1/******************************************************************************
2
3  Copyright (c) 2001-2014, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: releng/10.2/sys/dev/e1000/e1000_api.c 269196 2014-07-28 21:11:18Z jfv $*/
34
35#include "e1000_api.h"
36
37/**
38 *  e1000_init_mac_params - Initialize MAC function pointers
39 *  @hw: pointer to the HW structure
40 *
41 *  This function initializes the function pointers for the MAC
42 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46	s32 ret_val = E1000_SUCCESS;
47
48	if (hw->mac.ops.init_params) {
49		ret_val = hw->mac.ops.init_params(hw);
50		if (ret_val) {
51			DEBUGOUT("MAC Initialization Error\n");
52			goto out;
53		}
54	} else {
55		DEBUGOUT("mac.init_mac_params was NULL\n");
56		ret_val = -E1000_ERR_CONFIG;
57	}
58
59out:
60	return ret_val;
61}
62
63/**
64 *  e1000_init_nvm_params - Initialize NVM function pointers
65 *  @hw: pointer to the HW structure
66 *
67 *  This function initializes the function pointers for the NVM
68 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72	s32 ret_val = E1000_SUCCESS;
73
74	if (hw->nvm.ops.init_params) {
75		ret_val = hw->nvm.ops.init_params(hw);
76		if (ret_val) {
77			DEBUGOUT("NVM Initialization Error\n");
78			goto out;
79		}
80	} else {
81		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82		ret_val = -E1000_ERR_CONFIG;
83	}
84
85out:
86	return ret_val;
87}
88
89/**
90 *  e1000_init_phy_params - Initialize PHY function pointers
91 *  @hw: pointer to the HW structure
92 *
93 *  This function initializes the function pointers for the PHY
94 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98	s32 ret_val = E1000_SUCCESS;
99
100	if (hw->phy.ops.init_params) {
101		ret_val = hw->phy.ops.init_params(hw);
102		if (ret_val) {
103			DEBUGOUT("PHY Initialization Error\n");
104			goto out;
105		}
106	} else {
107		DEBUGOUT("phy.init_phy_params was NULL\n");
108		ret_val =  -E1000_ERR_CONFIG;
109	}
110
111out:
112	return ret_val;
113}
114
115/**
116 *  e1000_init_mbx_params - Initialize mailbox function pointers
117 *  @hw: pointer to the HW structure
118 *
119 *  This function initializes the function pointers for the PHY
120 *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124	s32 ret_val = E1000_SUCCESS;
125
126	if (hw->mbx.ops.init_params) {
127		ret_val = hw->mbx.ops.init_params(hw);
128		if (ret_val) {
129			DEBUGOUT("Mailbox Initialization Error\n");
130			goto out;
131		}
132	} else {
133		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134		ret_val =  -E1000_ERR_CONFIG;
135	}
136
137out:
138	return ret_val;
139}
140
141/**
142 *  e1000_set_mac_type - Sets MAC type
143 *  @hw: pointer to the HW structure
144 *
145 *  This function sets the mac type of the adapter based on the
146 *  device ID stored in the hw structure.
147 *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148 *  e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152	struct e1000_mac_info *mac = &hw->mac;
153	s32 ret_val = E1000_SUCCESS;
154
155	DEBUGFUNC("e1000_set_mac_type");
156
157	switch (hw->device_id) {
158	case E1000_DEV_ID_82542:
159		mac->type = e1000_82542;
160		break;
161	case E1000_DEV_ID_82543GC_FIBER:
162	case E1000_DEV_ID_82543GC_COPPER:
163		mac->type = e1000_82543;
164		break;
165	case E1000_DEV_ID_82544EI_COPPER:
166	case E1000_DEV_ID_82544EI_FIBER:
167	case E1000_DEV_ID_82544GC_COPPER:
168	case E1000_DEV_ID_82544GC_LOM:
169		mac->type = e1000_82544;
170		break;
171	case E1000_DEV_ID_82540EM:
172	case E1000_DEV_ID_82540EM_LOM:
173	case E1000_DEV_ID_82540EP:
174	case E1000_DEV_ID_82540EP_LOM:
175	case E1000_DEV_ID_82540EP_LP:
176		mac->type = e1000_82540;
177		break;
178	case E1000_DEV_ID_82545EM_COPPER:
179	case E1000_DEV_ID_82545EM_FIBER:
180		mac->type = e1000_82545;
181		break;
182	case E1000_DEV_ID_82545GM_COPPER:
183	case E1000_DEV_ID_82545GM_FIBER:
184	case E1000_DEV_ID_82545GM_SERDES:
185		mac->type = e1000_82545_rev_3;
186		break;
187	case E1000_DEV_ID_82546EB_COPPER:
188	case E1000_DEV_ID_82546EB_FIBER:
189	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190		mac->type = e1000_82546;
191		break;
192	case E1000_DEV_ID_82546GB_COPPER:
193	case E1000_DEV_ID_82546GB_FIBER:
194	case E1000_DEV_ID_82546GB_SERDES:
195	case E1000_DEV_ID_82546GB_PCIE:
196	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198		mac->type = e1000_82546_rev_3;
199		break;
200	case E1000_DEV_ID_82541EI:
201	case E1000_DEV_ID_82541EI_MOBILE:
202	case E1000_DEV_ID_82541ER_LOM:
203		mac->type = e1000_82541;
204		break;
205	case E1000_DEV_ID_82541ER:
206	case E1000_DEV_ID_82541GI:
207	case E1000_DEV_ID_82541GI_LF:
208	case E1000_DEV_ID_82541GI_MOBILE:
209		mac->type = e1000_82541_rev_2;
210		break;
211	case E1000_DEV_ID_82547EI:
212	case E1000_DEV_ID_82547EI_MOBILE:
213		mac->type = e1000_82547;
214		break;
215	case E1000_DEV_ID_82547GI:
216		mac->type = e1000_82547_rev_2;
217		break;
218	case E1000_DEV_ID_82571EB_COPPER:
219	case E1000_DEV_ID_82571EB_FIBER:
220	case E1000_DEV_ID_82571EB_SERDES:
221	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227		mac->type = e1000_82571;
228		break;
229	case E1000_DEV_ID_82572EI:
230	case E1000_DEV_ID_82572EI_COPPER:
231	case E1000_DEV_ID_82572EI_FIBER:
232	case E1000_DEV_ID_82572EI_SERDES:
233		mac->type = e1000_82572;
234		break;
235	case E1000_DEV_ID_82573E:
236	case E1000_DEV_ID_82573E_IAMT:
237	case E1000_DEV_ID_82573L:
238		mac->type = e1000_82573;
239		break;
240	case E1000_DEV_ID_82574L:
241	case E1000_DEV_ID_82574LA:
242		mac->type = e1000_82574;
243		break;
244	case E1000_DEV_ID_82583V:
245		mac->type = e1000_82583;
246		break;
247	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251		mac->type = e1000_80003es2lan;
252		break;
253	case E1000_DEV_ID_ICH8_IFE:
254	case E1000_DEV_ID_ICH8_IFE_GT:
255	case E1000_DEV_ID_ICH8_IFE_G:
256	case E1000_DEV_ID_ICH8_IGP_M:
257	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258	case E1000_DEV_ID_ICH8_IGP_AMT:
259	case E1000_DEV_ID_ICH8_IGP_C:
260	case E1000_DEV_ID_ICH8_82567V_3:
261		mac->type = e1000_ich8lan;
262		break;
263	case E1000_DEV_ID_ICH9_IFE:
264	case E1000_DEV_ID_ICH9_IFE_GT:
265	case E1000_DEV_ID_ICH9_IFE_G:
266	case E1000_DEV_ID_ICH9_IGP_M:
267	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268	case E1000_DEV_ID_ICH9_IGP_M_V:
269	case E1000_DEV_ID_ICH9_IGP_AMT:
270	case E1000_DEV_ID_ICH9_BM:
271	case E1000_DEV_ID_ICH9_IGP_C:
272	case E1000_DEV_ID_ICH10_R_BM_LM:
273	case E1000_DEV_ID_ICH10_R_BM_LF:
274	case E1000_DEV_ID_ICH10_R_BM_V:
275		mac->type = e1000_ich9lan;
276		break;
277	case E1000_DEV_ID_ICH10_D_BM_LM:
278	case E1000_DEV_ID_ICH10_D_BM_LF:
279	case E1000_DEV_ID_ICH10_D_BM_V:
280		mac->type = e1000_ich10lan;
281		break;
282	case E1000_DEV_ID_PCH_D_HV_DM:
283	case E1000_DEV_ID_PCH_D_HV_DC:
284	case E1000_DEV_ID_PCH_M_HV_LM:
285	case E1000_DEV_ID_PCH_M_HV_LC:
286		mac->type = e1000_pchlan;
287		break;
288	case E1000_DEV_ID_PCH2_LV_LM:
289	case E1000_DEV_ID_PCH2_LV_V:
290		mac->type = e1000_pch2lan;
291		break;
292	case E1000_DEV_ID_PCH_LPT_I217_LM:
293	case E1000_DEV_ID_PCH_LPT_I217_V:
294	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296	case E1000_DEV_ID_PCH_I218_LM2:
297	case E1000_DEV_ID_PCH_I218_V2:
298	case E1000_DEV_ID_PCH_I218_LM3:
299	case E1000_DEV_ID_PCH_I218_V3:
300		mac->type = e1000_pch_lpt;
301		break;
302	case E1000_DEV_ID_82575EB_COPPER:
303	case E1000_DEV_ID_82575EB_FIBER_SERDES:
304	case E1000_DEV_ID_82575GB_QUAD_COPPER:
305		mac->type = e1000_82575;
306		break;
307	case E1000_DEV_ID_82576:
308	case E1000_DEV_ID_82576_FIBER:
309	case E1000_DEV_ID_82576_SERDES:
310	case E1000_DEV_ID_82576_QUAD_COPPER:
311	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
312	case E1000_DEV_ID_82576_NS:
313	case E1000_DEV_ID_82576_NS_SERDES:
314	case E1000_DEV_ID_82576_SERDES_QUAD:
315		mac->type = e1000_82576;
316		break;
317	case E1000_DEV_ID_82580_COPPER:
318	case E1000_DEV_ID_82580_FIBER:
319	case E1000_DEV_ID_82580_SERDES:
320	case E1000_DEV_ID_82580_SGMII:
321	case E1000_DEV_ID_82580_COPPER_DUAL:
322	case E1000_DEV_ID_82580_QUAD_FIBER:
323	case E1000_DEV_ID_DH89XXCC_SGMII:
324	case E1000_DEV_ID_DH89XXCC_SERDES:
325	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
326	case E1000_DEV_ID_DH89XXCC_SFP:
327		mac->type = e1000_82580;
328		break;
329	case E1000_DEV_ID_I350_COPPER:
330	case E1000_DEV_ID_I350_FIBER:
331	case E1000_DEV_ID_I350_SERDES:
332	case E1000_DEV_ID_I350_SGMII:
333	case E1000_DEV_ID_I350_DA4:
334		mac->type = e1000_i350;
335		break;
336	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
337	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
338	case E1000_DEV_ID_I210_COPPER:
339	case E1000_DEV_ID_I210_COPPER_OEM1:
340	case E1000_DEV_ID_I210_COPPER_IT:
341	case E1000_DEV_ID_I210_FIBER:
342	case E1000_DEV_ID_I210_SERDES:
343	case E1000_DEV_ID_I210_SGMII:
344		mac->type = e1000_i210;
345		break;
346	case E1000_DEV_ID_I211_COPPER:
347		mac->type = e1000_i211;
348		break;
349	case E1000_DEV_ID_82576_VF:
350	case E1000_DEV_ID_82576_VF_HV:
351		mac->type = e1000_vfadapt;
352		break;
353	case E1000_DEV_ID_I350_VF:
354	case E1000_DEV_ID_I350_VF_HV:
355		mac->type = e1000_vfadapt_i350;
356		break;
357
358	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
359	case E1000_DEV_ID_I354_SGMII:
360	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
361		mac->type = e1000_i354;
362		break;
363	default:
364		/* Should never have loaded on this device */
365		ret_val = -E1000_ERR_MAC_INIT;
366		break;
367	}
368
369	return ret_val;
370}
371
372/**
373 *  e1000_setup_init_funcs - Initializes function pointers
374 *  @hw: pointer to the HW structure
375 *  @init_device: TRUE will initialize the rest of the function pointers
376 *		  getting the device ready for use.  FALSE will only set
377 *		  MAC type and the function pointers for the other init
378 *		  functions.  Passing FALSE will not generate any hardware
379 *		  reads or writes.
380 *
381 *  This function must be called by a driver in order to use the rest
382 *  of the 'shared' code files. Called by drivers only.
383 **/
384s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
385{
386	s32 ret_val;
387
388	/* Can't do much good without knowing the MAC type. */
389	ret_val = e1000_set_mac_type(hw);
390	if (ret_val) {
391		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
392		goto out;
393	}
394
395	if (!hw->hw_addr) {
396		DEBUGOUT("ERROR: Registers not mapped\n");
397		ret_val = -E1000_ERR_CONFIG;
398		goto out;
399	}
400
401	/*
402	 * Init function pointers to generic implementations. We do this first
403	 * allowing a driver module to override it afterward.
404	 */
405	e1000_init_mac_ops_generic(hw);
406	e1000_init_phy_ops_generic(hw);
407	e1000_init_nvm_ops_generic(hw);
408	e1000_init_mbx_ops_generic(hw);
409
410	/*
411	 * Set up the init function pointers. These are functions within the
412	 * adapter family file that sets up function pointers for the rest of
413	 * the functions in that family.
414	 */
415	switch (hw->mac.type) {
416	case e1000_82542:
417		e1000_init_function_pointers_82542(hw);
418		break;
419	case e1000_82543:
420	case e1000_82544:
421		e1000_init_function_pointers_82543(hw);
422		break;
423	case e1000_82540:
424	case e1000_82545:
425	case e1000_82545_rev_3:
426	case e1000_82546:
427	case e1000_82546_rev_3:
428		e1000_init_function_pointers_82540(hw);
429		break;
430	case e1000_82541:
431	case e1000_82541_rev_2:
432	case e1000_82547:
433	case e1000_82547_rev_2:
434		e1000_init_function_pointers_82541(hw);
435		break;
436	case e1000_82571:
437	case e1000_82572:
438	case e1000_82573:
439	case e1000_82574:
440	case e1000_82583:
441		e1000_init_function_pointers_82571(hw);
442		break;
443	case e1000_80003es2lan:
444		e1000_init_function_pointers_80003es2lan(hw);
445		break;
446	case e1000_ich8lan:
447	case e1000_ich9lan:
448	case e1000_ich10lan:
449	case e1000_pchlan:
450	case e1000_pch2lan:
451	case e1000_pch_lpt:
452		e1000_init_function_pointers_ich8lan(hw);
453		break;
454	case e1000_82575:
455	case e1000_82576:
456	case e1000_82580:
457	case e1000_i350:
458	case e1000_i354:
459		e1000_init_function_pointers_82575(hw);
460		break;
461	case e1000_i210:
462	case e1000_i211:
463		e1000_init_function_pointers_i210(hw);
464		break;
465	case e1000_vfadapt:
466		e1000_init_function_pointers_vf(hw);
467		break;
468	case e1000_vfadapt_i350:
469		e1000_init_function_pointers_vf(hw);
470		break;
471	default:
472		DEBUGOUT("Hardware not supported\n");
473		ret_val = -E1000_ERR_CONFIG;
474		break;
475	}
476
477	/*
478	 * Initialize the rest of the function pointers. These require some
479	 * register reads/writes in some cases.
