1/*-
2 * Copyright (c) 2009 Alex Keda <admin@lissyara.su>
3 * Copyright (c) 2009-2010 Jung-uk Kim <jkim@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: releng/10.2/sys/compat/x86bios/x86bios.c 227309 2011-11-07 15:43:11Z ed $");
30
31#include "opt_x86bios.h"
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/kernel.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/mutex.h>
40#include <sys/sysctl.h>
41
42#include <contrib/x86emu/x86emu.h>
43#include <contrib/x86emu/x86emu_regs.h>
44#include <compat/x86bios/x86bios.h>
45
46#include <dev/pci/pcireg.h>
47#include <dev/pci/pcivar.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#ifdef __amd64__
53#define	X86BIOS_NATIVE_ARCH
54#endif
55#ifdef __i386__
56#define	X86BIOS_NATIVE_VM86
57#endif
58
59#define	X86BIOS_MEM_SIZE	0x00100000	/* 1M */
60
61#define	X86BIOS_TRACE(h, n, r)	do {					\
62	printf(__STRING(h)						\
63	    " (ax=0x%04x bx=0x%04x cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",\
64	    (n), (r)->R_AX, (r)->R_BX, (r)->R_CX, (r)->R_DX,		\
65	    (r)->R_ES, (r)->R_DI);					\
66} while (0)
67
68static struct mtx x86bios_lock;
69
70static SYSCTL_NODE(_debug, OID_AUTO, x86bios, CTLFLAG_RD, NULL,
71    "x86bios debugging");
72static int x86bios_trace_call;
73TUNABLE_INT("debug.x86bios.call", &x86bios_trace_call);
74SYSCTL_INT(_debug_x86bios, OID_AUTO, call, CTLFLAG_RW, &x86bios_trace_call, 0,
75    "Trace far function calls");
76static int x86bios_trace_int;
77TUNABLE_INT("debug.x86bios.int", &x86bios_trace_int);
78SYSCTL_INT(_debug_x86bios, OID_AUTO, int, CTLFLAG_RW, &x86bios_trace_int, 0,
79    "Trace software interrupt handlers");
80
81#ifdef X86BIOS_NATIVE_VM86
82
83#include <machine/vm86.h>
84#include <machine/vmparam.h>
85#include <machine/pc/bios.h>
86
87struct vm86context x86bios_vmc;
88
89static void
90x86bios_emu2vmf(struct x86emu_regs *regs, struct vm86frame *vmf)
91{
92
93	vmf->vmf_ds = regs->R_DS;
94	vmf->vmf_es = regs->R_ES;
95	vmf->vmf_ax = regs->R_AX;
96	vmf->vmf_bx = regs->R_BX;
97	vmf->vmf_cx = regs->R_CX;
98	vmf->vmf_dx = regs->R_DX;
99	vmf->vmf_bp = regs->R_BP;
100	vmf->vmf_si = regs->R_SI;
101	vmf->vmf_di = regs->R_DI;
102}
103
104static void
105x86bios_vmf2emu(struct vm86frame *vmf, struct x86emu_regs *regs)
106{
107
108	regs->R_DS = vmf->vmf_ds;
109	regs->R_ES = vmf->vmf_es;
110	regs->R_FLG = vmf->vmf_flags;
111	regs->R_AX = vmf->vmf_ax;
112	regs->R_BX = vmf->vmf_bx;
113	regs->R_CX = vmf->vmf_cx;
114	regs->R_DX = vmf->vmf_dx;
115	regs->R_BP = vmf->vmf_bp;
116	regs->R_SI = vmf->vmf_si;
117	regs->R_DI = vmf->vmf_di;
118}
119
120void *
121x86bios_alloc(uint32_t *offset, size_t size, int flags)
122{
123	void *vaddr;
124	int i;
125
126	if (offset == NULL || size == 0)
127		return (NULL);
128	vaddr = contigmalloc(size, M_DEVBUF, flags, 0, X86BIOS_MEM_SIZE,
129	    PAGE_SIZE, 0);
130	if (vaddr != NULL) {
131		*offset = vtophys(vaddr);
132		mtx_lock(&x86bios_lock);
133		for (i = 0; i < atop(round_page(size)); i++)
