1/*	$NetBSD: ffs_alloc.c,v 1.14 2004/06/20 22:20:18 jmc Exp $	*/
2/* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4/*
5 * Copyright (c) 2002 Networks Associates Technology, Inc.
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Marshall
9 * Kirk McKusick and Network Associates Laboratories, the Security
10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12 * research program
13 *
14 * Copyright (c) 1982, 1986, 1989, 1993
15 *	The Regents of the University of California.  All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
42 */
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: releng/10.2/usr.sbin/makefs/ffs/ffs_alloc.c 241015 2012-09-27 23:31:19Z mdf $");
46
47#include <sys/param.h>
48#include <sys/time.h>
49
50#include <errno.h>
51#include <stdint.h>
52
53#include "makefs.h"
54
55#include <ufs/ufs/dinode.h>
56#include <ufs/ffs/fs.h>
57
58#include "ffs/ufs_bswap.h"
59#include "ffs/buf.h"
60#include "ffs/ufs_inode.h"
61#include "ffs/ffs_extern.h"
62
63static int scanc(u_int, const u_char *, const u_char *, int);
64
65static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
66static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
67static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
68		     daddr_t (*)(struct inode *, int, daddr_t, int));
69static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
70
71/*
72 * Allocate a block in the file system.
73 *
74 * The size of the requested block is given, which must be some
75 * multiple of fs_fsize and <= fs_bsize.
76 * A preference may be optionally specified. If a preference is given
77 * the following hierarchy is used to allocate a block:
78 *   1) allocate the requested block.
79 *   2) allocate a rotationally optimal block in the same cylinder.
80 *   3) allocate a block in the same cylinder group.
81 *   4) quadradically rehash into other cylinder groups, until an
82 *      available block is located.
83 * If no block preference is given the following hierarchy is used
84 * to allocate a block:
85 *   1) allocate a block in the cylinder group that contains the
86 *      inode for the file.
87 *   2) quadradically rehash into other cylinder groups, until an
88 *      available block is located.
89 */
90int
91ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
92    daddr_t *bnp)
93{
94	struct fs *fs = ip->i_fs;
95	daddr_t bno;
96	int cg;
97
98	*bnp = 0;
99	if (size > fs->fs_bsize || fragoff(fs, size) != 0) {
100		errx(1, "ffs_alloc: bad size: bsize %d size %d",
101		    fs->fs_bsize, size);
102	}
103	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
104		goto nospace;
105	if (bpref >= fs->fs_size)
106		bpref = 0;
107	if (bpref == 0)
108		cg = ino_to_cg(fs, ip->i_number);
109	else
110		cg = dtog(fs, bpref);
111	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
112	if (bno > 0) {
113		if (ip->i_fs->fs_magic == FS_UFS1_MAGIC)
114			ip->i_ffs1_blocks += size / DEV_BSIZE;
115		else
116			ip->i_ffs2_blocks += size / DEV_BSIZE;
117		*bnp = bno;
118		return (0);
119	}
120nospace:
121	return (ENOSPC);
122}
123
124/*
125 * Select the desired position for the next block in a file.  The file is
126 * logically divided into sections. The first section is composed of the
127 * direct blocks. Each additional section contains fs_maxbpg blocks.
128 *
129 * If no blocks have been allocated in the first section, the policy is to
130 * request a block in the same cylinder group as the inode that describes
131 * the file. If no blocks have been allocated in any other section, the
132 * policy is to place the section in a cylinder group with a greater than
133 * average number of free blocks.  An appropriate cylinder group is found
134 * by using a rotor that sweeps the cylinder groups. When a new group of
135 * blocks is needed, the sweep begins in the cylinder group following the
136 * cylinder group from which the previous allocation was made. The sweep
137 * continues until a cylinder group with greater than the average number
138 * of free blocks is found. If the allocation is for the first block in an
139 * indirect block, the information on the previous allocation is unavailable;
140 * here a best guess is made based upon the logical block number being
141 * allocated.
142 *
143 * If a section is already partially allocated, the policy is to
144 * contiguously allocate fs_maxcontig blocks.  The end of one of these
145 * contiguous blocks and the beginning of the next is physically separated
146 * so that the disk head will be in transit between them for at least
147 * fs_rotdelay milliseconds.  This is to allow time for the processor to
148 * schedule another I/O transfer.
