1// TR1 functional header -*- C++ -*-
2
3// Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/** @file tr1/functional
31 *  This is a TR1 C++ Library header.
32 */
33
34#ifndef _TR1_FUNCTIONAL
35#define _TR1_FUNCTIONAL 1
36
37#pragma GCC system_header
38
39#include "../functional"
40#include <typeinfo>
41#include <tr1/type_traits>
42#include <ext/type_traits.h>
43#include <cstdlib>  // for std::abort
44#include <tr1/tuple>
45
46namespace std
47{
48_GLIBCXX_BEGIN_NAMESPACE(tr1)
49
50  template<typename _MemberPointer>
51    class _Mem_fn;
52
53  /**
54   *  @if maint
55   *  Actual implementation of _Has_result_type, which uses SFINAE to
56   *  determine if the type _Tp has a publicly-accessible member type
57   *  result_type.
58   *  @endif
59  */
60  template<typename _Tp>
61    class _Has_result_type_helper : __sfinae_types
62    {
63      template<typename _Up>
64      struct _Wrap_type
65      { };
66
67      template<typename _Up>
68        static __one __test(_Wrap_type<typename _Up::result_type>*);
69
70      template<typename _Up>
71        static __two __test(...);
72
73    public:
74      static const bool value = sizeof(__test<_Tp>(0)) == 1;
75    };
76
77  template<typename _Tp>
78    struct _Has_result_type
79       : integral_constant<
80           bool,
81           _Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
82    { };
83
84  /**
85   *  @if maint
86   *  If we have found a result_type, extract it.
87   *  @endif
88  */
89  template<bool _Has_result_type, typename _Functor>
90    struct _Maybe_get_result_type
91    { };
92
93  template<typename _Functor>
94    struct _Maybe_get_result_type<true, _Functor>
95    {
96      typedef typename _Functor::result_type result_type;
97    };
98
99  /**
100   *  @if maint
101   *  Base class for any function object that has a weak result type, as
102   *  defined in 3.3/3 of TR1.
103   *  @endif
104  */
105  template<typename _Functor>
106    struct _Weak_result_type_impl
107    : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
108    {
109    };
110
111  /**
112   *  @if maint
113   *  Strip top-level cv-qualifiers from the function object and let
114   *  _Weak_result_type_impl perform the real work.
115   *  @endif
116  */
117  template<typename _Functor>
118    struct _Weak_result_type
119    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
120    {
121    };
122
123  template<typename _Signature>
124    class result_of;
125
126  /**
127   *  @if maint
128   *  Actual implementation of result_of. When _Has_result_type is
129   *  true, gets its result from _Weak_result_type. Otherwise, uses
130   *  the function object's member template result to extract the
131   *  result type.
132   *  @endif
133  */
134  template<bool _Has_result_type, typename _Signature>
135    struct _Result_of_impl;
136
137  // Handle member data pointers using _Mem_fn's logic
138  template<typename _Res, typename _Class, typename _T1>
139    struct _Result_of_impl<false, _Res _Class::*(_T1)>
140    {
141      typedef typename _Mem_fn<_Res _Class::*>
142                ::template _Result_type<_T1>::type type;
143    };
144
145  /**
146   *  @if maint
147   *  Determines if the type _Tp derives from unary_function.
148   *  @endif
149  */
150  template<typename _Tp>
151    struct _Derives_from_unary_function : __sfinae_types
152    {
153    private:
154      template<typename _T1, typename _Res>
155        static __one __test(const volatile unary_function<_T1, _Res>*);
156
157      // It's tempting to change "..." to const volatile void*, but
158      // that fails when _Tp is a function type.
159      static __two __test(...);
160
161    public:
162      static const bool value = sizeof(__test((_Tp*)0)) == 1;
163    };
164
165  /**
166   *  @if maint
167   *  Determines if the type _Tp derives from binary_function.
168   *  @endif
169  */
170  template<typename _Tp>
171    struct _Derives_from_binary_function : __sfinae_types
172    {
173    private:
174      template<typename _T1, typename _T2, typename _Res>
175        static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
176
177      // It's tempting to change "..." to const volatile void*, but
178      // that fails when _Tp is a function type.
