BasicAliasAnalysis.cpp revision 198396
1252439Srpaulo//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2252439Srpaulo//
3252439Srpaulo//                     The LLVM Compiler Infrastructure
4252439Srpaulo//
5252439Srpaulo// This file is distributed under the University of Illinois Open Source
6252439Srpaulo// License. See LICENSE.TXT for details.
7252439Srpaulo//
8252439Srpaulo//===----------------------------------------------------------------------===//
9252439Srpaulo//
10252439Srpaulo// This file defines the default implementation of the Alias Analysis interface
11252439Srpaulo// that simply implements a few identities (two different globals cannot alias,
12252439Srpaulo// etc), but otherwise does no analysis.
13252439Srpaulo//
14252439Srpaulo//===----------------------------------------------------------------------===//
15252439Srpaulo
16252439Srpaulo#include "llvm/Analysis/AliasAnalysis.h"
17252439Srpaulo#include "llvm/Analysis/CaptureTracking.h"
18252439Srpaulo#include "llvm/Analysis/MallocHelper.h"
19252439Srpaulo#include "llvm/Analysis/Passes.h"
20252439Srpaulo#include "llvm/Constants.h"
21252439Srpaulo#include "llvm/DerivedTypes.h"
22252439Srpaulo#include "llvm/Function.h"
23252439Srpaulo#include "llvm/GlobalVariable.h"
24252439Srpaulo#include "llvm/Instructions.h"
25252439Srpaulo#include "llvm/IntrinsicInst.h"
26252439Srpaulo#include "llvm/LLVMContext.h"
27252439Srpaulo#include "llvm/Operator.h"
28252439Srpaulo#include "llvm/Pass.h"
29252439Srpaulo#include "llvm/Target/TargetData.h"
30252439Srpaulo#include "llvm/ADT/SmallSet.h"
31252439Srpaulo#include "llvm/ADT/SmallVector.h"
32280520Sandrew#include "llvm/ADT/STLExtras.h"
33280520Sandrew#include "llvm/Support/Compiler.h"
34280520Sandrew#include "llvm/Support/ErrorHandling.h"
35280520Sandrew#include "llvm/Support/GetElementPtrTypeIterator.h"
36280520Sandrew#include <algorithm>
37252439Srpaulousing namespace llvm;
38252439Srpaulo
39252439Srpaulo//===----------------------------------------------------------------------===//
40252439Srpaulo// Useful predicates
41252439Srpaulo//===----------------------------------------------------------------------===//
42252439Srpaulo
43280520Sandrewstatic const Value *GetGEPOperands(const Value *V,
44280520Sandrew                                   SmallVector<Value*, 16> &GEPOps) {
45252439Srpaulo  assert(GEPOps.empty() && "Expect empty list to populate!");
46252439Srpaulo  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
47252439Srpaulo                cast<User>(V)->op_end());
48252439Srpaulo
49252439Srpaulo  // Accumulate all of the chained indexes into the operand array
50252439Srpaulo  V = cast<User>(V)->getOperand(0);
51252439Srpaulo
52252439Srpaulo  while (const GEPOperator *G = dyn_cast<GEPOperator>(V)) {
53252439Srpaulo    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
54252439Srpaulo        !cast<Constant>(GEPOps[0])->isNullValue())
55252439Srpaulo      break;  // Don't handle folding arbitrary pointer offsets yet...
56252439Srpaulo    GEPOps.erase(GEPOps.begin());   // Drop the zero index
57252439Srpaulo    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
58252439Srpaulo    V = G->getOperand(0);
59252439Srpaulo  }
60252439Srpaulo  return V;
61252439Srpaulo}
62252439Srpaulo
63252439Srpaulo/// isKnownNonNull - Return true if we know that the specified value is never
64252439Srpaulo/// null.
65252439Srpaulostatic bool isKnownNonNull(const Value *V) {
66252439Srpaulo  // Alloca never returns null, malloc might.
67252439Srpaulo  if (isa<AllocaInst>(V)) return true;
68252439Srpaulo
69252439Srpaulo  // A byval argument is never null.
70252439Srpaulo  if (const Argument *A = dyn_cast<Argument>(V))
71252439Srpaulo    return A->hasByValAttr();
72252439Srpaulo
73252439Srpaulo  // Global values are not null unless extern weak.
74252439Srpaulo  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
75252439Srpaulo    return !GV->hasExternalWeakLinkage();
76252439Srpaulo  return false;
77252439Srpaulo}
78252439Srpaulo
79252439Srpaulo/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
80252439Srpaulo/// object that never escapes from the function.
81252439Srpaulostatic bool isNonEscapingLocalObject(const Value *V) {
82252439Srpaulo  // If this is a local allocation, check to see if it escapes.
83252439Srpaulo  if (isa<AllocationInst>(V) || isNoAliasCall(V))
84252439Srpaulo    return !PointerMayBeCaptured(V, false);
85252439Srpaulo
86252439Srpaulo  // If this is an argument that corresponds to a byval or noalias argument,
87252439Srpaulo  // then it has not escaped before entering the function.  Check if it escapes
88252439Srpaulo  // inside the function.