149 */
150/* XXX ondisk32 */
151daddr_t
152ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
153{
154	struct fs *fs;
155	int cg;
156	int avgbfree, startcg;
157
158	fs = ip->i_fs;
159	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
160		if (lbn < NDADDR + NINDIR(fs)) {
161			cg = ino_to_cg(fs, ip->i_number);
162			return (fs->fs_fpg * cg + fs->fs_frag);
163		}
164		/*
165		 * Find a cylinder with greater than average number of
166		 * unused data blocks.
167		 */
168		if (indx == 0 || bap[indx - 1] == 0)
169			startcg =
170			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
171		else
172			startcg = dtog(fs,
173				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
174		startcg %= fs->fs_ncg;
175		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
176		for (cg = startcg; cg < fs->fs_ncg; cg++)
177			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
178				return (fs->fs_fpg * cg + fs->fs_frag);
179		for (cg = 0; cg <= startcg; cg++)
180			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
181				return (fs->fs_fpg * cg + fs->fs_frag);
182		return (0);
183	}
184	/*
185	 * We just always try to lay things out contiguously.
186	 */
187	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
188}
189
190daddr_t
191ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
192{
193	struct fs *fs;
194	int cg;
195	int avgbfree, startcg;
196
197	fs = ip->i_fs;
198	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
199		if (lbn < NDADDR + NINDIR(fs)) {
200			cg = ino_to_cg(fs, ip->i_number);
201			return (fs->fs_fpg * cg + fs->fs_frag);
202		}
203		/*
204		 * Find a cylinder with greater than average number of
205		 * unused data blocks.
206		 */
207		if (indx == 0 || bap[indx - 1] == 0)
208			startcg =
209			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
210		else
211			startcg = dtog(fs,
212				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
213		startcg %= fs->fs_ncg;
214		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
215		for (cg = startcg; cg < fs->fs_ncg; cg++)
216			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
217				return (fs->fs_fpg * cg + fs->fs_frag);
218			}
219		for (cg = 0; cg < startcg; cg++)
220			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
221				return (fs->fs_fpg * cg + fs->fs_frag);
222			}
223		return (0);
224	}
225	/*
226	 * We just always try to lay things out contiguously.
227	 */
228	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
229}
230
231/*
232 * Implement the cylinder overflow algorithm.
233 *
234 * The policy implemented by this algorithm is:
235 *   1) allocate the block in its requested cylinder group.
236 *   2) quadradically rehash on the cylinder group number.
237 *   3) brute force search for a free block.
238 *
239 * `size':	size for data blocks, mode for inodes
240 */
241/*VARARGS5*/
242static daddr_t
243ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
244    daddr_t (*allocator)(struct inode *, int, daddr_t, int))
245{
246	struct fs *fs;
247	daddr_t result;
248	int i, icg = cg;
249
250	fs = ip->i_fs;
251	/*
252	 * 1: preferred cylinder group
253	 */
254	result = (*allocator)(ip, cg, pref, size);
255	if (result)
256		return (result);
257	/*
258	 * 2: quadratic rehash
259	 */
260	for (i = 1; i < fs->fs_ncg; i *= 2) {
261		cg += i;
262		if (cg >= fs->fs_ncg)
263			cg -= fs->fs_ncg;
264		result = (*allocator)(ip, cg, 0, size);
265		if (result)
266			return (result);
267	}
268	/*
269	 * 3: brute force search
270	 * Note that we start at i == 2, since 0 was checked initially,
271	 * and 1 is always checked in the quadratic rehash.
272	 */
273	cg = (icg + 2) % fs->fs_ncg;
274	for (i = 2; i < fs->fs_ncg; i++) {
275		result = (*allocator)(ip, cg, 0, size);
276		if (result)
277			return (result);
278		cg++;
279		if (cg == fs->fs_ncg)
280			cg = 0;
281	}
282	return (0);
283}
284
285/*
286 * Determine whether a block can be allocated.
287 *
288 * Check to see if a block of the appropriate size is available,
289 * and if it is, allocate it.