179      static __two __test(...);
180
181    public:
182      static const bool value = sizeof(__test((_Tp*)0)) == 1;
183    };
184
185  /**
186   *  @if maint
187   *  Turns a function type into a function pointer type
188   *  @endif
189  */
190  template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
191    struct _Function_to_function_pointer
192    {
193      typedef _Tp type;
194    };
195
196  template<typename _Tp>
197    struct _Function_to_function_pointer<_Tp, true>
198    {
199      typedef _Tp* type;
200    };
201
202  /**
203   *  @if maint
204   *  Knowing which of unary_function and binary_function _Tp derives
205   *  from, derives from the same and ensures that reference_wrapper
206   *  will have a weak result type. See cases below.
207   *  @endif
208   */
209  template<bool _Unary, bool _Binary, typename _Tp>
210    struct _Reference_wrapper_base_impl;
211
212  // Not a unary_function or binary_function, so try a weak result type
213  template<typename _Tp>
214    struct _Reference_wrapper_base_impl<false, false, _Tp>
215    : _Weak_result_type<_Tp>
216    { };
217
218  // unary_function but not binary_function
219  template<typename _Tp>
220    struct _Reference_wrapper_base_impl<true, false, _Tp>
221    : unary_function<typename _Tp::argument_type,
222		     typename _Tp::result_type>
223    { };
224
225  // binary_function but not unary_function
226  template<typename _Tp>
227    struct _Reference_wrapper_base_impl<false, true, _Tp>
228    : binary_function<typename _Tp::first_argument_type,
229		      typename _Tp::second_argument_type,
230		      typename _Tp::result_type>
231    { };
232
233  // both unary_function and binary_function. import result_type to
234  // avoid conflicts.
235   template<typename _Tp>
236    struct _Reference_wrapper_base_impl<true, true, _Tp>
237    : unary_function<typename _Tp::argument_type,
238		     typename _Tp::result_type>,
239      binary_function<typename _Tp::first_argument_type,
240		      typename _Tp::second_argument_type,
241		      typename _Tp::result_type>
242    {
243      typedef typename _Tp::result_type result_type;
244    };
245
246  /**
247   *  @if maint
248   *  Derives from unary_function or binary_function when it
249   *  can. Specializations handle all of the easy cases. The primary
250   *  template determines what to do with a class type, which may
251   *  derive from both unary_function and binary_function.
252   *  @endif
253  */
254  template<typename _Tp>
255    struct _Reference_wrapper_base
256    : _Reference_wrapper_base_impl<
257      _Derives_from_unary_function<_Tp>::value,
258      _Derives_from_binary_function<_Tp>::value,
259      _Tp>
260    { };
261
262  // - a function type (unary)
263  template<typename _Res, typename _T1>
264    struct _Reference_wrapper_base<_Res(_T1)>
265    : unary_function<_T1, _Res>
266    { };
267
268  // - a function type (binary)
269  template<typename _Res, typename _T1, typename _T2>
270    struct _Reference_wrapper_base<_Res(_T1, _T2)>
271    : binary_function<_T1, _T2, _Res>
272    { };
273
274  // - a function pointer type (unary)
275  template<typename _Res, typename _T1>
276    struct _Reference_wrapper_base<_Res(*)(_T1)>
277    : unary_function<_T1, _Res>
278    { };
279
280  // - a function pointer type (binary)
281  template<typename _Res, typename _T1, typename _T2>
282    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
283    : binary_function<_T1, _T2, _Res>
284    { };
285
286  // - a pointer to member function type (unary, no qualifiers)
287  template<typename _Res, typename _T1>
288    struct _Reference_wrapper_base<_Res (_T1::*)()>
289    : unary_function<_T1*, _Res>
290    { };
291
292  // - a pointer to member function type (binary, no qualifiers)
293  template<typename _Res, typename _T1, typename _T2>
