1/* tblcmp - table compression routines */
2
3/*  Copyright (c) 1990 The Regents of the University of California. */
4/*  All rights reserved. */
5
6/*  This code is derived from software contributed to Berkeley by */
7/*  Vern Paxson. */
8
9/*  The United States Government has rights in this work pursuant */
10/*  to contract no. DE-AC03-76SF00098 between the United States */
11/*  Department of Energy and the University of California. */
12
13/*  This file is part of flex. */
14
15/*  Redistribution and use in source and binary forms, with or without */
16/*  modification, are permitted provided that the following conditions */
17/*  are met: */
18
19/*  1. Redistributions of source code must retain the above copyright */
20/*     notice, this list of conditions and the following disclaimer. */
21/*  2. Redistributions in binary form must reproduce the above copyright */
22/*     notice, this list of conditions and the following disclaimer in the */
23/*     documentation and/or other materials provided with the distribution. */
24
25/*  Neither the name of the University nor the names of its contributors */
26/*  may be used to endorse or promote products derived from this software */
27/*  without specific prior written permission. */
28
29/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
30/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
31/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
32/*  PURPOSE. */
33
34#include "flexdef.h"
35
36
37/* declarations for functions that have forward references */
38
39void mkentry PROTO ((int *, int, int, int, int));
40void mkprot PROTO ((int[], int, int));
41void mktemplate PROTO ((int[], int, int));
42void mv2front PROTO ((int));
43int tbldiff PROTO ((int[], int, int[]));
44
45
46/* bldtbl - build table entries for dfa state
47 *
48 * synopsis
49 *   int state[numecs], statenum, totaltrans, comstate, comfreq;
50 *   bldtbl( state, statenum, totaltrans, comstate, comfreq );
51 *
52 * State is the statenum'th dfa state.  It is indexed by equivalence class and
53 * gives the number of the state to enter for a given equivalence class.
54 * totaltrans is the total number of transitions out of the state.  Comstate
55 * is that state which is the destination of the most transitions out of State.
56 * Comfreq is how many transitions there are out of State to Comstate.
57 *
58 * A note on terminology:
59 *    "protos" are transition tables which have a high probability of
60 * either being redundant (a state processed later will have an identical
61 * transition table) or nearly redundant (a state processed later will have
62 * many of the same out-transitions).  A "most recently used" queue of
63 * protos is kept around with the hope that most states will find a proto
64 * which is similar enough to be usable, and therefore compacting the
65 * output tables.
66 *    "templates" are a special type of proto.  If a transition table is
67 * homogeneous or nearly homogeneous (all transitions go to the same
68 * destination) then the odds are good that future states will also go
69 * to the same destination state on basically the same character set.
70 * These homogeneous states are so common when dealing with large rule
71 * sets that they merit special attention.  If the transition table were
72 * simply made into a proto, then (typically) each subsequent, similar
73 * state will differ from the proto for two out-transitions.  One of these
74 * out-transitions will be that character on which the proto does not go
75 * to the common destination, and one will be that character on which the
76 * state does not go to the common destination.  Templates, on the other
77 * hand, go to the common state on EVERY transition character, and therefore
78 * cost only one difference.
79 */
80
81void    bldtbl (state, statenum, totaltrans, comstate, comfreq)
82     int     state[], statenum, totaltrans, comstate, comfreq;
83{
84	int     extptr, extrct[2][CSIZE + 1];
85	int     mindiff, minprot, i, d;
86
87	/* If extptr is 0 then the first array of extrct holds the result
88	 * of the "best difference" to date, which is those transitions
89	 * which occur in "state" but not in the proto which, to date,
90	 * has the fewest differences between itself and "state".  If
91	 * extptr is 1 then the second array of extrct hold the best
92	 * difference.  The two arrays are toggled between so that the
93	 * best difference to date can be kept around and also a difference
94	 * just created by checking against a candidate "best" proto.
95	 */
96
97	extptr = 0;
98
99	/* If the state has too few out-transitions, don't bother trying to
100	 * compact its tables.
101	 */
102
103	if ((totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE))
104		mkentry (state, numecs, statenum, JAMSTATE, totaltrans);
105
106	else {
107		/* "checkcom" is true if we should only check "state" against
108		 * protos which have the same "comstate" value.
