1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#define	KTR_ULE	0
81
82#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
83#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
84#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
85
86/*
87 * Thread scheduler specific section.  All fields are protected
88 * by the thread lock.
89 */
90struct td_sched {
91	struct runq	*ts_runq;	/* Run-queue we're queued on. */
92	short		ts_flags;	/* TSF_* flags. */
93	u_char		ts_cpu;		/* CPU that we have affinity for. */
94	int		ts_rltick;	/* Real last tick, for affinity. */
95	int		ts_slice;	/* Ticks of slice remaining. */
96	u_int		ts_slptime;	/* Number of ticks we vol. slept */
97	u_int		ts_runtime;	/* Number of ticks we were running */
98	int		ts_ltick;	/* Last tick that we were running on */
99	int		ts_ftick;	/* First tick that we were running on */
100	int		ts_ticks;	/* Tick count */
101#ifdef KTR
102	char		ts_name[TS_NAME_LEN];
103#endif
104};
105/* flags kept in ts_flags */
106#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
107#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
108
109static struct td_sched td_sched0;
110
111#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
112#define	THREAD_CAN_SCHED(td, cpu)	\
113    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
114
115/*
116 * Priority ranges used for interactive and non-interactive timeshare
117 * threads.  The timeshare priorities are split up into four ranges.
118 * The first range handles interactive threads.  The last three ranges
119 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
120 * ranges supporting nice values.
121 */
122#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
123#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
124#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
125
126#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
127#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
128#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
129#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
130
131/*
132 * Cpu percentage computation macros and defines.
133 *
134 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
135 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
136 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
137 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
138 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
139 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
140 */
141#define	SCHED_TICK_SECS		10
142#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
143#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
144#define	SCHED_TICK_SHIFT	10
145#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
146#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
147
148/*
149 * These macros determine priorities for non-interactive threads.  They are
150 * assigned a priority based on their recent cpu utilization as expressed
151 * by the ratio of ticks to the tick total.  NHALF priorities at the start
152 * and end of the MIN to MAX timeshare range are only reachable with negative
153 * or positive nice respectively.
154 *
155 * PRI_RANGE:	Priority range for utilization dependent priorities.
156 * PRI_NRESV:	Number of nice values.
157 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
158 * PRI_NICE:	Determines the part of the priority inherited from nice.
159 */
160#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
161#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
162#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
163#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
164#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
165#define	SCHED_PRI_TICKS(ts)						\
166    (SCHED_TICK_HZ((ts)) /						\
167    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
168#define	SCHED_PRI_NICE(nice)	(nice)
169
170/*
171 * These determine the interactivity of a process.  Interactivity differs from
172 * cpu utilization in that it expresses the voluntary time slept vs time ran
173 * while cpu utilization includes all time not running.  This more accurately
174 * models the intent of the thread.
175 *
176 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
177 *		before throttling back.
178 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
179 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
180 * INTERACT_THRESH:	Threshold for placement on the current runq.
181 */
182#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
183#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
184#define	SCHED_INTERACT_MAX	(100)
185#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
186#define	SCHED_INTERACT_THRESH	(30)
187
188/*
189 * These parameters determine the slice behavior for batch work.
190 */
191#define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
192#define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
193
194/* Flags kept in td_flags. */
195#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
196
197/*
198 * tickincr:		Converts a stathz tick into a hz domain scaled by
199 *			the shift factor.  Without the shift the error rate
200 *			due to rounding would be unacceptably high.
201 * realstathz:		stathz is sometimes 0 and run off of hz.
202 * sched_slice:		Runtime of each thread before rescheduling.
203 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
204 */
205static int sched_interact = SCHED_INTERACT_THRESH;
206static int tickincr = 8 << SCHED_TICK_SHIFT;
207static int realstathz = 127;	/* reset during boot. */
208static int sched_slice = 10;	/* reset during boot. */
209static int sched_slice_min = 1;	/* reset during boot. */
210#ifdef PREEMPTION
211#ifdef FULL_PREEMPTION
212static int preempt_thresh = PRI_MAX_IDLE;
213#else
214static int preempt_thresh = PRI_MIN_KERN;
215#endif
216#else
217static int preempt_thresh = 0;
218#endif
219static int static_boost = PRI_MIN_BATCH;
220static int sched_idlespins = 10000;
221static int sched_idlespinthresh = -1;
222
223/*
224 * tdq - per processor runqs and statistics.  All fields are protected by the
225 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
226 * locking in sched_pickcpu();
227 */
228struct tdq {
229	/*
230	 * Ordered to improve efficiency of cpu_search() and switch().
231	 * tdq_lock is padded to avoid false sharing with tdq_load and
232	 * tdq_cpu_idle.
233	 */
234	struct mtx_padalign tdq_lock;		/* run queue lock. */
235	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
236	volatile int	tdq_load;		/* Aggregate load. */
237	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
238	int		tdq_sysload;		/* For loadavg, !ITHD load. */
239	int		tdq_transferable;	/* Transferable thread count. */
240	short		tdq_switchcnt;		/* Switches this tick. */
241	short		tdq_oldswitchcnt;	/* Switches last tick. */
242	u_char		tdq_lowpri;		/* Lowest priority thread. */
243	u_char		tdq_ipipending;		/* IPI pending. */
244	u_char		tdq_idx;		/* Current insert index. */
245	u_char		tdq_ridx;		/* Current removal index. */
246	struct runq	tdq_realtime;		/* real-time run queue. */
247	struct runq	tdq_timeshare;		/* timeshare run queue. */
248	struct runq	tdq_idle;		/* Queue of IDLE threads. */
249	char		tdq_name[TDQ_NAME_LEN];
250#ifdef KTR
251	char		tdq_loadname[TDQ_LOADNAME_LEN];
252#endif
253} __aligned(64);
254
255/* Idle thread states and config. */
256#define	TDQ_RUNNING	1
257#define	TDQ_IDLE	2
258
259#ifdef SMP
260struct cpu_group *cpu_top;		/* CPU topology */
261
262#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
263#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
264
265/*
266 * Run-time tunables.