294    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
295    : binary_function<_T1*, _T2, _Res>
296    { };
297
298  // - a pointer to member function type (unary, const)
299  template<typename _Res, typename _T1>
300    struct _Reference_wrapper_base<_Res (_T1::*)() const>
301    : unary_function<const _T1*, _Res>
302    { };
303
304  // - a pointer to member function type (binary, const)
305  template<typename _Res, typename _T1, typename _T2>
306    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
307    : binary_function<const _T1*, _T2, _Res>
308    { };
309
310  // - a pointer to member function type (unary, volatile)
311  template<typename _Res, typename _T1>
312    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
313    : unary_function<volatile _T1*, _Res>
314    { };
315
316  // - a pointer to member function type (binary, volatile)
317  template<typename _Res, typename _T1, typename _T2>
318    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
319    : binary_function<volatile _T1*, _T2, _Res>
320    { };
321
322  // - a pointer to member function type (unary, const volatile)
323  template<typename _Res, typename _T1>
324    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
325    : unary_function<const volatile _T1*, _Res>
326    { };
327
328  // - a pointer to member function type (binary, const volatile)
329  template<typename _Res, typename _T1, typename _T2>
330    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
331    : binary_function<const volatile _T1*, _T2, _Res>
332    { };
333
334  template<typename _Tp>
335    class reference_wrapper
336      : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
337    {
338      // If _Tp is a function type, we can't form result_of<_Tp(...)>,
339      // so turn it into a function pointer type.
340      typedef typename _Function_to_function_pointer<_Tp>::type
341        _M_func_type;
342
343      _Tp* _M_data;
344    public:
345      typedef _Tp type;
346      explicit reference_wrapper(_Tp& __indata): _M_data(&__indata)
347      { }
348
349      reference_wrapper(const reference_wrapper<_Tp>& __inref):
350      _M_data(__inref._M_data)
351      { }
352
353      reference_wrapper&
354      operator=(const reference_wrapper<_Tp>& __inref)
355      {
356        _M_data = __inref._M_data;
357        return *this;
358      }
359
360      operator _Tp&() const
361      { return this->get(); }
362
363      _Tp&
364      get() const
365      { return *_M_data; }
366
367#define _GLIBCXX_REPEAT_HEADER <tr1/ref_wrap_iterate.h>
368#include <tr1/repeat.h>
369#undef _GLIBCXX_REPEAT_HEADER
370    };
371
372
373  // Denotes a reference should be taken to a variable.
374  template<typename _Tp>
375    inline reference_wrapper<_Tp>
376    ref(_Tp& __t)
377    { return reference_wrapper<_Tp>(__t); }
378
379  // Denotes a const reference should be taken to a variable.
380  template<typename _Tp>
381    inline reference_wrapper<const _Tp>
382    cref(const _Tp& __t)
383    { return reference_wrapper<const _Tp>(__t); }
384
385  template<typename _Tp>
386    inline reference_wrapper<_Tp>
387    ref(reference_wrapper<_Tp> __t)
388    { return ref(__t.get()); }
389
390  template<typename _Tp>
391    inline reference_wrapper<const _Tp>
392    cref(reference_wrapper<_Tp> __t)
393    { return cref(__t.get()); }
394
395   template<typename _Tp, bool>
396     struct _Mem_fn_const_or_non
397     {
398       typedef const _Tp& type;
399     };
400
401    template<typename _Tp>
402      struct _Mem_fn_const_or_non<_Tp, false>
403      {
404        typedef _Tp& type;
405      };
406
407  template<typename _Res, typename _Class>
408  class _Mem_fn<_Res _Class::*>
409  {
410    // This bit of genius is due to Peter Dimov, improved slightly by
411    // Douglas Gregor.
