1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include "opt_witness.h"
30#include "opt_kdtrace.h"
31#include "opt_hwpmc_hooks.h"
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: releng/10.2/sys/kern/kern_thread.c 283765 2015-05-30 08:54:42Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/rangelock.h>
43#include <sys/resourcevar.h>
44#include <sys/sdt.h>
45#include <sys/smp.h>
46#include <sys/sched.h>
47#include <sys/sleepqueue.h>
48#include <sys/selinfo.h>
49#include <sys/turnstile.h>
50#include <sys/ktr.h>
51#include <sys/rwlock.h>
52#include <sys/umtx.h>
53#include <sys/cpuset.h>
54#ifdef	HWPMC_HOOKS
55#include <sys/pmckern.h>
56#endif
57
58#include <security/audit/audit.h>
59
60#include <vm/vm.h>
61#include <vm/vm_extern.h>
62#include <vm/uma.h>
63#include <sys/eventhandler.h>
64
65SDT_PROVIDER_DECLARE(proc);
66SDT_PROBE_DEFINE(proc, , , lwp__exit);
67
68/*
69 * thread related storage.
70 */
71static uma_zone_t thread_zone;
72
73TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74static struct mtx zombie_lock;
75MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77static void thread_zombie(struct thread *);
78static int thread_unsuspend_one(struct thread *td, struct proc *p,
79    bool boundary);
80
81#define TID_BUFFER_SIZE	1024
82
83struct mtx tid_lock;
84static struct unrhdr *tid_unrhdr;
85static lwpid_t tid_buffer[TID_BUFFER_SIZE];
86static int tid_head, tid_tail;
87static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
88
89struct	tidhashhead *tidhashtbl;
90u_long	tidhash;
91struct	rwlock tidhash_lock;
92
93static lwpid_t
94tid_alloc(void)
95{
96	lwpid_t	tid;
97
98	tid = alloc_unr(tid_unrhdr);
99	if (tid != -1)
100		return (tid);
101	mtx_lock(&tid_lock);
102	if (tid_head == tid_tail) {
103		mtx_unlock(&tid_lock);
104		return (-1);
105	}
106	tid = tid_buffer[tid_head];
107	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
108	mtx_unlock(&tid_lock);
109	return (tid);
110}
111
112static void
113tid_free(lwpid_t tid)
114{
115	lwpid_t tmp_tid = -1;
116
117	mtx_lock(&tid_lock);
118	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
119		tmp_tid = tid_buffer[tid_head];
120		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
121	}
122	tid_buffer[tid_tail] = tid;
123	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
124	mtx_unlock(&tid_lock);
125	if (tmp_tid != -1)
126		free_unr(tid_unrhdr, tmp_tid);
127}
128
129/*
130 * Prepare a thread for use.
131 */
132static int
133thread_ctor(void *mem, int size, void *arg, int flags)
134{
135	struct thread	*td;
136
137	td = (struct thread *)mem;
138	td->td_state = TDS_INACTIVE;
139	td->td_oncpu = NOCPU;
140
141	td->td_tid = tid_alloc();
142
143	/*
144	 * Note that td_critnest begins life as 1 because the thread is not
145	 * running and is thereby implicitly waiting to be on the receiving
146	 * end of a context switch.
147	 */
148	td->td_critnest = 1;
149	td->td_lend_user_pri = PRI_MAX;
150	EVENTHANDLER_INVOKE(thread_ctor, td);
151#ifdef AUDIT
152	audit_thread_alloc(td);
153#endif
154	umtx_thread_alloc(td);
155	return (0);
156}
157
158/*
159 * Reclaim a thread after use.
160 */
161static void
162thread_dtor(void *mem, int size, void *arg)
163{
164	struct thread *td;
165
166	td = (struct thread *)mem;
167
168#ifdef INVARIANTS
169	/* Verify that this thread is in a safe state to free. */
170	switch (td->td_state) {
171	case TDS_INHIBITED:
172	case TDS_RUNNING:
173	case TDS_CAN_RUN:
174	case TDS_RUNQ:
175		/*
176		 * We must never unlink a thread that is in one of
177		 * these states, because it is currently active.