134			vm86_addpage(&x86bios_vmc, atop(*offset) + i,
135			    (vm_offset_t)vaddr + ptoa(i));
136		mtx_unlock(&x86bios_lock);
137	}
138
139	return (vaddr);
140}
141
142void
143x86bios_free(void *addr, size_t size)
144{
145	vm_paddr_t paddr;
146	int i, nfree;
147
148	if (addr == NULL || size == 0)
149		return;
150	paddr = vtophys(addr);
151	if (paddr >= X86BIOS_MEM_SIZE || (paddr & PAGE_MASK) != 0)
152		return;
153	mtx_lock(&x86bios_lock);
154	for (i = 0; i < x86bios_vmc.npages; i++)
155		if (x86bios_vmc.pmap[i].kva == (vm_offset_t)addr)
156			break;
157	if (i >= x86bios_vmc.npages) {
158		mtx_unlock(&x86bios_lock);
159		return;
160	}
161	nfree = atop(round_page(size));
162	bzero(x86bios_vmc.pmap + i, sizeof(*x86bios_vmc.pmap) * nfree);
163	if (i + nfree == x86bios_vmc.npages) {
164		x86bios_vmc.npages -= nfree;
165		while (--i >= 0 && x86bios_vmc.pmap[i].kva == 0)
166			x86bios_vmc.npages--;
167	}
168	mtx_unlock(&x86bios_lock);
169	contigfree(addr, size, M_DEVBUF);
170}
171
172void
173x86bios_init_regs(struct x86regs *regs)
174{
175
176	bzero(regs, sizeof(*regs));
177}
178
179void
180x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
181{
182	struct vm86frame vmf;
183
184	if (x86bios_trace_call)
185		X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs);
186
187	bzero(&vmf, sizeof(vmf));
188	x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf);
189	vmf.vmf_cs = seg;
190	vmf.vmf_ip = off;
191	mtx_lock(&x86bios_lock);
192	vm86_datacall(-1, &vmf, &x86bios_vmc);
193	mtx_unlock(&x86bios_lock);
194	x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs);
195
196	if (x86bios_trace_call)
197		X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs);
198}
199
200uint32_t
201x86bios_get_intr(int intno)
202{
203
204	return (readl(BIOS_PADDRTOVADDR(intno * 4)));
205}
206
207void
208x86bios_set_intr(int intno, uint32_t saddr)
209{
210
211	writel(BIOS_PADDRTOVADDR(intno * 4), saddr);
212}
213
214void
215x86bios_intr(struct x86regs *regs, int intno)
216{
217	struct vm86frame vmf;
218
219	if (x86bios_trace_int)
220		X86BIOS_TRACE(Calling INT 0x%02x, intno, regs);
221
222	bzero(&vmf, sizeof(vmf));
223	x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf);
224	mtx_lock(&x86bios_lock);
225	vm86_datacall(intno, &vmf, &x86bios_vmc);
226	mtx_unlock(&x86bios_lock);
227	x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs);
228
229	if (x86bios_trace_int)
230		X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs);
231}
232
233void *
234x86bios_offset(uint32_t offset)
235{
236	vm_offset_t addr;
237
238	addr = vm86_getaddr(&x86bios_vmc, X86BIOS_PHYSTOSEG(offset),
239	    X86BIOS_PHYSTOOFF(offset));
240	if (addr == 0)
241		addr = BIOS_PADDRTOVADDR(offset);
242
243	return ((void *)addr);
244}
245
246static int
247x86bios_init(void)
248{
249
250	mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF);
251	bzero(&x86bios_vmc, sizeof(x86bios_vmc));
252
253	return (0);
254}
255
256static int
257x86bios_uninit(void)
258{
259
260	mtx_destroy(&x86bios_lock);