412    template<typename _Tp>
413      _Res&
414      _M_call(_Tp& __object, _Class *) const
415      { return __object.*__pm; }
416
417    template<typename _Tp, typename _Up>
418      _Res&
419      _M_call(_Tp& __object, _Up * const *) const
420      { return (*__object).*__pm; }
421
422    template<typename _Tp, typename _Up>
423      const _Res&
424      _M_call(_Tp& __object, const _Up * const *) const
425      { return (*__object).*__pm; }
426
427    template<typename _Tp>
428      const _Res&
429      _M_call(_Tp& __object, const _Class *) const
430      { return __object.*__pm; }
431
432    template<typename _Tp>
433      const _Res&
434      _M_call(_Tp& __ptr, const volatile void*) const
435      { return (*__ptr).*__pm; }
436
437    template<typename _Tp> static _Tp& __get_ref();
438
439    template<typename _Tp>
440      static __sfinae_types::__one __check_const(_Tp&, _Class*);
441    template<typename _Tp, typename _Up>
442      static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
443    template<typename _Tp, typename _Up>
444      static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
445    template<typename _Tp>
446      static __sfinae_types::__two __check_const(_Tp&, const _Class*);
447    template<typename _Tp>
448      static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
449
450  public:
451    template<typename _Tp>
452      struct _Result_type
453      : _Mem_fn_const_or_non<
454        _Res,
455        (sizeof(__sfinae_types::__two)
456	 == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
457      { };
458
459    template<typename _Signature>
460      struct result;
461
462    template<typename _CVMem, typename _Tp>
463      struct result<_CVMem(_Tp)>
464      : public _Result_type<_Tp> { };
465
466    template<typename _CVMem, typename _Tp>
467      struct result<_CVMem(_Tp&)>
468      : public _Result_type<_Tp> { };
469
470    explicit _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
471
472    // Handle objects
473    _Res&       operator()(_Class& __object)       const
474    { return __object.*__pm; }
475
476    const _Res& operator()(const _Class& __object) const
477    { return __object.*__pm; }
478
479    // Handle pointers
480    _Res&       operator()(_Class* __object)       const
481    { return __object->*__pm; }
482
483    const _Res&
484    operator()(const _Class* __object) const
485    { return __object->*__pm; }
486
487    // Handle smart pointers and derived
488    template<typename _Tp>
489      typename _Result_type<_Tp>::type
490      operator()(_Tp& __unknown) const
491      { return _M_call(__unknown, &__unknown); }
492
493  private:
494    _Res _Class::*__pm;
495  };
496
497  /**
498   *  @brief Returns a function object that forwards to the member
499   *  pointer @a pm.
500   */
501  template<typename _Tp, typename _Class>
502    inline _Mem_fn<_Tp _Class::*>
503    mem_fn(_Tp _Class::* __pm)
504    {
505      return _Mem_fn<_Tp _Class::*>(__pm);
506    }
507
508  /**
509   *  @brief Determines if the given type _Tp is a function object
510   *  should be treated as a subexpression when evaluating calls to
511   *  function objects returned by bind(). [TR1 3.6.1]
512   */
513  template<typename _Tp>
514    struct is_bind_expression
515    { static const bool value = false; };
516
517  template<typename _Tp>
518    const bool is_bind_expression<_Tp>::value;
519
520  /**
521   *  @brief Determines if the given type _Tp is a placeholder in a
522   *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
523   */
524  template<typename _Tp>
525    struct is_placeholder
526    { static const int value = 0; };
527
528  template<typename _Tp>
529    const int is_placeholder<_Tp>::value;
530
531  /**
532   *  @if maint
533   *  The type of placeholder objects defined by libstdc++.
534   *  @endif
535   */
536  template<int _Num> struct _Placeholder { };
537
538  /**
539   *  @if maint
540   *  Partial specialization of is_placeholder that provides the placeholder
541   *  number for the placeholder objects defined by libstdc++.
542   *  @endif
543   */
544  template<int _Num>
545    struct is_placeholder<_Placeholder<_Num> >
546    { static const int value = _Num; };
547
548  template<int _Num>
549    const int is_placeholder<_Placeholder<_Num> >::value;
550
551  /**
552   *  @if maint
553   *  Maps an argument to bind() into an actual argument to the bound
554   *  function object [TR1 3.6.3/5]. Only the first parameter should
555   *  be specified: the rest are used to determine among the various
556   *  implementations. Note that, although this class is a function
557   *  object, isn't not entirely normal because it takes only two
558   *  parameters regardless of the number of parameters passed to the
559   *  bind expression. The first parameter is the bound argument and
560   *  the second parameter is a tuple containing references to the
561   *  rest of the arguments.