178		 */
179		panic("bad state for thread unlinking");
180		/* NOTREACHED */
181	case TDS_INACTIVE:
182		break;
183	default:
184		panic("bad thread state");
185		/* NOTREACHED */
186	}
187#endif
188#ifdef AUDIT
189	audit_thread_free(td);
190#endif
191	/* Free all OSD associated to this thread. */
192	osd_thread_exit(td);
193
194	EVENTHANDLER_INVOKE(thread_dtor, td);
195	tid_free(td->td_tid);
196}
197
198/*
199 * Initialize type-stable parts of a thread (when newly created).
200 */
201static int
202thread_init(void *mem, int size, int flags)
203{
204	struct thread *td;
205
206	td = (struct thread *)mem;
207
208	td->td_sleepqueue = sleepq_alloc();
209	td->td_turnstile = turnstile_alloc();
210	td->td_rlqe = NULL;
211	EVENTHANDLER_INVOKE(thread_init, td);
212	td->td_sched = (struct td_sched *)&td[1];
213	umtx_thread_init(td);
214	td->td_kstack = 0;
215	td->td_sel = NULL;
216	return (0);
217}
218
219/*
220 * Tear down type-stable parts of a thread (just before being discarded).
221 */
222static void
223thread_fini(void *mem, int size)
224{
225	struct thread *td;
226
227	td = (struct thread *)mem;
228	EVENTHANDLER_INVOKE(thread_fini, td);
229	rlqentry_free(td->td_rlqe);
230	turnstile_free(td->td_turnstile);
231	sleepq_free(td->td_sleepqueue);
232	umtx_thread_fini(td);
233	seltdfini(td);
234}
235
236/*
237 * For a newly created process,
238 * link up all the structures and its initial threads etc.
239 * called from:
240 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
241 * proc_dtor() (should go away)
242 * proc_init()
243 */
244void
245proc_linkup0(struct proc *p, struct thread *td)
246{
247	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
248	proc_linkup(p, td);
249}
250
251void
252proc_linkup(struct proc *p, struct thread *td)
253{
254
255	sigqueue_init(&p->p_sigqueue, p);
256	p->p_ksi = ksiginfo_alloc(1);
257	if (p->p_ksi != NULL) {
258		/* XXX p_ksi may be null if ksiginfo zone is not ready */
259		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
260	}
261	LIST_INIT(&p->p_mqnotifier);
262	p->p_numthreads = 0;
263	thread_link(td, p);
264}
265
266/*
267 * Initialize global thread allocation resources.
268 */
269void
270threadinit(void)
271{
272
273	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
274
275	/*
276	 * pid_max cannot be greater than PID_MAX.
277	 * leave one number for thread0.
278	 */
279	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
280
281	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
282	    thread_ctor, thread_dtor, thread_init, thread_fini,
283	    16 - 1, 0);
284	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
285	rw_init(&tidhash_lock, "tidhash");
286}
287
288/*
289 * Place an unused thread on the zombie list.
290 * Use the slpq as that must be unused by now.
291 */
292void
293thread_zombie(struct thread *td)
294{
295	mtx_lock_spin(&zombie_lock);
296	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
297	mtx_unlock_spin(&zombie_lock);
298}
299
300/*
301 * Release a thread that has exited after cpu_throw().
302 */
303void
304thread_stash(struct thread *td)
305{
306	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
307	thread_zombie(td);
308}
309
310/*
311 * Reap zombie resources.
312 */
313void
314thread_reap(void)
315{
316	struct thread *td_first, *td_next;
317
318	/*
319	 * Don't even bother to lock if none at this instant,
320	 * we really don't care about the next instant..
321	 */
322	if (!TAILQ_EMPTY(&zombie_threads)) {
323		mtx_lock_spin(&zombie_lock);
324		td_first = TAILQ_FIRST(&zombie_threads);
325		if (td_first)
326			TAILQ_INIT(&zombie_threads);
327		mtx_unlock_spin(&zombie_lock);
328		while (td_first) {
329			td_next = TAILQ_NEXT(td_first, td_slpq);
330			if (td_first->td_ucred)
331				crfree(td_first->td_ucred);
332			thread_free(td_first);
333			td_first = td_next;
334		}
335	}
336}
337
338/*
339 * Allocate a thread.