480	 */
481	if (!(ret_val) && init_device) {
482		ret_val = e1000_init_mac_params(hw);
483		if (ret_val)
484			goto out;
485
486		ret_val = e1000_init_nvm_params(hw);
487		if (ret_val)
488			goto out;
489
490		ret_val = e1000_init_phy_params(hw);
491		if (ret_val)
492			goto out;
493
494		ret_val = e1000_init_mbx_params(hw);
495		if (ret_val)
496			goto out;
497	}
498
499out:
500	return ret_val;
501}
502
503/**
504 *  e1000_get_bus_info - Obtain bus information for adapter
505 *  @hw: pointer to the HW structure
506 *
507 *  This will obtain information about the HW bus for which the
508 *  adapter is attached and stores it in the hw structure. This is a
509 *  function pointer entry point called by drivers.
510 **/
511s32 e1000_get_bus_info(struct e1000_hw *hw)
512{
513	if (hw->mac.ops.get_bus_info)
514		return hw->mac.ops.get_bus_info(hw);
515
516	return E1000_SUCCESS;
517}
518
519/**
520 *  e1000_clear_vfta - Clear VLAN filter table
521 *  @hw: pointer to the HW structure
522 *
523 *  This clears the VLAN filter table on the adapter. This is a function
524 *  pointer entry point called by drivers.
525 **/
526void e1000_clear_vfta(struct e1000_hw *hw)
527{
528	if (hw->mac.ops.clear_vfta)
529		hw->mac.ops.clear_vfta(hw);
530}
531
532/**
533 *  e1000_write_vfta - Write value to VLAN filter table
534 *  @hw: pointer to the HW structure
535 *  @offset: the 32-bit offset in which to write the value to.
536 *  @value: the 32-bit value to write at location offset.
537 *
538 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
539 *  table. This is a function pointer entry point called by drivers.
540 **/
541void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
542{
543	if (hw->mac.ops.write_vfta)
544		hw->mac.ops.write_vfta(hw, offset, value);
545}
546
547/**
548 *  e1000_update_mc_addr_list - Update Multicast addresses
549 *  @hw: pointer to the HW structure
550 *  @mc_addr_list: array of multicast addresses to program
551 *  @mc_addr_count: number of multicast addresses to program
552 *
553 *  Updates the Multicast Table Array.
554 *  The caller must have a packed mc_addr_list of multicast addresses.
555 **/
556void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
557			       u32 mc_addr_count)
558{
559	if (hw->mac.ops.update_mc_addr_list)
560		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
561						mc_addr_count);
562}
563
564/**
565 *  e1000_force_mac_fc - Force MAC flow control
566 *  @hw: pointer to the HW structure
567 *
568 *  Force the MAC's flow control settings. Currently no func pointer exists
569 *  and all implementations are handled in the generic version of this
570 *  function.
571 **/
572s32 e1000_force_mac_fc(struct e1000_hw *hw)
573{
574	return e1000_force_mac_fc_generic(hw);
575}
576
577/**
578 *  e1000_check_for_link - Check/Store link connection
579 *  @hw: pointer to the HW structure
580 *
581 *  This checks the link condition of the adapter and stores the
582 *  results in the hw->mac structure. This is a function pointer entry
583 *  point called by drivers.
584 **/
585s32 e1000_check_for_link(struct e1000_hw *hw)
586{
587	if (hw->mac.ops.check_for_link)
588		return hw->mac.ops.check_for_link(hw);
589
590	return -E1000_ERR_CONFIG;
591}
592
593/**
594 *  e1000_check_mng_mode - Check management mode
595 *  @hw: pointer to the HW structure
596 *
597 *  This checks if the adapter has manageability enabled.
598 *  This is a function pointer entry point called by drivers.
599 **/
600bool e1000_check_mng_mode(struct e1000_hw *hw)
601{
602	if (hw->mac.ops.check_mng_mode)
603		return hw->mac.ops.check_mng_mode(hw);
604
605	return FALSE;
606}
607
608/**
609 *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
610 *  @hw: pointer to the HW structure
611 *  @buffer: pointer to the host interface
612 *  @length: size of the buffer
613 *
614 *  Writes the DHCP information to the host interface.
615 **/
616s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
617{
618	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
619}
620
621/**
622 *  e1000_reset_hw - Reset hardware
623 *  @hw: pointer to the HW structure
624 *
625 *  This resets the hardware into a known state. This is a function pointer
626 *  entry point called by drivers.
627 **/
628s32 e1000_reset_hw(struct e1000_hw *hw)
629{
630	if (hw->mac.ops.reset_hw)
631		return hw->mac.ops.reset_hw(hw);
632
633	return -E1000_ERR_CONFIG;
634}
635
636/**
637 *  e1000_init_hw - Initialize hardware
638 *  @hw: pointer to the HW structure
639 *
640 *  This inits the hardware readying it for operation. This is a function
641 *  pointer entry point called by drivers.
642 **/
643s32 e1000_init_hw(struct e1000_hw *hw)
644{
645	if (hw->mac.ops.init_hw)
646		return hw->mac.ops.init_hw(hw);
647
648	return -E1000_ERR_CONFIG;
649}
650
651/**
652 *  e1000_setup_link - Configures link and flow control
653 *  @hw: pointer to the HW structure
654 *
655 *  This configures link and flow control settings for the adapter. This
656 *  is a function pointer entry point called by drivers. While modules can
657 *  also call this, they probably call their own version of this function.
658 **/
659s32 e1000_setup_link(struct e1000_hw *hw)
660{
661	if (hw->mac.ops.setup_link)
662		return hw->mac.ops.setup_link(hw);
663
664	return -E1000_ERR_CONFIG;
665}
666
667/**
668 *  e1000_get_speed_and_duplex - Returns current speed and duplex
669 *  @hw: pointer to the HW structure
670 *  @speed: pointer to a 16-bit value to store the speed
671 *  @duplex: pointer to a 16-bit value to store the duplex.