562   *  @endif
563   */
564  template<typename _Arg,
565           bool _IsBindExp = is_bind_expression<_Arg>::value,
566           bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
567    class _Mu;
568
569  /**
570   *  @if maint
571   *  If the argument is reference_wrapper<_Tp>, returns the
572   *  underlying reference. [TR1 3.6.3/5 bullet 1]
573   *  @endif
574   */
575  template<typename _Tp>
576    class _Mu<reference_wrapper<_Tp>, false, false>
577    {
578    public:
579      typedef _Tp& result_type;
580
581      /* Note: This won't actually work for const volatile
582       * reference_wrappers, because reference_wrapper::get() is const
583       * but not volatile-qualified. This might be a defect in the TR.
584       */
585      template<typename _CVRef, typename _Tuple>
586      result_type
587      operator()(_CVRef& __arg, const _Tuple&) const volatile
588      { return __arg.get(); }
589    };
590
591  /**
592   *  @if maint
593   *  If the argument is a bind expression, we invoke the underlying
594   *  function object with the same cv-qualifiers as we are given and
595   *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
596   *  @endif
597   */
598  template<typename _Arg>
599    class _Mu<_Arg, true, false>
600    {
601    public:
602      template<typename _Signature> class result;
603
604#define _GLIBCXX_REPEAT_HEADER <tr1/mu_iterate.h>
605#  include <tr1/repeat.h>
606#undef _GLIBCXX_REPEAT_HEADER
607    };
608
609  /**
610   *  @if maint
611   *  If the argument is a placeholder for the Nth argument, returns
612   *  a reference to the Nth argument to the bind function object.
613   *  [TR1 3.6.3/5 bullet 3]
614   *  @endif
615   */
616  template<typename _Arg>
617    class _Mu<_Arg, false, true>
618    {
619    public:
620      template<typename _Signature> class result;
621
622      template<typename _CVMu, typename _CVArg, typename _Tuple>
623      class result<_CVMu(_CVArg, _Tuple)>
624      {
625        // Add a reference, if it hasn't already been done for us.
626        // This allows us to be a little bit sloppy in constructing
627        // the tuple that we pass to result_of<...>.
628        typedef typename tuple_element<(is_placeholder<_Arg>::value - 1),
629                                       _Tuple>::type __base_type;
630
631      public:
632        typedef typename add_reference<__base_type>::type type;
633      };
634
635      template<typename _Tuple>
636      typename result<_Mu(_Arg, _Tuple)>::type
637      operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
638      {
639        return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
640      }
641    };
642
643  /**
644   *  @if maint
645   *  If the argument is just a value, returns a reference to that
646   *  value. The cv-qualifiers on the reference are the same as the
647   *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
648   *  @endif
649   */
650  template<typename _Arg>
651    class _Mu<_Arg, false, false>
652    {
653    public:
654      template<typename _Signature> struct result;
655
656      template<typename _CVMu, typename _CVArg, typename _Tuple>
657      struct result<_CVMu(_CVArg, _Tuple)>
658      {
659        typedef typename add_reference<_CVArg>::type type;
660      };
661
662      // Pick up the cv-qualifiers of the argument
663      template<typename _CVArg, typename _Tuple>
664      _CVArg& operator()(_CVArg& __arg, const _Tuple&) const volatile
665      { return __arg; }
666    };
667
668  /**
669   *  @if maint
670   *  Maps member pointers into instances of _Mem_fn but leaves all
671   *  other function objects untouched. Used by tr1::bind(). The
672   *  primary template handles the non--member-pointer case.