340 */
341struct thread *
342thread_alloc(int pages)
343{
344	struct thread *td;
345
346	thread_reap(); /* check if any zombies to get */
347
348	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
349	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
350	if (!vm_thread_new(td, pages)) {
351		uma_zfree(thread_zone, td);
352		return (NULL);
353	}
354	cpu_thread_alloc(td);
355	return (td);
356}
357
358int
359thread_alloc_stack(struct thread *td, int pages)
360{
361
362	KASSERT(td->td_kstack == 0,
363	    ("thread_alloc_stack called on a thread with kstack"));
364	if (!vm_thread_new(td, pages))
365		return (0);
366	cpu_thread_alloc(td);
367	return (1);
368}
369
370/*
371 * Deallocate a thread.
372 */
373void
374thread_free(struct thread *td)
375{
376
377	lock_profile_thread_exit(td);
378	if (td->td_cpuset)
379		cpuset_rel(td->td_cpuset);
380	td->td_cpuset = NULL;
381	cpu_thread_free(td);
382	if (td->td_kstack != 0)
383		vm_thread_dispose(td);
384	uma_zfree(thread_zone, td);
385}
386
387/*
388 * Discard the current thread and exit from its context.
389 * Always called with scheduler locked.
390 *
391 * Because we can't free a thread while we're operating under its context,
392 * push the current thread into our CPU's deadthread holder. This means
393 * we needn't worry about someone else grabbing our context before we
394 * do a cpu_throw().
395 */
396void
397thread_exit(void)
398{
399	uint64_t runtime, new_switchtime;
400	struct thread *td;
401	struct thread *td2;
402	struct proc *p;
403	int wakeup_swapper;
404
405	td = curthread;
406	p = td->td_proc;
407
408	PROC_SLOCK_ASSERT(p, MA_OWNED);
409	mtx_assert(&Giant, MA_NOTOWNED);
410
411	PROC_LOCK_ASSERT(p, MA_OWNED);
412	KASSERT(p != NULL, ("thread exiting without a process"));
413	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
414	    (long)p->p_pid, td->td_name);
415	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
416
417#ifdef AUDIT
418	AUDIT_SYSCALL_EXIT(0, td);
419#endif
420	/*
421	 * drop FPU & debug register state storage, or any other
422	 * architecture specific resources that
423	 * would not be on a new untouched process.
424	 */
425	cpu_thread_exit(td);	/* XXXSMP */
426
427	/*
428	 * The last thread is left attached to the process
429	 * So that the whole bundle gets recycled. Skip
430	 * all this stuff if we never had threads.
431	 * EXIT clears all sign of other threads when
432	 * it goes to single threading, so the last thread always
433	 * takes the short path.
434	 */
435	if (p->p_flag & P_HADTHREADS) {
436		if (p->p_numthreads > 1) {
437			atomic_add_int(&td->td_proc->p_exitthreads, 1);
438			thread_unlink(td);
439			td2 = FIRST_THREAD_IN_PROC(p);
440			sched_exit_thread(td2, td);
441
442			/*
443			 * The test below is NOT true if we are the
444			 * sole exiting thread. P_STOPPED_SINGLE is unset
445			 * in exit1() after it is the only survivor.
446			 */
447			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
448				if (p->p_numthreads == p->p_suspcount) {
449					thread_lock(p->p_singlethread);
450					wakeup_swapper = thread_unsuspend_one(
451						p->p_singlethread, p, false);
452					thread_unlock(p->p_singlethread);
453					if (wakeup_swapper)
454						kick_proc0();
455				}
456			}
457
458			PCPU_SET(deadthread, td);
459		} else {
460			/*
461			 * The last thread is exiting.. but not through exit()
462			 */
463			panic ("thread_exit: Last thread exiting on its own");
464		}
465	}
466#ifdef	HWPMC_HOOKS
467	/*
468	 * If this thread is part of a process that is being tracked by hwpmc(4),
469	 * inform the module of the thread's impending exit.