672 *
673 *  This returns the speed and duplex of the adapter in the two 'out'
674 *  variables passed in. This is a function pointer entry point called
675 *  by drivers.
676 **/
677s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
678{
679	if (hw->mac.ops.get_link_up_info)
680		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
681
682	return -E1000_ERR_CONFIG;
683}
684
685/**
686 *  e1000_setup_led - Configures SW controllable LED
687 *  @hw: pointer to the HW structure
688 *
689 *  This prepares the SW controllable LED for use and saves the current state
690 *  of the LED so it can be later restored. This is a function pointer entry
691 *  point called by drivers.
692 **/
693s32 e1000_setup_led(struct e1000_hw *hw)
694{
695	if (hw->mac.ops.setup_led)
696		return hw->mac.ops.setup_led(hw);
697
698	return E1000_SUCCESS;
699}
700
701/**
702 *  e1000_cleanup_led - Restores SW controllable LED
703 *  @hw: pointer to the HW structure
704 *
705 *  This restores the SW controllable LED to the value saved off by
706 *  e1000_setup_led. This is a function pointer entry point called by drivers.
707 **/
708s32 e1000_cleanup_led(struct e1000_hw *hw)
709{
710	if (hw->mac.ops.cleanup_led)
711		return hw->mac.ops.cleanup_led(hw);
712
713	return E1000_SUCCESS;
714}
715
716/**
717 *  e1000_blink_led - Blink SW controllable LED
718 *  @hw: pointer to the HW structure
719 *
720 *  This starts the adapter LED blinking. Request the LED to be setup first
721 *  and cleaned up after. This is a function pointer entry point called by
722 *  drivers.
723 **/
724s32 e1000_blink_led(struct e1000_hw *hw)
725{
726	if (hw->mac.ops.blink_led)
727		return hw->mac.ops.blink_led(hw);
728
729	return E1000_SUCCESS;
730}
731
732/**
733 *  e1000_id_led_init - store LED configurations in SW
734 *  @hw: pointer to the HW structure
735 *
736 *  Initializes the LED config in SW. This is a function pointer entry point
737 *  called by drivers.
738 **/
739s32 e1000_id_led_init(struct e1000_hw *hw)
740{
741	if (hw->mac.ops.id_led_init)
742		return hw->mac.ops.id_led_init(hw);
743
744	return E1000_SUCCESS;
745}
746
747/**
748 *  e1000_led_on - Turn on SW controllable LED
749 *  @hw: pointer to the HW structure
750 *
751 *  Turns the SW defined LED on. This is a function pointer entry point
752 *  called by drivers.
753 **/
754s32 e1000_led_on(struct e1000_hw *hw)
755{
756	if (hw->mac.ops.led_on)
757		return hw->mac.ops.led_on(hw);
758
759	return E1000_SUCCESS;
760}
761
762/**
763 *  e1000_led_off - Turn off SW controllable LED
764 *  @hw: pointer to the HW structure
765 *
766 *  Turns the SW defined LED off. This is a function pointer entry point
767 *  called by drivers.
768 **/
769s32 e1000_led_off(struct e1000_hw *hw)
770{
771	if (hw->mac.ops.led_off)
772		return hw->mac.ops.led_off(hw);
773
774	return E1000_SUCCESS;
775}
776
777/**
778 *  e1000_reset_adaptive - Reset adaptive IFS
779 *  @hw: pointer to the HW structure
780 *
781 *  Resets the adaptive IFS. Currently no func pointer exists and all
782 *  implementations are handled in the generic version of this function.
783 **/
784void e1000_reset_adaptive(struct e1000_hw *hw)
785{
786	e1000_reset_adaptive_generic(hw);
787}
788
789/**
790 *  e1000_update_adaptive - Update adaptive IFS
791 *  @hw: pointer to the HW structure
792 *
793 *  Updates adapter IFS. Currently no func pointer exists and all
794 *  implementations are handled in the generic version of this function.
795 **/
796void e1000_update_adaptive(struct e1000_hw *hw)
797{
798	e1000_update_adaptive_generic(hw);
799}
800
801/**
802 *  e1000_disable_pcie_master - Disable PCI-Express master access
803 *  @hw: pointer to the HW structure
804 *
805 *  Disables PCI-Express master access and verifies there are no pending
806 *  requests. Currently no func pointer exists and all implementations are
807 *  handled in the generic version of this function.
808 **/
809s32 e1000_disable_pcie_master(struct e1000_hw *hw)
810{
811	return e1000_disable_pcie_master_generic(hw);
812}
813
814/**
815 *  e1000_config_collision_dist - Configure collision distance
816 *  @hw: pointer to the HW structure
817 *
818 *  Configures the collision distance to the default value and is used
819 *  during link setup.
820 **/
821void e1000_config_collision_dist(struct e1000_hw *hw)
822{
823	if (hw->mac.ops.config_collision_dist)
824		hw->mac.ops.config_collision_dist(hw);
825}
826
827/**
828 *  e1000_rar_set - Sets a receive address register
829 *  @hw: pointer to the HW structure
830 *  @addr: address to set the RAR to
831 *  @index: the RAR to set
832 *
833 *  Sets a Receive Address Register (RAR) to the specified address.