261
262	return (0);
263}
264
265#else
266
267#include <machine/iodev.h>
268
269#define	X86BIOS_PAGE_SIZE	0x00001000	/* 4K */
270
271#define	X86BIOS_IVT_SIZE	0x00000500	/* 1K + 256 (BDA) */
272
273#define	X86BIOS_IVT_BASE	0x00000000
274#define	X86BIOS_RAM_BASE	0x00001000
275#define	X86BIOS_ROM_BASE	0x000a0000
276
277#define	X86BIOS_ROM_SIZE	(X86BIOS_MEM_SIZE - x86bios_rom_phys)
278#define	X86BIOS_SEG_SIZE	X86BIOS_PAGE_SIZE
279
280#define	X86BIOS_PAGES		(X86BIOS_MEM_SIZE / X86BIOS_PAGE_SIZE)
281
282#define	X86BIOS_R_SS		_pad2
283#define	X86BIOS_R_SP		_pad3.I16_reg.x_reg
284
285static struct x86emu x86bios_emu;
286
287static void *x86bios_ivt;
288static void *x86bios_rom;
289static void *x86bios_seg;
290
291static vm_offset_t *x86bios_map;
292
293static vm_paddr_t x86bios_rom_phys;
294static vm_paddr_t x86bios_seg_phys;
295
296static int x86bios_fault;
297static uint32_t x86bios_fault_addr;
298static uint16_t x86bios_fault_cs;
299static uint16_t x86bios_fault_ip;
300
301static void
302x86bios_set_fault(struct x86emu *emu, uint32_t addr)
303{
304
305	x86bios_fault = 1;
306	x86bios_fault_addr = addr;
307	x86bios_fault_cs = emu->x86.R_CS;
308	x86bios_fault_ip = emu->x86.R_IP;
309	x86emu_halt_sys(emu);
310}
311
312static void *
313x86bios_get_pages(uint32_t offset, size_t size)
314{
315	vm_offset_t addr;
316
317	if (offset + size > X86BIOS_MEM_SIZE + X86BIOS_IVT_SIZE)
318		return (NULL);
319
320	if (offset >= X86BIOS_MEM_SIZE)
321		offset -= X86BIOS_MEM_SIZE;
322	addr = x86bios_map[offset / X86BIOS_PAGE_SIZE];
323	if (addr != 0)
324		addr += offset % X86BIOS_PAGE_SIZE;
325
326	return ((void *)addr);
327}
328
329static void
330x86bios_set_pages(vm_offset_t va, vm_paddr_t pa, size_t size)
331{
332	int i, j;
333
334	for (i = pa / X86BIOS_PAGE_SIZE, j = 0;
335	    j < howmany(size, X86BIOS_PAGE_SIZE); i++, j++)
336		x86bios_map[i] = va + j * X86BIOS_PAGE_SIZE;
337}
338
339static uint8_t
340x86bios_emu_rdb(struct x86emu *emu, uint32_t addr)
341{
342	uint8_t *va;
343
344	va = x86bios_get_pages(addr, sizeof(*va));
345	if (va == NULL)
346		x86bios_set_fault(emu, addr);
347
348	return (*va);
349}
350
351static uint16_t
352x86bios_emu_rdw(struct x86emu *emu, uint32_t addr)
353{
354	uint16_t *va;
355
356	va = x86bios_get_pages(addr, sizeof(*va));
357	if (va == NULL)
358		x86bios_set_fault(emu, addr);
359
360#ifndef __NO_STRICT_ALIGNMENT
361	if ((addr & 1) != 0)
362		return (le16dec(va));
363	else
364#endif
365	return (le16toh(*va));
366}
367
368static uint32_t
369x86bios_emu_rdl(struct x86emu *emu, uint32_t addr)
370{
371	uint32_t *va;
372
373	va = x86bios_get_pages(addr, sizeof(*va));
374	if (va == NULL)
375		x86bios_set_fault(emu, addr);
376
377#ifndef __NO_STRICT_ALIGNMENT
378	if ((addr & 3) != 0)
379		return (le32dec(va));
380	else
381#endif
382	return (le32toh(*va));
383}
384
385static void
386x86bios_emu_wrb(struct x86emu *emu, uint32_t addr, uint8_t val)
387{
388	uint8_t *va;
389
390	va = x86bios_get_pages(addr, sizeof(*va));
