_P (X, QImode)
1948
1949/* Nonzero if X is a hard reg that can be used as an index
1950   or if it is a pseudo reg.  On the Thumb, the stack pointer
1951   is not suitable.  */
1952#define REG_OK_FOR_INDEX_P(X)			\
1953  (TARGET_THUMB					\
1954   ? THUMB_REG_OK_FOR_INDEX_P (X)		\
1955   : ARM_REG_OK_FOR_INDEX_P (X))
1956
1957/* Nonzero if X can be the base register in a reg+reg addressing mode.
1958   For Thumb, we can not use SP + reg, so reject SP.  */
1959#define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1960  REG_OK_FOR_INDEX_P (X)
1961
1962/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1963   that is a valid memory address for an instruction.
1964   The MODE argument is the machine mode for the MEM expression
1965   that wants to use this address.  */
1966
1967#define ARM_BASE_REGISTER_RTX_P(X)  \
1968  (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1969
1970#define ARM_INDEX_REGISTER_RTX_P(X)  \
1971  (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1972
1973#define ARM_GO_IF_LEGITIMATE_ADDRESS(MODE,X,WIN)		\
1974  {								\
1975    if (arm_legitimate_address_p (MODE, X, SET, REG_STRICT_P))	\
1976      goto WIN;							\
1977  }
1978
1979#define THUMB_GO_IF_LEGITIMATE_ADDRESS(MODE,X,WIN)		\
1980  {								\
1981    if (thumb_legitimate_address_p (MODE, X, REG_STRICT_P))	\
1982      goto WIN;							\
1983  }
1984
1985#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)				\
1986  if (TARGET_ARM)							\
1987    ARM_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN)  			\
1988  else /* if (TARGET_THUMB) */						\
1989    THUMB_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN)
1990
1991
1992/* Try machine-dependent ways of modifying an illegitimate address
1993   to be legitimate.  If we find one, return the new, valid address.  */
1994#define ARM_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
1995do {							\
1996  X = arm_legitimize_address (X, OLDX, MODE);		\
1997} while (0)
1998
1999#define THUMB_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)	\
2000do {							\
2001  X = thumb_legitimize_address (X, OLDX, MODE);		\
2002} while (0)
2003
2004#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)		\
2005do {							\
2006  if (TARGET_ARM)					\
2007    ARM_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN);	\
2008  else							\
2009    THUMB_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN);	\
2010							\
2011  if (memory_address_p (MODE, X))			\
2012    goto WIN;						\
2013} while (0)
2014
2015/* Go to LABEL if ADDR (a legitimate address expression)
2016   has an effect that depends on the machine mode it is used for.  */
2017#define ARM_GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)  			\
2018{									\
2019  if (   GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC	\
2020      || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC)	\
2021    goto LABEL;								\
2022}
2023
2024/* Nothing helpful to do for the Thumb */
2025#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2026  if (TARGET_ARM)					\
2027    ARM_GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)
2028
2029
2030/* Specify the machine mode that this machine uses
2031   for the index in the tablejump instruction.  */
2032#define CASE_VECTOR_MODE Pmode
2033
2034/* signed 'char' is most compatible, but RISC OS wants it unsigned.