89252439Srpaulo  if (const Argument *A = dyn_cast<Argument>(V))
90252439Srpaulo    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
91252439Srpaulo      // Don't bother analyzing arguments already known not to escape.
92252439Srpaulo      if (A->hasNoCaptureAttr())
93252439Srpaulo        return true;
94252439Srpaulo      return !PointerMayBeCaptured(V, false);
95252439Srpaulo    }
96252439Srpaulo  return false;
97252439Srpaulo}
98252439Srpaulo
99252439Srpaulo
100252439Srpaulo/// isObjectSmallerThan - Return true if we can prove that the object specified
101252439Srpaulo/// by V is smaller than Size.
102252439Srpaulostatic bool isObjectSmallerThan(const Value *V, unsigned Size,
103252439Srpaulo                                LLVMContext &Context, const TargetData &TD) {
104252439Srpaulo  const Type *AccessTy;
105252439Srpaulo  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
106252439Srpaulo    AccessTy = GV->getType()->getElementType();
107252439Srpaulo  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
108252439Srpaulo    if (!AI->isArrayAllocation())
109252439Srpaulo      AccessTy = AI->getType()->getElementType();
110252439Srpaulo    else
111252439Srpaulo      return false;
112252439Srpaulo  } else if (const CallInst* CI = extractMallocCall(V)) {
113252439Srpaulo    if (!isArrayMalloc(V, Context, &TD))
114252439Srpaulo      // The size is the argument to the malloc call.
115252439Srpaulo      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
116252439Srpaulo        return (C->getZExtValue() < Size);
117252439Srpaulo    return false;
118252439Srpaulo  } else if (const Argument *A = dyn_cast<Argument>(V)) {
119252439Srpaulo    if (A->hasByValAttr())
120252439Srpaulo      AccessTy = cast<PointerType>(A->getType())->getElementType();
121252439Srpaulo    else
122252439Srpaulo      return false;
123252439Srpaulo  } else {
124252439Srpaulo    return false;
125252439Srpaulo  }
126252439Srpaulo
127252439Srpaulo  if (AccessTy->isSized())
128252439Srpaulo    return TD.getTypeAllocSize(AccessTy) < Size;
129252439Srpaulo  return false;
130252439Srpaulo}
131252439Srpaulo
132252439Srpaulo//===----------------------------------------------------------------------===//
133252439Srpaulo// NoAA Pass
134252439Srpaulo//===----------------------------------------------------------------------===//
135252439Srpaulo
136252439Srpaulonamespace {
137252439Srpaulo  /// NoAA - This class implements the -no-aa pass, which always returns "I
138252439Srpaulo  /// don't know" for alias queries.  NoAA is unlike other alias analysis
139252439Srpaulo  /// implementations, in that it does not chain to a previous analysis.  As
140252439Srpaulo  /// such it doesn't follow many of the rules that other alias analyses must.
141252439Srpaulo  ///
142252439Srpaulo  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
143252439Srpaulo    static char ID; // Class identification, replacement for typeinfo
144252439Srpaulo    NoAA() : ImmutablePass(&ID) {}
145252439Srpaulo    explicit NoAA(void *PID) : ImmutablePass(PID) { }
146252439Srpaulo
147252439Srpaulo    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
148252439Srpaulo    }
149252439Srpaulo
150252439Srpaulo    virtual void initializePass() {
151252439Srpaulo      TD = getAnalysisIfAvailable<TargetData>();
152252439Srpaulo    }
153252439Srpaulo
154252439Srpaulo    virtual AliasResult alias(const Value *V1, unsigned V1Size,
155252439Srpaulo                              const Value *V2, unsigned V2Size) {
156252439Srpaulo      return MayAlias;
157252439Srpaulo    }
158252439Srpaulo
159252439Srpaulo    virtual void getArgumentAccesses(Function *F, CallSite CS,
160252439Srpaulo                                     std::vector<PointerAccessInfo> &Info) {
161252439Srpaulo      llvm_unreachable("This method may not be called on this function!");
162252439Srpaulo    }
163252439Srpaulo
164252439Srpaulo    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
165252439Srpaulo    virtual bool pointsToConstantMemory(const Value *P) { return false; }
166252439Srpaulo    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
167252439Srpaulo      return ModRef;
168252439Srpaulo    }
169252439Srpaulo    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
170252439Srpaulo      return ModRef;
171252439Srpaulo    }
172252439Srpaulo    virtual bool hasNoModRefInfoForCalls() const { return true; }
173252439Srpaulo
174252439Srpaulo    virtual void deleteValue(Value *V) {}
175252439Srpaulo    virtual void copyValue(Value *From, Value *To) {}
176252439Srpaulo  };
177252439Srpaulo}  // End of anonymous namespace
178252439Srpaulo
179252439Srpaulo// Register this pass...
180252439Srpaulochar NoAA::ID = 0;
181252439Srpaulostatic RegisterPass<NoAA>
182252439SrpauloU("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
183252439Srpaulo
184252439Srpaulo// Declare that we implement the AliasAnalysis interface
185252439Srpaulostatic RegisterAnalysisGroup<AliasAnalysis> V(U);
186252439Srpaulo
187252439SrpauloImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
188252439Srpaulo
189252439Srpaulo//===----------------------------------------------------------------------===//
190252439Srpaulo// BasicAA Pass
191252439Srpaulo//===----------------------------------------------------------------------===//
192252439Srpaulo
193252439Srpaulonamespace {
194252439Srpaulo  /// BasicAliasAnalysis - This is the default alias analysis implementation.
