BasicAliasAnalysis.cpp revision 198396
1169689Skan//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2169689Skan//
3169689Skan//                     The LLVM Compiler Infrastructure
4169689Skan//
5169689Skan// This file is distributed under the University of Illinois Open Source
6169689Skan// License. See LICENSE.TXT for details.
7169689Skan//
8169689Skan//===----------------------------------------------------------------------===//
9169689Skan//
10169689Skan// This file defines the default implementation of the Alias Analysis interface
11169689Skan// that simply implements a few identities (two different globals cannot alias,
12169689Skan// etc), but otherwise does no analysis.
13169689Skan//
14169689Skan//===----------------------------------------------------------------------===//
15169689Skan
16169689Skan#include "llvm/Analysis/AliasAnalysis.h"
17169689Skan#include "llvm/Analysis/CaptureTracking.h"
18169689Skan#include "llvm/Analysis/MallocHelper.h"
19169689Skan#include "llvm/Analysis/Passes.h"
20169689Skan#include "llvm/Constants.h"
21169689Skan#include "llvm/DerivedTypes.h"
22169689Skan#include "llvm/Function.h"
23169689Skan#include "llvm/GlobalVariable.h"
24169689Skan#include "llvm/Instructions.h"
25169689Skan#include "llvm/IntrinsicInst.h"
26169689Skan#include "llvm/LLVMContext.h"
27169689Skan#include "llvm/Operator.h"
28169689Skan#include "llvm/Pass.h"
29169689Skan#include "llvm/Target/TargetData.h"
30169689Skan#include "llvm/ADT/SmallSet.h"
31169689Skan#include "llvm/ADT/SmallVector.h"
32169689Skan#include "llvm/ADT/STLExtras.h"
33169689Skan#include "llvm/Support/Compiler.h"
34169689Skan#include "llvm/Support/ErrorHandling.h"
35169689Skan#include "llvm/Support/GetElementPtrTypeIterator.h"
36169689Skan#include <algorithm>
37169689Skanusing namespace llvm;
38169689Skan
39169689Skan//===----------------------------------------------------------------------===//
40169689Skan// Useful predicates
41169689Skan//===----------------------------------------------------------------------===//
42169689Skan
43169689Skanstatic const Value *GetGEPOperands(const Value *V,
44169689Skan                                   SmallVector<Value*, 16> &GEPOps) {
45169689Skan  assert(GEPOps.empty() && "Expect empty list to populate!");
46169689Skan  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
47169689Skan                cast<User>(V)->op_end());
48169689Skan
49169689Skan  // Accumulate all of the chained indexes into the operand array
50169689Skan  V = cast<User>(V)->getOperand(0);
51169689Skan
52169689Skan  while (const GEPOperator *G = dyn_cast<GEPOperator>(V)) {
53169689Skan    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
54169689Skan        !cast<Constant>(GEPOps[0])->isNullValue())
55169689Skan      break;  // Don't handle folding arbitrary pointer offsets yet...
56169689Skan    GEPOps.erase(GEPOps.begin());   // Drop the zero index
57169689Skan    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
58169689Skan    V = G->getOperand(0);
59169689Skan  }
60169689Skan  return V;
61169689Skan}
62169689Skan
63169689Skan/// isKnownNonNull - Return true if we know that the specified value is never
64169689Skan/// null.
65169689Skanstatic bool isKnownNonNull(const Value *V) {
66169689Skan  // Alloca never returns null, malloc might.
67169689Skan  if (isa<AllocaInst>(V)) return true;
68169689Skan
69169689Skan  // A byval argument is never null.
70169689Skan  if (const Argument *A = dyn_cast<Argument>(V))
71169689Skan    return A->hasByValAttr();
72169689Skan
73169689Skan  // Global values are not null unless extern weak.
74169689Skan  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
75169689Skan    return !GV->hasExternalWeakLinkage();
76169689Skan  return false;
77169689Skan}
78169689Skan
79169689Skan/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
80169689Skan/// object that never escapes from the function.
81169689Skanstatic bool isNonEscapingLocalObject(const Value *V) {
82169689Skan  // If this is a local allocation, check to see if it escapes.
83169689Skan  if (isa<AllocationInst>(V) || isNoAliasCall(V))
84169689Skan    return !PointerMayBeCaptured(V, false);
85169689Skan
86169689Skan  // If this is an argument that corresponds to a byval or noalias argument,
87169689Skan  // then it has not escaped before entering the function.  Check if it escapes
88169689Skan  // inside the function.
89169689Skan  if (const Argument *A = dyn_cast<Argument>(V))
90169689Skan    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
91169689Skan      // Don't bother analyzing arguments already known not to escape.