267 */
268static int rebalance = 1;
269static int balance_interval = 128;	/* Default set in sched_initticks(). */
270static int affinity;
271static int steal_idle = 1;
272static int steal_thresh = 2;
273
274/*
275 * One thread queue per processor.
276 */
277static struct tdq	tdq_cpu[MAXCPU];
278static struct tdq	*balance_tdq;
279static int balance_ticks;
280static DPCPU_DEFINE(uint32_t, randomval);
281
282#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
283#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
284#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
285#else	/* !SMP */
286static struct tdq	tdq_cpu;
287
288#define	TDQ_ID(x)	(0)
289#define	TDQ_SELF()	(&tdq_cpu)
290#define	TDQ_CPU(x)	(&tdq_cpu)
291#endif
292
293#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
294#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
295#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
296#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
297#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
298
299static void sched_priority(struct thread *);
300static void sched_thread_priority(struct thread *, u_char);
301static int sched_interact_score(struct thread *);
302static void sched_interact_update(struct thread *);
303static void sched_interact_fork(struct thread *);
304static void sched_pctcpu_update(struct td_sched *, int);
305
306/* Operations on per processor queues */
307static struct thread *tdq_choose(struct tdq *);
308static void tdq_setup(struct tdq *);
309static void tdq_load_add(struct tdq *, struct thread *);
310static void tdq_load_rem(struct tdq *, struct thread *);
311static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
312static __inline void tdq_runq_rem(struct tdq *, struct thread *);
313static inline int sched_shouldpreempt(int, int, int);
314void tdq_print(int cpu);
315static void runq_print(struct runq *rq);
316static void tdq_add(struct tdq *, struct thread *, int);
317#ifdef SMP
318static int tdq_move(struct tdq *, struct tdq *);
319static int tdq_idled(struct tdq *);
320static void tdq_notify(struct tdq *, struct thread *);
321static struct thread *tdq_steal(struct tdq *, int);
322static struct thread *runq_steal(struct runq *, int);
323static int sched_pickcpu(struct thread *, int);
324static void sched_balance(void);
325static int sched_balance_pair(struct tdq *, struct tdq *);
326static inline struct tdq *sched_setcpu(struct thread *, int, int);
327static inline void thread_unblock_switch(struct thread *, struct mtx *);
328static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
329static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
330static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
331    struct cpu_group *cg, int indent);
332#endif
333
334static void sched_setup(void *dummy);
335SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
336
337static void sched_initticks(void *dummy);
338SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
339    NULL);
340
341SDT_PROVIDER_DEFINE(sched);
342
343SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
344    "struct proc *", "uint8_t");
345SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
346    "struct proc *", "void *");
347SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
348    "struct proc *", "void *", "int");
349SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
350    "struct proc *", "uint8_t", "struct thread *");
351SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
352SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
353    "struct proc *");
354SDT_PROBE_DEFINE(sched, , , on__cpu);
355SDT_PROBE_DEFINE(sched, , , remain__cpu);
356SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
357    "struct proc *");
358
359/*
360 * Print the threads waiting on a run-queue.
361 */
362static void
363runq_print(struct runq *rq)
364{
365	struct rqhead *rqh;
366	struct thread *td;
367	int pri;
368	int j;
369	int i;
370
371	for (i = 0; i < RQB_LEN; i++) {
372		printf("\t\trunq bits %d 0x%zx\n",
373		    i, rq->rq_status.rqb_bits[i]);
374		for (j = 0; j < RQB_BPW; j++)
375			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
376				pri = j + (i << RQB_L2BPW);
377				rqh = &rq->rq_queues[pri];
378				TAILQ_FOREACH(td, rqh, td_runq) {
379					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
380					    td, td->td_name, td->td_priority,
381					    td->td_rqindex, pri);
382				}
383			}
384	}
385}
386
387/*
388 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
389 */
390void
391tdq_print(int cpu)
392{
393	struct tdq *tdq;
394
395	tdq = TDQ_CPU(cpu);
396
397	printf("tdq %d:\n", TDQ_ID(tdq));
398	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
399	printf("\tLock name:      %s\n", tdq->tdq_name);
400	printf("\tload:           %d\n", tdq->tdq_load);
401	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
402	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
403	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
404	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
405	printf("\tload transferable: %d\n", tdq->tdq_transferable);
406	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
407	printf("\trealtime runq:\n");
408	runq_print(&tdq->tdq_realtime);
409	printf("\ttimeshare runq:\n");
410	runq_print(&tdq->tdq_timeshare);
411	printf("\tidle runq:\n");
412	runq_print(&tdq->tdq_idle);
413}
414
415static inline int
416sched_shouldpreempt(int pri, int cpri, int remote)
417{
418	/*
419	 * If the new priority is not better than the current priority there is
420	 * nothing to do.
421	 */
422	if (pri >= cpri)
423		return (0);
424	/*
425	 * Always preempt idle.
426	 */
427	if (cpri >= PRI_MIN_IDLE)
428		return (1);
429	/*
430	 * If preemption is disabled don't preempt others.
431	 */
432	if (preempt_thresh == 0)
433		return (0);
434	/*
435	 * Preempt if we exceed the threshold.
436	 */
437	if (pri <= preempt_thresh)
438		return (1);
439	/*
440	 * If we're interactive or better and there is non-interactive
441	 * or worse running preempt only remote processors.
442	 */
443	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
444		return (1);
445	return (0);
446}
447
448/*
449 * Add a thread to the actual run-queue.  Keeps transferable counts up to
450 * date with what is actually on the run-queue.  Selects the correct
451 * queue position for timeshare threads.