195252439Srpaulo  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
196252439Srpaulo  /// derives from the NoAA class.
197252439Srpaulo  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
198252439Srpaulo    static char ID; // Class identification, replacement for typeinfo
199252439Srpaulo    BasicAliasAnalysis() : NoAA(&ID) {}
200252439Srpaulo    AliasResult alias(const Value *V1, unsigned V1Size,
201252439Srpaulo                      const Value *V2, unsigned V2Size) {
202252439Srpaulo      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
203252439Srpaulo      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
204252439Srpaulo      VisitedPHIs.clear();
205252439Srpaulo      return Alias;
206252439Srpaulo    }
207252439Srpaulo
208252439Srpaulo    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
209252439Srpaulo    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
210252439Srpaulo
211252439Srpaulo    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
212252439Srpaulo    /// non-escaping allocations.
213252439Srpaulo    virtual bool hasNoModRefInfoForCalls() const { return false; }
214252439Srpaulo
215252439Srpaulo    /// pointsToConstantMemory - Chase pointers until we find a (constant
216252439Srpaulo    /// global) or not.
217252439Srpaulo    bool pointsToConstantMemory(const Value *P);
218252439Srpaulo
219252439Srpaulo  private:
220252439Srpaulo    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
221252439Srpaulo    SmallPtrSet<const PHINode*, 16> VisitedPHIs;
222252439Srpaulo
223252439Srpaulo    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
224252439Srpaulo    // against another.
225252439Srpaulo    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
226252439Srpaulo                         const Value *V2, unsigned V2Size);
227252439Srpaulo
228252439Srpaulo    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
229252439Srpaulo    // against another.
230252439Srpaulo    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
231252439Srpaulo                         const Value *V2, unsigned V2Size);
232252439Srpaulo
233252439Srpaulo    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
234252439Srpaulo                           const Value *V2, unsigned V2Size);
235252439Srpaulo
236252439Srpaulo    // CheckGEPInstructions - Check two GEP instructions with known
237252439Srpaulo    // must-aliasing base pointers.  This checks to see if the index expressions
238252439Srpaulo    // preclude the pointers from aliasing...
239252439Srpaulo    AliasResult
240252439Srpaulo    CheckGEPInstructions(const Type* BasePtr1Ty,
241252439Srpaulo                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
242252439Srpaulo                         const Type *BasePtr2Ty,
243252439Srpaulo                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
244252439Srpaulo  };
245252439Srpaulo}  // End of anonymous namespace
246252439Srpaulo
247252439Srpaulo// Register this pass...
248252439Srpaulochar BasicAliasAnalysis::ID = 0;
249252439Srpaulostatic RegisterPass<BasicAliasAnalysis>
250252439SrpauloX("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
251252439Srpaulo
252252439Srpaulo// Declare that we implement the AliasAnalysis interface
253252439Srpaulostatic RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
254252439Srpaulo
255252439SrpauloImmutablePass *llvm::createBasicAliasAnalysisPass() {
256252439Srpaulo  return new BasicAliasAnalysis();
257252439Srpaulo}
258252439Srpaulo
259252439Srpaulo
260252439Srpaulo/// pointsToConstantMemory - Chase pointers until we find a (constant
261252439Srpaulo/// global) or not.
262252439Srpaulobool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
263252439Srpaulo  if (const GlobalVariable *GV =
264252439Srpaulo        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
265252439Srpaulo    return GV->isConstant();
266252439Srpaulo  return false;
267252439Srpaulo}
268252439Srpaulo
269252439Srpaulo
270252439Srpaulo// getModRefInfo - Check to see if the specified callsite can clobber the
271252439Srpaulo// specified memory object.  Since we only look at local properties of this
272252439Srpaulo// function, we really can't say much about this query.  We do, however, use
273252439Srpaulo// simple "address taken" analysis on local objects.
274252439Srpaulo//
275252439SrpauloAliasAnalysis::ModRefResult
276252439SrpauloBasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
277252439Srpaulo  if (!isa<Constant>(P)) {
278252439Srpaulo    const Value *Object = P->getUnderlyingObject();
279252439Srpaulo
280252439Srpaulo    // If this is a tail call and P points to a stack location, we know that
281252439Srpaulo    // the tail call cannot access or modify the local stack.
282252439Srpaulo    // We cannot exclude byval arguments here; these belong to the caller of
283252439Srpaulo    // the current function not to the current function, and a tail callee
284252439Srpaulo    // may reference them.
285252439Srpaulo    if (isa<AllocaInst>(Object))
286252439Srpaulo      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
287252439Srpaulo        if (CI->isTailCall())
288252439Srpaulo          return NoModRef;
289252439Srpaulo
290252439Srpaulo    // If the pointer is to a locally allocated object that does not escape,
291252439Srpaulo    // then the call can not mod/ref the pointer unless the call takes the
292252439Srpaulo    // argument without capturing it.
