1/* utility to create the register check tables
2 * this includes inlined list.h safe for userspace.
3 *
4 * Copyright 2009 Jerome Glisse
5 * Copyright 2009 Red Hat Inc.
6 *
7 * Authors:
8 * 	Jerome Glisse
9 * 	Dave Airlie
10 */
11
12#include <sys/cdefs.h>
13__FBSDID("$FreeBSD$");
14
15#include <sys/types.h>
16#include <stdlib.h>
17#include <string.h>
18#include <stdio.h>
19#include <regex.h>
20#include <libgen.h>
21
22#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
23/**
24 * container_of - cast a member of a structure out to the containing structure
25 * @ptr:    the pointer to the member.
26 * @type:   the type of the container struct this is embedded in.
27 * @member: the name of the member within the struct.
28 *
29 */
30#define container_of(ptr, type, member) ({          \
31	const typeof(((type *)0)->member)*__mptr = (ptr);    \
32		     (type *)((char *)__mptr - offsetof(type, member)); })
33
34/*
35 * Simple doubly linked list implementation.
36 *
37 * Some of the internal functions ("__xxx") are useful when
38 * manipulating whole lists rather than single entries, as
39 * sometimes we already know the next/prev entries and we can
40 * generate better code by using them directly rather than
41 * using the generic single-entry routines.
42 */
43
44struct list_head {
45	struct list_head *next, *prev;
46};
47
48#define LIST_HEAD_INIT(name) { &(name), &(name) }
49
50#define LIST_HEAD(name) \
51	struct list_head name = LIST_HEAD_INIT(name)
52
53static inline void INIT_LIST_HEAD(struct list_head *list)
54{
55	list->next = list;
56	list->prev = list;
57}
58
59/*
60 * Insert a new entry between two known consecutive entries.
61 *
62 * This is only for internal list manipulation where we know
63 * the prev/next entries already!
64 */
65#ifndef CONFIG_DEBUG_LIST
66static inline void __list_add(struct list_head *new,
67			      struct list_head *prev, struct list_head *next)
68{
69	next->prev = new;
70	new->next = next;
71	new->prev = prev;
72	prev->next = new;
73}
74#else
75extern void __list_add(struct list_head *new,
76		       struct list_head *prev, struct list_head *next);
77#endif
78
79/**
80 * list_add - add a new entry
81 * @new: new entry to be added
82 * @head: list head to add it after
83 *
84 * Insert a new entry after the specified head.
85 * This is good for implementing stacks.
86 */
87static inline void list_add(struct list_head *new, struct list_head *head)
88{
89	__list_add(new, head, head->next);
90}
91
92/**
93 * list_add_tail - add a new entry
94 * @new: new entry to be added
95 * @head: list head to add it before
96 *
97 * Insert a new entry before the specified head.
98 * This is useful for implementing queues.
99 */
100static inline void list_add_tail(struct list_head *new, struct list_head *head)
101{
102	__list_add(new, head->prev, head);
103}
104
105/*
106 * Delete a list entry by making the prev/next entries
107 * point to each other.
108 *
109 * This is only for internal list manipulation where we know
110 * the prev/next entries already!
111 */
112static inline void __list_del(struct list_head *prev, struct list_head *next)
113{
114	next->prev = prev;
115	prev->next = next;
116}
117
118/**
119 * list_del - deletes entry from list.
120 * @entry: the element to delete from the list.
121 * Note: list_empty() on entry does not return true after this, the entry is
122 * in an undefined state.
123 */
124#ifndef CONFIG_DEBUG_LIST
125static inline void list_del(struct list_head *entry)
126{
127	__list_del(entry->prev, entry->next);
128	entry->next = (void *)0xDEADBEEF;
129	entry->prev = (void *)0xBEEFDEAD;
130}
131#else
132extern void list_del(struct list_head *entry);
133#endif
134
135/**
136 * list_replace - replace old entry by new one
137 * @old : the element to be replaced
138 * @new : the new element to insert
139 *
140 * If @old was empty, it will be overwritten.
141 */
142static inline void list_replace(struct list_head *old, struct list_head *new)
143{
144	new->next = old->next;
145	new->next->prev = new;
146	new->prev = old->prev;
147	new->prev->next = new;
148}
149
150static inline void list_replace_init(struct list_head *old,
151				     struct list_head *new)
152{
153	list_replace(old, new);
154	INIT_LIST_HEAD(old);
155}
156
157/**
158 * list_del_init - deletes entry from list and reinitialize it.