109		 */
110		int     checkcom =
111
112			comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
113
114		minprot = firstprot;
115		mindiff = totaltrans;
116
117		if (checkcom) {
118			/* Find first proto which has the same "comstate". */
119			for (i = firstprot; i != NIL; i = protnext[i])
120				if (protcomst[i] == comstate) {
121					minprot = i;
122					mindiff = tbldiff (state, minprot,
123							   extrct[extptr]);
124					break;
125				}
126		}
127
128		else {
129			/* Since we've decided that the most common destination
130			 * out of "state" does not occur with a high enough
131			 * frequency, we set the "comstate" to zero, assuring
132			 * that if this state is entered into the proto list,
133			 * it will not be considered a template.
134			 */
135			comstate = 0;
136
137			if (firstprot != NIL) {
138				minprot = firstprot;
139				mindiff = tbldiff (state, minprot,
140						   extrct[extptr]);
141			}
142		}
143
144		/* We now have the first interesting proto in "minprot".  If
145		 * it matches within the tolerances set for the first proto,
146		 * we don't want to bother scanning the rest of the proto list
147		 * to see if we have any other reasonable matches.
148		 */
149
150		if (mindiff * 100 >
151		    totaltrans * FIRST_MATCH_DIFF_PERCENTAGE) {
152			/* Not a good enough match.  Scan the rest of the
153			 * protos.
154			 */
155			for (i = minprot; i != NIL; i = protnext[i]) {
156				d = tbldiff (state, i, extrct[1 - extptr]);
157				if (d < mindiff) {
158					extptr = 1 - extptr;
159					mindiff = d;
160					minprot = i;
161				}
162			}
163		}
164
165		/* Check if the proto we've decided on as our best bet is close
166		 * enough to the state we want to match to be usable.
167		 */
168
169		if (mindiff * 100 >
170		    totaltrans * ACCEPTABLE_DIFF_PERCENTAGE) {
171			/* No good.  If the state is homogeneous enough,
172			 * we make a template out of it.  Otherwise, we
173			 * make a proto.
174			 */
175
176			if (comfreq * 100 >=
177			    totaltrans * TEMPLATE_SAME_PERCENTAGE)
178					mktemplate (state, statenum,
179						    comstate);
180
181			else {
182				mkprot (state, statenum, comstate);
183				mkentry (state, numecs, statenum,
184					 JAMSTATE, totaltrans);
185			}
186		}
187
188		else {		/* use the proto */
189			mkentry (extrct[extptr], numecs, statenum,
190				 prottbl[minprot], mindiff);
191
192			/* If this state was sufficiently different from the
193			 * proto we built it from, make it, too, a proto.
194			 */
195
196			if (mindiff * 100 >=
197			    totaltrans * NEW_PROTO_DIFF_PERCENTAGE)
198					mkprot (state, statenum, comstate);
199
200			/* Since mkprot added a new proto to the proto queue,
201			 * it's possible that "minprot" is no longer on the
202			 * proto queue (if it happened to have been the last
203			 * entry, it would have been bumped off).  If it's
204			 * not there, then the new proto took its physical
205			 * place (though logically the new proto is at the
206			 * beginning of the queue), so in that case the
207			 * following call will do nothing.
208			 */
209
210			mv2front (minprot);
211		}
212	}
213}
214
215
216/* cmptmps - compress template table entries
217 *
218 * Template tables are compressed by using the 'template equivalence
219 * classes', which are collections of transition character equivalence
220 * classes which always appear together in templates - really meta-equivalence
221 * classes.
222 */
223
224void    cmptmps ()
225{
226	int     tmpstorage[CSIZE + 1];
227	int *tmp = tmpstorage, i, j;
228	int     totaltrans, trans;
229
230	peakpairs = numtemps * numecs + tblend;
231
232	if (usemecs) {
233		/* Create equivalence classes based on data gathered on
234		 * template transitions.
235		 */
236		nummecs = cre8ecs (tecfwd, tecbck, numecs);
237	}
238
239	else
240		nummecs = numecs;
241
242	while (lastdfa + numtemps + 1 >= current_max_dfas)
243		increase_max_dfas ();
244
245	/* Loop through each template. */
246
247	for (i = 1; i <= numtemps; ++i) {
248		/* Number of non-jam transitions out of this template. */
249		totaltrans = 0;
250
251		for (j = 1; j <= numecs; ++j) {
252			trans = tnxt[numecs * i + j];
253
254			if (usemecs) {
255				/* The absolute value of tecbck is the
256				 * meta-equivalence class of a given
257				 * equivalence class, as set up by cre8ecs().