2035   unsigned is probably best, but may break some code.  */
2036#ifndef DEFAULT_SIGNED_CHAR
2037#define DEFAULT_SIGNED_CHAR  0
2038#endif
2039
2040/* Max number of bytes we can move from memory to memory
2041   in one reasonably fast instruction.  */
2042#define MOVE_MAX 4
2043
2044#undef  MOVE_RATIO
2045#define MOVE_RATIO (arm_tune_xscale ? 4 : 2)
2046
2047/* Define if operations between registers always perform the operation
2048   on the full register even if a narrower mode is specified.  */
2049#define WORD_REGISTER_OPERATIONS
2050
2051/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2052   will either zero-extend or sign-extend.  The value of this macro should
2053   be the code that says which one of the two operations is implicitly
2054   done, UNKNOWN if none.  */
2055#define LOAD_EXTEND_OP(MODE)						\
2056  (TARGET_THUMB ? ZERO_EXTEND :						\
2057   ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2058    : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2059
2060/* Nonzero if access to memory by bytes is slow and undesirable.  */
2061#define SLOW_BYTE_ACCESS 0
2062
2063#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2064
2065/* Immediate shift counts are truncated by the output routines (or was it
2066   the assembler?).  Shift counts in a register are truncated by ARM.  Note
2067   that the native compiler puts too large (> 32) immediate shift counts
2068   into a register and shifts by the register, letting the ARM decide what
2069   to do instead of doing that itself.  */
2070/* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2071   code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2072   On the arm, Y in a register is used modulo 256 for the shift. Only for
2073   rotates is modulo 32 used.  */
2074/* #define SHIFT_COUNT_TRUNCATED 1 */
2075
2076/* All integers have the same format so truncation is easy.  */
2077#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
2078
2079/* Calling from registers is a massive pain.  */
2080#define NO_FUNCTION_CSE 1
2081
2082/* The machine modes of pointers and functions */
2083#define Pmode  SImode
2084#define FUNCTION_MODE  Pmode
2085
2086#define ARM_FRAME_RTX(X)					\
2087  (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2088   || (X) == arg_pointer_rtx)
2089
2090/* Moves to and from memory are quite expensive */
2091#define MEMORY_MOVE_COST(M, CLASS, IN)			\
2092  (TARGET_ARM ? 10 :					\
2093   ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M))	\
2094    * (CLASS == LO_REGS ? 1 : 2)))
2095
2096/* Try to generate sequences that don't involve branches, we can then use
2097   conditional instructions */
2098#define BRANCH_COST \
2099  (TARGET_ARM ? 4 : (optimize > 1 ? 1 : 0))
2100
2101/* Position Independent Code.  */
2102/* We decide which register to use based on the compilation options and
2103   the assembler in use; this is more general than the APCS restriction of
2104   using sb (r9) all the time.  */
2105extern unsigned arm_pic_register;
2106
2107/* The register number of the register used to address a table of static
2108   data addresses in memory.  */
2109#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2110
2111/* We can't directly access anything that contains a symbol,
2112   nor can we indirect via the constant pool.  One exception is
2113   UNSPEC_TLS, which is always PIC.  */
2114#define LEGITIMATE_PIC_OPERAND_P(X)					\
2115	(!(symbol_mentioned_p (X)					\
2116	   || label_mentioned_p (X)					\
2117	   || (GET_CODE (X) == SYMBOL_REF				\
2118	       && CONSTANT_POOL_ADDRESS_P (X)				\
2119	       && (symbol_mentioned_p (get_pool_constant (X))		\
2120		   || label_mentioned_p (get_pool_constant (X)))))	\
2121	 || tls_mentioned_p (X))
2122
2123/* We need to know when we are making a constant pool; this determines
2124   whether data needs to be in the GOT or can be referenced via a GOT
2125   offset.  */