159 * @entry: the element to delete from the list.
160 */
161static inline void list_del_init(struct list_head *entry)
162{
163	__list_del(entry->prev, entry->next);
164	INIT_LIST_HEAD(entry);
165}
166
167/**
168 * list_move - delete from one list and add as another's head
169 * @list: the entry to move
170 * @head: the head that will precede our entry
171 */
172static inline void list_move(struct list_head *list, struct list_head *head)
173{
174	__list_del(list->prev, list->next);
175	list_add(list, head);
176}
177
178/**
179 * list_move_tail - delete from one list and add as another's tail
180 * @list: the entry to move
181 * @head: the head that will follow our entry
182 */
183static inline void list_move_tail(struct list_head *list,
184				  struct list_head *head)
185{
186	__list_del(list->prev, list->next);
187	list_add_tail(list, head);
188}
189
190/**
191 * list_is_last - tests whether @list is the last entry in list @head
192 * @list: the entry to test
193 * @head: the head of the list
194 */
195static inline int list_is_last(const struct list_head *list,
196			       const struct list_head *head)
197{
198	return list->next == head;
199}
200
201/**
202 * list_empty - tests whether a list is empty
203 * @head: the list to test.
204 */
205static inline int list_empty(const struct list_head *head)
206{
207	return head->next == head;
208}
209
210/**
211 * list_empty_careful - tests whether a list is empty and not being modified
212 * @head: the list to test
213 *
214 * Description:
215 * tests whether a list is empty _and_ checks that no other CPU might be
216 * in the process of modifying either member (next or prev)
217 *
218 * NOTE: using list_empty_careful() without synchronization
219 * can only be safe if the only activity that can happen
220 * to the list entry is list_del_init(). Eg. it cannot be used
221 * if another CPU could re-list_add() it.
222 */
223static inline int list_empty_careful(const struct list_head *head)
224{
225	struct list_head *next = head->next;
226	return (next == head) && (next == head->prev);
227}
228
229/**
230 * list_is_singular - tests whether a list has just one entry.
231 * @head: the list to test.
232 */
233static inline int list_is_singular(const struct list_head *head)
234{
235	return !list_empty(head) && (head->next == head->prev);
236}
237
238static inline void __list_cut_position(struct list_head *list,
239				       struct list_head *head,
240				       struct list_head *entry)
241{
242	struct list_head *new_first = entry->next;
243	list->next = head->next;
244	list->next->prev = list;
245	list->prev = entry;
246	entry->next = list;
247	head->next = new_first;
248	new_first->prev = head;
249}
250
251/**
252 * list_cut_position - cut a list into two
253 * @list: a new list to add all removed entries
254 * @head: a list with entries
255 * @entry: an entry within head, could be the head itself
256 *	and if so we won't cut the list
257 *
258 * This helper moves the initial part of @head, up to and
259 * including @entry, from @head to @list. You should
260 * pass on @entry an element you know is on @head. @list
261 * should be an empty list or a list you do not care about
262 * losing its data.
263 *
264 */
265static inline void list_cut_position(struct list_head *list,
266				     struct list_head *head,
267				     struct list_head *entry)
268{
269	if (list_empty(head))
270		return;
271	if (list_is_singular(head) && (head->next != entry && head != entry))
272		return;
273	if (entry == head)
274		INIT_LIST_HEAD(list);
275	else
276		__list_cut_position(list, head, entry);
277}
278
279static inline void __list_splice(const struct list_head *list,
280				 struct list_head *prev, struct list_head *next)
281{
282	struct list_head *first = list->next;
283	struct list_head *last = list->prev;
284
285	first->prev = prev;
286	prev->next = first;
287
288	last->next = next;
289	next->prev = last;
290}
291
292/**
293 * list_splice - join two lists, this is designed for stacks
294 * @list: the new list to add.
295 * @head: the place to add it in the first list.
296 */
297static inline void list_splice(const struct list_head *list,
298			       struct list_head *head)
299{
300	if (!list_empty(list))
301		__list_splice(list, head, head->next);
302}
303
304/**
305 * list_splice_tail - join two lists, each list being a queue
306 * @list: the new list to add.
307 * @head: the place to add it in the first list.
308 */
309static inline void list_splice_tail(struct list_head *list,
310				    struct list_head *head)
311{
312	if (!list_empty(list))
313		__list_splice(list, head->prev, head);
314}
315
316/**
317 * list_splice_init - join two lists and reinitialise the emptied list.