92169689Skan      if (A->hasNoCaptureAttr())
93169689Skan        return true;
94169689Skan      return !PointerMayBeCaptured(V, false);
95169689Skan    }
96169689Skan  return false;
97169689Skan}
98169689Skan
99169689Skan
100169689Skan/// isObjectSmallerThan - Return true if we can prove that the object specified
101169689Skan/// by V is smaller than Size.
102169689Skanstatic bool isObjectSmallerThan(const Value *V, unsigned Size,
103169689Skan                                LLVMContext &Context, const TargetData &TD) {
104169689Skan  const Type *AccessTy;
105169689Skan  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
106169689Skan    AccessTy = GV->getType()->getElementType();
107169689Skan  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
108169689Skan    if (!AI->isArrayAllocation())
109169689Skan      AccessTy = AI->getType()->getElementType();
110169689Skan    else
111169689Skan      return false;
112169689Skan  } else if (const CallInst* CI = extractMallocCall(V)) {
113169689Skan    if (!isArrayMalloc(V, Context, &TD))
114169689Skan      // The size is the argument to the malloc call.
115169689Skan      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
116169689Skan        return (C->getZExtValue() < Size);
117169689Skan    return false;
118169689Skan  } else if (const Argument *A = dyn_cast<Argument>(V)) {
119169689Skan    if (A->hasByValAttr())
120169689Skan      AccessTy = cast<PointerType>(A->getType())->getElementType();
121169689Skan    else
122169689Skan      return false;
123169689Skan  } else {
124169689Skan    return false;
125169689Skan  }
126169689Skan
127169689Skan  if (AccessTy->isSized())
128169689Skan    return TD.getTypeAllocSize(AccessTy) < Size;
129169689Skan  return false;
130169689Skan}
131169689Skan
132169689Skan//===----------------------------------------------------------------------===//
133169689Skan// NoAA Pass
134169689Skan//===----------------------------------------------------------------------===//
135169689Skan
136169689Skannamespace {
137169689Skan  /// NoAA - This class implements the -no-aa pass, which always returns "I
138169689Skan  /// don't know" for alias queries.  NoAA is unlike other alias analysis
139169689Skan  /// implementations, in that it does not chain to a previous analysis.  As
140169689Skan  /// such it doesn't follow many of the rules that other alias analyses must.
141169689Skan  ///
142169689Skan  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
143169689Skan    static char ID; // Class identification, replacement for typeinfo
144169689Skan    NoAA() : ImmutablePass(&ID) {}
145169689Skan    explicit NoAA(void *PID) : ImmutablePass(PID) { }
146169689Skan
147169689Skan    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
148169689Skan    }
149169689Skan
150169689Skan    virtual void initializePass() {
151169689Skan      TD = getAnalysisIfAvailable<TargetData>();
152169689Skan    }
153169689Skan
154169689Skan    virtual AliasResult alias(const Value *V1, unsigned V1Size,
155169689Skan                              const Value *V2, unsigned V2Size) {
156169689Skan      return MayAlias;
157169689Skan    }
158169689Skan
159169689Skan    virtual void getArgumentAccesses(Function *F, CallSite CS,
160169689Skan                                     std::vector<PointerAccessInfo> &Info) {
161169689Skan      llvm_unreachable("This method may not be called on this function!");
162169689Skan    }
163169689Skan
164169689Skan    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
165169689Skan    virtual bool pointsToConstantMemory(const Value *P) { return false; }
166169689Skan    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
167169689Skan      return ModRef;
168169689Skan    }
169169689Skan    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
170169689Skan      return ModRef;
171169689Skan    }
172169689Skan    virtual bool hasNoModRefInfoForCalls() const { return true; }
173169689Skan
174169689Skan    virtual void deleteValue(Value *V) {}
175169689Skan    virtual void copyValue(Value *From, Value *To) {}
176169689Skan  };
177169689Skan}  // End of anonymous namespace
178169689Skan
179169689Skan// Register this pass...
180169689Skanchar NoAA::ID = 0;
181169689Skanstatic RegisterPass<NoAA>
182169689SkanU("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
183169689Skan
184169689Skan// Declare that we implement the AliasAnalysis interface
185169689Skanstatic RegisterAnalysisGroup<AliasAnalysis> V(U);
186169689Skan
187169689SkanImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
188169689Skan
189169689Skan//===----------------------------------------------------------------------===//
190169689Skan// BasicAA Pass
191169689Skan//===----------------------------------------------------------------------===//
192169689Skan
193169689Skannamespace {
194169689Skan  /// BasicAliasAnalysis - This is the default alias analysis implementation.
195169689Skan  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
196169689Skan  /// derives from the NoAA class.