290 */
291static daddr_t
292ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
293{
294	struct cg *cgp;
295	struct buf *bp;
296	daddr_t bno, blkno;
297	int error, frags, allocsiz, i;
298	struct fs *fs = ip->i_fs;
299	const int needswap = UFS_FSNEEDSWAP(fs);
300
301	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
302		return (0);
303	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
304		(int)fs->fs_cgsize, &bp);
305	if (error) {
306		brelse(bp);
307		return (0);
308	}
309	cgp = (struct cg *)bp->b_data;
310	if (!cg_chkmagic_swap(cgp, needswap) ||
311	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
312		brelse(bp);
313		return (0);
314	}
315	if (size == fs->fs_bsize) {
316		bno = ffs_alloccgblk(ip, bp, bpref);
317		bdwrite(bp);
318		return (bno);
319	}
320	/*
321	 * check to see if any fragments are already available
322	 * allocsiz is the size which will be allocated, hacking
323	 * it down to a smaller size if necessary
324	 */
325	frags = numfrags(fs, size);
326	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
327		if (cgp->cg_frsum[allocsiz] != 0)
328			break;
329	if (allocsiz == fs->fs_frag) {
330		/*
331		 * no fragments were available, so a block will be
332		 * allocated, and hacked up
333		 */
334		if (cgp->cg_cs.cs_nbfree == 0) {
335			brelse(bp);
336			return (0);
337		}
338		bno = ffs_alloccgblk(ip, bp, bpref);
339		bpref = dtogd(fs, bno);
340		for (i = frags; i < fs->fs_frag; i++)
341			setbit(cg_blksfree_swap(cgp, needswap), bpref + i);
342		i = fs->fs_frag - frags;
343		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
344		fs->fs_cstotal.cs_nffree += i;
345		fs->fs_cs(fs, cg).cs_nffree += i;
346		fs->fs_fmod = 1;
347		ufs_add32(cgp->cg_frsum[i], 1, needswap);
348		bdwrite(bp);
349		return (bno);
350	}
351	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
352	for (i = 0; i < frags; i++)
353		clrbit(cg_blksfree_swap(cgp, needswap), bno + i);
354	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
355	fs->fs_cstotal.cs_nffree -= frags;
356	fs->fs_cs(fs, cg).cs_nffree -= frags;
357	fs->fs_fmod = 1;
358	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
359	if (frags != allocsiz)
360		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
361	blkno = cg * fs->fs_fpg + bno;
362	bdwrite(bp);
363	return blkno;
364}
365
366/*
367 * Allocate a block in a cylinder group.
368 *
369 * This algorithm implements the following policy:
370 *   1) allocate the requested block.
371 *   2) allocate a rotationally optimal block in the same cylinder.
372 *   3) allocate the next available block on the block rotor for the
373 *      specified cylinder group.
374 * Note that this routine only allocates fs_bsize blocks; these
375 * blocks may be fragmented by the routine that allocates them.
376 */
377static daddr_t
378ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
379{
380	struct cg *cgp;
381	daddr_t blkno;
382	int32_t bno;
383	struct fs *fs = ip->i_fs;
384	const int needswap = UFS_FSNEEDSWAP(fs);
385	u_int8_t *blksfree_swap;
386
387	cgp = (struct cg *)bp->b_data;
388	blksfree_swap = cg_blksfree_swap(cgp, needswap);
389	if (bpref == 0 || (uint32_t)dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
390		bpref = ufs_rw32(cgp->cg_rotor, needswap);
391	} else {
392		bpref = blknum(fs, bpref);
393		bno = dtogd(fs, bpref);
394		/*
395		 * if the requested block is available, use it
396		 */
397		if (ffs_isblock(fs, blksfree_swap, fragstoblks(fs, bno)))
398			goto gotit;
399	}
400	/*
401	 * Take the next available one in this cylinder group.
402	 */
403	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
404	if (bno < 0)
405		return (0);
406	cgp->cg_rotor = ufs_rw32(bno, needswap);
407gotit:
408	blkno = fragstoblks(fs, bno);
409	ffs_clrblock(fs, blksfree_swap, (long)blkno);
410	ffs_clusteracct(fs, cgp, blkno, -1);
411	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
412	fs->fs_cstotal.cs_nbfree--;
413	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
414	fs->fs_fmod = 1;
415	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
416	return (blkno);
417}
418
419/*
420 * Free a block or fragment.