2126extern int making_const_table;
2127
2128/* Handle pragmas for compatibility with Intel's compilers.  */
2129#define REGISTER_TARGET_PRAGMAS() do {					\
2130  c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2131  c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2132  c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2133} while (0)
2134
2135/* Condition code information.  */
2136/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2137   return the mode to be used for the comparison.  */
2138
2139#define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2140
2141#define REVERSIBLE_CC_MODE(MODE) 1
2142
2143#define REVERSE_CONDITION(CODE,MODE) \
2144  (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2145   ? reverse_condition_maybe_unordered (code) \
2146   : reverse_condition (code))
2147
2148#define CANONICALIZE_COMPARISON(CODE, OP0, OP1)				\
2149  do									\
2150    {									\
2151      if (GET_CODE (OP1) == CONST_INT					\
2152          && ! (const_ok_for_arm (INTVAL (OP1))				\
2153	        || (const_ok_for_arm (- INTVAL (OP1)))))		\
2154        {								\
2155          rtx const_op = OP1;						\
2156          CODE = arm_canonicalize_comparison ((CODE), GET_MODE (OP0),	\
2157					      &const_op);		\
2158          OP1 = const_op;						\
2159        }								\
2160    }									\
2161  while (0)
2162
2163/* The arm5 clz instruction returns 32.  */
2164#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
2165
2166#undef  ASM_APP_OFF
2167#define ASM_APP_OFF (TARGET_THUMB ? "\t.code\t16\n" : "")
2168
2169/* Output a push or a pop instruction (only used when profiling).  */
2170#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2171  do							\
2172    {							\
2173      if (TARGET_ARM)					\
2174	asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n",	\
2175		     STACK_POINTER_REGNUM, REGNO);	\
2176      else						\
2177	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2178    } while (0)
2179
2180
2181#define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2182  do							\
2183    {							\
2184      if (TARGET_ARM)					\
2185	asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n",	\
2186		     STACK_POINTER_REGNUM, REGNO);	\
2187      else						\
2188	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2189    } while (0)
2190
2191/* This is how to output a label which precedes a jumptable.  Since
2192   Thumb instructions are 2 bytes, we may need explicit alignment here.  */
2193#undef  ASM_OUTPUT_CASE_LABEL
2194#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE)	\
2195  do								\
2196    {								\
2197      if (TARGET_THUMB)						\
2198        ASM_OUTPUT_ALIGN (FILE, 2);				\
2199      (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM);	\
2200    }								\
2201  while (0)
2202
2203#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2204  do							\
2205    {							\
2206      if (TARGET_THUMB) 				\
2207        {						\
2208          if (is_called_in_ARM_mode (DECL)      \
2209			  || current_function_is_thunk)		\
2210            fprintf (STREAM, "\t.code 32\n") ;		\
2211          else						\
2212           fprintf (STREAM, "\t.code 16\n\t.thumb_func\n") ;	\
2213        }						\
2214      if (TARGET_POKE_FUNCTION_NAME)			\
2215        arm_poke_function_name (STREAM, (char *) NAME);	\
2216    }							\
2217  while (0)
2218
2219/* For aliases of functions we use .thumb_set instead.  */
2220#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2221  do						   		\
2222    {								\
2223      const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2224      const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2225								\
2226      if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2227	{							\
2228	  fprintf (FILE, "\t.thumb_set ");			\
2229	  assemble_name (FILE, LABEL1);			   	\
2230	  fprintf (FILE, ",");			   		\
2231	  assemble_name (FILE, LABEL2);		   		\