197169689Skan  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
198169689Skan    static char ID; // Class identification, replacement for typeinfo
199169689Skan    BasicAliasAnalysis() : NoAA(&ID) {}
200169689Skan    AliasResult alias(const Value *V1, unsigned V1Size,
201169689Skan                      const Value *V2, unsigned V2Size) {
202169689Skan      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
203169689Skan      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
204169689Skan      VisitedPHIs.clear();
205169689Skan      return Alias;
206169689Skan    }
207169689Skan
208169689Skan    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
209169689Skan    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
210169689Skan
211169689Skan    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
212169689Skan    /// non-escaping allocations.
213169689Skan    virtual bool hasNoModRefInfoForCalls() const { return false; }
214169689Skan
215169689Skan    /// pointsToConstantMemory - Chase pointers until we find a (constant
216169689Skan    /// global) or not.
217169689Skan    bool pointsToConstantMemory(const Value *P);
218169689Skan
219169689Skan  private:
220169689Skan    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
221169689Skan    SmallPtrSet<const PHINode*, 16> VisitedPHIs;
222169689Skan
223169689Skan    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
224169689Skan    // against another.
225169689Skan    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
226169689Skan                         const Value *V2, unsigned V2Size);
227169689Skan
228169689Skan    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
229169689Skan    // against another.
230169689Skan    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
231169689Skan                         const Value *V2, unsigned V2Size);
232169689Skan
233169689Skan    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
234169689Skan                           const Value *V2, unsigned V2Size);
235169689Skan
236169689Skan    // CheckGEPInstructions - Check two GEP instructions with known
237169689Skan    // must-aliasing base pointers.  This checks to see if the index expressions
238169689Skan    // preclude the pointers from aliasing...
239169689Skan    AliasResult
240169689Skan    CheckGEPInstructions(const Type* BasePtr1Ty,
241169689Skan                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
242169689Skan                         const Type *BasePtr2Ty,
243169689Skan                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
244169689Skan  };
245169689Skan}  // End of anonymous namespace
246169689Skan
247169689Skan// Register this pass...
248169689Skanchar BasicAliasAnalysis::ID = 0;
249169689Skanstatic RegisterPass<BasicAliasAnalysis>
250169689SkanX("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
251169689Skan
252169689Skan// Declare that we implement the AliasAnalysis interface
253169689Skanstatic RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
254169689Skan
255169689SkanImmutablePass *llvm::createBasicAliasAnalysisPass() {
256169689Skan  return new BasicAliasAnalysis();
257169689Skan}
258169689Skan
259169689Skan
260169689Skan/// pointsToConstantMemory - Chase pointers until we find a (constant
261169689Skan/// global) or not.
262169689Skanbool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
263169689Skan  if (const GlobalVariable *GV =
264169689Skan        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
265169689Skan    return GV->isConstant();
266169689Skan  return false;
267169689Skan}
268169689Skan
269169689Skan
270169689Skan// getModRefInfo - Check to see if the specified callsite can clobber the
271169689Skan// specified memory object.  Since we only look at local properties of this
272169689Skan// function, we really can't say much about this query.  We do, however, use
273169689Skan// simple "address taken" analysis on local objects.
274169689Skan//
275169689SkanAliasAnalysis::ModRefResult
276169689SkanBasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
277169689Skan  if (!isa<Constant>(P)) {
278169689Skan    const Value *Object = P->getUnderlyingObject();
279169689Skan
280169689Skan    // If this is a tail call and P points to a stack location, we know that
281169689Skan    // the tail call cannot access or modify the local stack.
282169689Skan    // We cannot exclude byval arguments here; these belong to the caller of
283169689Skan    // the current function not to the current function, and a tail callee
284169689Skan    // may reference them.
285169689Skan    if (isa<AllocaInst>(Object))
286169689Skan      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
287169689Skan        if (CI->isTailCall())
288169689Skan          return NoModRef;
289169689Skan
290169689Skan    // If the pointer is to a locally allocated object that does not escape,
291169689Skan    // then the call can not mod/ref the pointer unless the call takes the
292169689Skan    // argument without capturing it.
293169689Skan    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
294169689Skan      bool passedAsArg = false;
295169689Skan      // TODO: Eventually only check 'nocapture' arguments.