421 *
422 * The specified block or fragment is placed back in the
423 * free map. If a fragment is deallocated, a possible
424 * block reassembly is checked.
425 */
426void
427ffs_blkfree(struct inode *ip, daddr_t bno, long size)
428{
429	struct cg *cgp;
430	struct buf *bp;
431	int32_t fragno, cgbno;
432	int i, error, cg, blk, frags, bbase;
433	struct fs *fs = ip->i_fs;
434	const int needswap = UFS_FSNEEDSWAP(fs);
435
436	if (size > fs->fs_bsize || fragoff(fs, size) != 0 ||
437	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
438		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
439		    (long long)bno, fs->fs_bsize, size);
440	}
441	cg = dtog(fs, bno);
442	if (bno >= fs->fs_size) {
443		warnx("bad block %lld, ino %ju", (long long)bno,
444		    (uintmax_t)ip->i_number);
445		return;
446	}
447	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
448		(int)fs->fs_cgsize, &bp);
449	if (error) {
450		brelse(bp);
451		return;
452	}
453	cgp = (struct cg *)bp->b_data;
454	if (!cg_chkmagic_swap(cgp, needswap)) {
455		brelse(bp);
456		return;
457	}
458	cgbno = dtogd(fs, bno);
459	if (size == fs->fs_bsize) {
460		fragno = fragstoblks(fs, cgbno);
461		if (!ffs_isfreeblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
462			errx(1, "blkfree: freeing free block %lld",
463			    (long long)bno);
464		}
465		ffs_setblock(fs, cg_blksfree_swap(cgp, needswap), fragno);
466		ffs_clusteracct(fs, cgp, fragno, 1);
467		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
468		fs->fs_cstotal.cs_nbfree++;
469		fs->fs_cs(fs, cg).cs_nbfree++;
470	} else {
471		bbase = cgbno - fragnum(fs, cgbno);
472		/*
473		 * decrement the counts associated with the old frags
474		 */
475		blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
476		ffs_fragacct_swap(fs, blk, cgp->cg_frsum, -1, needswap);
477		/*
478		 * deallocate the fragment
479		 */
480		frags = numfrags(fs, size);
481		for (i = 0; i < frags; i++) {
482			if (isset(cg_blksfree_swap(cgp, needswap), cgbno + i)) {
483				errx(1, "blkfree: freeing free frag: block %lld",
484				    (long long)(cgbno + i));
485			}
486			setbit(cg_blksfree_swap(cgp, needswap), cgbno + i);
487		}
488		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
489		fs->fs_cstotal.cs_nffree += i;
490		fs->fs_cs(fs, cg).cs_nffree += i;
491		/*
492		 * add back in counts associated with the new frags
493		 */
494		blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
495		ffs_fragacct_swap(fs, blk, cgp->cg_frsum, 1, needswap);
496		/*
497		 * if a complete block has been reassembled, account for it
498		 */
499		fragno = fragstoblks(fs, bbase);
500		if (ffs_isblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
501			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
502			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
503			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
504			ffs_clusteracct(fs, cgp, fragno, 1);
505			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
506			fs->fs_cstotal.cs_nbfree++;
507			fs->fs_cs(fs, cg).cs_nbfree++;
508		}
509	}
510	fs->fs_fmod = 1;
511	bdwrite(bp);
512}
513
514
515static int
516scanc(u_int size, const u_char *cp, const u_char table[], int mask)
517{
518	const u_char *end = &cp[size];
519
520	while (cp < end && (table[*cp] & mask) == 0)
521		cp++;
522	return (end - cp);
523}
524
525/*
526 * Find a block of the specified size in the specified cylinder group.
527 *
528 * It is a panic if a request is made to find a block if none are
529 * available.