834 **/
835int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
836{
837	if (hw->mac.ops.rar_set)
838		return hw->mac.ops.rar_set(hw, addr, index);
839
840	return E1000_SUCCESS;
841}
842
843/**
844 *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
845 *  @hw: pointer to the HW structure
846 *
847 *  Ensures that the MDI/MDIX SW state is valid.
848 **/
849s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
850{
851	if (hw->mac.ops.validate_mdi_setting)
852		return hw->mac.ops.validate_mdi_setting(hw);
853
854	return E1000_SUCCESS;
855}
856
857/**
858 *  e1000_hash_mc_addr - Determines address location in multicast table
859 *  @hw: pointer to the HW structure
860 *  @mc_addr: Multicast address to hash.
861 *
862 *  This hashes an address to determine its location in the multicast
863 *  table. Currently no func pointer exists and all implementations
864 *  are handled in the generic version of this function.
865 **/
866u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
867{
868	return e1000_hash_mc_addr_generic(hw, mc_addr);
869}
870
871/**
872 *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
873 *  @hw: pointer to the HW structure
874 *
875 *  Enables packet filtering on transmit packets if manageability is enabled
876 *  and host interface is enabled.
877 *  Currently no func pointer exists and all implementations are handled in the
878 *  generic version of this function.
879 **/
880bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
881{
882	return e1000_enable_tx_pkt_filtering_generic(hw);
883}
884
885/**
886 *  e1000_mng_host_if_write - Writes to the manageability host interface
887 *  @hw: pointer to the HW structure
888 *  @buffer: pointer to the host interface buffer
889 *  @length: size of the buffer
890 *  @offset: location in the buffer to write to
891 *  @sum: sum of the data (not checksum)
892 *
893 *  This function writes the buffer content at the offset given on the host if.
894 *  It also does alignment considerations to do the writes in most efficient
895 *  way.  Also fills up the sum of the buffer in *buffer parameter.
896 **/
897s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
898			    u16 offset, u8 *sum)
899{
900	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
901}
902
903/**
904 *  e1000_mng_write_cmd_header - Writes manageability command header
905 *  @hw: pointer to the HW structure
906 *  @hdr: pointer to the host interface command header
907 *
908 *  Writes the command header after does the checksum calculation.
909 **/
910s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
911			       struct e1000_host_mng_command_header *hdr)
912{
913	return e1000_mng_write_cmd_header_generic(hw, hdr);
914}
915
916/**
917 *  e1000_mng_enable_host_if - Checks host interface is enabled
918 *  @hw: pointer to the HW structure
919 *
920 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
921 *
922 *  This function checks whether the HOST IF is enabled for command operation
923 *  and also checks whether the previous command is completed.  It busy waits
924 *  in case of previous command is not completed.
925 **/
926s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
927{
928	return e1000_mng_enable_host_if_generic(hw);
929}
930
931/**
932 *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
933 *  @hw: pointer to the HW structure
934 *  @itr: u32 indicating itr value
935 *
936 *  Set the OBFF timer based on the given interrupt rate.
937 **/
938s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
939{
940	if (hw->mac.ops.set_obff_timer)
941		return hw->mac.ops.set_obff_timer(hw, itr);
942
943	return E1000_SUCCESS;
944}
945
946/**
947 *  e1000_check_reset_block - Verifies PHY can be reset
948 *  @hw: pointer to the HW structure
949 *
950 *  Checks if the PHY is in a state that can be reset or if manageability
951 *  has it tied up. This is a function pointer entry point called by drivers.
952 **/
953s32 e1000_check_reset_block(struct e1000_hw *hw)
954{
955	if (hw->phy.ops.check_reset_block)
956		return hw->phy.ops.check_reset_block(hw);
957
958	return E1000_SUCCESS;
959}
960
961/**
962 *  e1000_read_phy_reg - Reads PHY register
963 *  @hw: pointer to the HW structure
964 *  @offset: the register to read
965 *  @data: the buffer to store the 16-bit read.
966 *
967 *  Reads the PHY register and returns the value in data.
968 *  This is a function pointer entry point called by drivers.
969 **/
970s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
971{
972	if (hw->phy.ops.read_reg)
973		return hw->phy.ops.read_reg(hw, offset, data);
974
975	return E1000_SUCCESS;
976}
977
978/**
979 *  e1000_write_phy_reg - Writes PHY register
980 *  @hw: pointer to the HW structure
981 *  @offset: the register to write
982 *  @data: the value to write.
983 *
984 *  Writes the PHY register at offset with the value in data.
985 *  This is a function pointer entry point called by drivers.
986 **/
987s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
988{
989	if (hw->phy.ops.write_reg)
990		return hw->phy.ops.write_reg(hw, offset, data);
991
992	return E1000_SUCCESS;
993}
994
995/**
996 *  e1000_release_phy - Generic release PHY
997 *  @hw: pointer to the HW structure
998 *
999 *  Return if silicon family does not require a semaphore when accessing the
1000 *  PHY.
1001 **/
1002void e1000_release_phy(struct e1000_hw *hw)
1003{
1004	if (hw->phy.ops.release)
1005		hw->phy.ops.release(hw);
1006}
1007
1008/**
1009 *  e1000_acquire_phy - Generic acquire PHY
1010 *  @hw: pointer to the HW structure
1011 *
1012 *  Return success if silicon family does not require a semaphore when
1013 *  accessing the PHY.