391	if (va == NULL)
392		x86bios_set_fault(emu, addr);
393
394	*va = val;
395}
396
397static void
398x86bios_emu_wrw(struct x86emu *emu, uint32_t addr, uint16_t val)
399{
400	uint16_t *va;
401
402	va = x86bios_get_pages(addr, sizeof(*va));
403	if (va == NULL)
404		x86bios_set_fault(emu, addr);
405
406#ifndef __NO_STRICT_ALIGNMENT
407	if ((addr & 1) != 0)
408		le16enc(va, val);
409	else
410#endif
411	*va = htole16(val);
412}
413
414static void
415x86bios_emu_wrl(struct x86emu *emu, uint32_t addr, uint32_t val)
416{
417	uint32_t *va;
418
419	va = x86bios_get_pages(addr, sizeof(*va));
420	if (va == NULL)
421		x86bios_set_fault(emu, addr);
422
423#ifndef __NO_STRICT_ALIGNMENT
424	if ((addr & 3) != 0)
425		le32enc(va, val);
426	else
427#endif
428	*va = htole32(val);
429}
430
431static uint8_t
432x86bios_emu_inb(struct x86emu *emu, uint16_t port)
433{
434
435#ifndef X86BIOS_NATIVE_ARCH
436	if (port == 0xb2) /* APM scratch register */
437		return (0);
438	if (port >= 0x80 && port < 0x88) /* POST status register */
439		return (0);
440#endif
441
442	return (iodev_read_1(port));
443}
444
445static uint16_t
446x86bios_emu_inw(struct x86emu *emu, uint16_t port)
447{
448	uint16_t val;
449
450#ifndef X86BIOS_NATIVE_ARCH
451	if (port >= 0x80 && port < 0x88) /* POST status register */
452		return (0);
453
454	if ((port & 1) != 0) {
455		val = iodev_read_1(port);
456		val |= iodev_read_1(port + 1) << 8;
457	} else
458#endif
459	val = iodev_read_2(port);
460
461	return (val);
462}
463
464static uint32_t
465x86bios_emu_inl(struct x86emu *emu, uint16_t port)
466{
467	uint32_t val;
468
469#ifndef X86BIOS_NATIVE_ARCH
470	if (port >= 0x80 && port < 0x88) /* POST status register */
471		return (0);
472
473	if ((port & 1) != 0) {
474		val = iodev_read_1(port);
475		val |= iodev_read_2(port + 1) << 8;
476		val |= iodev_read_1(port + 3) << 24;
477	} else if ((port & 2) != 0) {
478		val = iodev_read_2(port);
479		val |= iodev_read_2(port + 2) << 16;
480	} else
481#endif
482	val = iodev_read_4(port);
483
484	return (val);
485}
486
487static void
488x86bios_emu_outb(struct x86emu *emu, uint16_t port, uint8_t val)
489{
490
491#ifndef X86BIOS_NATIVE_ARCH
492	if (port == 0xb2) /* APM scratch register */
493		return;
494	if (port >= 0x80 && port < 0x88) /* POST status register */
495		return;
496#endif
497
498	iodev_write_1(port, val);
499}
500
501static void
502x86bios_emu_outw(struct x86emu *emu, uint16_t port, uint16_t val)
503{
504
505#ifndef X86BIOS_NATIVE_ARCH
506	if (port >= 0x80 && port < 0x88) /* POST status register */
507		return;
508
509	if ((port & 1) != 0) {
510		iodev_write_1(port, val);
511		iodev_write_1(port + 1, val >> 8);
512	} else
513#endif
514	iodev_write_2(port, val);
515}
516
517static void
518x86bios_emu_outl(struct x86emu *emu, uint16_t port, uint32_t val)
519{
520
521#ifndef X86BIOS_NATIVE_ARCH
522	if (port >= 0x80 && port < 0x88) /* POST status register */
523		return;
524
525	if ((port & 1) != 0) {
526		iodev_write_1(port, val);