673   *  @endif
674   */
675  template<typename _Tp>
676    struct _Maybe_wrap_member_pointer
677    {
678      typedef _Tp type;
679      static const _Tp& __do_wrap(const _Tp& __x) { return __x; }
680    };
681
682  /**
683   *  @if maint
684   *  Maps member pointers into instances of _Mem_fn but leaves all
685   *  other function objects untouched. Used by tr1::bind(). This
686   *  partial specialization handles the member pointer case.
687   *  @endif
688   */
689  template<typename _Tp, typename _Class>
690    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
691    {
692      typedef _Mem_fn<_Tp _Class::*> type;
693      static type __do_wrap(_Tp _Class::* __pm) { return type(__pm); }
694    };
695
696  /**
697   *  @if maint
698   *  Type of the function object returned from bind().
699   *  @endif
700   */
701   template<typename _Signature>
702     struct _Bind;
703
704  /**
705   *  @if maint
706   *  Type of the function object returned from bind<R>().
707   *  @endif
708   */
709   template<typename _Result, typename _Signature>
710     struct _Bind_result;
711
712  /**
713   *  @if maint
714   *  Class template _Bind is always a bind expression.
715   *  @endif
716   */
717   template<typename _Signature>
718     struct is_bind_expression<_Bind<_Signature> >
719     { static const bool value = true; };
720
721   template<typename _Signature>
722     const bool is_bind_expression<_Bind<_Signature> >::value;
723
724  /**
725   *  @if maint
726   *  Class template _Bind_result is always a bind expression.
727   *  @endif
728   */
729   template<typename _Result, typename _Signature>
730     struct is_bind_expression<_Bind_result<_Result, _Signature> >
731     { static const bool value = true; };
732
733   template<typename _Result, typename _Signature>
734     const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
735
736  /**
737   *  @brief Exception class thrown when class template function's
738   *  operator() is called with an empty target.
739   *
740   */
741  class bad_function_call : public std::exception { };
742
743  /**
744   *  @if maint
745   *  The integral constant expression 0 can be converted into a
746   *  pointer to this type. It is used by the function template to
747   *  accept NULL pointers.
748   *  @endif
749   */
750  struct _M_clear_type;
751
752  /**
753   *  @if maint
754   *  Trait identifying "location-invariant" types, meaning that the
755   *  address of the object (or any of its members) will not escape.
756   *  Also implies a trivial copy constructor and assignment operator.
757   *   @endif
758   */
759  template<typename _Tp>
760    struct __is_location_invariant
761    : integral_constant<bool,
762                        (is_pointer<_Tp>::value
763                         || is_member_pointer<_Tp>::value)>
764    {
765    };
766
767  class _Undefined_class;
768
769  union _Nocopy_types
770  {
771    void*       _M_object;
772    const void* _M_const_object;
773    void (*_M_function_pointer)();
774    void (_Undefined_class::*_M_member_pointer)();
775  };
776
777  union _Any_data {
778    void*       _M_access()       { return &_M_pod_data[0]; }
779    const void* _M_access() const { return &_M_pod_data[0]; }
780
781    template<typename _Tp> _Tp& _M_access()
782    { return *static_cast<_Tp*>(_M_access()); }
783
784    template<typename _Tp> const _Tp& _M_access() const
785    { return *static_cast<const _Tp*>(_M_access()); }
786
787    _Nocopy_types _M_unused;
788    char _M_pod_data[sizeof(_Nocopy_types)];
789  };
790
791  enum _Manager_operation
792  {
793    __get_type_info,
794    __get_functor_ptr,
795    __clone_functor,
796    __destroy_functor
797  };
798
799  /* Simple type wrapper that helps avoid annoying const problems
800     when casting between void pointers and pointers-to-pointers. */
801  template<typename _Tp>
802    struct _Simple_type_wrapper
803    {
804      _Simple_type_wrapper(_Tp __value) : __value(__value) { }
805
806      _Tp __value;
807    };
808
809  template<typename _Tp>
810    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
811      : __is_location_invariant<_Tp>
812    {
813    };
814
815  // Converts a reference to a function object into a callable
816  // function object.