293252439Srpaulo    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
294252439Srpaulo      bool passedAsArg = false;
295252439Srpaulo      // TODO: Eventually only check 'nocapture' arguments.
296252439Srpaulo      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
297252439Srpaulo           CI != CE; ++CI)
298252439Srpaulo        if (isa<PointerType>((*CI)->getType()) &&
299252439Srpaulo            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
300252439Srpaulo          passedAsArg = true;
301252439Srpaulo
302252439Srpaulo      if (!passedAsArg)
303252439Srpaulo        return NoModRef;
304252439Srpaulo    }
305252439Srpaulo
306252439Srpaulo    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
307252439Srpaulo      switch (II->getIntrinsicID()) {
308252439Srpaulo      default: break;
309252439Srpaulo      case Intrinsic::memcpy:
310252439Srpaulo      case Intrinsic::memmove: {
311252439Srpaulo        unsigned Len = ~0U;
312252439Srpaulo        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
313252439Srpaulo          Len = LenCI->getZExtValue();
314252439Srpaulo        Value *Dest = II->getOperand(1);
315252439Srpaulo        Value *Src = II->getOperand(2);
316252439Srpaulo        if (alias(Dest, Len, P, Size) == NoAlias) {
317252439Srpaulo          if (alias(Src, Len, P, Size) == NoAlias)
318252439Srpaulo            return NoModRef;
319252439Srpaulo          return Ref;
320252439Srpaulo        }
321252439Srpaulo        }
322252439Srpaulo        break;
323252439Srpaulo      case Intrinsic::memset:
324252439Srpaulo        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
325252439Srpaulo          unsigned Len = LenCI->getZExtValue();
326252439Srpaulo          Value *Dest = II->getOperand(1);
327252439Srpaulo          if (alias(Dest, Len, P, Size) == NoAlias)
328252439Srpaulo            return NoModRef;
329252439Srpaulo        }
330252439Srpaulo        break;
331252439Srpaulo      case Intrinsic::atomic_cmp_swap:
332252439Srpaulo      case Intrinsic::atomic_swap:
333252439Srpaulo      case Intrinsic::atomic_load_add:
334252439Srpaulo      case Intrinsic::atomic_load_sub:
335252439Srpaulo      case Intrinsic::atomic_load_and:
336252439Srpaulo      case Intrinsic::atomic_load_nand:
337252439Srpaulo      case Intrinsic::atomic_load_or:
338252439Srpaulo      case Intrinsic::atomic_load_xor:
339252439Srpaulo      case Intrinsic::atomic_load_max:
340252439Srpaulo      case Intrinsic::atomic_load_min:
341252439Srpaulo      case Intrinsic::atomic_load_umax:
342252439Srpaulo      case Intrinsic::atomic_load_umin:
343252439Srpaulo        if (TD) {
344252439Srpaulo          Value *Op1 = II->getOperand(1);
345252439Srpaulo          unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
346252439Srpaulo          if (alias(Op1, Op1Size, P, Size) == NoAlias)
347252439Srpaulo            return NoModRef;
348252439Srpaulo        }
349252439Srpaulo        break;
350252439Srpaulo      case Intrinsic::lifetime_start:
351252439Srpaulo      case Intrinsic::lifetime_end:
352252439Srpaulo      case Intrinsic::invariant_start: {
353252439Srpaulo        unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
354252439Srpaulo        if (alias(II->getOperand(2), PtrSize, P, Size) == NoAlias)
355252439Srpaulo          return NoModRef;
356252439Srpaulo      }
357252439Srpaulo      break;
358252439Srpaulo      case Intrinsic::invariant_end: {
359252439Srpaulo        unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
360252439Srpaulo        if (alias(II->getOperand(3), PtrSize, P, Size) == NoAlias)
361252439Srpaulo          return NoModRef;
362252439Srpaulo      }
363252439Srpaulo      break;
364252439Srpaulo      }
365252439Srpaulo    }
366252439Srpaulo  }
367252439Srpaulo
368252439Srpaulo  // The AliasAnalysis base class has some smarts, lets use them.
369252439Srpaulo  return AliasAnalysis::getModRefInfo(CS, P, Size);
370252439Srpaulo}
371252439Srpaulo
372252439Srpaulo
373252439SrpauloAliasAnalysis::ModRefResult
374252439SrpauloBasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
375256959Sloos  // If CS1 or CS2 are readnone, they don't interact.
376256959Sloos  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
377256959Sloos  if (CS1B == DoesNotAccessMemory) return NoModRef;
378256959Sloos
379256959Sloos  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
380256959Sloos  if (CS2B == DoesNotAccessMemory) return NoModRef;
381256959Sloos
382256959Sloos  // If they both only read from memory, just return ref.
383256959Sloos  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
384256959Sloos    return Ref;
385256959Sloos
386256959Sloos  // Otherwise, fall back to NoAA (mod+ref).
387256959Sloos  return NoAA::getModRefInfo(CS1, CS2);
388256959Sloos}
389256959Sloos
390256959Sloos// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
391257062Sloos// against another.