2232	  fprintf (FILE, "\n");					\
2233	}							\
2234      else							\
2235	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2236    }								\
2237  while (0)
2238
2239#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2240/* To support -falign-* switches we need to use .p2align so
2241   that alignment directives in code sections will be padded
2242   with no-op instructions, rather than zeroes.  */
2243#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2244  if ((LOG) != 0)						\
2245    {								\
2246      if ((MAX_SKIP) == 0)					\
2247        fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2248      else							\
2249        fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2250                 (int) (LOG), (int) (MAX_SKIP));		\
2251    }
2252#endif
2253
2254/* Only perform branch elimination (by making instructions conditional) if
2255   we're optimizing.  Otherwise it's of no use anyway.  */
2256#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2257  if (TARGET_ARM && optimize)				\
2258    arm_final_prescan_insn (INSN);			\
2259  else if (TARGET_THUMB)				\
2260    thumb_final_prescan_insn (INSN)
2261
2262#define PRINT_OPERAND_PUNCT_VALID_P(CODE)	\
2263  (CODE == '@' || CODE == '|'			\
2264   || (TARGET_ARM   && (CODE == '?'))		\
2265   || (TARGET_THUMB && (CODE == '_')))
2266
2267/* Output an operand of an instruction.  */
2268#define PRINT_OPERAND(STREAM, X, CODE)  \
2269  arm_print_operand (STREAM, X, CODE)
2270
2271#define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2272  (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2273   : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2274      ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2275       ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2276	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2277       : 0))))
2278
2279/* Output the address of an operand.  */
2280#define ARM_PRINT_OPERAND_ADDRESS(STREAM, X)				\
2281{									\
2282    int is_minus = GET_CODE (X) == MINUS;				\
2283									\
2284    if (GET_CODE (X) == REG)						\
2285      asm_fprintf (STREAM, "[%r, #0]", REGNO (X));			\
2286    else if (GET_CODE (X) == PLUS || is_minus)				\
2287      {									\
2288	rtx base = XEXP (X, 0);						\
2289	rtx index = XEXP (X, 1);					\
2290	HOST_WIDE_INT offset = 0;					\
2291	if (GET_CODE (base) != REG)					\
2292	  {								\
2293	    /* Ensure that BASE is a register.  */			\
2294            /* (one of them must be).  */				\
2295	    rtx temp = base;						\
2296	    base = index;						\
2297	    index = temp;						\
2298	  }								\
2299	switch (GET_CODE (index))					\
2300	  {								\
2301	  case CONST_INT:						\
2302	    offset = INTVAL (index);					\
2303	    if (is_minus)						\
2304	      offset = -offset;						\
2305	    asm_fprintf (STREAM, "[%r, #%wd]",				\
2306		         REGNO (base), offset);				\
2307	    break;							\
2308									\
2309	  case REG:							\
2310	    asm_fprintf (STREAM, "[%r, %s%r]",				\
2311		     REGNO (base), is_minus ? "-" : "",			\
2312		     REGNO (index));					\
2313	    break;							\
2314									\
2315	  case MULT:							\
2316	  case ASHIFTRT:						\
2317	  case LSHIFTRT:						\
2318	  case ASHIFT:							\
2319	  case ROTATERT:						\
2320	  {								\
2321	    asm_fprintf (STREAM, "[%r, %s%r",				\
2322		         REGNO (base), is_minus ? "-" : "",		\
2323                         REGNO (XEXP (index, 0)));			\
2324	    arm_print_operand (STREAM, index, 'S');			\
2325	    fputs ("]", STREAM);					\
2326	    break;							\
2327	  }								\
2328									\
2329	  default:							\
2330	    gcc_unreachable ();						\
2331	}								\
2332    }									\
2333  else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC		\
2334	   || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC)	\
2335    {									\
2336      extern enum machine_mode output_memory_reference_mode;		\
2337									\