452 */
453static __inline void
454tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
455{
456	struct td_sched *ts;
457	u_char pri;
458
459	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
460	THREAD_LOCK_ASSERT(td, MA_OWNED);
461
462	pri = td->td_priority;
463	ts = td->td_sched;
464	TD_SET_RUNQ(td);
465	if (THREAD_CAN_MIGRATE(td)) {
466		tdq->tdq_transferable++;
467		ts->ts_flags |= TSF_XFERABLE;
468	}
469	if (pri < PRI_MIN_BATCH) {
470		ts->ts_runq = &tdq->tdq_realtime;
471	} else if (pri <= PRI_MAX_BATCH) {
472		ts->ts_runq = &tdq->tdq_timeshare;
473		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
474			("Invalid priority %d on timeshare runq", pri));
475		/*
476		 * This queue contains only priorities between MIN and MAX
477		 * realtime.  Use the whole queue to represent these values.
478		 */
479		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
480			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
481			pri = (pri + tdq->tdq_idx) % RQ_NQS;
482			/*
483			 * This effectively shortens the queue by one so we
484			 * can have a one slot difference between idx and
485			 * ridx while we wait for threads to drain.
486			 */
487			if (tdq->tdq_ridx != tdq->tdq_idx &&
488			    pri == tdq->tdq_ridx)
489				pri = (unsigned char)(pri - 1) % RQ_NQS;
490		} else
491			pri = tdq->tdq_ridx;
492		runq_add_pri(ts->ts_runq, td, pri, flags);
493		return;
494	} else
495		ts->ts_runq = &tdq->tdq_idle;
496	runq_add(ts->ts_runq, td, flags);
497}
498
499/*
500 * Remove a thread from a run-queue.  This typically happens when a thread
501 * is selected to run.  Running threads are not on the queue and the
502 * transferable count does not reflect them.
503 */
504static __inline void
505tdq_runq_rem(struct tdq *tdq, struct thread *td)
506{
507	struct td_sched *ts;
508
509	ts = td->td_sched;
510	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
511	KASSERT(ts->ts_runq != NULL,
512	    ("tdq_runq_remove: thread %p null ts_runq", td));
513	if (ts->ts_flags & TSF_XFERABLE) {
514		tdq->tdq_transferable--;
515		ts->ts_flags &= ~TSF_XFERABLE;
516	}
517	if (ts->ts_runq == &tdq->tdq_timeshare) {
518		if (tdq->tdq_idx != tdq->tdq_ridx)
519			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
520		else
521			runq_remove_idx(ts->ts_runq, td, NULL);
522	} else
523		runq_remove(ts->ts_runq, td);
524}
525
526/*
527 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
528 * for this thread to the referenced thread queue.
529 */
530static void
531tdq_load_add(struct tdq *tdq, struct thread *td)
532{
533
534	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
535	THREAD_LOCK_ASSERT(td, MA_OWNED);
536
537	tdq->tdq_load++;
538	if ((td->td_flags & TDF_NOLOAD) == 0)
539		tdq->tdq_sysload++;
540	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
541	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
542}
543
544/*
545 * Remove the load from a thread that is transitioning to a sleep state or
546 * exiting.
547 */
548static void
549tdq_load_rem(struct tdq *tdq, struct thread *td)
550{
551
552	THREAD_LOCK_ASSERT(td, MA_OWNED);
553	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
554	KASSERT(tdq->tdq_load != 0,
555	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
556
557	tdq->tdq_load--;
558	if ((td->td_flags & TDF_NOLOAD) == 0)
559		tdq->tdq_sysload--;
560	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
561	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
562}
563
564/*
565 * Bound timeshare latency by decreasing slice size as load increases.  We
566 * consider the maximum latency as the sum of the threads waiting to run
567 * aside from curthread and target no more than sched_slice latency but
568 * no less than sched_slice_min runtime.
569 */
570static inline int
571tdq_slice(struct tdq *tdq)
572{
573	int load;
574
575	/*
576	 * It is safe to use sys_load here because this is called from
577	 * contexts where timeshare threads are running and so there
578	 * cannot be higher priority load in the system.
579	 */
580	load = tdq->tdq_sysload - 1;
581	if (load >= SCHED_SLICE_MIN_DIVISOR)
582		return (sched_slice_min);
583	if (load <= 1)
584		return (sched_slice);
585	return (sched_slice / load);
586}
587
588/*
589 * Set lowpri to its exact value by searching the run-queue and
590 * evaluating curthread.  curthread may be passed as an optimization.
591 */
592static void
593tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
594{
595	struct thread *td;
596
597	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
598	if (ctd == NULL)
599		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
600	td = tdq_choose(tdq);
601	if (td == NULL || td->td_priority > ctd->td_priority)
602		tdq->tdq_lowpri = ctd->td_priority;
603	else
604		tdq->tdq_lowpri = td->td_priority;
605}
606
607#ifdef SMP
608struct cpu_search {
609	cpuset_t cs_mask;
610	u_int	cs_prefer;
611	int	cs_pri;		/* Min priority for low. */
612	int	cs_limit;	/* Max load for low, min load for high. */
613	int	cs_cpu;
614	int	cs_load;
615};
616
617#define	CPU_SEARCH_LOWEST	0x1
618#define	CPU_SEARCH_HIGHEST	0x2
619#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
620
621#define	CPUSET_FOREACH(cpu, mask)				\
622	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
623		if (CPU_ISSET(cpu, &mask))
624
625static __always_inline int cpu_search(const struct cpu_group *cg,
626    struct cpu_search *low, struct cpu_search *high, const int match);
627int __noinline cpu_search_lowest(const struct cpu_group *cg,
628    struct cpu_search *low);
629int __noinline cpu_search_highest(const struct cpu_group *cg,
630    struct cpu_search *high);
631int __noinline cpu_search_both(const struct cpu_group *cg,
632    struct cpu_search *low, struct cpu_search *high);
633
634/*
635 * Search the tree of cpu_groups for the lowest or highest loaded cpu
636 * according to the match argument.  This routine actually compares the
637 * load on all paths through the tree and finds the least loaded cpu on
638 * the least loaded path, which may differ from the least loaded cpu in
639 * the system.  This balances work among caches and busses.