318 * @list: the new list to add.
319 * @head: the place to add it in the first list.
320 *
321 * The list at @list is reinitialised
322 */
323static inline void list_splice_init(struct list_head *list,
324				    struct list_head *head)
325{
326	if (!list_empty(list)) {
327		__list_splice(list, head, head->next);
328		INIT_LIST_HEAD(list);
329	}
330}
331
332/**
333 * list_splice_tail_init - join two lists and reinitialise the emptied list
334 * @list: the new list to add.
335 * @head: the place to add it in the first list.
336 *
337 * Each of the lists is a queue.
338 * The list at @list is reinitialised
339 */
340static inline void list_splice_tail_init(struct list_head *list,
341					 struct list_head *head)
342{
343	if (!list_empty(list)) {
344		__list_splice(list, head->prev, head);
345		INIT_LIST_HEAD(list);
346	}
347}
348
349/**
350 * list_entry - get the struct for this entry
351 * @ptr:	the &struct list_head pointer.
352 * @type:	the type of the struct this is embedded in.
353 * @member:	the name of the list_struct within the struct.
354 */
355#define list_entry(ptr, type, member) \
356	container_of(ptr, type, member)
357
358/**
359 * list_first_entry - get the first element from a list
360 * @ptr:	the list head to take the element from.
361 * @type:	the type of the struct this is embedded in.
362 * @member:	the name of the list_struct within the struct.
363 *
364 * Note, that list is expected to be not empty.
365 */
366#define list_first_entry(ptr, type, member) \
367	list_entry((ptr)->next, type, member)
368
369/**
370 * list_for_each	-	iterate over a list
371 * @pos:	the &struct list_head to use as a loop cursor.
372 * @head:	the head for your list.
373 */
374#define list_for_each(pos, head) \
375	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
376		pos = pos->next)
377
378/**
379 * __list_for_each	-	iterate over a list
380 * @pos:	the &struct list_head to use as a loop cursor.
381 * @head:	the head for your list.
382 *
383 * This variant differs from list_for_each() in that it's the
384 * simplest possible list iteration code, no prefetching is done.
385 * Use this for code that knows the list to be very short (empty
386 * or 1 entry) most of the time.
387 */
388#define __list_for_each(pos, head) \
389	for (pos = (head)->next; pos != (head); pos = pos->next)
390
391/**
392 * list_for_each_prev	-	iterate over a list backwards
393 * @pos:	the &struct list_head to use as a loop cursor.
394 * @head:	the head for your list.
395 */
396#define list_for_each_prev(pos, head) \
397	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
398		pos = pos->prev)
399
400/**
401 * list_for_each_safe - iterate over a list safe against removal of list entry
402 * @pos:	the &struct list_head to use as a loop cursor.
403 * @n:		another &struct list_head to use as temporary storage
404 * @head:	the head for your list.
405 */
406#define list_for_each_safe(pos, n, head) \
407	for (pos = (head)->next, n = pos->next; pos != (head); \
408		pos = n, n = pos->next)
409
410/**
411 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
412 * @pos:	the &struct list_head to use as a loop cursor.
413 * @n:		another &struct list_head to use as temporary storage
414 * @head:	the head for your list.
415 */
416#define list_for_each_prev_safe(pos, n, head) \
417	for (pos = (head)->prev, n = pos->prev; \
418	     prefetch(pos->prev), pos != (head); \
419	     pos = n, n = pos->prev)
420
421/**
422 * list_for_each_entry	-	iterate over list of given type
423 * @pos:	the type * to use as a loop cursor.
424 * @head:	the head for your list.
425 * @member:	the name of the list_struct within the struct.
426 */
427#define list_for_each_entry(pos, head, member)				\
428	for (pos = list_entry((head)->next, typeof(*pos), member);	\
429	     &pos->member != (head); 	\
430	     pos = list_entry(pos->member.next, typeof(*pos), member))
431
432/**
433 * list_for_each_entry_reverse - iterate backwards over list of given type.
434 * @pos:	the type * to use as a loop cursor.
435 * @head:	the head for your list.
436 * @member:	the name of the list_struct within the struct.
437 */
438#define list_for_each_entry_reverse(pos, head, member)			\
439	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
440	     prefetch(pos->member.prev), &pos->member != (head); 	\
441	     pos = list_entry(pos->member.prev, typeof(*pos), member))
442
443/**
444 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
445 * @pos:	the type * to use as a start point
446 * @head:	the head of the list
447 * @member:	the name of the list_struct within the struct.