530 */
531static int32_t
532ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
533{
534	int32_t bno;
535	int start, len, loc, i;
536	int blk, field, subfield, pos;
537	int ostart, olen;
538	const int needswap = UFS_FSNEEDSWAP(fs);
539
540	/*
541	 * find the fragment by searching through the free block
542	 * map for an appropriate bit pattern
543	 */
544	if (bpref)
545		start = dtogd(fs, bpref) / NBBY;
546	else
547		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
548	len = howmany(fs->fs_fpg, NBBY) - start;
549	ostart = start;
550	olen = len;
551	loc = scanc((u_int)len,
552		(const u_char *)&cg_blksfree_swap(cgp, needswap)[start],
553		(const u_char *)fragtbl[fs->fs_frag],
554		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
555	if (loc == 0) {
556		len = start + 1;
557		start = 0;
558		loc = scanc((u_int)len,
559			(const u_char *)&cg_blksfree_swap(cgp, needswap)[0],
560			(const u_char *)fragtbl[fs->fs_frag],
561			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
562		if (loc == 0) {
563			errx(1,
564    "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
565				ostart, olen,
566				ufs_rw32(cgp->cg_freeoff, needswap),
567				(long)cg_blksfree_swap(cgp, needswap) - (long)cgp);
568			/* NOTREACHED */
569		}
570	}
571	bno = (start + len - loc) * NBBY;
572	cgp->cg_frotor = ufs_rw32(bno, needswap);
573	/*
574	 * found the byte in the map
575	 * sift through the bits to find the selected frag
576	 */
577	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
578		blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bno);
579		blk <<= 1;
580		field = around[allocsiz];
581		subfield = inside[allocsiz];
582		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
583			if ((blk & field) == subfield)
584				return (bno + pos);
585			field <<= 1;
586			subfield <<= 1;
587		}
588	}
589	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
590	return (-1);
591}
592
593/*
594 * Update the cluster map because of an allocation or free.
595 *
596 * Cnt == 1 means free; cnt == -1 means allocating.
597 */
598void
599ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
600{
601	int32_t *sump;
602	int32_t *lp;
603	u_char *freemapp, *mapp;
604	int i, start, end, forw, back, map, bit;
605	const int needswap = UFS_FSNEEDSWAP(fs);
606
607	if (fs->fs_contigsumsize <= 0)
608		return;
609	freemapp = cg_clustersfree_swap(cgp, needswap);
610	sump = cg_clustersum_swap(cgp, needswap);
611	/*
612	 * Allocate or clear the actual block.
613	 */
614	if (cnt > 0)
615		setbit(freemapp, blkno);
616	else
617		clrbit(freemapp, blkno);
618	/*
619	 * Find the size of the cluster going forward.
620	 */
621	start = blkno + 1;
622	end = start + fs->fs_contigsumsize;
623	if ((unsigned)end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
624		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
625	mapp = &freemapp[start / NBBY];
626	map = *mapp++;
627	bit = 1 << (start % NBBY);
628	for (i = start; i < end; i++) {
629		if ((map & bit) == 0)
630			break;
631		if ((i & (NBBY - 1)) != (NBBY - 1)) {
632			bit <<= 1;
633		} else {
634			map = *mapp++;
635			bit = 1;
636		}
637	}
638	forw = i - start;
639	/*
640	 * Find the size of the cluster going backward.
641	 */
642	start = blkno - 1;
643	end = start - fs->fs_contigsumsize;
644	if (end < 0)
645		end = -1;
646	mapp = &freemapp[start / NBBY];
647	map = *mapp--;
648	bit = 1 << (start % NBBY);
649	for (i = start; i > end; i--) {
650		if ((map & bit) == 0)
651			break;
652		if ((i & (NBBY - 1)) != 0) {
653			bit >>= 1;
654		} else {
655			map = *mapp--;
656			bit = 1 << (NBBY - 1);
657		}
658	}
659	back = start - i;
660	/*
661	 * Account for old cluster and the possibly new forward and
662	 * back clusters.
663	 */
664	i = back + forw + 1;
665	if (i > fs->fs_contigsumsize)
666		i = fs->fs_contigsumsize;
667	ufs_add32(sump[i], cnt, needswap);
668	if (back > 0)
669		ufs_add32(sump[back], -cnt, needswap);
670	if (forw > 0)
671		ufs_add32(sump[forw], -cnt, needswap);
672
673	/*
674	 * Update cluster summary information.
675	 */
676	lp = &sump[fs->fs_contigsumsize];
677	for (i = fs->fs_contigsumsize; i > 0; i--)
678		if (ufs_rw32(*lp--, needswap) > 0)
679			break;
680	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
681}
682