296169689Skan      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
297169689Skan           CI != CE; ++CI)
298169689Skan        if (isa<PointerType>((*CI)->getType()) &&
299169689Skan            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
300169689Skan          passedAsArg = true;
301169689Skan
302169689Skan      if (!passedAsArg)
303169689Skan        return NoModRef;
304169689Skan    }
305169689Skan
306169689Skan    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
307169689Skan      switch (II->getIntrinsicID()) {
308169689Skan      default: break;
309169689Skan      case Intrinsic::memcpy:
310169689Skan      case Intrinsic::memmove: {
311169689Skan        unsigned Len = ~0U;
312169689Skan        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
313169689Skan          Len = LenCI->getZExtValue();
314169689Skan        Value *Dest = II->getOperand(1);
315169689Skan        Value *Src = II->getOperand(2);
316169689Skan        if (alias(Dest, Len, P, Size) == NoAlias) {
317169689Skan          if (alias(Src, Len, P, Size) == NoAlias)
318169689Skan            return NoModRef;
319169689Skan          return Ref;
320169689Skan        }
321169689Skan        }
322169689Skan        break;
323169689Skan      case Intrinsic::memset:
324169689Skan        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
325169689Skan          unsigned Len = LenCI->getZExtValue();
326169689Skan          Value *Dest = II->getOperand(1);
327169689Skan          if (alias(Dest, Len, P, Size) == NoAlias)
328169689Skan            return NoModRef;
329169689Skan        }
330169689Skan        break;
331169689Skan      case Intrinsic::atomic_cmp_swap:
332169689Skan      case Intrinsic::atomic_swap:
333169689Skan      case Intrinsic::atomic_load_add:
334169689Skan      case Intrinsic::atomic_load_sub:
335169689Skan      case Intrinsic::atomic_load_and:
336169689Skan      case Intrinsic::atomic_load_nand:
337169689Skan      case Intrinsic::atomic_load_or:
338169689Skan      case Intrinsic::atomic_load_xor:
339169689Skan      case Intrinsic::atomic_load_max:
340169689Skan      case Intrinsic::atomic_load_min:
341169689Skan      case Intrinsic::atomic_load_umax:
342169689Skan      case Intrinsic::atomic_load_umin:
343169689Skan        if (TD) {
344169689Skan          Value *Op1 = II->getOperand(1);
345169689Skan          unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
346169689Skan          if (alias(Op1, Op1Size, P, Size) == NoAlias)
347169689Skan            return NoModRef;
348169689Skan        }
349169689Skan        break;
350169689Skan      case Intrinsic::lifetime_start:
351169689Skan      case Intrinsic::lifetime_end:
352169689Skan      case Intrinsic::invariant_start: {
353169689Skan        unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
354169689Skan        if (alias(II->getOperand(2), PtrSize, P, Size) == NoAlias)
355169689Skan          return NoModRef;
356169689Skan      }
357169689Skan      break;
358169689Skan      case Intrinsic::invariant_end: {
359169689Skan        unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
360169689Skan        if (alias(II->getOperand(3), PtrSize, P, Size) == NoAlias)
361169689Skan          return NoModRef;
362169689Skan      }
363169689Skan      break;
364169689Skan      }
365169689Skan    }
366169689Skan  }
367169689Skan
368169689Skan  // The AliasAnalysis base class has some smarts, lets use them.
369169689Skan  return AliasAnalysis::getModRefInfo(CS, P, Size);
370169689Skan}
371169689Skan
372169689Skan
373169689SkanAliasAnalysis::ModRefResult
374169689SkanBasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
375169689Skan  // If CS1 or CS2 are readnone, they don't interact.
376169689Skan  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
377169689Skan  if (CS1B == DoesNotAccessMemory) return NoModRef;
378169689Skan
379169689Skan  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
380169689Skan  if (CS2B == DoesNotAccessMemory) return NoModRef;
381169689Skan
382169689Skan  // If they both only read from memory, just return ref.
383169689Skan  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
384169689Skan    return Ref;
385169689Skan
386169689Skan  // Otherwise, fall back to NoAA (mod+ref).
387169689Skan  return NoAA::getModRefInfo(CS1, CS2);
388169689Skan}
389169689Skan
390169689Skan// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
391169689Skan// against another.
392169689Skan//
393169689SkanAliasAnalysis::AliasResult
394169689SkanBasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
395169689Skan                             const Value *V2, unsigned V2Size) {
396169689Skan  // If we have two gep instructions with must-alias'ing base pointers, figure
397169689Skan  // out if the indexes to the GEP tell us anything about the derived pointer.
398169689Skan  // Note that we also handle chains of getelementptr instructions as well as
399169689Skan  // constant expression getelementptrs here.
400169689Skan  //
401169689Skan  if (isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
402169689Skan    const User *GEP1 = cast<User>(V1);
403169689Skan    const User *GEP2 = cast<User>(V2);
404169689Skan
405169689Skan    // If V1 and V2 are identical GEPs, just recurse down on both of them.
406169689Skan    // This allows us to analyze things like:
407169689Skan    //   P = gep A, 0, i, 1
408169689Skan    //   Q = gep B, 0, i, 1
409169689Skan    // by just analyzing A and B.  This is even safe for variable indices.