392257062Sloos//
393257062SloosAliasAnalysis::AliasResult
394257062SloosBasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
395257062Sloos                             const Value *V2, unsigned V2Size) {
396257062Sloos  // If we have two gep instructions with must-alias'ing base pointers, figure
397257062Sloos  // out if the indexes to the GEP tell us anything about the derived pointer.
398257062Sloos  // Note that we also handle chains of getelementptr instructions as well as
399252439Srpaulo  // constant expression getelementptrs here.
400252439Srpaulo  //
401252439Srpaulo  if (isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
402252439Srpaulo    const User *GEP1 = cast<User>(V1);
403252439Srpaulo    const User *GEP2 = cast<User>(V2);
404252439Srpaulo
405252439Srpaulo    // If V1 and V2 are identical GEPs, just recurse down on both of them.
406252439Srpaulo    // This allows us to analyze things like:
407252439Srpaulo    //   P = gep A, 0, i, 1
408252439Srpaulo    //   Q = gep B, 0, i, 1
409252439Srpaulo    // by just analyzing A and B.  This is even safe for variable indices.
410252439Srpaulo    if (GEP1->getType() == GEP2->getType() &&
411252439Srpaulo        GEP1->getNumOperands() == GEP2->getNumOperands() &&
412252439Srpaulo        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
413252439Srpaulo        // All operands are the same, ignoring the base.
414252439Srpaulo        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
415252439Srpaulo      return aliasCheck(GEP1->getOperand(0), V1Size,
416252439Srpaulo                        GEP2->getOperand(0), V2Size);
417252439Srpaulo
418252439Srpaulo    // Drill down into the first non-gep value, to test for must-aliasing of
419252439Srpaulo    // the base pointers.
420252439Srpaulo    while (isa<GEPOperator>(GEP1->getOperand(0)) &&
421252439Srpaulo           GEP1->getOperand(1) ==
422252439Srpaulo           Constant::getNullValue(GEP1->getOperand(1)->getType()))
423252439Srpaulo      GEP1 = cast<User>(GEP1->getOperand(0));
424252439Srpaulo    const Value *BasePtr1 = GEP1->getOperand(0);
425252439Srpaulo
426252439Srpaulo    while (isa<GEPOperator>(GEP2->getOperand(0)) &&
427252439Srpaulo           GEP2->getOperand(1) ==
428252439Srpaulo           Constant::getNullValue(GEP2->getOperand(1)->getType()))
429252439Srpaulo      GEP2 = cast<User>(GEP2->getOperand(0));
430252439Srpaulo    const Value *BasePtr2 = GEP2->getOperand(0);
431252439Srpaulo
432252439Srpaulo    // Do the base pointers alias?
433252439Srpaulo    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
434281859Sloos    if (BaseAlias == NoAlias) return NoAlias;
435252439Srpaulo    if (BaseAlias == MustAlias) {
436252439Srpaulo      // If the base pointers alias each other exactly, check to see if we can
437252439Srpaulo      // figure out anything about the resultant pointers, to try to prove
438252439Srpaulo      // non-aliasing.
439252439Srpaulo
440252439Srpaulo      // Collect all of the chained GEP operands together into one simple place
441252439Srpaulo      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
442252439Srpaulo      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
443252439Srpaulo      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
444252439Srpaulo
445252439Srpaulo      // If GetGEPOperands were able to fold to the same must-aliased pointer,
446252439Srpaulo      // do the comparison.
447252439Srpaulo      if (BasePtr1 == BasePtr2) {
448252439Srpaulo        AliasResult GAlias =
449252439Srpaulo          CheckGEPInstructions(BasePtr1->getType(),
450252439Srpaulo                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
451252439Srpaulo                               BasePtr2->getType(),
452252439Srpaulo                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
453252439Srpaulo        if (GAlias != MayAlias)
454252439Srpaulo          return GAlias;
455252439Srpaulo      }
456252439Srpaulo    }
457252439Srpaulo  }
458252439Srpaulo
459252439Srpaulo  // Check to see if these two pointers are related by a getelementptr
460252439Srpaulo  // instruction.  If one pointer is a GEP with a non-zero index of the other
461252439Srpaulo  // pointer, we know they cannot alias.
462252439Srpaulo  //
463252439Srpaulo  if (V1Size == ~0U || V2Size == ~0U)
464252439Srpaulo    return MayAlias;
465252439Srpaulo
466252439Srpaulo  SmallVector<Value*, 16> GEPOperands;
467252439Srpaulo  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
468252439Srpaulo
469  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
470  if (R != MustAlias)
471    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
472    // If V2 is known not to alias GEP base pointer, then the two values
473    // cannot alias per GEP semantics: "A pointer value formed from a
474    // getelementptr instruction is associated with the addresses associated
475    // with the first operand of the getelementptr".
476    return R;
477
478  // If there is at least one non-zero constant index, we know they cannot
479  // alias.
480  bool ConstantFound = false;
481  bool AllZerosFound = true;
482  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
483    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
484      if (!C->isNullValue()) {
485        ConstantFound = true;
486        AllZerosFound = false;
487        break;
488      }
489    } else {
490      AllZerosFound = false;
491    }
492
493  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
494  // the ptr, the end result is a must alias also.