527		iodev_write_2(port + 1, val >> 8);
528		iodev_write_1(port + 3, val >> 24);
529	} else if ((port & 2) != 0) {
530		iodev_write_2(port, val);
531		iodev_write_2(port + 2, val >> 16);
532	} else
533#endif
534	iodev_write_4(port, val);
535}
536
537void *
538x86bios_alloc(uint32_t *offset, size_t size, int flags)
539{
540	void *vaddr;
541
542	if (offset == NULL || size == 0)
543		return (NULL);
544	vaddr = contigmalloc(size, M_DEVBUF, flags, X86BIOS_RAM_BASE,
545	    x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0);
546	if (vaddr != NULL) {
547		*offset = vtophys(vaddr);
548		mtx_lock(&x86bios_lock);
549		x86bios_set_pages((vm_offset_t)vaddr, *offset, size);
550		mtx_unlock(&x86bios_lock);
551	}
552
553	return (vaddr);
554}
555
556void
557x86bios_free(void *addr, size_t size)
558{
559	vm_paddr_t paddr;
560
561	if (addr == NULL || size == 0)
562		return;
563	paddr = vtophys(addr);
564	if (paddr < X86BIOS_RAM_BASE || paddr >= x86bios_rom_phys ||
565	    paddr % X86BIOS_PAGE_SIZE != 0)
566		return;
567	mtx_lock(&x86bios_lock);
568	bzero(x86bios_map + paddr / X86BIOS_PAGE_SIZE,
569	    sizeof(*x86bios_map) * howmany(size, X86BIOS_PAGE_SIZE));
570	mtx_unlock(&x86bios_lock);
571	contigfree(addr, size, M_DEVBUF);
572}
573
574void
575x86bios_init_regs(struct x86regs *regs)
576{
577
578	bzero(regs, sizeof(*regs));
579	regs->X86BIOS_R_SS = X86BIOS_PHYSTOSEG(x86bios_seg_phys);
580	regs->X86BIOS_R_SP = X86BIOS_PAGE_SIZE - 2;
581}
582
583void
584x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off)
585{
586
587	if (x86bios_trace_call)
588		X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs);
589
590	mtx_lock(&x86bios_lock);
591	memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
592	x86bios_fault = 0;
593	spinlock_enter();
594	x86emu_exec_call(&x86bios_emu, seg, off);
595	spinlock_exit();
596	memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
597	mtx_unlock(&x86bios_lock);
598
599	if (x86bios_trace_call) {
600		X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs);
601		if (x86bios_fault)
602			printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n",
603			    x86bios_fault_addr, x86bios_fault_cs,
604			    x86bios_fault_ip);
605	}
606}
607
608uint32_t
609x86bios_get_intr(int intno)
610{
611
612	return (le32toh(*((uint32_t *)x86bios_ivt + intno)));
613}
614
615void
616x86bios_set_intr(int intno, uint32_t saddr)
617{
618
619	*((uint32_t *)x86bios_ivt + intno) = htole32(saddr);
620}
621
622void
623x86bios_intr(struct x86regs *regs, int intno)
624{
625
626	if (intno < 0 || intno > 255)
627		return;
628
629	if (x86bios_trace_int)
630		X86BIOS_TRACE(Calling INT 0x%02x, intno, regs);
631
632	mtx_lock(&x86bios_lock);
633	memcpy(&x86bios_emu.x86, regs, sizeof(*regs));
634	x86bios_fault = 0;
635	spinlock_enter();
636	x86emu_exec_intr(&x86bios_emu, intno);
637	spinlock_exit();
638	memcpy(regs, &x86bios_emu.x86, sizeof(*regs));
639	mtx_unlock(&x86bios_lock);
640
641	if (x86bios_trace_int) {