640 *
641 * This inline is instantiated in three forms below using constants for the
642 * match argument.  It is reduced to the minimum set for each case.  It is
643 * also recursive to the depth of the tree.
644 */
645static __always_inline int
646cpu_search(const struct cpu_group *cg, struct cpu_search *low,
647    struct cpu_search *high, const int match)
648{
649	struct cpu_search lgroup;
650	struct cpu_search hgroup;
651	cpuset_t cpumask;
652	struct cpu_group *child;
653	struct tdq *tdq;
654	int cpu, i, hload, lload, load, total, rnd, *rndptr;
655
656	total = 0;
657	cpumask = cg->cg_mask;
658	if (match & CPU_SEARCH_LOWEST) {
659		lload = INT_MAX;
660		lgroup = *low;
661	}
662	if (match & CPU_SEARCH_HIGHEST) {
663		hload = INT_MIN;
664		hgroup = *high;
665	}
666
667	/* Iterate through the child CPU groups and then remaining CPUs. */
668	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
669		if (i == 0) {
670#ifdef HAVE_INLINE_FFSL
671			cpu = CPU_FFS(&cpumask) - 1;
672#else
673			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
674				cpu--;
675#endif
676			if (cpu < 0)
677				break;
678			child = NULL;
679		} else
680			child = &cg->cg_child[i - 1];
681
682		if (match & CPU_SEARCH_LOWEST)
683			lgroup.cs_cpu = -1;
684		if (match & CPU_SEARCH_HIGHEST)
685			hgroup.cs_cpu = -1;
686		if (child) {			/* Handle child CPU group. */
687			CPU_NAND(&cpumask, &child->cg_mask);
688			switch (match) {
689			case CPU_SEARCH_LOWEST:
690				load = cpu_search_lowest(child, &lgroup);
691				break;
692			case CPU_SEARCH_HIGHEST:
693				load = cpu_search_highest(child, &hgroup);
694				break;
695			case CPU_SEARCH_BOTH:
696				load = cpu_search_both(child, &lgroup, &hgroup);
697				break;
698			}
699		} else {			/* Handle child CPU. */
700			CPU_CLR(cpu, &cpumask);
701			tdq = TDQ_CPU(cpu);
702			load = tdq->tdq_load * 256;
703			rndptr = DPCPU_PTR(randomval);
704			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
705			if (match & CPU_SEARCH_LOWEST) {
706				if (cpu == low->cs_prefer)
707					load -= 64;
708				/* If that CPU is allowed and get data. */
709				if (tdq->tdq_lowpri > lgroup.cs_pri &&
710				    tdq->tdq_load <= lgroup.cs_limit &&
711				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
712					lgroup.cs_cpu = cpu;
713					lgroup.cs_load = load - rnd;
714				}
715			}
716			if (match & CPU_SEARCH_HIGHEST)
717				if (tdq->tdq_load >= hgroup.cs_limit &&
718				    tdq->tdq_transferable &&
719				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
720					hgroup.cs_cpu = cpu;
721					hgroup.cs_load = load - rnd;
722				}
723		}
724		total += load;
725
726		/* We have info about child item. Compare it. */
727		if (match & CPU_SEARCH_LOWEST) {
728			if (lgroup.cs_cpu >= 0 &&
729			    (load < lload ||
730			     (load == lload && lgroup.cs_load < low->cs_load))) {
731				lload = load;
732				low->cs_cpu = lgroup.cs_cpu;
733				low->cs_load = lgroup.cs_load;
734			}
735		}
736		if (match & CPU_SEARCH_HIGHEST)
737			if (hgroup.cs_cpu >= 0 &&
738			    (load > hload ||
739			     (load == hload && hgroup.cs_load > high->cs_load))) {
740				hload = load;
741				high->cs_cpu = hgroup.cs_cpu;
742				high->cs_load = hgroup.cs_load;
743			}
744		if (child) {
745			i--;
746			if (i == 0 && CPU_EMPTY(&cpumask))
747				break;
748		}
749#ifndef HAVE_INLINE_FFSL
750		else
751			cpu--;
752#endif
753	}
754	return (total);
755}
756
757/*
758 * cpu_search instantiations must pass constants to maintain the inline
759 * optimization.
760 */
761int
762cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
763{
764	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
765}
766
767int
768cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
769{
770	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
771}
772
773int
774cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
775    struct cpu_search *high)
776{
777	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
778}
779
780/*
781 * Find the cpu with the least load via the least loaded path that has a
782 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
783 * acceptable.
784 */
785static inline int
786sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
787    int prefer)
788{
789	struct cpu_search low;
790
791	low.cs_cpu = -1;
792	low.cs_prefer = prefer;
793	low.cs_mask = mask;
794	low.cs_pri = pri;
795	low.cs_limit = maxload;
796	cpu_search_lowest(cg, &low);
797	return low.cs_cpu;
798}
799
800/*
801 * Find the cpu with the highest load via the highest loaded path.
802 */
803static inline int
804sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
805{
806	struct cpu_search high;
807
808	high.cs_cpu = -1;
809	high.cs_mask = mask;
810	high.cs_limit = minload;
811	cpu_search_highest(cg, &high);
812	return high.cs_cpu;
813}
814
815static void
816sched_balance_group(struct cpu_group *cg)
817{
818	cpuset_t hmask, lmask;
819	int high, low, anylow;
820
821	CPU_FILL(&hmask);
822	for (;;) {
823		high = sched_highest(cg, hmask, 1);
824		/* Stop if there is no more CPU with transferrable threads. */
825		if (high == -1)
826			break;
827		CPU_CLR(high, &hmask);
828		CPU_COPY(&hmask, &lmask);
829		/* Stop if there is no more CPU left for low. */
830		if (CPU_EMPTY(&lmask))
831			break;
832		anylow = 1;
833nextlow:
834		low = sched_lowest(cg, lmask, -1,
835		    TDQ_CPU(high)->tdq_load - 1, high);
836		/* Stop if we looked well and found no less loaded CPU. */
837		if (anylow && low == -1)
838			break;
839		/* Go to next high if we found no less loaded CPU. */
840		if (low == -1)
841			continue;
842		/* Transfer thread from high to low. */
843		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
844			/* CPU that got thread can no longer be a donor. */
845			CPU_CLR(low, &hmask);
846		} else {
847			/*
848			 * If failed, then there is no threads on high
849			 * that can run on this low. Drop low from low
850			 * mask and look for different one.