495  if (AllZerosFound)
496    return MustAlias;
497
498  if (ConstantFound) {
499    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
500      return NoAlias;
501
502    // Otherwise we have to check to see that the distance is more than
503    // the size of the argument... build an index vector that is equal to
504    // the arguments provided, except substitute 0's for any variable
505    // indexes we find...
506    if (TD &&
507        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
508      for (unsigned i = 0; i != GEPOperands.size(); ++i)
509        if (!isa<ConstantInt>(GEPOperands[i]))
510          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
511      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
512                                            &GEPOperands[0],
513                                            GEPOperands.size());
514
515      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
516        return NoAlias;
517    }
518  }
519
520  return MayAlias;
521}
522
523// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
524// against another.
525AliasAnalysis::AliasResult
526BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
527                             const Value *V2, unsigned V2Size) {
528  // The PHI node has already been visited, avoid recursion any further.
529  if (!VisitedPHIs.insert(PN))
530    return MayAlias;
531
532  SmallPtrSet<Value*, 4> UniqueSrc;
533  SmallVector<Value*, 4> V1Srcs;
534  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
535    Value *PV1 = PN->getIncomingValue(i);
536    if (isa<PHINode>(PV1))
537      // If any of the source itself is a PHI, return MayAlias conservatively
538      // to avoid compile time explosion. The worst possible case is if both
539      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
540      // and 'n' are the number of PHI sources.
541      return MayAlias;
542    if (UniqueSrc.insert(PV1))
543      V1Srcs.push_back(PV1);
544  }
545
546  AliasResult Alias = aliasCheck(V1Srcs[0], PNSize, V2, V2Size);
547  // Early exit if the check of the first PHI source against V2 is MayAlias.
548  // Other results are not possible.
549  if (Alias == MayAlias)
550    return MayAlias;
551
552  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
553  // NoAlias / MustAlias. Otherwise, returns MayAlias.
554  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
555    Value *V = V1Srcs[i];
556    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
557    if (ThisAlias != Alias || ThisAlias == MayAlias)
558      return MayAlias;
559  }
560
561  return Alias;
562}
563
564// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
565// such as array references.
566//
567AliasAnalysis::AliasResult
568BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
569                               const Value *V2, unsigned V2Size) {
570  // Strip off any casts if they exist.
571  V1 = V1->stripPointerCasts();
572  V2 = V2->stripPointerCasts();
573
574  // Are we checking for alias of the same value?
575  if (V1 == V2) return MustAlias;
576
577  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
578    return NoAlias;  // Scalars cannot alias each other
579
580  // Figure out what objects these things are pointing to if we can.
581  const Value *O1 = V1->getUnderlyingObject();
582  const Value *O2 = V2->getUnderlyingObject();
583
584  if (O1 != O2) {
585    // If V1/V2 point to two different objects we know that we have no alias.
586    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
587      return NoAlias;
588
589    // Arguments can't alias with local allocations or noalias calls.
590    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
591        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
592      return NoAlias;
593
594    // Most objects can't alias null.
595    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
596        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
597      return NoAlias;
598  }
599
600  // If the size of one access is larger than the entire object on the other
601  // side, then we know such behavior is undefined and can assume no alias.
602  LLVMContext &Context = V1->getContext();
603  if (TD)
604    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
605        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
606      return NoAlias;
607
608  // If one pointer is the result of a call/invoke and the other is a
609  // non-escaping local object, then we know the object couldn't escape to a
610  // point where the call could return it.
611  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
612      isNonEscapingLocalObject(O2) && O1 != O2)
613    return NoAlias;
614  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
615      isNonEscapingLocalObject(O1) && O1 != O2)
616    return NoAlias;
617
618  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
619    std::swap(V1, V2);
620    std::swap(V1Size, V2Size);
621  }
622  if (isa<GEPOperator>(V1))
623    return aliasGEP(V1, V1Size, V2, V2Size);
624
625  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
626    std::swap(V1, V2);
627    std::swap(V1Size, V2Size);
628  }
629  if (const PHINode *PN = dyn_cast<PHINode>(V1))
630    return aliasPHI(PN, V1Size, V2, V2Size);
631
632  return MayAlias;
633}
634
635// This function is used to determine if the indices of two GEP instructions are
636// equal. V1 and V2 are the indices.
637static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
638  if (V1->getType() == V2->getType())
639    return V1 == V2;
640  if (Constant *C1 = dyn_cast<Constant>(V1))
641    if (Constant *C2 = dyn_cast<Constant>(V2)) {
642      // Sign extend the constants to long types, if necessary
643      if (C1->getType() != Type::getInt64Ty(Context))
644        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
645      if (C2->getType() != Type::getInt64Ty(Context))
646        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
647      return C1 == C2;
648    }
649  return false;
650}
651
652/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
653/// base pointers.  This checks to see if the index expressions preclude the
654/// pointers from aliasing...
655AliasAnalysis::AliasResult
656BasicAliasAnalysis::CheckGEPInstructions(
657  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
658  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
659  // We currently can't handle the case when the base pointers have different
660  // primitive types.  Since this is uncommon anyway, we are happy being
661  // extremely conservative.