470	 */
471	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
472		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
473#endif
474	PROC_UNLOCK(p);
475
476	/* Do the same timestamp bookkeeping that mi_switch() would do. */
477	new_switchtime = cpu_ticks();
478	runtime = new_switchtime - PCPU_GET(switchtime);
479	td->td_runtime += runtime;
480	td->td_incruntime += runtime;
481	PCPU_SET(switchtime, new_switchtime);
482	PCPU_SET(switchticks, ticks);
483	PCPU_INC(cnt.v_swtch);
484
485	/* Save our resource usage in our process. */
486	td->td_ru.ru_nvcsw++;
487	ruxagg(p, td);
488	rucollect(&p->p_ru, &td->td_ru);
489
490	thread_lock(td);
491	PROC_SUNLOCK(p);
492	td->td_state = TDS_INACTIVE;
493#ifdef WITNESS
494	witness_thread_exit(td);
495#endif
496	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
497	sched_throw(td);
498	panic("I'm a teapot!");
499	/* NOTREACHED */
500}
501
502/*
503 * Do any thread specific cleanups that may be needed in wait()
504 * called with Giant, proc and schedlock not held.
505 */
506void
507thread_wait(struct proc *p)
508{
509	struct thread *td;
510
511	mtx_assert(&Giant, MA_NOTOWNED);
512	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
513	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
514	td = FIRST_THREAD_IN_PROC(p);
515	/* Lock the last thread so we spin until it exits cpu_throw(). */
516	thread_lock(td);
517	thread_unlock(td);
518	lock_profile_thread_exit(td);
519	cpuset_rel(td->td_cpuset);
520	td->td_cpuset = NULL;
521	cpu_thread_clean(td);
522	crfree(td->td_ucred);
523	thread_reap();	/* check for zombie threads etc. */
524}
525
526/*
527 * Link a thread to a process.
528 * set up anything that needs to be initialized for it to
529 * be used by the process.
530 */
531void
532thread_link(struct thread *td, struct proc *p)
533{
534
535	/*
536	 * XXX This can't be enabled because it's called for proc0 before
537	 * its lock has been created.
538	 * PROC_LOCK_ASSERT(p, MA_OWNED);
539	 */
540	td->td_state    = TDS_INACTIVE;
541	td->td_proc     = p;
542	td->td_flags    = TDF_INMEM;
543
544	LIST_INIT(&td->td_contested);
545	LIST_INIT(&td->td_lprof[0]);
546	LIST_INIT(&td->td_lprof[1]);
547	sigqueue_init(&td->td_sigqueue, p);
548	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
549	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
550	p->p_numthreads++;
551}
552
553/*
554 * Called from:
555 *  thread_exit()
556 */
557void
558thread_unlink(struct thread *td)
559{
560	struct proc *p = td->td_proc;
561
562	PROC_LOCK_ASSERT(p, MA_OWNED);
563	TAILQ_REMOVE(&p->p_threads, td, td_plist);
564	p->p_numthreads--;
565	/* could clear a few other things here */
566	/* Must  NOT clear links to proc! */
567}
568
569static int
570calc_remaining(struct proc *p, int mode)
571{
572	int remaining;
573
574	PROC_LOCK_ASSERT(p, MA_OWNED);
575	PROC_SLOCK_ASSERT(p, MA_OWNED);
576	if (mode == SINGLE_EXIT)
577		remaining = p->p_numthreads;
578	else if (mode == SINGLE_BOUNDARY)
579		remaining = p->p_numthreads - p->p_boundary_count;
580	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
581		remaining = p->p_numthreads - p->p_suspcount;
582	else
583		panic("calc_remaining: wrong mode %d", mode);
584	return (remaining);
585}
586
587static int
588remain_for_mode(int mode)
589{
590
591	return (mode == SINGLE_ALLPROC ? 0 : 1);
592}
593
594static int
595weed_inhib(int mode, struct thread *td2, struct proc *p)
596{
597	int wakeup_swapper;
598
599	PROC_LOCK_ASSERT(p, MA_OWNED);
600	PROC_SLOCK_ASSERT(p, MA_OWNED);
601	THREAD_LOCK_ASSERT(td2, MA_OWNED);
602
603	wakeup_swapper = 0;
604	switch (mode) {
605	case SINGLE_EXIT:
606		if (TD_IS_SUSPENDED(td2))
607			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
608		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
609			wakeup_swapper |= sleepq_abort(td2, EINTR);
610		break;
611	case SINGLE_BOUNDARY:
612		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
613			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
614		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
615			wakeup_swapper |= sleepq_abort(td2, ERESTART);
616		break;
617	case SINGLE_NO_EXIT:
618		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
619			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
620		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
621			wakeup_swapper |= sleepq_abort(td2, ERESTART);
622		break;
623	case SINGLE_ALLPROC:
624		/*
625		 * ALLPROC suspend tries to avoid spurious EINTR for
626		 * threads sleeping interruptable, by suspending the
627		 * thread directly, similarly to sig_suspend_threads().