851			 */
852			CPU_CLR(low, &lmask);
853			anylow = 0;
854			goto nextlow;
855		}
856	}
857}
858
859static void
860sched_balance(void)
861{
862	struct tdq *tdq;
863
864	/*
865	 * Select a random time between .5 * balance_interval and
866	 * 1.5 * balance_interval.
867	 */
868	balance_ticks = max(balance_interval / 2, 1);
869	balance_ticks += random() % balance_interval;
870	if (smp_started == 0 || rebalance == 0)
871		return;
872	tdq = TDQ_SELF();
873	TDQ_UNLOCK(tdq);
874	sched_balance_group(cpu_top);
875	TDQ_LOCK(tdq);
876}
877
878/*
879 * Lock two thread queues using their address to maintain lock order.
880 */
881static void
882tdq_lock_pair(struct tdq *one, struct tdq *two)
883{
884	if (one < two) {
885		TDQ_LOCK(one);
886		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
887	} else {
888		TDQ_LOCK(two);
889		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
890	}
891}
892
893/*
894 * Unlock two thread queues.  Order is not important here.
895 */
896static void
897tdq_unlock_pair(struct tdq *one, struct tdq *two)
898{
899	TDQ_UNLOCK(one);
900	TDQ_UNLOCK(two);
901}
902
903/*
904 * Transfer load between two imbalanced thread queues.
905 */
906static int
907sched_balance_pair(struct tdq *high, struct tdq *low)
908{
909	int moved;
910	int cpu;
911
912	tdq_lock_pair(high, low);
913	moved = 0;
914	/*
915	 * Determine what the imbalance is and then adjust that to how many
916	 * threads we actually have to give up (transferable).
917	 */
918	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
919	    (moved = tdq_move(high, low)) > 0) {
920		/*
921		 * In case the target isn't the current cpu IPI it to force a
922		 * reschedule with the new workload.
923		 */
924		cpu = TDQ_ID(low);
925		if (cpu != PCPU_GET(cpuid))
926			ipi_cpu(cpu, IPI_PREEMPT);
927	}
928	tdq_unlock_pair(high, low);
929	return (moved);
930}
931
932/*
933 * Move a thread from one thread queue to another.
934 */
935static int
936tdq_move(struct tdq *from, struct tdq *to)
937{
938	struct td_sched *ts;
939	struct thread *td;
940	struct tdq *tdq;
941	int cpu;
942
943	TDQ_LOCK_ASSERT(from, MA_OWNED);
944	TDQ_LOCK_ASSERT(to, MA_OWNED);
945
946	tdq = from;
947	cpu = TDQ_ID(to);
948	td = tdq_steal(tdq, cpu);
949	if (td == NULL)
950		return (0);
951	ts = td->td_sched;
952	/*
953	 * Although the run queue is locked the thread may be blocked.  Lock
954	 * it to clear this and acquire the run-queue lock.
955	 */
956	thread_lock(td);
957	/* Drop recursive lock on from acquired via thread_lock(). */
958	TDQ_UNLOCK(from);
959	sched_rem(td);
960	ts->ts_cpu = cpu;
961	td->td_lock = TDQ_LOCKPTR(to);
962	tdq_add(to, td, SRQ_YIELDING);
963	return (1);
964}
965
966/*
967 * This tdq has idled.  Try to steal a thread from another cpu and switch
968 * to it.
969 */
970static int
971tdq_idled(struct tdq *tdq)
972{
973	struct cpu_group *cg;
974	struct tdq *steal;
975	cpuset_t mask;
976	int thresh;
977	int cpu;
978
979	if (smp_started == 0 || steal_idle == 0)
980		return (1);
981	CPU_FILL(&mask);
982	CPU_CLR(PCPU_GET(cpuid), &mask);
983	/* We don't want to be preempted while we're iterating. */
984	spinlock_enter();
985	for (cg = tdq->tdq_cg; cg != NULL; ) {
986		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
987			thresh = steal_thresh;
988		else
989			thresh = 1;
990		cpu = sched_highest(cg, mask, thresh);
991		if (cpu == -1) {
992			cg = cg->cg_parent;
993			continue;
994		}
995		steal = TDQ_CPU(cpu);
996		CPU_CLR(cpu, &mask);
997		tdq_lock_pair(tdq, steal);
998		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
999			tdq_unlock_pair(tdq, steal);
1000			continue;
1001		}
1002		/*
1003		 * If a thread was added while interrupts were disabled don't
1004		 * steal one here.  If we fail to acquire one due to affinity
1005		 * restrictions loop again with this cpu removed from the
1006		 * set.
1007		 */
1008		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1009			tdq_unlock_pair(tdq, steal);
1010			continue;
1011		}
1012		spinlock_exit();
1013		TDQ_UNLOCK(steal);
1014		mi_switch(SW_VOL | SWT_IDLE, NULL);
1015		thread_unlock(curthread);
1016
1017		return (0);
1018	}
1019	spinlock_exit();
1020	return (1);
1021}
1022
1023/*
1024 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1025 */
1026static void
1027tdq_notify(struct tdq *tdq, struct thread *td)
1028{
1029	struct thread *ctd;
1030	int pri;
1031	int cpu;
1032
1033	if (tdq->tdq_ipipending)
1034		return;
1035	cpu = td->td_sched->ts_cpu;
1036	pri = td->td_priority;
1037	ctd = pcpu_find(cpu)->pc_curthread;
1038	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1039		return;
1040
1041	/*
1042	 * Make sure that tdq_load updated before calling this function
1043	 * is globally visible before we read tdq_cpu_idle.  Idle thread
1044	 * accesses both of them without locks, and the order is important.