410169689Skan    if (GEP1->getType() == GEP2->getType() &&
411169689Skan        GEP1->getNumOperands() == GEP2->getNumOperands() &&
412169689Skan        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
413169689Skan        // All operands are the same, ignoring the base.
414169689Skan        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
415169689Skan      return aliasCheck(GEP1->getOperand(0), V1Size,
416169689Skan                        GEP2->getOperand(0), V2Size);
417169689Skan
418169689Skan    // Drill down into the first non-gep value, to test for must-aliasing of
419169689Skan    // the base pointers.
420169689Skan    while (isa<GEPOperator>(GEP1->getOperand(0)) &&
421169689Skan           GEP1->getOperand(1) ==
422169689Skan           Constant::getNullValue(GEP1->getOperand(1)->getType()))
423169689Skan      GEP1 = cast<User>(GEP1->getOperand(0));
424169689Skan    const Value *BasePtr1 = GEP1->getOperand(0);
425169689Skan
426169689Skan    while (isa<GEPOperator>(GEP2->getOperand(0)) &&
427169689Skan           GEP2->getOperand(1) ==
428169689Skan           Constant::getNullValue(GEP2->getOperand(1)->getType()))
429169689Skan      GEP2 = cast<User>(GEP2->getOperand(0));
430169689Skan    const Value *BasePtr2 = GEP2->getOperand(0);
431169689Skan
432169689Skan    // Do the base pointers alias?
433169689Skan    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
434169689Skan    if (BaseAlias == NoAlias) return NoAlias;
435169689Skan    if (BaseAlias == MustAlias) {
436169689Skan      // If the base pointers alias each other exactly, check to see if we can
437169689Skan      // figure out anything about the resultant pointers, to try to prove
438169689Skan      // non-aliasing.
439169689Skan
440169689Skan      // Collect all of the chained GEP operands together into one simple place
441169689Skan      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
442169689Skan      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
443169689Skan      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
444169689Skan
445169689Skan      // If GetGEPOperands were able to fold to the same must-aliased pointer,
446169689Skan      // do the comparison.
447169689Skan      if (BasePtr1 == BasePtr2) {
448169689Skan        AliasResult GAlias =
449169689Skan          CheckGEPInstructions(BasePtr1->getType(),
450169689Skan                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
451169689Skan                               BasePtr2->getType(),
452169689Skan                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
453169689Skan        if (GAlias != MayAlias)
454          return GAlias;
455      }
456    }
457  }
458
459  // Check to see if these two pointers are related by a getelementptr
460  // instruction.  If one pointer is a GEP with a non-zero index of the other
461  // pointer, we know they cannot alias.
462  //
463  if (V1Size == ~0U || V2Size == ~0U)
464    return MayAlias;
465
466  SmallVector<Value*, 16> GEPOperands;
467  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
468
469  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
470  if (R != MustAlias)
471    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
472    // If V2 is known not to alias GEP base pointer, then the two values
473    // cannot alias per GEP semantics: "A pointer value formed from a
474    // getelementptr instruction is associated with the addresses associated
475    // with the first operand of the getelementptr".
476    return R;
477
478  // If there is at least one non-zero constant index, we know they cannot
479  // alias.
480  bool ConstantFound = false;
481  bool AllZerosFound = true;
482  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
483    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
484      if (!C->isNullValue()) {
485        ConstantFound = true;
486        AllZerosFound = false;
487        break;
488      }
489    } else {
490      AllZerosFound = false;
491    }
492
493  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
494  // the ptr, the end result is a must alias also.
495  if (AllZerosFound)
496    return MustAlias;
497
498  if (ConstantFound) {
499    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
500      return NoAlias;
501
502    // Otherwise we have to check to see that the distance is more than
503    // the size of the argument... build an index vector that is equal to
504    // the arguments provided, except substitute 0's for any variable
505    // indexes we find...
506    if (TD &&
507        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
508      for (unsigned i = 0; i != GEPOperands.size(); ++i)
509        if (!isa<ConstantInt>(GEPOperands[i]))
510          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
511      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
512                                            &GEPOperands[0],
513                                            GEPOperands.size());
514
515      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
516        return NoAlias;
517    }
518  }
519
520  return MayAlias;
521}
522
523// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
524// against another.
525AliasAnalysis::AliasResult
526BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
527                             const Value *V2, unsigned V2Size) {
528  // The PHI node has already been visited, avoid recursion any further.
529  if (!VisitedPHIs.insert(PN))
530    return MayAlias;
531
532  SmallPtrSet<Value*, 4> UniqueSrc;
533  SmallVector<Value*, 4> V1Srcs;
534  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
535    Value *PV1 = PN->getIncomingValue(i);
536    if (isa<PHINode>(PV1))
537      // If any of the source itself is a PHI, return MayAlias conservatively
538      // to avoid compile time explosion. The worst possible case is if both
539      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
540      // and 'n' are the number of PHI sources.