628		 * Since such sleep is not performed at the user
629		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
630		 * is used to avoid immediate un-suspend.
631		 */
632		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
633		    TDF_ALLPROCSUSP)) == 0)
634			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
635		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
636			if ((td2->td_flags & TDF_SBDRY) == 0) {
637				thread_suspend_one(td2);
638				td2->td_flags |= TDF_ALLPROCSUSP;
639			} else {
640				wakeup_swapper |= sleepq_abort(td2, ERESTART);
641			}
642		}
643		break;
644	}
645	return (wakeup_swapper);
646}
647
648/*
649 * Enforce single-threading.
650 *
651 * Returns 1 if the caller must abort (another thread is waiting to
652 * exit the process or similar). Process is locked!
653 * Returns 0 when you are successfully the only thread running.
654 * A process has successfully single threaded in the suspend mode when
655 * There are no threads in user mode. Threads in the kernel must be
656 * allowed to continue until they get to the user boundary. They may even
657 * copy out their return values and data before suspending. They may however be
658 * accelerated in reaching the user boundary as we will wake up
659 * any sleeping threads that are interruptable. (PCATCH).
660 */
661int
662thread_single(struct proc *p, int mode)
663{
664	struct thread *td;
665	struct thread *td2;
666	int remaining, wakeup_swapper;
667
668	td = curthread;
669	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
670	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
671	    ("invalid mode %d", mode));
672	/*
673	 * If allowing non-ALLPROC singlethreading for non-curproc
674	 * callers, calc_remaining() and remain_for_mode() should be
675	 * adjusted to also account for td->td_proc != p.  For now
676	 * this is not implemented because it is not used.
677	 */
678	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
679	    (mode != SINGLE_ALLPROC && td->td_proc == p),
680	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
681	mtx_assert(&Giant, MA_NOTOWNED);
682	PROC_LOCK_ASSERT(p, MA_OWNED);
683
684	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
685		return (0);
686
687	/* Is someone already single threading? */
688	if (p->p_singlethread != NULL && p->p_singlethread != td)
689		return (1);
690
691	if (mode == SINGLE_EXIT) {
692		p->p_flag |= P_SINGLE_EXIT;
693		p->p_flag &= ~P_SINGLE_BOUNDARY;
694	} else {
695		p->p_flag &= ~P_SINGLE_EXIT;
696		if (mode == SINGLE_BOUNDARY)
697			p->p_flag |= P_SINGLE_BOUNDARY;
698		else
699			p->p_flag &= ~P_SINGLE_BOUNDARY;
700	}
701	if (mode == SINGLE_ALLPROC)
702		p->p_flag |= P_TOTAL_STOP;
703	p->p_flag |= P_STOPPED_SINGLE;
704	PROC_SLOCK(p);
705	p->p_singlethread = td;
706	remaining = calc_remaining(p, mode);
707	while (remaining != remain_for_mode(mode)) {
708		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
709			goto stopme;
710		wakeup_swapper = 0;
711		FOREACH_THREAD_IN_PROC(p, td2) {
712			if (td2 == td)
713				continue;
714			thread_lock(td2);
715			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
716			if (TD_IS_INHIBITED(td2)) {
717				wakeup_swapper |= weed_inhib(mode, td2, p);
718#ifdef SMP
719			} else if (TD_IS_RUNNING(td2) && td != td2) {
720				forward_signal(td2);
721#endif
722			}
723			thread_unlock(td2);
724		}
725		if (wakeup_swapper)
726			kick_proc0();
727		remaining = calc_remaining(p, mode);
728
729		/*
730		 * Maybe we suspended some threads.. was it enough?
731		 */
732		if (remaining == remain_for_mode(mode))
733			break;
734
735stopme:
736		/*
737		 * Wake us up when everyone else has suspended.