2338      gcc_assert (GET_CODE (XEXP (X, 0)) == REG);			\
2339									\
2340      if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC)		\
2341	asm_fprintf (STREAM, "[%r, #%s%d]!",				\
2342		     REGNO (XEXP (X, 0)),				\
2343		     GET_CODE (X) == PRE_DEC ? "-" : "",		\
2344		     GET_MODE_SIZE (output_memory_reference_mode));	\
2345      else								\
2346	asm_fprintf (STREAM, "[%r], #%s%d",				\
2347		     REGNO (XEXP (X, 0)),				\
2348		     GET_CODE (X) == POST_DEC ? "-" : "",		\
2349		     GET_MODE_SIZE (output_memory_reference_mode));	\
2350    }									\
2351  else if (GET_CODE (X) == PRE_MODIFY)					\
2352    {									\
2353      asm_fprintf (STREAM, "[%r, ", REGNO (XEXP (X, 0)));		\
2354      if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT)		\
2355	asm_fprintf (STREAM, "#%wd]!", 					\
2356		     INTVAL (XEXP (XEXP (X, 1), 1)));			\
2357      else								\
2358	asm_fprintf (STREAM, "%r]!", 					\
2359		     REGNO (XEXP (XEXP (X, 1), 1)));			\
2360    }									\
2361  else if (GET_CODE (X) == POST_MODIFY)					\
2362    {									\
2363      asm_fprintf (STREAM, "[%r], ", REGNO (XEXP (X, 0)));		\
2364      if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT)		\
2365	asm_fprintf (STREAM, "#%wd", 					\
2366		     INTVAL (XEXP (XEXP (X, 1), 1)));			\
2367      else								\
2368	asm_fprintf (STREAM, "%r", 					\
2369		     REGNO (XEXP (XEXP (X, 1), 1)));			\
2370    }									\
2371  else output_addr_const (STREAM, X);					\
2372}
2373
2374#define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X)		\
2375{							\
2376  if (GET_CODE (X) == REG)				\
2377    asm_fprintf (STREAM, "[%r]", REGNO (X));		\
2378  else if (GET_CODE (X) == POST_INC)			\
2379    asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0)));	\
2380  else if (GET_CODE (X) == PLUS)			\
2381    {							\
2382      gcc_assert (GET_CODE (XEXP (X, 0)) == REG);	\
2383      if (GET_CODE (XEXP (X, 1)) == CONST_INT)		\
2384	asm_fprintf (STREAM, "[%r, #%wd]", 		\
2385		     REGNO (XEXP (X, 0)),		\
2386		     INTVAL (XEXP (X, 1)));		\
2387      else						\
2388	asm_fprintf (STREAM, "[%r, %r]",		\
2389		     REGNO (XEXP (X, 0)),		\
2390		     REGNO (XEXP (X, 1)));		\
2391    }							\
2392  else							\
2393    output_addr_const (STREAM, X);			\
2394}
2395
2396#define PRINT_OPERAND_ADDRESS(STREAM, X)	\
2397  if (TARGET_ARM)				\
2398    ARM_PRINT_OPERAND_ADDRESS (STREAM, X)	\
2399  else						\
2400    THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
2401
2402#define OUTPUT_ADDR_CONST_EXTRA(file, x, fail)		\
2403  if (arm_output_addr_const_extra (file, x) == FALSE)	\
2404    goto fail
2405
2406/* A C expression whose value is RTL representing the value of the return
2407   address for the frame COUNT steps up from the current frame.  */
2408
2409#define RETURN_ADDR_RTX(COUNT, FRAME) \
2410  arm_return_addr (COUNT, FRAME)
2411
2412/* Mask of the bits in the PC that contain the real return address
2413   when running in 26-bit mode.  */
2414#define RETURN_ADDR_MASK26 (0x03fffffc)
2415
2416/* Pick up the return address upon entry to a procedure. Used for
2417   dwarf2 unwind information.  This also enables the table driven
2418   mechanism.  */
2419#define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2420#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2421
2422/* Used to mask out junk bits from the return address, such as
2423   processor state, interrupt status, condition codes and the like.  */
2424#define MASK_RETURN_ADDR \
2425  /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2426     in 26 bit mode, the condition codes must be masked out of the	\
2427     return address.  This does not apply to ARM6 and later processors	\
2428     when running in 32 bit mode.  */					\
2429  ((arm_arch4 || TARGET_THUMB)						\
2430   ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2431   : arm_gen_return_addr_mask ())
2432
2433