541      return MayAlias;
542    if (UniqueSrc.insert(PV1))
543      V1Srcs.push_back(PV1);
544  }
545
546  AliasResult Alias = aliasCheck(V1Srcs[0], PNSize, V2, V2Size);
547  // Early exit if the check of the first PHI source against V2 is MayAlias.
548  // Other results are not possible.
549  if (Alias == MayAlias)
550    return MayAlias;
551
552  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
553  // NoAlias / MustAlias. Otherwise, returns MayAlias.
554  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
555    Value *V = V1Srcs[i];
556    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
557    if (ThisAlias != Alias || ThisAlias == MayAlias)
558      return MayAlias;
559  }
560
561  return Alias;
562}
563
564// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
565// such as array references.
566//
567AliasAnalysis::AliasResult
568BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
569                               const Value *V2, unsigned V2Size) {
570  // Strip off any casts if they exist.
571  V1 = V1->stripPointerCasts();
572  V2 = V2->stripPointerCasts();
573
574  // Are we checking for alias of the same value?
575  if (V1 == V2) return MustAlias;
576
577  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
578    return NoAlias;  // Scalars cannot alias each other
579
580  // Figure out what objects these things are pointing to if we can.
581  const Value *O1 = V1->getUnderlyingObject();
582  const Value *O2 = V2->getUnderlyingObject();
583
584  if (O1 != O2) {
585    // If V1/V2 point to two different objects we know that we have no alias.
586    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
587      return NoAlias;
588
589    // Arguments can't alias with local allocations or noalias calls.
590    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
591        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
592      return NoAlias;
593
594    // Most objects can't alias null.
595    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
596        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
597      return NoAlias;
598  }
599
600  // If the size of one access is larger than the entire object on the other
601  // side, then we know such behavior is undefined and can assume no alias.
602  LLVMContext &Context = V1->getContext();
603  if (TD)
604    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
605        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
606      return NoAlias;
607
608  // If one pointer is the result of a call/invoke and the other is a
609  // non-escaping local object, then we know the object couldn't escape to a
610  // point where the call could return it.
611  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
612      isNonEscapingLocalObject(O2) && O1 != O2)
613    return NoAlias;
614  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
615      isNonEscapingLocalObject(O1) && O1 != O2)
616    return NoAlias;
617
618  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
619    std::swap(V1, V2);
620    std::swap(V1Size, V2Size);
621  }
622  if (isa<GEPOperator>(V1))
623    return aliasGEP(V1, V1Size, V2, V2Size);
624
625  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
626    std::swap(V1, V2);
627    std::swap(V1Size, V2Size);
628  }
629  if (const PHINode *PN = dyn_cast<PHINode>(V1))
630    return aliasPHI(PN, V1Size, V2, V2Size);
631
632  return MayAlias;
633}
634
635// This function is used to determine if the indices of two GEP instructions are
636// equal. V1 and V2 are the indices.
637static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
638  if (V1->getType() == V2->getType())
639    return V1 == V2;
640  if (Constant *C1 = dyn_cast<Constant>(V1))
641    if (Constant *C2 = dyn_cast<Constant>(V2)) {
642      // Sign extend the constants to long types, if necessary
643      if (C1->getType() != Type::getInt64Ty(Context))
644        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
645      if (C2->getType() != Type::getInt64Ty(Context))
646        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
647      return C1 == C2;
648    }
649  return false;
650}
651
652/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
653/// base pointers.  This checks to see if the index expressions preclude the
654/// pointers from aliasing...
655AliasAnalysis::AliasResult
656BasicAliasAnalysis::CheckGEPInstructions(
657  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
658  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
659  // We currently can't handle the case when the base pointers have different
660  // primitive types.  Since this is uncommon anyway, we are happy being
661  // extremely conservative.
662  if (BasePtr1Ty != BasePtr2Ty)
663    return MayAlias;
664
665  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
666
667  LLVMContext &Context = GEPPointerTy->getContext();
668
669  // Find the (possibly empty) initial sequence of equal values... which are not
670  // necessarily constants.
671  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
672  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
673  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
674  unsigned UnequalOper = 0;
675  while (UnequalOper != MinOperands &&
676         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
677         Context)) {
678    // Advance through the type as we go...
679    ++UnequalOper;
680    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
681      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
682    else {
683      // If all operands equal each other, then the derived pointers must
684      // alias each other...
685      BasePtr1Ty = 0;
686      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
687             "Ran out of type nesting, but not out of operands?");
688      return MustAlias;
689    }
690  }
691
692  // If we have seen all constant operands, and run out of indexes on one of the
693  // getelementptrs, check to see if the tail of the leftover one is all zeros.