738		 * In the mean time we suspend as well.
739		 */
740		thread_suspend_switch(td, p);
741		remaining = calc_remaining(p, mode);
742	}
743	if (mode == SINGLE_EXIT) {
744		/*
745		 * Convert the process to an unthreaded process.  The
746		 * SINGLE_EXIT is called by exit1() or execve(), in
747		 * both cases other threads must be retired.
748		 */
749		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
750		p->p_singlethread = NULL;
751		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
752
753		/*
754		 * Wait for any remaining threads to exit cpu_throw().
755		 */
756		while (p->p_exitthreads != 0) {
757			PROC_SUNLOCK(p);
758			PROC_UNLOCK(p);
759			sched_relinquish(td);
760			PROC_LOCK(p);
761			PROC_SLOCK(p);
762		}
763	} else if (mode == SINGLE_BOUNDARY) {
764		/*
765		 * Wait until all suspended threads are removed from
766		 * the processors.  The thread_suspend_check()
767		 * increments p_boundary_count while it is still
768		 * running, which makes it possible for the execve()
769		 * to destroy vmspace while our other threads are
770		 * still using the address space.
771		 *
772		 * We lock the thread, which is only allowed to
773		 * succeed after context switch code finished using
774		 * the address space.
775		 */
776		FOREACH_THREAD_IN_PROC(p, td2) {
777			if (td2 == td)
778				continue;
779			thread_lock(td2);
780			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
781			    ("td %p not on boundary", td2));
782			KASSERT(TD_IS_SUSPENDED(td2),
783			    ("td %p is not suspended", td2));
784			thread_unlock(td2);
785		}
786	}
787	PROC_SUNLOCK(p);
788	return (0);
789}
790
791bool
792thread_suspend_check_needed(void)
793{
794	struct proc *p;
795	struct thread *td;
796
797	td = curthread;
798	p = td->td_proc;
799	PROC_LOCK_ASSERT(p, MA_OWNED);
800	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
801	    (td->td_dbgflags & TDB_SUSPEND) != 0));
802}
803
804/*
805 * Called in from locations that can safely check to see
806 * whether we have to suspend or at least throttle for a
807 * single-thread event (e.g. fork).
808 *
809 * Such locations include userret().
810 * If the "return_instead" argument is non zero, the thread must be able to
811 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
812 *
813 * The 'return_instead' argument tells the function if it may do a
814 * thread_exit() or suspend, or whether the caller must abort and back
815 * out instead.
816 *
817 * If the thread that set the single_threading request has set the
818 * P_SINGLE_EXIT bit in the process flags then this call will never return
819 * if 'return_instead' is false, but will exit.
820 *
821 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
822 *---------------+--------------------+---------------------
823 *       0       | returns 0          |   returns 0 or 1
824 *               | when ST ends       |   immediately
825 *---------------+--------------------+---------------------
826 *       1       | thread exits       |   returns 1
827 *               |                    |  immediately
828 * 0 = thread_exit() or suspension ok,
829 * other = return error instead of stopping the thread.
830 *
831 * While a full suspension is under effect, even a single threading
832 * thread would be suspended if it made this call (but it shouldn't).
833 * This call should only be made from places where
834 * thread_exit() would be safe as that may be the outcome unless
835 * return_instead is set.
836 */
837int
838thread_suspend_check(int return_instead)
839{
840	struct thread *td;
841	struct proc *p;
842	int wakeup_swapper;
843
844	td = curthread;
845	p = td->td_proc;
846	mtx_assert(&Giant, MA_NOTOWNED);
847	PROC_LOCK_ASSERT(p, MA_OWNED);
848	while (thread_suspend_check_needed()) {
849		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
850			KASSERT(p->p_singlethread != NULL,
851			    ("singlethread not set"));
852			/*
853			 * The only suspension in action is a
854			 * single-threading. Single threader need not stop.
855			 * XXX Should be safe to access unlocked
856			 * as it can only be set to be true by us.
857			 */
858			if (p->p_singlethread == td)
859				return (0);	/* Exempt from stopping. */
860		}
861		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
862			return (EINTR);
863
864		/* Should we goto user boundary if we didn't come from there? */
865		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
866		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
867			return (ERESTART);
868
869		/*
870		 * Ignore suspend requests if they are deferred.