448 *
449 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
450 */
451#define list_prepare_entry(pos, head, member) \
452	((pos) ? : list_entry(head, typeof(*pos), member))
453
454/**
455 * list_for_each_entry_continue - continue iteration over list of given type
456 * @pos:	the type * to use as a loop cursor.
457 * @head:	the head for your list.
458 * @member:	the name of the list_struct within the struct.
459 *
460 * Continue to iterate over list of given type, continuing after
461 * the current position.
462 */
463#define list_for_each_entry_continue(pos, head, member) 		\
464	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
465	     prefetch(pos->member.next), &pos->member != (head);	\
466	     pos = list_entry(pos->member.next, typeof(*pos), member))
467
468/**
469 * list_for_each_entry_continue_reverse - iterate backwards from the given point
470 * @pos:	the type * to use as a loop cursor.
471 * @head:	the head for your list.
472 * @member:	the name of the list_struct within the struct.
473 *
474 * Start to iterate over list of given type backwards, continuing after
475 * the current position.
476 */
477#define list_for_each_entry_continue_reverse(pos, head, member)		\
478	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
479	     prefetch(pos->member.prev), &pos->member != (head);	\
480	     pos = list_entry(pos->member.prev, typeof(*pos), member))
481
482/**
483 * list_for_each_entry_from - iterate over list of given type from the current point
484 * @pos:	the type * to use as a loop cursor.
485 * @head:	the head for your list.
486 * @member:	the name of the list_struct within the struct.
487 *
488 * Iterate over list of given type, continuing from current position.
489 */
490#define list_for_each_entry_from(pos, head, member) 			\
491	for (; prefetch(pos->member.next), &pos->member != (head);	\
492	     pos = list_entry(pos->member.next, typeof(*pos), member))
493
494/**
495 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
496 * @pos:	the type * to use as a loop cursor.
497 * @n:		another type * to use as temporary storage
498 * @head:	the head for your list.
499 * @member:	the name of the list_struct within the struct.
500 */
501#define list_for_each_entry_safe(pos, n, head, member)			\
502	for (pos = list_entry((head)->next, typeof(*pos), member),	\
503		n = list_entry(pos->member.next, typeof(*pos), member);	\
504	     &pos->member != (head); 					\
505	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
506
507/**
508 * list_for_each_entry_safe_continue
509 * @pos:	the type * to use as a loop cursor.
510 * @n:		another type * to use as temporary storage
511 * @head:	the head for your list.
512 * @member:	the name of the list_struct within the struct.
513 *
514 * Iterate over list of given type, continuing after current point,
515 * safe against removal of list entry.
516 */
517#define list_for_each_entry_safe_continue(pos, n, head, member) 		\
518	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
519		n = list_entry(pos->member.next, typeof(*pos), member);		\
520	     &pos->member != (head);						\
521	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
522
523/**
524 * list_for_each_entry_safe_from
525 * @pos:	the type * to use as a loop cursor.
526 * @n:		another type * to use as temporary storage
527 * @head:	the head for your list.
528 * @member:	the name of the list_struct within the struct.
529 *
530 * Iterate over list of given type from current point, safe against
531 * removal of list entry.
532 */
533#define list_for_each_entry_safe_from(pos, n, head, member) 			\
534	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
535	     &pos->member != (head);						\
536	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
537
538/**
539 * list_for_each_entry_safe_reverse
540 * @pos:	the type * to use as a loop cursor.
541 * @n:		another type * to use as temporary storage
542 * @head:	the head for your list.
543 * @member:	the name of the list_struct within the struct.
544 *
545 * Iterate backwards over list of given type, safe against removal
546 * of list entry.