1014 **/
1015s32 e1000_acquire_phy(struct e1000_hw *hw)
1016{
1017	if (hw->phy.ops.acquire)
1018		return hw->phy.ops.acquire(hw);
1019
1020	return E1000_SUCCESS;
1021}
1022
1023/**
1024 *  e1000_cfg_on_link_up - Configure PHY upon link up
1025 *  @hw: pointer to the HW structure
1026 **/
1027s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1028{
1029	if (hw->phy.ops.cfg_on_link_up)
1030		return hw->phy.ops.cfg_on_link_up(hw);
1031
1032	return E1000_SUCCESS;
1033}
1034
1035/**
1036 *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1037 *  @hw: pointer to the HW structure
1038 *  @offset: the register to read
1039 *  @data: the location to store the 16-bit value read.
1040 *
1041 *  Reads a register out of the Kumeran interface. Currently no func pointer
1042 *  exists and all implementations are handled in the generic version of
1043 *  this function.
1044 **/
1045s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1046{
1047	return e1000_read_kmrn_reg_generic(hw, offset, data);
1048}
1049
1050/**
1051 *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1052 *  @hw: pointer to the HW structure
1053 *  @offset: the register to write
1054 *  @data: the value to write.
1055 *
1056 *  Writes a register to the Kumeran interface. Currently no func pointer
1057 *  exists and all implementations are handled in the generic version of
1058 *  this function.
1059 **/
1060s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1061{
1062	return e1000_write_kmrn_reg_generic(hw, offset, data);
1063}
1064
1065/**
1066 *  e1000_get_cable_length - Retrieves cable length estimation
1067 *  @hw: pointer to the HW structure
1068 *
1069 *  This function estimates the cable length and stores them in
1070 *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1071 *  entry point called by drivers.
1072 **/
1073s32 e1000_get_cable_length(struct e1000_hw *hw)
1074{
1075	if (hw->phy.ops.get_cable_length)
1076		return hw->phy.ops.get_cable_length(hw);
1077
1078	return E1000_SUCCESS;
1079}
1080
1081/**
1082 *  e1000_get_phy_info - Retrieves PHY information from registers
1083 *  @hw: pointer to the HW structure
1084 *
1085 *  This function gets some information from various PHY registers and
1086 *  populates hw->phy values with it. This is a function pointer entry
1087 *  point called by drivers.
1088 **/
1089s32 e1000_get_phy_info(struct e1000_hw *hw)
1090{
1091	if (hw->phy.ops.get_info)
1092		return hw->phy.ops.get_info(hw);
1093
1094	return E1000_SUCCESS;
1095}
1096
1097/**
1098 *  e1000_phy_hw_reset - Hard PHY reset
1099 *  @hw: pointer to the HW structure
1100 *
1101 *  Performs a hard PHY reset. This is a function pointer entry point called
1102 *  by drivers.
1103 **/
1104s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1105{
1106	if (hw->phy.ops.reset)
1107		return hw->phy.ops.reset(hw);
1108
1109	return E1000_SUCCESS;
1110}
1111
1112/**
1113 *  e1000_phy_commit - Soft PHY reset
1114 *  @hw: pointer to the HW structure
1115 *
1116 *  Performs a soft PHY reset on those that apply. This is a function pointer
1117 *  entry point called by drivers.
1118 **/
1119s32 e1000_phy_commit(struct e1000_hw *hw)
1120{
1121	if (hw->phy.ops.commit)
1122		return hw->phy.ops.commit(hw);
1123
1124	return E1000_SUCCESS;
1125}
1126
1127/**
1128 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1129 *  @hw: pointer to the HW structure
1130 *  @active: boolean used to enable/disable lplu
1131 *
1132 *  Success returns 0, Failure returns 1
1133 *
1134 *  The low power link up (lplu) state is set to the power management level D0
1135 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1136 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1137 *  is used during Dx states where the power conservation is most important.
1138 *  During driver activity, SmartSpeed should be enabled so performance is
1139 *  maintained.  This is a function pointer entry point called by drivers.
1140 **/
1141s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1142{
1143	if (hw->phy.ops.set_d0_lplu_state)
1144		return hw->phy.ops.set_d0_lplu_state(hw, active);
1145
1146	return E1000_SUCCESS;
1147}
1148
1149/**
1150 *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1151 *  @hw: pointer to the HW structure
1152 *  @active: boolean used to enable/disable lplu
1153 *
1154 *  Success returns 0, Failure returns 1
1155 *
1156 *  The low power link up (lplu) state is set to the power management level D3
1157 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1158 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1159 *  is used during Dx states where the power conservation is most important.
1160 *  During driver activity, SmartSpeed should be enabled so performance is
1161 *  maintained.  This is a function pointer entry point called by drivers.
1162 **/
1163s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1164{
1165	if (hw->phy.ops.set_d3_lplu_state)
1166		return hw->phy.ops.set_d3_lplu_state(hw, active);
1167
1168	return E1000_SUCCESS;
1169}
1170
1171/**
1172 *  e1000_read_mac_addr - Reads MAC address
1173 *  @hw: pointer to the HW structure
1174 *
1175 *  Reads the MAC address out of the adapter and stores it in the HW structure.
1176 *  Currently no func pointer exists and all implementations are handled in the
1177 *  generic version of this function.