2434enum arm_builtins
2435{
2436  ARM_BUILTIN_GETWCX,
2437  ARM_BUILTIN_SETWCX,
2438
2439  ARM_BUILTIN_WZERO,
2440
2441  ARM_BUILTIN_WAVG2BR,
2442  ARM_BUILTIN_WAVG2HR,
2443  ARM_BUILTIN_WAVG2B,
2444  ARM_BUILTIN_WAVG2H,
2445
2446  ARM_BUILTIN_WACCB,
2447  ARM_BUILTIN_WACCH,
2448  ARM_BUILTIN_WACCW,
2449
2450  ARM_BUILTIN_WMACS,
2451  ARM_BUILTIN_WMACSZ,
2452  ARM_BUILTIN_WMACU,
2453  ARM_BUILTIN_WMACUZ,
2454
2455  ARM_BUILTIN_WSADB,
2456  ARM_BUILTIN_WSADBZ,
2457  ARM_BUILTIN_WSADH,
2458  ARM_BUILTIN_WSADHZ,
2459
2460  ARM_BUILTIN_WALIGN,
2461
2462  ARM_BUILTIN_TMIA,
2463  ARM_BUILTIN_TMIAPH,
2464  ARM_BUILTIN_TMIABB,
2465  ARM_BUILTIN_TMIABT,
2466  ARM_BUILTIN_TMIATB,
2467  ARM_BUILTIN_TMIATT,
2468
2469  ARM_BUILTIN_TMOVMSKB,
2470  ARM_BUILTIN_TMOVMSKH,
2471  ARM_BUILTIN_TMOVMSKW,
2472
2473  ARM_BUILTIN_TBCSTB,
2474  ARM_BUILTIN_TBCSTH,
2475  ARM_BUILTIN_TBCSTW,
2476
2477  ARM_BUILTIN_WMADDS,
2478  ARM_BUILTIN_WMADDU,
2479
2480  ARM_BUILTIN_WPACKHSS,
2481  ARM_BUILTIN_WPACKWSS,
2482  ARM_BUILTIN_WPACKDSS,
2483  ARM_BUILTIN_WPACKHUS,
2484  ARM_BUILTIN_WPACKWUS,
2485  ARM_BUILTIN_WPACKDUS,
2486
2487  ARM_BUILTIN_WADDB,
2488  ARM_BUILTIN_WADDH,
2489  ARM_BUILTIN_WADDW,
2490  ARM_BUILTIN_WADDSSB,
2491  ARM_BUILTIN_WADDSSH,
2492  ARM_BUILTIN_WADDSSW,
2493  ARM_BUILTIN_WADDUSB,
2494  ARM_BUILTIN_WADDUSH,
2495  ARM_BUILTIN_WADDUSW,
2496  ARM_BUILTIN_WSUBB,
2497  ARM_BUILTIN_WSUBH,
2498  ARM_BUILTIN_WSUBW,
2499  ARM_BUILTIN_WSUBSSB,
2500  ARM_BUILTIN_WSUBSSH,
2501  ARM_BUILTIN_WSUBSSW,
2502  ARM_BUILTIN_WSUBUSB,
2503  ARM_BUILTIN_WSUBUSH,
2504  ARM_BUILTIN_WSUBUSW,
2505
2506  ARM_BUILTIN_WAND,
2507  ARM_BUILTIN_WANDN,
2508  ARM_BUILTIN_WOR,
2509  ARM_BUILTIN_WXOR,
2510
2511  ARM_BUILTIN_WCMPEQB,
2512  ARM_BUILTIN_WCMPEQH,
2513  ARM_BUILTIN_WCMPEQW,
2514  ARM_BUILTIN_WCMPGTUB,
2515  ARM_BUILTIN_WCMPGTUH,
2516  ARM_BUILTIN_WCMPGTUW,
2517  ARM_BUILTIN_WCMPGTSB,
2518  ARM_BUILTIN_WCMPGTSH,
2519  ARM_BUILTIN_WCMPGTSW,
2520
2521  ARM_BUILTIN_TEXTRMSB,
2522  ARM_BUILTIN_TEXTRMSH,
2523  ARM_BUILTIN_TEXTRMSW,
2524  ARM_BUILTIN_TEXTRMUB,
2525  ARM_BUILTIN_TEXTRMUH,
2526  ARM_BUILTIN_TEXTRMUW,
2527  ARM_BUILTIN_TINSRB,
2528  ARM_BUILTIN_TINSRH,
2529  ARM_BUILTIN_TINSRW,
2530
2531  ARM_BUILTIN_WMAXSW,
2532  ARM_BUILTIN_WMAXSH,
2533  ARM_BUILTIN_WMAXSB,
2534  ARM_BUILTIN_WMAXUW,
2535  ARM_BUILTIN_WMAXUH,
2536  ARM_BUILTIN_WMAXUB,
2537  ARM_BUILTIN_WMINSW,
2538  ARM_BUILTIN_WMINSH,
2539  ARM_BUILTIN_WMINSB,
2540  ARM_BUILTIN_WMINUW,
2541  ARM_BUILTIN_WMINUH,
2542  ARM_BUILTIN_WMINUB,
2543
2544  ARM_BUILTIN_WMULUM,
2545  ARM_BUILTIN_WMULSM,
2546  ARM_BUILTIN_WMULUL,
2547
2548  ARM_BUILTIN_PSADBH,
2549  ARM_BUILTIN_WSHUFH,
2550
2551  ARM_BUILTIN_WSLLH,
2552  ARM_BUILTIN_WSLLW,
2553  ARM_BUILTIN_WSLLD,
2554  ARM_BUILTIN_WSRAH,
2555  ARM_BUILTIN_WSRAW,
2556  ARM_BUILTIN_WSRAD,
2557  ARM_BUILTIN_WSRLH,
2558  ARM_BUILTIN_WSRLW,
2559  ARM_BUILTIN_WSRLD,
2560  ARM_BUILTIN_WRORH,
2561  ARM_BUILTIN_WRORW,
2562  ARM_BUILTIN_WRORD,
2563  ARM_BUILTIN_WSLLHI,
2564  ARM_BUILTIN_WSLLWI,
2565  ARM_BUILTIN_WSLLDI,
2566  ARM_BUILTIN_WSRAHI,
2567  ARM_BUILTIN_WSRAWI,
2568  ARM_BUILTIN_WSRADI,
2569  ARM_BUILTIN_WSRLHI,
2570  ARM_BUILTIN_WSRLWI,
2571  ARM_BUILTIN_WSRLDI,
2572  ARM_BUILTIN_WRORHI,
2573  ARM_BUILTIN_WRORWI,
2574  ARM_BUILTIN_WRORDI,
2575
2576  ARM_BUILTIN_WUNPCKIHB,
2577  ARM_BUILTIN_WUNPCKIHH,
2578  ARM_BUILTIN_WUNPCKIHW,
2579  ARM_BUILTIN_WUNPCKILB,
2580  ARM_BUILTIN_WUNPCKILH,
2581  ARM_BUILTIN_WUNPCKILW,
2582
2583  ARM_BUILTIN_WUNPCKEHSB,
2584  ARM_BUILTIN_WUNPCKEHSH,
2585  ARM_BUILTIN_WUNPCKEHSW,
2586  ARM_BUILTIN_WUNPCKEHUB,
2587  ARM_BUILTIN_WUNPCKEHUH,
2588  ARM_BUILTIN_WUNPCKEHUW,
2589  ARM_BUILTIN_WUNPCKELSB,
2590  ARM_BUILTIN_WUNPCKELSH,
2591  ARM_BUILTIN_WUNPCKELSW,
2592  ARM_BUILTIN_WUNPCKELUB,
2593  ARM_BUILTIN_WUNPCKELUH,
2594  ARM_BUILTIN_WUNPCKELUW,
2595
2596  ARM_BUILTIN_THREAD_POINTER,
2597
2598  ARM_BUILTIN_MAX
2599};
2600#endif /* ! GCC_ARM_H */
2601