258				 */
259				if (tecbck[j] > 0) {
260					tmp[tecbck[j]] = trans;
261
262					if (trans > 0)
263						++totaltrans;
264				}
265			}
266
267			else {
268				tmp[j] = trans;
269
270				if (trans > 0)
271					++totaltrans;
272			}
273		}
274
275		/* It is assumed (in a rather subtle way) in the skeleton
276		 * that if we're using meta-equivalence classes, the def[]
277		 * entry for all templates is the jam template, i.e.,
278		 * templates never default to other non-jam table entries
279		 * (e.g., another template)
280		 */
281
282		/* Leave room for the jam-state after the last real state. */
283		mkentry (tmp, nummecs, lastdfa + i + 1, JAMSTATE,
284			 totaltrans);
285	}
286}
287
288
289
290/* expand_nxt_chk - expand the next check arrays */
291
292void    expand_nxt_chk ()
293{
294	int old_max = current_max_xpairs;
295
296	current_max_xpairs += MAX_XPAIRS_INCREMENT;
297
298	++num_reallocs;
299
300	nxt = reallocate_integer_array (nxt, current_max_xpairs);
301	chk = reallocate_integer_array (chk, current_max_xpairs);
302
303	zero_out ((char *) (chk + old_max),
304		  (size_t) (MAX_XPAIRS_INCREMENT * sizeof (int)));
305}
306
307
308/* find_table_space - finds a space in the table for a state to be placed
309 *
310 * synopsis
311 *     int *state, numtrans, block_start;
312 *     int find_table_space();
313 *
314 *     block_start = find_table_space( state, numtrans );
315 *
316 * State is the state to be added to the full speed transition table.
317 * Numtrans is the number of out-transitions for the state.
318 *
319 * find_table_space() returns the position of the start of the first block (in
320 * chk) able to accommodate the state
321 *
322 * In determining if a state will or will not fit, find_table_space() must take
323 * into account the fact that an end-of-buffer state will be added at [0],
324 * and an action number will be added in [-1].
325 */
326
327int     find_table_space (state, numtrans)
328     int    *state, numtrans;
329{
330	/* Firstfree is the position of the first possible occurrence of two
331	 * consecutive unused records in the chk and nxt arrays.
332	 */
333	int i;
334	int *state_ptr, *chk_ptr;
335	int *ptr_to_last_entry_in_state;
336
337	/* If there are too many out-transitions, put the state at the end of
338	 * nxt and chk.
339	 */
340	if (numtrans > MAX_XTIONS_FULL_INTERIOR_FIT) {
341		/* If table is empty, return the first available spot in
342		 * chk/nxt, which should be 1.
343		 */
344		if (tblend < 2)
345			return 1;
346
347		/* Start searching for table space near the end of
348		 * chk/nxt arrays.
349		 */
350		i = tblend - numecs;
351	}
352
353	else
354		/* Start searching for table space from the beginning
355		 * (skipping only the elements which will definitely not
356		 * hold the new state).
357		 */
358		i = firstfree;
359
360	while (1) {		/* loops until a space is found */
361		while (i + numecs >= current_max_xpairs)
362			expand_nxt_chk ();
363
364		/* Loops until space for end-of-buffer and action number
365		 * are found.
366		 */
367		while (1) {
368			/* Check for action number space. */
369			if (chk[i - 1] == 0) {
370				/* Check for end-of-buffer space. */
371				if (chk[i] == 0)
372					break;
373
374				else
375					/* Since i != 0, there is no use
376					 * checking to see if (++i) - 1 == 0,
377					 * because that's the same as i == 0,
378					 * so we skip a space.
379					 */
380					i += 2;
381			}
382
383			else
384				++i;
385
386			while (i + numecs >= current_max_xpairs)
387				expand_nxt_chk ();
388		}
389
390		/* If we started search from the beginning, store the new
391		 * firstfree for the next call of find_table_space().
392		 */
393		if (numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT)
394			firstfree = i + 1;
395
396		/* Check to see if all elements in chk (and therefore nxt)
397		 * that are needed for the new state have not yet been taken.
398		 */
399
400		state_ptr = &state[1];
401		ptr_to_last_entry_in_state = &chk[i + numecs + 1];
402
403		for (chk_ptr = &chk[i + 1];
404		     chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr)
405			if (*(state_ptr++) != 0 && *chk_ptr != 0)
406				break;
407
408		if (chk_ptr == ptr_to_last_entry_in_state)
409			return i;
410
411		else
412			++i;
413	}
414}
415
416
417/* inittbl - initialize transition tables
418 *
419 * Initializes "firstfree" to be one beyond the end of the table.  Initializes
420 * all "chk" entries to be zero.