662  if (BasePtr1Ty != BasePtr2Ty)
663    return MayAlias;
664
665  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
666
667  LLVMContext &Context = GEPPointerTy->getContext();
668
669  // Find the (possibly empty) initial sequence of equal values... which are not
670  // necessarily constants.
671  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
672  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
673  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
674  unsigned UnequalOper = 0;
675  while (UnequalOper != MinOperands &&
676         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
677         Context)) {
678    // Advance through the type as we go...
679    ++UnequalOper;
680    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
681      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
682    else {
683      // If all operands equal each other, then the derived pointers must
684      // alias each other...
685      BasePtr1Ty = 0;
686      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
687             "Ran out of type nesting, but not out of operands?");
688      return MustAlias;
689    }
690  }
691
692  // If we have seen all constant operands, and run out of indexes on one of the
693  // getelementptrs, check to see if the tail of the leftover one is all zeros.
694  // If so, return mustalias.
695  if (UnequalOper == MinOperands) {
696    if (NumGEP1Ops < NumGEP2Ops) {
697      std::swap(GEP1Ops, GEP2Ops);
698      std::swap(NumGEP1Ops, NumGEP2Ops);
699    }
700
701    bool AllAreZeros = true;
702    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
703      if (!isa<Constant>(GEP1Ops[i]) ||
704          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
705        AllAreZeros = false;
706        break;
707      }
708    if (AllAreZeros) return MustAlias;
709  }
710
711
712  // So now we know that the indexes derived from the base pointers,
713  // which are known to alias, are different.  We can still determine a
714  // no-alias result if there are differing constant pairs in the index
715  // chain.  For example:
716  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
717  //
718  // We have to be careful here about array accesses.  In particular, consider:
719  //        A[1][0] vs A[0][i]
720  // In this case, we don't *know* that the array will be accessed in bounds:
721  // the index could even be negative.  Because of this, we have to
722  // conservatively *give up* and return may alias.  We disregard differing
723  // array subscripts that are followed by a variable index without going
724  // through a struct.
725  //
726  unsigned SizeMax = std::max(G1S, G2S);
727  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
728
729  // Scan for the first operand that is constant and unequal in the
730  // two getelementptrs...
731  unsigned FirstConstantOper = UnequalOper;
732  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
733    const Value *G1Oper = GEP1Ops[FirstConstantOper];
734    const Value *G2Oper = GEP2Ops[FirstConstantOper];
735
736    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
737      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
738        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
739          if (G1OC->getType() != G2OC->getType()) {
740            // Sign extend both operands to long.
741            if (G1OC->getType() != Type::getInt64Ty(Context))
742              G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
743            if (G2OC->getType() != Type::getInt64Ty(Context))
744              G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
745            GEP1Ops[FirstConstantOper] = G1OC;
746            GEP2Ops[FirstConstantOper] = G2OC;
747          }
748
749          if (G1OC != G2OC) {
750            // Handle the "be careful" case above: if this is an array/vector
751            // subscript, scan for a subsequent variable array index.
752            if (const SequentialType *STy =
753                  dyn_cast<SequentialType>(BasePtr1Ty)) {
754              const Type *NextTy = STy;
755              bool isBadCase = false;
756
757              for (unsigned Idx = FirstConstantOper;
758                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
759                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
760                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
761                  isBadCase = true;
762                  break;
763                }
764                // If the array is indexed beyond the bounds of the static type
765                // at this level, it will also fall into the "be careful" case.
766                // It would theoretically be possible to analyze these cases,
767                // but for now just be conservatively correct.
768                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
769                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
770                        ATy->getNumElements() ||
771                      cast<ConstantInt>(G2OC)->getZExtValue() >=
772                        ATy->getNumElements()) {
773                    isBadCase = true;
774                    break;
775                  }
776                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
777                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
778                        VTy->getNumElements() ||
779                      cast<ConstantInt>(G2OC)->getZExtValue() >=
780                        VTy->getNumElements()) {
781                    isBadCase = true;
782                    break;
783                  }
784                STy = cast<SequentialType>(NextTy);
785                NextTy = cast<SequentialType>(NextTy)->getElementType();
786              }
787
788              if (isBadCase) G1OC = 0;
789            }
790
791            // Make sure they are comparable (ie, not constant expressions), and
792            // make sure the GEP with the smaller leading constant is GEP1.
793            if (G1OC) {
794              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
795                                                        G1OC, G2OC);
796              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
797                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
798                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
799                  std::swap(NumGEP1Ops, NumGEP2Ops);
800                }
801                break;
802              }
803            }
804          }
805        }
806    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
807  }
808
809  // No shared constant operands, and we ran out of common operands.  At this
810  // point, the GEP instructions have run through all of their operands, and we
811  // haven't found evidence that there are any deltas between the GEP's.
812  // However, one GEP may have more operands than the other.  If this is the
813  // case, there may still be hope.  Check this now.
814  if (FirstConstantOper == MinOperands) {
815    // Without TargetData, we won't know what the offsets are.
816    if (!TD)
817      return MayAlias;
818
819    // Make GEP1Ops be the longer one if there is a longer one.