871		 */
872		if ((td->td_flags & TDF_SBDRY) != 0) {
873			KASSERT(return_instead,
874			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
875			return (0);
876		}
877
878		/*
879		 * If the process is waiting for us to exit,
880		 * this thread should just suicide.
881		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
882		 */
883		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
884			PROC_UNLOCK(p);
885			tidhash_remove(td);
886			PROC_LOCK(p);
887			tdsigcleanup(td);
888			umtx_thread_exit(td);
889			PROC_SLOCK(p);
890			thread_stopped(p);
891			thread_exit();
892		}
893
894		PROC_SLOCK(p);
895		thread_stopped(p);
896		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
897			if (p->p_numthreads == p->p_suspcount + 1) {
898				thread_lock(p->p_singlethread);
899				wakeup_swapper = thread_unsuspend_one(
900				    p->p_singlethread, p, false);
901				thread_unlock(p->p_singlethread);
902				if (wakeup_swapper)
903					kick_proc0();
904			}
905		}
906		PROC_UNLOCK(p);
907		thread_lock(td);
908		/*
909		 * When a thread suspends, it just
910		 * gets taken off all queues.
911		 */
912		thread_suspend_one(td);
913		if (return_instead == 0) {
914			p->p_boundary_count++;
915			td->td_flags |= TDF_BOUNDARY;
916		}
917		PROC_SUNLOCK(p);
918		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
919		thread_unlock(td);
920		PROC_LOCK(p);
921	}
922	return (0);
923}
924
925void
926thread_suspend_switch(struct thread *td, struct proc *p)
927{
928
929	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
930	PROC_LOCK_ASSERT(p, MA_OWNED);
931	PROC_SLOCK_ASSERT(p, MA_OWNED);
932	/*
933	 * We implement thread_suspend_one in stages here to avoid
934	 * dropping the proc lock while the thread lock is owned.
935	 */
936	if (p == td->td_proc) {
937		thread_stopped(p);
938		p->p_suspcount++;
939	}
940	PROC_UNLOCK(p);
941	thread_lock(td);
942	td->td_flags &= ~TDF_NEEDSUSPCHK;
943	TD_SET_SUSPENDED(td);
944	sched_sleep(td, 0);
945	PROC_SUNLOCK(p);
946	DROP_GIANT();
947	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
948	thread_unlock(td);
949	PICKUP_GIANT();
950	PROC_LOCK(p);
951	PROC_SLOCK(p);
952}
953
954void
955thread_suspend_one(struct thread *td)
956{
957	struct proc *p;
958
959	p = td->td_proc;
960	PROC_SLOCK_ASSERT(p, MA_OWNED);
961	THREAD_LOCK_ASSERT(td, MA_OWNED);
962	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
963	p->p_suspcount++;
964	td->td_flags &= ~TDF_NEEDSUSPCHK;
965	TD_SET_SUSPENDED(td);
966	sched_sleep(td, 0);
967}
968
969static int
970thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
971{
972
973	THREAD_LOCK_ASSERT(td, MA_OWNED);
974	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
975	TD_CLR_SUSPENDED(td);
976	td->td_flags &= ~TDF_ALLPROCSUSP;
977	if (td->td_proc == p) {
978		PROC_SLOCK_ASSERT(p, MA_OWNED);
979		p->p_suspcount--;
980		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
981			td->td_flags &= ~TDF_BOUNDARY;
982			p->p_boundary_count--;
983		}
984	}
985	return (setrunnable(td));
986}
987
988/*
989 * Allow all threads blocked by single threading to continue running.
990 */
991void
992thread_unsuspend(struct proc *p)
993{
994	struct thread *td;
995	int wakeup_swapper;
996
997	PROC_LOCK_ASSERT(p, MA_OWNED);
998	PROC_SLOCK_ASSERT(p, MA_OWNED);
999	wakeup_swapper = 0;
1000	if (!P_SHOULDSTOP(p)) {
1001                FOREACH_THREAD_IN_PROC(p, td) {
1002			thread_lock(td);
1003			if (TD_IS_SUSPENDED(td)) {
1004				wakeup_swapper |= thread_unsuspend_one(td, p,
1005				    true);
1006			}
1007			thread_unlock(td);
1008		}
1009	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1010	    p->p_numthreads == p->p_suspcount) {
1011		/*
1012		 * Stopping everything also did the job for the single
1013		 * threading request. Now we've downgraded to single-threaded,
1014		 * let it continue.