421 */
422void    inittbl ()
423{
424	int i;
425
426	zero_out ((char *) chk,
427
428		  (size_t) (current_max_xpairs * sizeof (int)));
429
430	tblend = 0;
431	firstfree = tblend + 1;
432	numtemps = 0;
433
434	if (usemecs) {
435		/* Set up doubly-linked meta-equivalence classes; these
436		 * are sets of equivalence classes which all have identical
437		 * transitions out of TEMPLATES.
438		 */
439
440		tecbck[1] = NIL;
441
442		for (i = 2; i <= numecs; ++i) {
443			tecbck[i] = i - 1;
444			tecfwd[i - 1] = i;
445		}
446
447		tecfwd[numecs] = NIL;
448	}
449}
450
451
452/* mkdeftbl - make the default, "jam" table entries */
453
454void    mkdeftbl ()
455{
456	int     i;
457
458	jamstate = lastdfa + 1;
459
460	++tblend;		/* room for transition on end-of-buffer character */
461
462	while (tblend + numecs >= current_max_xpairs)
463		expand_nxt_chk ();
464
465	/* Add in default end-of-buffer transition. */
466	nxt[tblend] = end_of_buffer_state;
467	chk[tblend] = jamstate;
468
469	for (i = 1; i <= numecs; ++i) {
470		nxt[tblend + i] = 0;
471		chk[tblend + i] = jamstate;
472	}
473
474	jambase = tblend;
475
476	base[jamstate] = jambase;
477	def[jamstate] = 0;
478
479	tblend += numecs;
480	++numtemps;
481}
482
483
484/* mkentry - create base/def and nxt/chk entries for transition array
485 *
486 * synopsis
487 *   int state[numchars + 1], numchars, statenum, deflink, totaltrans;
488 *   mkentry( state, numchars, statenum, deflink, totaltrans );
489 *
490 * "state" is a transition array "numchars" characters in size, "statenum"
491 * is the offset to be used into the base/def tables, and "deflink" is the
492 * entry to put in the "def" table entry.  If "deflink" is equal to
493 * "JAMSTATE", then no attempt will be made to fit zero entries of "state"
494 * (i.e., jam entries) into the table.  It is assumed that by linking to
495 * "JAMSTATE" they will be taken care of.  In any case, entries in "state"
496 * marking transitions to "SAME_TRANS" are treated as though they will be
497 * taken care of by wherever "deflink" points.  "totaltrans" is the total
498 * number of transitions out of the state.  If it is below a certain threshold,
499 * the tables are searched for an interior spot that will accommodate the
500 * state array.
501 */
502
503void    mkentry (state, numchars, statenum, deflink, totaltrans)
504     int *state;
505     int     numchars, statenum, deflink, totaltrans;
506{
507	int minec, maxec, i, baseaddr;
508	int     tblbase, tbllast;
509
510	if (totaltrans == 0) {	/* there are no out-transitions */
511		if (deflink == JAMSTATE)
512			base[statenum] = JAMSTATE;
513		else
514			base[statenum] = 0;
515
516		def[statenum] = deflink;
517		return;
518	}
519
520	for (minec = 1; minec <= numchars; ++minec) {
521		if (state[minec] != SAME_TRANS)
522			if (state[minec] != 0 || deflink != JAMSTATE)
523				break;
524	}
525
526	if (totaltrans == 1) {
527		/* There's only one out-transition.  Save it for later to fill
528		 * in holes in the tables.
529		 */
530		stack1 (statenum, minec, state[minec], deflink);
531		return;
532	}
533
534	for (maxec = numchars; maxec > 0; --maxec) {
535		if (state[maxec] != SAME_TRANS)
536			if (state[maxec] != 0 || deflink != JAMSTATE)
537				break;
538	}
539
540	/* Whether we try to fit the state table in the middle of the table
541	 * entries we have already generated, or if we just take the state
542	 * table at the end of the nxt/chk tables, we must make sure that we
543	 * have a valid base address (i.e., non-negative).  Note that
544	 * negative base addresses dangerous at run-time (because indexing
545	 * the nxt array with one and a low-valued character will access
546	 * memory before the start of the array.
547	 */
548
549	/* Find the first transition of state that we need to worry about. */
550	if (totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE) {
551		/* Attempt to squeeze it into the middle of the tables. */
552		baseaddr = firstfree;
553
554		while (baseaddr < minec) {
555			/* Using baseaddr would result in a negative base
556			 * address below; find the next free slot.