820    if (NumGEP1Ops < NumGEP2Ops) {
821      std::swap(GEP1Ops, GEP2Ops);
822      std::swap(NumGEP1Ops, NumGEP2Ops);
823    }
824
825    // Is there anything to check?
826    if (NumGEP1Ops > MinOperands) {
827      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
828        if (isa<ConstantInt>(GEP1Ops[i]) &&
829            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
830          // Yup, there's a constant in the tail.  Set all variables to
831          // constants in the GEP instruction to make it suitable for
832          // TargetData::getIndexedOffset.
833          for (i = 0; i != MaxOperands; ++i)
834            if (!isa<ConstantInt>(GEP1Ops[i]))
835              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
836          // Okay, now get the offset.  This is the relative offset for the full
837          // instruction.
838          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
839                                                 NumGEP1Ops);
840
841          // Now check without any constants at the end.
842          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
843                                                 MinOperands);
844
845          // Make sure we compare the absolute difference.
846          if (Offset1 > Offset2)
847            std::swap(Offset1, Offset2);
848
849          // If the tail provided a bit enough offset, return noalias!
850          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
851            return NoAlias;
852          // Otherwise break - we don't look for another constant in the tail.
853          break;
854        }
855    }
856
857    // Couldn't find anything useful.
858    return MayAlias;
859  }
860
861  // If there are non-equal constants arguments, then we can figure
862  // out a minimum known delta between the two index expressions... at
863  // this point we know that the first constant index of GEP1 is less
864  // than the first constant index of GEP2.
865
866  // Advance BasePtr[12]Ty over this first differing constant operand.
867  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
868      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
869  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
870      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
871
872  // We are going to be using TargetData::getIndexedOffset to determine the
873  // offset that each of the GEP's is reaching.  To do this, we have to convert
874  // all variable references to constant references.  To do this, we convert the
875  // initial sequence of array subscripts into constant zeros to start with.
876  const Type *ZeroIdxTy = GEPPointerTy;
877  for (unsigned i = 0; i != FirstConstantOper; ++i) {
878    if (!isa<StructType>(ZeroIdxTy))
879      GEP1Ops[i] = GEP2Ops[i] =
880                              Constant::getNullValue(Type::getInt32Ty(Context));
881
882    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
883      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
884  }
885
886  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
887
888  // Loop over the rest of the operands...
889  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
890    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
891    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
892    // If they are equal, use a zero index...
893    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
894      if (!isa<ConstantInt>(Op1))
895        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
896      // Otherwise, just keep the constants we have.
897    } else {
898      if (Op1) {
899        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
900          // If this is an array index, make sure the array element is in range.
901          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
902            if (Op1C->getZExtValue() >= AT->getNumElements())
903              return MayAlias;  // Be conservative with out-of-range accesses
904          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
905            if (Op1C->getZExtValue() >= VT->getNumElements())
906              return MayAlias;  // Be conservative with out-of-range accesses
907          }
908
909        } else {
910          // GEP1 is known to produce a value less than GEP2.  To be
911          // conservatively correct, we must assume the largest possible
912          // constant is used in this position.  This cannot be the initial
913          // index to the GEP instructions (because we know we have at least one
914          // element before this one with the different constant arguments), so
915          // we know that the current index must be into either a struct or
916          // array.  Because we know it's not constant, this cannot be a
917          // structure index.  Because of this, we can calculate the maximum
918          // value possible.
919          //
920          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
921            GEP1Ops[i] =
922                  ConstantInt::get(Type::getInt64Ty(Context),
923                                   AT->getNumElements()-1);
924          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
925            GEP1Ops[i] =
926                  ConstantInt::get(Type::getInt64Ty(Context),
927                                   VT->getNumElements()-1);
928        }
929      }
930
931      if (Op2) {
932        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
933          // If this is an array index, make sure the array element is in range.
934          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
935            if (Op2C->getZExtValue() >= AT->getNumElements())
936              return MayAlias;  // Be conservative with out-of-range accesses
937          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
938            if (Op2C->getZExtValue() >= VT->getNumElements())
939              return MayAlias;  // Be conservative with out-of-range accesses
940          }
941        } else {  // Conservatively assume the minimum value for this index
942          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
943        }
944      }
945    }
946
947    if (BasePtr1Ty && Op1) {
948      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
949        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
950      else
951        BasePtr1Ty = 0;
952    }
953
954    if (BasePtr2Ty && Op2) {
955      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
956        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
957      else
958        BasePtr2Ty = 0;
959    }
960  }
961
962  if (TD && GEPPointerTy->getElementType()->isSized()) {
963    int64_t Offset1 =
964      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
965    int64_t Offset2 =
966      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
967    assert(Offset1 != Offset2 &&
968           "There is at least one different constant here!");
969
970    // Make sure we compare the absolute difference.
971    if (Offset1 > Offset2)
972      std::swap(Offset1, Offset2);
973
974    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
975      //cerr << "Determined that these two GEP's don't alias ["
976      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
977      return NoAlias;
978    }
979  }
980  return MayAlias;
981}
982
983// Make sure that anything that uses AliasAnalysis pulls in this file...
984DEFINING_FILE_FOR(BasicAliasAnalysis)
985