1178 **/
1179s32 e1000_read_mac_addr(struct e1000_hw *hw)
1180{
1181	if (hw->mac.ops.read_mac_addr)
1182		return hw->mac.ops.read_mac_addr(hw);
1183
1184	return e1000_read_mac_addr_generic(hw);
1185}
1186
1187/**
1188 *  e1000_read_pba_string - Read device part number string
1189 *  @hw: pointer to the HW structure
1190 *  @pba_num: pointer to device part number
1191 *  @pba_num_size: size of part number buffer
1192 *
1193 *  Reads the product board assembly (PBA) number from the EEPROM and stores
1194 *  the value in pba_num.
1195 *  Currently no func pointer exists and all implementations are handled in the
1196 *  generic version of this function.
1197 **/
1198s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1199{
1200	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1201}
1202
1203/**
1204 *  e1000_read_pba_length - Read device part number string length
1205 *  @hw: pointer to the HW structure
1206 *  @pba_num_size: size of part number buffer
1207 *
1208 *  Reads the product board assembly (PBA) number length from the EEPROM and
1209 *  stores the value in pba_num.
1210 *  Currently no func pointer exists and all implementations are handled in the
1211 *  generic version of this function.
1212 **/
1213s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1214{
1215	return e1000_read_pba_length_generic(hw, pba_num_size);
1216}
1217
1218/**
1219 *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1220 *  @hw: pointer to the HW structure
1221 *
1222 *  Validates the NVM checksum is correct. This is a function pointer entry
1223 *  point called by drivers.
1224 **/
1225s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1226{
1227	if (hw->nvm.ops.validate)
1228		return hw->nvm.ops.validate(hw);
1229
1230	return -E1000_ERR_CONFIG;
1231}
1232
1233/**
1234 *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1235 *  @hw: pointer to the HW structure
1236 *
1237 *  Updates the NVM checksum. Currently no func pointer exists and all
1238 *  implementations are handled in the generic version of this function.
1239 **/
1240s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1241{
1242	if (hw->nvm.ops.update)
1243		return hw->nvm.ops.update(hw);
1244
1245	return -E1000_ERR_CONFIG;
1246}
1247
1248/**
1249 *  e1000_reload_nvm - Reloads EEPROM
1250 *  @hw: pointer to the HW structure
1251 *
1252 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1253 *  extended control register.
1254 **/
1255void e1000_reload_nvm(struct e1000_hw *hw)
1256{
1257	if (hw->nvm.ops.reload)
1258		hw->nvm.ops.reload(hw);
1259}
1260
1261/**
1262 *  e1000_read_nvm - Reads NVM (EEPROM)
1263 *  @hw: pointer to the HW structure
1264 *  @offset: the word offset to read
1265 *  @words: number of 16-bit words to read
1266 *  @data: pointer to the properly sized buffer for the data.
1267 *
1268 *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1269 *  pointer entry point called by drivers.
1270 **/
1271s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1272{
1273	if (hw->nvm.ops.read)
1274		return hw->nvm.ops.read(hw, offset, words, data);
1275
1276	return -E1000_ERR_CONFIG;
1277}
1278
1279/**
1280 *  e1000_write_nvm - Writes to NVM (EEPROM)
1281 *  @hw: pointer to the HW structure
1282 *  @offset: the word offset to read
1283 *  @words: number of 16-bit words to write
1284 *  @data: pointer to the properly sized buffer for the data.
1285 *
1286 *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1287 *  pointer entry point called by drivers.
1288 **/
1289s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1290{
1291	if (hw->nvm.ops.write)
1292		return hw->nvm.ops.write(hw, offset, words, data);
1293
1294	return E1000_SUCCESS;
1295}
1296
1297/**
1298 *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1299 *  @hw: pointer to the HW structure
1300 *  @reg: 32bit register offset
1301 *  @offset: the register to write
1302 *  @data: the value to write.
1303 *
1304 *  Writes the PHY register at offset with the value in data.
1305 *  This is a function pointer entry point called by drivers.
1306 **/
1307s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1308			      u8 data)
1309{
1310	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1311}
1312
1313/**
1314 * e1000_power_up_phy - Restores link in case of PHY power down
1315 * @hw: pointer to the HW structure
1316 *
1317 * The phy may be powered down to save power, to turn off link when the
1318 * driver is unloaded, or wake on lan is not enabled (among others).
1319 **/
1320void e1000_power_up_phy(struct e1000_hw *hw)
1321{
1322	if (hw->phy.ops.power_up)
1323		hw->phy.ops.power_up(hw);
1324
1325	e1000_setup_link(hw);
1326}
1327
1328/**
1329 * e1000_power_down_phy - Power down PHY
1330 * @hw: pointer to the HW structure
1331 *
1332 * The phy may be powered down to save power, to turn off link when the
1333 * driver is unloaded, or wake on lan is not enabled (among others).
1334 **/
1335void e1000_power_down_phy(struct e1000_hw *hw)
1336{
1337	if (hw->phy.ops.power_down)
1338		hw->phy.ops.power_down(hw);
1339}
1340
1341/**
1342 *  e1000_power_up_fiber_serdes_link - Power up serdes link
1343 *  @hw: pointer to the HW structure
1344 *
1345 *  Power on the optics and PCS.
1346 **/
1347void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1348{
1349	if (hw->mac.ops.power_up_serdes)
1350		hw->mac.ops.power_up_serdes(hw);
1351}
1352
1353/**
1354 *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1355 *  @hw: pointer to the HW structure
1356 *
1357 *  Shutdown the optics and PCS on driver unload.
1358 **/
1359void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1360{
1361	if (hw->mac.ops.shutdown_serdes)
1362		hw->mac.ops.shutdown_serdes(hw);
1363}
1364
1365