557			 */
558			for (++baseaddr; chk[baseaddr] != 0; ++baseaddr) ;
559		}
560
561		while (baseaddr + maxec - minec + 1 >= current_max_xpairs)
562			expand_nxt_chk ();
563
564		for (i = minec; i <= maxec; ++i)
565			if (state[i] != SAME_TRANS &&
566			    (state[i] != 0 || deflink != JAMSTATE) &&
567			    chk[baseaddr + i - minec] != 0) {	/* baseaddr unsuitable - find another */
568				for (++baseaddr;
569				     baseaddr < current_max_xpairs &&
570				     chk[baseaddr] != 0; ++baseaddr) ;
571
572				while (baseaddr + maxec - minec + 1 >=
573				       current_max_xpairs)
574						expand_nxt_chk ();
575
576				/* Reset the loop counter so we'll start all
577				 * over again next time it's incremented.
578				 */
579
580				i = minec - 1;
581			}
582	}
583
584	else {
585		/* Ensure that the base address we eventually generate is
586		 * non-negative.
587		 */
588		baseaddr = MAX (tblend + 1, minec);
589	}
590
591	tblbase = baseaddr - minec;
592	tbllast = tblbase + maxec;
593
594	while (tbllast + 1 >= current_max_xpairs)
595		expand_nxt_chk ();
596
597	base[statenum] = tblbase;
598	def[statenum] = deflink;
599
600	for (i = minec; i <= maxec; ++i)
601		if (state[i] != SAME_TRANS)
602			if (state[i] != 0 || deflink != JAMSTATE) {
603				nxt[tblbase + i] = state[i];
604				chk[tblbase + i] = statenum;
605			}
606
607	if (baseaddr == firstfree)
608		/* Find next free slot in tables. */
609		for (++firstfree; chk[firstfree] != 0; ++firstfree) ;
610
611	tblend = MAX (tblend, tbllast);
612}
613
614
615/* mk1tbl - create table entries for a state (or state fragment) which
616 *            has only one out-transition
617 */
618
619void    mk1tbl (state, sym, onenxt, onedef)
620     int     state, sym, onenxt, onedef;
621{
622	if (firstfree < sym)
623		firstfree = sym;
624
625	while (chk[firstfree] != 0)
626		if (++firstfree >= current_max_xpairs)
627			expand_nxt_chk ();
628
629	base[state] = firstfree - sym;
630	def[state] = onedef;
631	chk[firstfree] = state;
632	nxt[firstfree] = onenxt;
633
634	if (firstfree > tblend) {
635		tblend = firstfree++;
636
637		if (firstfree >= current_max_xpairs)
638			expand_nxt_chk ();
639	}
640}
641
642
643/* mkprot - create new proto entry */
644
645void    mkprot (state, statenum, comstate)
646     int     state[], statenum, comstate;
647{
648	int     i, slot, tblbase;
649
650	if (++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE) {
651		/* Gotta make room for the new proto by dropping last entry in
652		 * the queue.
653		 */
654		slot = lastprot;
655		lastprot = protprev[lastprot];
656		protnext[lastprot] = NIL;
657	}
658
659	else
660		slot = numprots;
661
662	protnext[slot] = firstprot;
663
664	if (firstprot != NIL)
665		protprev[firstprot] = slot;
666
667	firstprot = slot;
668	prottbl[slot] = statenum;
669	protcomst[slot] = comstate;
670
671	/* Copy state into save area so it can be compared with rapidly. */
672	tblbase = numecs * (slot - 1);
673
674	for (i = 1; i <= numecs; ++i)
675		protsave[tblbase + i] = state[i];
676}
677
678
679/* mktemplate - create a template entry based on a state, and connect the state
680 *              to it
681 */
682
683void    mktemplate (state, statenum, comstate)
684     int     state[], statenum, comstate;
685{
686	int     i, numdiff, tmpbase, tmp[CSIZE + 1];
687	Char    transset[CSIZE + 1];
688	int     tsptr;
689
690	++numtemps;
691
692	tsptr = 0;
693
694	/* Calculate where we will temporarily store the transition table
695	 * of the template in the tnxt[] array.  The final transition table
696	 * gets created by cmptmps().