817  template<typename _Functor>
818    inline _Functor& __callable_functor(_Functor& __f) { return __f; }
819
820  template<typename _Member, typename _Class>
821    inline _Mem_fn<_Member _Class::*>
822    __callable_functor(_Member _Class::* &__p)
823    { return mem_fn(__p); }
824
825  template<typename _Member, typename _Class>
826    inline _Mem_fn<_Member _Class::*>
827    __callable_functor(_Member _Class::* const &__p)
828    { return mem_fn(__p); }
829
830  template<typename _Signature, typename _Functor>
831    class _Function_handler;
832
833  template<typename _Signature>
834    class function;
835
836
837  /**
838   *  @if maint
839   *  Base class of all polymorphic function object wrappers.
840   *  @endif
841   */
842  class _Function_base
843  {
844  public:
845    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
846    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
847
848    template<typename _Functor>
849    class _Base_manager
850    {
851    protected:
852      static const bool __stored_locally =
853        (__is_location_invariant<_Functor>::value
854         && sizeof(_Functor) <= _M_max_size
855         && __alignof__(_Functor) <= _M_max_align
856         && (_M_max_align % __alignof__(_Functor) == 0));
857      typedef integral_constant<bool, __stored_locally> _Local_storage;
858
859      // Retrieve a pointer to the function object
860      static _Functor* _M_get_pointer(const _Any_data& __source)
861      {
862        const _Functor* __ptr =
863          __stored_locally? &__source._M_access<_Functor>()
864          /* have stored a pointer */ : __source._M_access<_Functor*>();
865        return const_cast<_Functor*>(__ptr);
866      }
867
868      // Clone a location-invariant function object that fits within
869      // an _Any_data structure.
870      static void
871      _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
872      {
873        new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
874      }
875
876      // Clone a function object that is not location-invariant or
877      // that cannot fit into an _Any_data structure.
878      static void
879      _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
880      {
881        __dest._M_access<_Functor*>() =
882          new _Functor(*__source._M_access<_Functor*>());
883      }
884
885      // Destroying a location-invariant object may still require
886      // destruction.
887      static void
888      _M_destroy(_Any_data& __victim, true_type)
889      {
890        __victim._M_access<_Functor>().~_Functor();
891      }
892
893      // Destroying an object located on the heap.
894      static void
895      _M_destroy(_Any_data& __victim, false_type)
896      {
897        delete __victim._M_access<_Functor*>();
898      }
899
900    public:
901      static bool
902      _M_manager(_Any_data& __dest, const _Any_data& __source,
903                 _Manager_operation __op)
904      {
905        switch (__op) {
906        case __get_type_info:
907          __dest._M_access<const type_info*>() = &typeid(_Functor);
908          break;
909
910        case __get_functor_ptr:
911          __dest._M_access<_Functor*>() = _M_get_pointer(__source);
912          break;
913
914        case __clone_functor:
915          _M_clone(__dest, __source, _Local_storage());
916          break;
917
918        case __destroy_functor:
919          _M_destroy(__dest, _Local_storage());
920          break;
921        }
922        return false;
923      }
924
925      static void
926      _M_init_functor(_Any_data& __functor, const _Functor& __f)
927      {
928        _M_init_functor(__functor, __f, _Local_storage());
929      }
930
931      template<typename _Signature>
932      static bool
933      _M_not_empty_function(const function<_Signature>& __f)
934      {
935        return __f;
936      }
937
938      template<typename _Tp>
939      static bool
940      _M_not_empty_function(const _Tp*& __fp)
941      {
942        return __fp;
943      }
944
945      template<typename _Class, typename _Tp>
946      static bool
947      _M_not_empty_function(_Tp _Class::* const& __mp)
948      {
949        return __mp;
950      }
951