547 */
548#define list_for_each_entry_safe_reverse(pos, n, head, member)		\
549	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
550		n = list_entry(pos->member.prev, typeof(*pos), member);	\
551	     &pos->member != (head); 					\
552	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
553
554struct offset {
555	struct list_head list;
556	unsigned offset;
557};
558
559struct table {
560	struct list_head offsets;
561	unsigned offset_max;
562	unsigned nentry;
563	unsigned *table;
564	char *gpu_prefix;
565};
566
567static struct offset *offset_new(unsigned o)
568{
569	struct offset *offset;
570
571	offset = (struct offset *)malloc(sizeof(struct offset));
572	if (offset) {
573		INIT_LIST_HEAD(&offset->list);
574		offset->offset = o;
575	}
576	return offset;
577}
578
579static void table_offset_add(struct table *t, struct offset *offset)
580{
581	list_add_tail(&offset->list, &t->offsets);
582}
583
584static void table_init(struct table *t)
585{
586	INIT_LIST_HEAD(&t->offsets);
587	t->offset_max = 0;
588	t->nentry = 0;
589	t->table = NULL;
590}
591
592static void table_print(struct table *t)
593{
594	unsigned nlloop, i, j, n, c, id;
595
596	nlloop = (t->nentry + 3) / 4;
597	c = t->nentry;
598	printf(
599	    "#include <sys/cdefs.h>\n"
600	    "__FBSDID(\"$" "FreeBSD" "$\");\n"
601	    "\n"
602	    );
603	printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix,
604	       t->nentry);
605	for (i = 0, id = 0; i < nlloop; i++) {
606		n = 4;
607		if (n > c)
608			n = c;
609		c -= n;
610		for (j = 0; j < n; j++) {
611			if (j == 0)
612				printf("\t");
613			else
614				printf(" ");
615			printf("0x%08X,", t->table[id++]);
616		}
617		printf("\n");
618	}
619	printf("};\n");
620}
621
622static int table_build(struct table *t)
623{
624	struct offset *offset;
625	unsigned i, m;
626
627	t->nentry = ((t->offset_max >> 2) + 31) / 32;
628	t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry);
629	if (t->table == NULL)
630		return -1;
631	memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
632	list_for_each_entry(offset, &t->offsets, list) {
633		i = (offset->offset >> 2) / 32;
634		m = (offset->offset >> 2) & 31;
635		m = 1 << m;
636		t->table[i] ^= m;
637	}
638	return 0;
639}
640
641static char gpu_name[10];
642static int parser_auth(struct table *t, const char *filename)
643{
644	FILE *file;
645	regex_t mask_rex;
646	regmatch_t match[4];
647	char buf[1024];
648	size_t end;
649	int len;
650	int done = 0;
651	int r;
652	unsigned o;
653	struct offset *offset;
654	char last_reg_s[10];
655	int last_reg;
656
657	if (regcomp
658	    (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
659		fprintf(stderr, "Failed to compile regular expression\n");
660		return -1;
661	}
662	file = fopen(filename, "r");
663	if (file == NULL) {
664		fprintf(stderr, "Failed to open: %s\n", filename);
665		return -1;
666	}
667	fseek(file, 0, SEEK_END);
668	end = ftell(file);
669	fseek(file, 0, SEEK_SET);
670
671	/* get header */
672	if (fgets(buf, 1024, file) == NULL) {
673		fclose(file);
674		return -1;
675	}
676
677	/* first line will contain the last register
678	 * and gpu name */
679	sscanf(buf, "%s %s", gpu_name, last_reg_s);
680	t->gpu_prefix = gpu_name;
681	last_reg = strtol(last_reg_s, NULL, 16);
682
683	do {
684		if (fgets(buf, 1024, file) == NULL) {
685			fclose(file);
686			return -1;
687		}
688		len = strlen(buf);
689		if (ftell(file) == end)
690			done = 1;
691		if (len) {
692			r = regexec(&mask_rex, buf, 4, match, 0);
693			if (r == REG_NOMATCH) {
694			} else if (r) {
695				fprintf(stderr,
696					"Error matching regular expression %d in %s\n",
697					r, filename);
698				fclose(file);
699				return -1;
700			} else {
701				buf[match[0].rm_eo] = 0;
702				buf[match[1].rm_eo] = 0;
703				buf[match[2].rm_eo] = 0;
704				o = strtol(&buf[match[1].rm_so], NULL, 16);
705				offset = offset_new(o);
706				table_offset_add(t, offset);
707				if (o > t->offset_max)
708					t->offset_max = o;
709			}
710		}
711	} while (!done);
712	fclose(file);
713	if (t->offset_max < last_reg)
714		t->offset_max = last_reg;
715	return table_build(t);
716}
717
718int main(int argc, char *argv[])
719{
720	struct table t;
721
722	if (argc != 2) {
723		fprintf(stderr, "Usage: %s <authfile>\n", argv[0]);
724		exit(1);
725	}
726	table_init(&t);
727	if (parser_auth(&t, argv[1])) {
728		fprintf(stderr, "Failed to parse file %s\n", argv[1]);
729		return -1;
730	}
731	table_print(&t);
732	return 0;
733}
734