697	 */
698
699	tmpbase = numtemps * numecs;
700
701	if (tmpbase + numecs >= current_max_template_xpairs) {
702		current_max_template_xpairs +=
703			MAX_TEMPLATE_XPAIRS_INCREMENT;
704
705		++num_reallocs;
706
707		tnxt = reallocate_integer_array (tnxt,
708						 current_max_template_xpairs);
709	}
710
711	for (i = 1; i <= numecs; ++i)
712		if (state[i] == 0)
713			tnxt[tmpbase + i] = 0;
714		else {
715			transset[tsptr++] = i;
716			tnxt[tmpbase + i] = comstate;
717		}
718
719	if (usemecs)
720		mkeccl (transset, tsptr, tecfwd, tecbck, numecs, 0);
721
722	mkprot (tnxt + tmpbase, -numtemps, comstate);
723
724	/* We rely on the fact that mkprot adds things to the beginning
725	 * of the proto queue.
726	 */
727
728	numdiff = tbldiff (state, firstprot, tmp);
729	mkentry (tmp, numecs, statenum, -numtemps, numdiff);
730}
731
732
733/* mv2front - move proto queue element to front of queue */
734
735void    mv2front (qelm)
736     int     qelm;
737{
738	if (firstprot != qelm) {
739		if (qelm == lastprot)
740			lastprot = protprev[lastprot];
741
742		protnext[protprev[qelm]] = protnext[qelm];
743
744		if (protnext[qelm] != NIL)
745			protprev[protnext[qelm]] = protprev[qelm];
746
747		protprev[qelm] = NIL;
748		protnext[qelm] = firstprot;
749		protprev[firstprot] = qelm;
750		firstprot = qelm;
751	}
752}
753
754
755/* place_state - place a state into full speed transition table
756 *
757 * State is the statenum'th state.  It is indexed by equivalence class and
758 * gives the number of the state to enter for a given equivalence class.
759 * Transnum is the number of out-transitions for the state.
760 */
761
762void    place_state (state, statenum, transnum)
763     int    *state, statenum, transnum;
764{
765	int i;
766	int *state_ptr;
767	int     position = find_table_space (state, transnum);
768
769	/* "base" is the table of start positions. */
770	base[statenum] = position;
771
772	/* Put in action number marker; this non-zero number makes sure that
773	 * find_table_space() knows that this position in chk/nxt is taken
774	 * and should not be used for another accepting number in another
775	 * state.
776	 */
777	chk[position - 1] = 1;
778
779	/* Put in end-of-buffer marker; this is for the same purposes as
780	 * above.
781	 */
782	chk[position] = 1;
783
784	/* Place the state into chk and nxt. */
785	state_ptr = &state[1];
786
787	for (i = 1; i <= numecs; ++i, ++state_ptr)
788		if (*state_ptr != 0) {
789			chk[position + i] = i;
790			nxt[position + i] = *state_ptr;
791		}
792
793	if (position + numecs > tblend)
794		tblend = position + numecs;
795}
796
797
798/* stack1 - save states with only one out-transition to be processed later
799 *
800 * If there's room for another state on the "one-transition" stack, the
801 * state is pushed onto it, to be processed later by mk1tbl.  If there's
802 * no room, we process the sucker right now.
803 */
804
805void    stack1 (statenum, sym, nextstate, deflink)
806     int     statenum, sym, nextstate, deflink;
807{
808	if (onesp >= ONE_STACK_SIZE - 1)
809		mk1tbl (statenum, sym, nextstate, deflink);
810
811	else {
812		++onesp;
813		onestate[onesp] = statenum;
814		onesym[onesp] = sym;
815		onenext[onesp] = nextstate;
816		onedef[onesp] = deflink;
817	}
818}
819
820
821/* tbldiff - compute differences between two state tables
822 *
823 * "state" is the state array which is to be extracted from the pr'th
824 * proto.  "pr" is both the number of the proto we are extracting from
825 * and an index into the save area where we can find the proto's complete
826 * state table.  Each entry in "state" which differs from the corresponding
827 * entry of "pr" will appear in "ext".
828 *
829 * Entries which are the same in both "state" and "pr" will be marked
830 * as transitions to "SAME_TRANS" in "ext".  The total number of differences
831 * between "state" and "pr" is returned as function value.  Note that this
832 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
833 */
834
835int     tbldiff (state, pr, ext)
836     int     state[], pr, ext[];
837{
838	int i, *sp = state, *ep = ext, *protp;
839	int numdiff = 0;
840
841	protp = &protsave[numecs * (pr - 1)];
842
843	for (i = numecs; i > 0; --i) {
844		if (*++protp == *++sp)
845			*++ep = SAME_TRANS;
846		else {
847			*++ep = *sp;
848			++numdiff;
849		}
850	}
851
852	return numdiff;
853}
854