952      template<typename _Tp>
953      static bool
954      _M_not_empty_function(const _Tp&)
955      {
956        return true;
957      }
958
959    private:
960      static void
961      _M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
962      {
963        new (__functor._M_access()) _Functor(__f);
964      }
965
966      static void
967      _M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
968      {
969        __functor._M_access<_Functor*>() = new _Functor(__f);
970      }
971    };
972
973    template<typename _Functor>
974    class _Ref_manager : public _Base_manager<_Functor*>
975    {
976      typedef _Function_base::_Base_manager<_Functor*> _Base;
977
978    public:
979      static bool
980      _M_manager(_Any_data& __dest, const _Any_data& __source,
981                 _Manager_operation __op)
982      {
983        switch (__op) {
984        case __get_type_info:
985          __dest._M_access<const type_info*>() = &typeid(_Functor);
986          break;
987
988        case __get_functor_ptr:
989          __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
990          return is_const<_Functor>::value;
991          break;
992
993        default:
994          _Base::_M_manager(__dest, __source, __op);
995        }
996        return false;
997      }
998
999      static void
1000      _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
1001      {
1002        // TBD: Use address_of function instead
1003        _Base::_M_init_functor(__functor, &__f.get());
1004      }
1005    };
1006
1007    _Function_base() : _M_manager(0) { }
1008
1009    ~_Function_base()
1010    {
1011      if (_M_manager)
1012        {
1013          _M_manager(_M_functor, _M_functor, __destroy_functor);
1014        }
1015    }
1016
1017
1018    bool _M_empty() const { return !_M_manager; }
1019
1020    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
1021                                  _Manager_operation);
1022
1023    _Any_data     _M_functor;
1024    _Manager_type _M_manager;
1025  };
1026
1027  // [3.7.2.7] null pointer comparisons
1028
1029  /**
1030   *  @brief Compares a polymorphic function object wrapper against 0
1031   *  (the NULL pointer).
1032   *  @returns @c true if the wrapper has no target, @c false otherwise
1033   *
1034   *  This function will not throw an exception.
1035   */
1036  template<typename _Signature>
1037    inline bool
1038    operator==(const function<_Signature>& __f, _M_clear_type*)
1039    {
1040      return !__f;
1041    }
1042
1043  /**
1044   *  @overload
1045   */
1046  template<typename _Signature>
1047    inline bool
1048    operator==(_M_clear_type*, const function<_Signature>& __f)
1049    {
1050      return !__f;
1051    }
1052
1053  /**
1054   *  @brief Compares a polymorphic function object wrapper against 0
1055   *  (the NULL pointer).
1056   *  @returns @c false if the wrapper has no target, @c true otherwise
1057   *
1058   *  This function will not throw an exception.
1059   */
1060  template<typename _Signature>
1061    inline bool
1062    operator!=(const function<_Signature>& __f, _M_clear_type*)
1063    {
1064      return __f;
1065    }
1066
1067  /**
1068   *  @overload
1069   */
1070  template<typename _Signature>
1071    inline bool
1072    operator!=(_M_clear_type*, const function<_Signature>& __f)
1073    {
1074      return __f;
1075    }
1076
1077  // [3.7.2.8] specialized algorithms
1078
1079  /**
1080   *  @brief Swap the targets of two polymorphic function object wrappers.
1081   *
1082   *  This function will not throw an exception.
1083   */
1084  template<typename _Signature>
1085    inline void
1086    swap(function<_Signature>& __x, function<_Signature>& __y)
1087    {
1088      __x.swap(__y);
1089    }
1090
1091_GLIBCXX_END_NAMESPACE
1092}
1093
1094#define _GLIBCXX_JOIN(X,Y) _GLIBCXX_JOIN2( X , Y )
1095#define _GLIBCXX_JOIN2(X,Y) _GLIBCXX_JOIN3(X,Y)
1096#define _GLIBCXX_JOIN3(X,Y) X##Y
1097#define _GLIBCXX_REPEAT_HEADER <tr1/functional_iterate.h>
1098#include <tr1/repeat.h>
1099#undef _GLIBCXX_REPEAT_HEADER
1100#undef _GLIBCXX_JOIN3
1101#undef _GLIBCXX_JOIN2
1102#undef _GLIBCXX_JOIN
1103
1104#include <tr1/functional_hash.h>
1105
1106#endif
1107