1015		 */
1016		if (p->p_singlethread->td_proc == p) {
1017			thread_lock(p->p_singlethread);
1018			wakeup_swapper = thread_unsuspend_one(
1019			    p->p_singlethread, p, false);
1020			thread_unlock(p->p_singlethread);
1021		}
1022	}
1023	if (wakeup_swapper)
1024		kick_proc0();
1025}
1026
1027/*
1028 * End the single threading mode..
1029 */
1030void
1031thread_single_end(struct proc *p, int mode)
1032{
1033	struct thread *td;
1034	int wakeup_swapper;
1035
1036	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1037	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1038	    ("invalid mode %d", mode));
1039	PROC_LOCK_ASSERT(p, MA_OWNED);
1040	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1041	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1042	    ("mode %d does not match P_TOTAL_STOP", mode));
1043	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1044	    ("thread_single_end from other thread %p %p",
1045	    curthread, p->p_singlethread));
1046	KASSERT(mode != SINGLE_BOUNDARY ||
1047	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1048	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1049	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1050	    P_TOTAL_STOP);
1051	PROC_SLOCK(p);
1052	p->p_singlethread = NULL;
1053	wakeup_swapper = 0;
1054	/*
1055	 * If there are other threads they may now run,
1056	 * unless of course there is a blanket 'stop order'
1057	 * on the process. The single threader must be allowed
1058	 * to continue however as this is a bad place to stop.
1059	 */
1060	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1061                FOREACH_THREAD_IN_PROC(p, td) {
1062			thread_lock(td);
1063			if (TD_IS_SUSPENDED(td)) {
1064				wakeup_swapper |= thread_unsuspend_one(td, p,
1065				    mode == SINGLE_BOUNDARY);
1066			}
1067			thread_unlock(td);
1068		}
1069	}
1070	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1071	    ("inconsistent boundary count %d", p->p_boundary_count));
1072	PROC_SUNLOCK(p);
1073	if (wakeup_swapper)
1074		kick_proc0();
1075}
1076
1077struct thread *
1078thread_find(struct proc *p, lwpid_t tid)
1079{
1080	struct thread *td;
1081
1082	PROC_LOCK_ASSERT(p, MA_OWNED);
1083	FOREACH_THREAD_IN_PROC(p, td) {
1084		if (td->td_tid == tid)
1085			break;
1086	}
1087	return (td);
1088}
1089
1090/* Locate a thread by number; return with proc lock held. */
1091struct thread *
1092tdfind(lwpid_t tid, pid_t pid)
1093{
1094#define RUN_THRESH	16
1095	struct thread *td;
1096	int run = 0;
1097
1098	rw_rlock(&tidhash_lock);
1099	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1100		if (td->td_tid == tid) {
1101			if (pid != -1 && td->td_proc->p_pid != pid) {
1102				td = NULL;
1103				break;
1104			}
1105			PROC_LOCK(td->td_proc);
1106			if (td->td_proc->p_state == PRS_NEW) {
1107				PROC_UNLOCK(td->td_proc);
1108				td = NULL;
1109				break;
1110			}
1111			if (run > RUN_THRESH) {
1112				if (rw_try_upgrade(&tidhash_lock)) {
1113					LIST_REMOVE(td, td_hash);
1114					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1115						td, td_hash);
1116					rw_wunlock(&tidhash_lock);
1117					return (td);
1118				}
1119			}
1120			break;
1121		}
1122		run++;
1123	}
1124	rw_runlock(&tidhash_lock);
1125	return (td);
1126}
1127
1128void
1129tidhash_add(struct thread *td)
1130{
1131	rw_wlock(&tidhash_lock);
1132	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1133	rw_wunlock(&tidhash_lock);
1134}
1135
1136void
1137tidhash_remove(struct thread *td)
1138{
1139	rw_wlock(&tidhash_lock);
1140	LIST_REMOVE(td, td_hash);
1141	rw_wunlock(&tidhash_lock);
1142}
1143