1045	 */
1046	mb();
1047
1048	if (TD_IS_IDLETHREAD(ctd)) {
1049		/*
1050		 * If the MD code has an idle wakeup routine try that before
1051		 * falling back to IPI.
1052		 */
1053		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1054			return;
1055	}
1056	tdq->tdq_ipipending = 1;
1057	ipi_cpu(cpu, IPI_PREEMPT);
1058}
1059
1060/*
1061 * Steals load from a timeshare queue.  Honors the rotating queue head
1062 * index.
1063 */
1064static struct thread *
1065runq_steal_from(struct runq *rq, int cpu, u_char start)
1066{
1067	struct rqbits *rqb;
1068	struct rqhead *rqh;
1069	struct thread *td, *first;
1070	int bit;
1071	int pri;
1072	int i;
1073
1074	rqb = &rq->rq_status;
1075	bit = start & (RQB_BPW -1);
1076	pri = 0;
1077	first = NULL;
1078again:
1079	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1080		if (rqb->rqb_bits[i] == 0)
1081			continue;
1082		if (bit != 0) {
1083			for (pri = bit; pri < RQB_BPW; pri++)
1084				if (rqb->rqb_bits[i] & (1ul << pri))
1085					break;
1086			if (pri >= RQB_BPW)
1087				continue;
1088		} else
1089			pri = RQB_FFS(rqb->rqb_bits[i]);
1090		pri += (i << RQB_L2BPW);
1091		rqh = &rq->rq_queues[pri];
1092		TAILQ_FOREACH(td, rqh, td_runq) {
1093			if (first && THREAD_CAN_MIGRATE(td) &&
1094			    THREAD_CAN_SCHED(td, cpu))
1095				return (td);
1096			first = td;
1097		}
1098	}
1099	if (start != 0) {
1100		start = 0;
1101		goto again;
1102	}
1103
1104	if (first && THREAD_CAN_MIGRATE(first) &&
1105	    THREAD_CAN_SCHED(first, cpu))
1106		return (first);
1107	return (NULL);
1108}
1109
1110/*
1111 * Steals load from a standard linear queue.
1112 */
1113static struct thread *
1114runq_steal(struct runq *rq, int cpu)
1115{
1116	struct rqhead *rqh;
1117	struct rqbits *rqb;
1118	struct thread *td;
1119	int word;
1120	int bit;
1121
1122	rqb = &rq->rq_status;
1123	for (word = 0; word < RQB_LEN; word++) {
1124		if (rqb->rqb_bits[word] == 0)
1125			continue;
1126		for (bit = 0; bit < RQB_BPW; bit++) {
1127			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1128				continue;
1129			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1130			TAILQ_FOREACH(td, rqh, td_runq)
1131				if (THREAD_CAN_MIGRATE(td) &&
1132				    THREAD_CAN_SCHED(td, cpu))
1133					return (td);
1134		}
1135	}
1136	return (NULL);
1137}
1138
1139/*
1140 * Attempt to steal a thread in priority order from a thread queue.
1141 */
1142static struct thread *
1143tdq_steal(struct tdq *tdq, int cpu)
1144{
1145	struct thread *td;
1146
1147	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1148	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1149		return (td);
1150	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1151	    cpu, tdq->tdq_ridx)) != NULL)
1152		return (td);
1153	return (runq_steal(&tdq->tdq_idle, cpu));
1154}
1155
1156/*
1157 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1158 * current lock and returns with the assigned queue locked.
1159 */
1160static inline struct tdq *
1161sched_setcpu(struct thread *td, int cpu, int flags)
1162{
1163
1164	struct tdq *tdq;
1165
1166	THREAD_LOCK_ASSERT(td, MA_OWNED);
1167	tdq = TDQ_CPU(cpu);
1168	td->td_sched->ts_cpu = cpu;
1169	/*
1170	 * If the lock matches just return the queue.
1171	 */
1172	if (td->td_lock == TDQ_LOCKPTR(tdq))
1173		return (tdq);
1174#ifdef notyet
1175	/*
1176	 * If the thread isn't running its lockptr is a
1177	 * turnstile or a sleepqueue.  We can just lock_set without
1178	 * blocking.
1179	 */
1180	if (TD_CAN_RUN(td)) {
1181		TDQ_LOCK(tdq);
1182		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1183		return (tdq);
1184	}
1185#endif
1186	/*
1187	 * The hard case, migration, we need to block the thread first to
1188	 * prevent order reversals with other cpus locks.
1189	 */
1190	spinlock_enter();
1191	thread_lock_block(td);
1192	TDQ_LOCK(tdq);
1193	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1194	spinlock_exit();
1195	return (tdq);
1196}
1197
1198SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1199SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1200SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1201SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1202SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1203SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1204
1205static int
1206sched_pickcpu(struct thread *td, int flags)
1207{
1208	struct cpu_group *cg, *ccg;
1209	struct td_sched *ts;
1210	struct tdq *tdq;
1211	cpuset_t mask;
1212	int cpu, pri, self;
1213
1214	self = PCPU_GET(cpuid);
1215	ts = td->td_sched;
1216	if (smp_started == 0)
1217		return (self);
1218	/*
1219	 * Don't migrate a running thread from sched_switch().
1220	 */
1221	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1222		return (ts->ts_cpu);
1223	/*
1224	 * Prefer to run interrupt threads on the processors that generate
1225	 * the interrupt.
1226	 */
1227	pri = td->td_priority;
1228	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1229	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1230		SCHED_STAT_INC(pickcpu_intrbind);
1231		ts->ts_cpu = self;
1232		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1233			SCHED_STAT_INC(pickcpu_affinity);
1234			return (ts->ts_cpu);
1235		}
1236	}
1237	/*
1238	 * If the thread can run on the last cpu and the affinity has not
1239	 * expired or it is idle run it there.