642		X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs);
643		if (x86bios_fault)
644			printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n",
645			    x86bios_fault_addr, x86bios_fault_cs,
646			    x86bios_fault_ip);
647	}
648}
649
650void *
651x86bios_offset(uint32_t offset)
652{
653
654	return (x86bios_get_pages(offset, 1));
655}
656
657static __inline void
658x86bios_unmap_mem(void)
659{
660
661	free(x86bios_map, M_DEVBUF);
662	if (x86bios_ivt != NULL)
663#ifdef X86BIOS_NATIVE_ARCH
664		pmap_unmapbios((vm_offset_t)x86bios_ivt, X86BIOS_IVT_SIZE);
665#else
666		free(x86bios_ivt, M_DEVBUF);
667#endif
668	if (x86bios_rom != NULL)
669		pmap_unmapdev((vm_offset_t)x86bios_rom, X86BIOS_ROM_SIZE);
670	if (x86bios_seg != NULL)
671		contigfree(x86bios_seg, X86BIOS_SEG_SIZE, M_DEVBUF);
672}
673
674static __inline int
675x86bios_map_mem(void)
676{
677
678	x86bios_map = malloc(sizeof(*x86bios_map) * X86BIOS_PAGES, M_DEVBUF,
679	    M_WAITOK | M_ZERO);
680
681#ifdef X86BIOS_NATIVE_ARCH
682	x86bios_ivt = pmap_mapbios(X86BIOS_IVT_BASE, X86BIOS_IVT_SIZE);
683
684	/* Probe EBDA via BDA. */
685	x86bios_rom_phys = *(uint16_t *)((caddr_t)x86bios_ivt + 0x40e);
686	x86bios_rom_phys = x86bios_rom_phys << 4;
687	if (x86bios_rom_phys != 0 && x86bios_rom_phys < X86BIOS_ROM_BASE &&
688	    X86BIOS_ROM_BASE - x86bios_rom_phys <= 128 * 1024)
689		x86bios_rom_phys =
690		    rounddown(x86bios_rom_phys, X86BIOS_PAGE_SIZE);
691	else
692#else
693	x86bios_ivt = malloc(X86BIOS_IVT_SIZE, M_DEVBUF, M_ZERO | M_WAITOK);
694#endif
695
696	x86bios_rom_phys = X86BIOS_ROM_BASE;
697	x86bios_rom = pmap_mapdev(x86bios_rom_phys, X86BIOS_ROM_SIZE);
698	if (x86bios_rom == NULL)
699		goto fail;
700#ifdef X86BIOS_NATIVE_ARCH
701	/* Change attribute for EBDA. */
702	if (x86bios_rom_phys < X86BIOS_ROM_BASE &&
703	    pmap_change_attr((vm_offset_t)x86bios_rom,
704	    X86BIOS_ROM_BASE - x86bios_rom_phys, PAT_WRITE_BACK) != 0)
705		goto fail;
706#endif
707
708	x86bios_seg = contigmalloc(X86BIOS_SEG_SIZE, M_DEVBUF, M_WAITOK,
709	    X86BIOS_RAM_BASE, x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0);
710	x86bios_seg_phys = vtophys(x86bios_seg);
711
712	x86bios_set_pages((vm_offset_t)x86bios_ivt, X86BIOS_IVT_BASE,
713	    X86BIOS_IVT_SIZE);
714	x86bios_set_pages((vm_offset_t)x86bios_rom, x86bios_rom_phys,
715	    X86BIOS_ROM_SIZE);
716	x86bios_set_pages((vm_offset_t)x86bios_seg, x86bios_seg_phys,
717	    X86BIOS_SEG_SIZE);
718
719	if (bootverbose) {
720		printf("x86bios:  IVT 0x%06jx-0x%06jx at %p\n",
721		    (vm_paddr_t)X86BIOS_IVT_BASE,
722		    (vm_paddr_t)X86BIOS_IVT_SIZE + X86BIOS_IVT_BASE - 1,
723		    x86bios_ivt);
724		printf("x86bios: SSEG 0x%06jx-0x%06jx at %p\n",
725		    x86bios_seg_phys,
726		    (vm_paddr_t)X86BIOS_SEG_SIZE + x86bios_seg_phys - 1,
727		    x86bios_seg);
728		if (x86bios_rom_phys < X86BIOS_ROM_BASE)
729			printf("x86bios: EBDA 0x%06jx-0x%06jx at %p\n",
730			    x86bios_rom_phys, (vm_paddr_t)X86BIOS_ROM_BASE - 1,
731			    x86bios_rom);