694  // If so, return mustalias.
695  if (UnequalOper == MinOperands) {
696    if (NumGEP1Ops < NumGEP2Ops) {
697      std::swap(GEP1Ops, GEP2Ops);
698      std::swap(NumGEP1Ops, NumGEP2Ops);
699    }
700
701    bool AllAreZeros = true;
702    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
703      if (!isa<Constant>(GEP1Ops[i]) ||
704          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
705        AllAreZeros = false;
706        break;
707      }
708    if (AllAreZeros) return MustAlias;
709  }
710
711
712  // So now we know that the indexes derived from the base pointers,
713  // which are known to alias, are different.  We can still determine a
714  // no-alias result if there are differing constant pairs in the index
715  // chain.  For example:
716  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
717  //
718  // We have to be careful here about array accesses.  In particular, consider:
719  //        A[1][0] vs A[0][i]
720  // In this case, we don't *know* that the array will be accessed in bounds:
721  // the index could even be negative.  Because of this, we have to
722  // conservatively *give up* and return may alias.  We disregard differing
723  // array subscripts that are followed by a variable index without going
724  // through a struct.
725  //
726  unsigned SizeMax = std::max(G1S, G2S);
727  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
728
729  // Scan for the first operand that is constant and unequal in the
730  // two getelementptrs...
731  unsigned FirstConstantOper = UnequalOper;
732  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
733    const Value *G1Oper = GEP1Ops[FirstConstantOper];
734    const Value *G2Oper = GEP2Ops[FirstConstantOper];
735
736    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
737      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
738        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
739          if (G1OC->getType() != G2OC->getType()) {
740            // Sign extend both operands to long.
741            if (G1OC->getType() != Type::getInt64Ty(Context))
742              G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
743            if (G2OC->getType() != Type::getInt64Ty(Context))
744              G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
745            GEP1Ops[FirstConstantOper] = G1OC;
746            GEP2Ops[FirstConstantOper] = G2OC;
747          }
748
749          if (G1OC != G2OC) {
750            // Handle the "be careful" case above: if this is an array/vector
751            // subscript, scan for a subsequent variable array index.
752            if (const SequentialType *STy =
753                  dyn_cast<SequentialType>(BasePtr1Ty)) {
754              const Type *NextTy = STy;
755              bool isBadCase = false;
756
757              for (unsigned Idx = FirstConstantOper;
758                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
759                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
760                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
761                  isBadCase = true;
762                  break;
763                }
764                // If the array is indexed beyond the bounds of the static type
765                // at this level, it will also fall into the "be careful" case.
766                // It would theoretically be possible to analyze these cases,
767                // but for now just be conservatively correct.
768                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
769                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
770                        ATy->getNumElements() ||
771                      cast<ConstantInt>(G2OC)->getZExtValue() >=
772                        ATy->getNumElements()) {
773                    isBadCase = true;
774                    break;
775                  }
776                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
777                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
778                        VTy->getNumElements() ||
779                      cast<ConstantInt>(G2OC)->getZExtValue() >=
780                        VTy->getNumElements()) {
781                    isBadCase = true;
782                    break;
783                  }
784                STy = cast<SequentialType>(NextTy);
785                NextTy = cast<SequentialType>(NextTy)->getElementType();
786              }
787
788              if (isBadCase) G1OC = 0;
789            }
790
791            // Make sure they are comparable (ie, not constant expressions), and
792            // make sure the GEP with the smaller leading constant is GEP1.
793            if (G1OC) {
794              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
795                                                        G1OC, G2OC);
796              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
797                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
798                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
799                  std::swap(NumGEP1Ops, NumGEP2Ops);
800                }
801                break;
802              }
803            }
804          }
805        }
806    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
807  }
808
809  // No shared constant operands, and we ran out of common operands.  At this
810  // point, the GEP instructions have run through all of their operands, and we
811  // haven't found evidence that there are any deltas between the GEP's.
812  // However, one GEP may have more operands than the other.  If this is the
813  // case, there may still be hope.  Check this now.
814  if (FirstConstantOper == MinOperands) {
815    // Without TargetData, we won't know what the offsets are.
816    if (!TD)
817      return MayAlias;
818
819    // Make GEP1Ops be the longer one if there is a longer one.
820    if (NumGEP1Ops < NumGEP2Ops) {
821      std::swap(GEP1Ops, GEP2Ops);
822      std::swap(NumGEP1Ops, NumGEP2Ops);
823    }
824
825    // Is there anything to check?
826    if (NumGEP1Ops > MinOperands) {
827      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
828        if (isa<ConstantInt>(GEP1Ops[i]) &&
829            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
830          // Yup, there's a constant in the tail.  Set all variables to
831          // constants in the GEP instruction to make it suitable for
832          // TargetData::getIndexedOffset.