1240	 */
1241	tdq = TDQ_CPU(ts->ts_cpu);
1242	cg = tdq->tdq_cg;
1243	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1244	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1245	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1246		if (cg->cg_flags & CG_FLAG_THREAD) {
1247			CPUSET_FOREACH(cpu, cg->cg_mask) {
1248				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1249					break;
1250			}
1251		} else
1252			cpu = INT_MAX;
1253		if (cpu > mp_maxid) {
1254			SCHED_STAT_INC(pickcpu_idle_affinity);
1255			return (ts->ts_cpu);
1256		}
1257	}
1258	/*
1259	 * Search for the last level cache CPU group in the tree.
1260	 * Skip caches with expired affinity time and SMT groups.
1261	 * Affinity to higher level caches will be handled less aggressively.
1262	 */
1263	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1264		if (cg->cg_flags & CG_FLAG_THREAD)
1265			continue;
1266		if (!SCHED_AFFINITY(ts, cg->cg_level))
1267			continue;
1268		ccg = cg;
1269	}
1270	if (ccg != NULL)
1271		cg = ccg;
1272	cpu = -1;
1273	/* Search the group for the less loaded idle CPU we can run now. */
1274	mask = td->td_cpuset->cs_mask;
1275	if (cg != NULL && cg != cpu_top &&
1276	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1277		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1278		    INT_MAX, ts->ts_cpu);
1279	/* Search globally for the less loaded CPU we can run now. */
1280	if (cpu == -1)
1281		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1282	/* Search globally for the less loaded CPU. */
1283	if (cpu == -1)
1284		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1285	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1286	/*
1287	 * Compare the lowest loaded cpu to current cpu.
1288	 */
1289	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1290	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1291	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1292		SCHED_STAT_INC(pickcpu_local);
1293		cpu = self;
1294	} else
1295		SCHED_STAT_INC(pickcpu_lowest);
1296	if (cpu != ts->ts_cpu)
1297		SCHED_STAT_INC(pickcpu_migration);
1298	return (cpu);
1299}
1300#endif
1301
1302/*
1303 * Pick the highest priority task we have and return it.
1304 */
1305static struct thread *
1306tdq_choose(struct tdq *tdq)
1307{
1308	struct thread *td;
1309
1310	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1311	td = runq_choose(&tdq->tdq_realtime);
1312	if (td != NULL)
1313		return (td);
1314	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1315	if (td != NULL) {
1316		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1317		    ("tdq_choose: Invalid priority on timeshare queue %d",
1318		    td->td_priority));
1319		return (td);
1320	}
1321	td = runq_choose(&tdq->tdq_idle);
1322	if (td != NULL) {
1323		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1324		    ("tdq_choose: Invalid priority on idle queue %d",
1325		    td->td_priority));
1326		return (td);
1327	}
1328
1329	return (NULL);
1330}
1331
1332/*
1333 * Initialize a thread queue.
1334 */
1335static void
1336tdq_setup(struct tdq *tdq)
1337{
1338
1339	if (bootverbose)
1340		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1341	runq_init(&tdq->tdq_realtime);
1342	runq_init(&tdq->tdq_timeshare);
1343	runq_init(&tdq->tdq_idle);
1344	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1345	    "sched lock %d", (int)TDQ_ID(tdq));
1346	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1347	    MTX_SPIN | MTX_RECURSE);
1348#ifdef KTR
1349	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1350	    "CPU %d load", (int)TDQ_ID(tdq));
1351#endif
1352}
1353
1354#ifdef SMP
1355static void
1356sched_setup_smp(void)
1357{
1358	struct tdq *tdq;
1359	int i;
1360
1361	cpu_top = smp_topo();
1362	CPU_FOREACH(i) {
1363		tdq = TDQ_CPU(i);
1364		tdq_setup(tdq);
1365		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1366		if (tdq->tdq_cg == NULL)
1367			panic("Can't find cpu group for %d\n", i);
1368	}
1369	balance_tdq = TDQ_SELF();
1370	sched_balance();
1371}
1372#endif
1373
1374/*
1375 * Setup the thread queues and initialize the topology based on MD
1376 * information.
1377 */
1378static void
1379sched_setup(void *dummy)
1380{
1381	struct tdq *tdq;
1382
1383	tdq = TDQ_SELF();
1384#ifdef SMP
1385	sched_setup_smp();
1386#else
1387	tdq_setup(tdq);
1388#endif
1389
1390	/* Add thread0's load since it's running. */
1391	TDQ_LOCK(tdq);
1392	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1393	tdq_load_add(tdq, &thread0);
1394	tdq->tdq_lowpri = thread0.td_priority;
1395	TDQ_UNLOCK(tdq);
1396}
1397
1398/*
1399 * This routine determines time constants after stathz and hz are setup.
1400 */
1401/* ARGSUSED */
1402static void
1403sched_initticks(void *dummy)
1404{
1405	int incr;
1406
1407	realstathz = stathz ? stathz : hz;
1408	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1409	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1410	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1411	    realstathz);
1412
1413	/*
1414	 * tickincr is shifted out by 10 to avoid rounding errors due to
1415	 * hz not being evenly divisible by stathz on all platforms.
1416	 */
1417	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1418	/*
1419	 * This does not work for values of stathz that are more than
1420	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1421	 */
1422	if (incr == 0)
1423		incr = 1;
1424	tickincr = incr;
1425#ifdef SMP
1426	/*
1427	 * Set the default balance interval now that we know
1428	 * what realstathz is.
1429	 */
1430	balance_interval = realstathz;
1431	affinity = SCHED_AFFINITY_DEFAULT;
1432#endif
1433	if (sched_idlespinthresh < 0)
1434		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1435}
1436
1437
1438/*
1439 * This is the core of the interactivity algorithm.  Determines a score based
1440 * on past behavior.  It is the ratio of sleep time to run time scaled to
1441 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1442 * differs from the cpu usage because it does not account for time spent
1443 * waiting on a run-queue.  Would be prettier if we had floating point.