732		printf("x86bios:  ROM 0x%06jx-0x%06jx at %p\n",
733		    (vm_paddr_t)X86BIOS_ROM_BASE,
734		    (vm_paddr_t)X86BIOS_MEM_SIZE - X86BIOS_SEG_SIZE - 1,
735		    (caddr_t)x86bios_rom + X86BIOS_ROM_BASE - x86bios_rom_phys);
736	}
737
738	return (0);
739
740fail:
741	x86bios_unmap_mem();
742
743	return (1);
744}
745
746static int
747x86bios_init(void)
748{
749
750	mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF);
751
752	if (x86bios_map_mem() != 0)
753		return (ENOMEM);
754
755	bzero(&x86bios_emu, sizeof(x86bios_emu));
756
757	x86bios_emu.emu_rdb = x86bios_emu_rdb;
758	x86bios_emu.emu_rdw = x86bios_emu_rdw;
759	x86bios_emu.emu_rdl = x86bios_emu_rdl;
760	x86bios_emu.emu_wrb = x86bios_emu_wrb;
761	x86bios_emu.emu_wrw = x86bios_emu_wrw;
762	x86bios_emu.emu_wrl = x86bios_emu_wrl;
763
764	x86bios_emu.emu_inb = x86bios_emu_inb;
765	x86bios_emu.emu_inw = x86bios_emu_inw;
766	x86bios_emu.emu_inl = x86bios_emu_inl;
767	x86bios_emu.emu_outb = x86bios_emu_outb;
768	x86bios_emu.emu_outw = x86bios_emu_outw;
769	x86bios_emu.emu_outl = x86bios_emu_outl;
770
771	return (0);
772}
773
774static int
775x86bios_uninit(void)
776{
777
778	x86bios_unmap_mem();
779	mtx_destroy(&x86bios_lock);
780
781	return (0);
782}
783
784#endif
785
786void *
787x86bios_get_orm(uint32_t offset)
788{
789	uint8_t *p;
790
791	/* Does the shadow ROM contain BIOS POST code for x86? */
792	p = x86bios_offset(offset);
793	if (p == NULL || p[0] != 0x55 || p[1] != 0xaa ||
794	    (p[3] != 0xe9 && p[3] != 0xeb))
795		return (NULL);
796
797	return (p);
798}
799
800int
801x86bios_match_device(uint32_t offset, device_t dev)
802{
803	uint8_t *p;
804	uint16_t device, vendor;
805	uint8_t class, progif, subclass;
806
807	/* Does the shadow ROM contain BIOS POST code for x86? */
808	p = x86bios_get_orm(offset);
809	if (p == NULL)
810		return (0);
811
812	/* Does it contain PCI data structure? */
813	p += le16toh(*(uint16_t *)(p + 0x18));
814	if (bcmp(p, "PCIR", 4) != 0 ||
815	    le16toh(*(uint16_t *)(p + 0x0a)) < 0x18 || *(p + 0x14) != 0)
816		return (0);
817
818	/* Does it match the vendor, device, and classcode? */
819	vendor = le16toh(*(uint16_t *)(p + 0x04));
820	device = le16toh(*(uint16_t *)(p + 0x06));
821	progif = *(p + 0x0d);
822	subclass = *(p + 0x0e);
823	class = *(p + 0x0f);
824	if (vendor != pci_get_vendor(dev) || device != pci_get_device(dev) ||
825	    class != pci_get_class(dev) || subclass != pci_get_subclass(dev) ||
826	    progif != pci_get_progif(dev))
827		return (0);
828
829	return (1);
830}
831
832static int
833x86bios_modevent(module_t mod __unused, int type, void *data __unused)
834{
835
836	switch (type) {
837	case MOD_LOAD:
838		return (x86bios_init());
839	case MOD_UNLOAD:
840		return (x86bios_uninit());
841	default:
842		return (ENOTSUP);
843	}
844}
845
846static moduledata_t x86bios_mod = {
847	"x86bios",
848	x86bios_modevent,
849	NULL,
850};
851
852DECLARE_MODULE(x86bios, x86bios_mod, SI_SUB_CPU, SI_ORDER_ANY);
853MODULE_VERSION(x86bios, 1);
854