833          for (i = 0; i != MaxOperands; ++i)
834            if (!isa<ConstantInt>(GEP1Ops[i]))
835              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
836          // Okay, now get the offset.  This is the relative offset for the full
837          // instruction.
838          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
839                                                 NumGEP1Ops);
840
841          // Now check without any constants at the end.
842          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
843                                                 MinOperands);
844
845          // Make sure we compare the absolute difference.
846          if (Offset1 > Offset2)
847            std::swap(Offset1, Offset2);
848
849          // If the tail provided a bit enough offset, return noalias!
850          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
851            return NoAlias;
852          // Otherwise break - we don't look for another constant in the tail.
853          break;
854        }
855    }
856
857    // Couldn't find anything useful.
858    return MayAlias;
859  }
860
861  // If there are non-equal constants arguments, then we can figure
862  // out a minimum known delta between the two index expressions... at
863  // this point we know that the first constant index of GEP1 is less
864  // than the first constant index of GEP2.
865
866  // Advance BasePtr[12]Ty over this first differing constant operand.
867  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
868      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
869  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
870      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
871
872  // We are going to be using TargetData::getIndexedOffset to determine the
873  // offset that each of the GEP's is reaching.  To do this, we have to convert
874  // all variable references to constant references.  To do this, we convert the
875  // initial sequence of array subscripts into constant zeros to start with.
876  const Type *ZeroIdxTy = GEPPointerTy;
877  for (unsigned i = 0; i != FirstConstantOper; ++i) {
878    if (!isa<StructType>(ZeroIdxTy))
879      GEP1Ops[i] = GEP2Ops[i] =
880                              Constant::getNullValue(Type::getInt32Ty(Context));
881
882    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
883      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
884  }
885
886  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
887
888  // Loop over the rest of the operands...
889  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
890    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
891    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
892    // If they are equal, use a zero index...
893    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
894      if (!isa<ConstantInt>(Op1))
895        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
896      // Otherwise, just keep the constants we have.
897    } else {
898      if (Op1) {
899        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
900          // If this is an array index, make sure the array element is in range.
901          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
902            if (Op1C->getZExtValue() >= AT->getNumElements())
903              return MayAlias;  // Be conservative with out-of-range accesses
904          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
905            if (Op1C->getZExtValue() >= VT->getNumElements())
906              return MayAlias;  // Be conservative with out-of-range accesses
907          }
908
909        } else {
910          // GEP1 is known to produce a value less than GEP2.  To be
911          // conservatively correct, we must assume the largest possible
912          // constant is used in this position.  This cannot be the initial
913          // index to the GEP instructions (because we know we have at least one
914          // element before this one with the different constant arguments), so
915          // we know that the current index must be into either a struct or
916          // array.  Because we know it's not constant, this cannot be a
917          // structure index.  Because of this, we can calculate the maximum
918          // value possible.
919          //
920          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
921            GEP1Ops[i] =
922                  ConstantInt::get(Type::getInt64Ty(Context),
923                                   AT->getNumElements()-1);
924          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
925            GEP1Ops[i] =
926                  ConstantInt::get(Type::getInt64Ty(Context),
927                                   VT->getNumElements()-1);
928        }
929      }
930
931      if (Op2) {
932        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
933          // If this is an array index, make sure the array element is in range.
934          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
935            if (Op2C->getZExtValue() >= AT->getNumElements())
936              return MayAlias;  // Be conservative with out-of-range accesses
937          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
938            if (Op2C->getZExtValue() >= VT->getNumElements())
939              return MayAlias;  // Be conservative with out-of-range accesses
940          }
941        } else {  // Conservatively assume the minimum value for this index
942          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
943        }
944      }
945    }
946
947    if (BasePtr1Ty && Op1) {
948      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
949        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
950      else
951        BasePtr1Ty = 0;
952    }
953
954    if (BasePtr2Ty && Op2) {
955      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
956        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
957      else
958        BasePtr2Ty = 0;
959    }
960  }
961
962  if (TD && GEPPointerTy->getElementType()->isSized()) {
963    int64_t Offset1 =
964      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
965    int64_t Offset2 =
966      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
967    assert(Offset1 != Offset2 &&
968           "There is at least one different constant here!");
969
970    // Make sure we compare the absolute difference.
971    if (Offset1 > Offset2)
972      std::swap(Offset1, Offset2);
973
974    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
975      //cerr << "Determined that these two GEP's don't alias ["
976      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
977      return NoAlias;
978    }
979  }
980  return MayAlias;
981}
982
983// Make sure that anything that uses AliasAnalysis pulls in this file...
984DEFINING_FILE_FOR(BasicAliasAnalysis)
985