1444 */
1445static int
1446sched_interact_score(struct thread *td)
1447{
1448	struct td_sched *ts;
1449	int div;
1450
1451	ts = td->td_sched;
1452	/*
1453	 * The score is only needed if this is likely to be an interactive
1454	 * task.  Don't go through the expense of computing it if there's
1455	 * no chance.
1456	 */
1457	if (sched_interact <= SCHED_INTERACT_HALF &&
1458		ts->ts_runtime >= ts->ts_slptime)
1459			return (SCHED_INTERACT_HALF);
1460
1461	if (ts->ts_runtime > ts->ts_slptime) {
1462		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1463		return (SCHED_INTERACT_HALF +
1464		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1465	}
1466	if (ts->ts_slptime > ts->ts_runtime) {
1467		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1468		return (ts->ts_runtime / div);
1469	}
1470	/* runtime == slptime */
1471	if (ts->ts_runtime)
1472		return (SCHED_INTERACT_HALF);
1473
1474	/*
1475	 * This can happen if slptime and runtime are 0.
1476	 */
1477	return (0);
1478
1479}
1480
1481/*
1482 * Scale the scheduling priority according to the "interactivity" of this
1483 * process.
1484 */
1485static void
1486sched_priority(struct thread *td)
1487{
1488	int score;
1489	int pri;
1490
1491	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1492		return;
1493	/*
1494	 * If the score is interactive we place the thread in the realtime
1495	 * queue with a priority that is less than kernel and interrupt
1496	 * priorities.  These threads are not subject to nice restrictions.
1497	 *
1498	 * Scores greater than this are placed on the normal timeshare queue
1499	 * where the priority is partially decided by the most recent cpu
1500	 * utilization and the rest is decided by nice value.
1501	 *
1502	 * The nice value of the process has a linear effect on the calculated
1503	 * score.  Negative nice values make it easier for a thread to be
1504	 * considered interactive.
1505	 */
1506	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1507	if (score < sched_interact) {
1508		pri = PRI_MIN_INTERACT;
1509		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1510		    sched_interact) * score;
1511		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1512		    ("sched_priority: invalid interactive priority %d score %d",
1513		    pri, score));
1514	} else {
1515		pri = SCHED_PRI_MIN;
1516		if (td->td_sched->ts_ticks)
1517			pri += min(SCHED_PRI_TICKS(td->td_sched),
1518			    SCHED_PRI_RANGE - 1);
1519		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1520		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1521		    ("sched_priority: invalid priority %d: nice %d, "
1522		    "ticks %d ftick %d ltick %d tick pri %d",
1523		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1524		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1525		    SCHED_PRI_TICKS(td->td_sched)));
1526	}
1527	sched_user_prio(td, pri);
1528
1529	return;
1530}
1531
1532/*
1533 * This routine enforces a maximum limit on the amount of scheduling history
1534 * kept.  It is called after either the slptime or runtime is adjusted.  This
1535 * function is ugly due to integer math.
1536 */
1537static void
1538sched_interact_update(struct thread *td)
1539{
1540	struct td_sched *ts;
1541	u_int sum;
1542
1543	ts = td->td_sched;
1544	sum = ts->ts_runtime + ts->ts_slptime;
1545	if (sum < SCHED_SLP_RUN_MAX)
1546		return;
1547	/*
1548	 * This only happens from two places:
1549	 * 1) We have added an unusual amount of run time from fork_exit.
1550	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1551	 */
1552	if (sum > SCHED_SLP_RUN_MAX * 2) {
1553		if (ts->ts_runtime > ts->ts_slptime) {
1554			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1555			ts->ts_slptime = 1;
1556		} else {
1557			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1558			ts->ts_runtime = 1;
1559		}
1560		return;
1561	}
1562	/*
1563	 * If we have exceeded by more than 1/5th then the algorithm below
1564	 * will not bring us back into range.  Dividing by two here forces
1565	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1566	 */
1567	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1568		ts->ts_runtime /= 2;
1569		ts->ts_slptime /= 2;
1570		return;
1571	}
1572	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1573	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1574}
1575
1576/*
1577 * Scale back the interactivity history when a child thread is created.  The
1578 * history is inherited from the parent but the thread may behave totally
1579 * differently.  For example, a shell spawning a compiler process.  We want
1580 * to learn that the compiler is behaving badly very quickly.
1581 */
1582static void
1583sched_interact_fork(struct thread *td)
1584{
1585	int ratio;
1586	int sum;
1587
1588	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1589	if (sum > SCHED_SLP_RUN_FORK) {
1590		ratio = sum / SCHED_SLP_RUN_FORK;
1591		td->td_sched->ts_runtime /= ratio;
1592		td->td_sched->ts_slptime /= ratio;
1593	}
1594}
1595
1596/*
1597 * Called from proc0_init() to setup the scheduler fields.
1598 */
1599void
1600schedinit(void)
1601{
1602
1603	/*
1604	 * Set up the scheduler specific parts of proc0.
1605	 */
1606	proc0.p_sched = NULL; /* XXX */
1607	thread0.td_sched = &td_sched0;
1608	td_sched0.ts_ltick = ticks;
1609	td_sched0.ts_ftick = ticks;
1610	td_sched0.ts_slice = 0;
1611}
1612
1613/*
1614 * This is only somewhat accurate since given many processes of the same
1615 * priority they will switch when their slices run out, which will be
1616 * at most sched_slice stathz ticks.
1617 */
1618int
1619sched_rr_interval(void)
1620{
1621
1622	/* Convert sched_slice from stathz to hz. */
1623	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1624}
1625
1626/*
1627 * Update the percent cpu tracking information when it is requested or
1628 * the total history exceeds the maximum.  We keep a sliding history of
1629 * tick counts that slowly decays.  This is less precise than the 4BSD
1630 * mechanism since it happens with less regular and frequent events.
1631 */
1632static void
1633sched_pctcpu_update(struct td_sched *ts, int run)
1634{
1635	int t = ticks;
1636
1637	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1638		ts->ts_ticks = 0;
1639		ts->ts_ftick = t - SCHED_TICK_TARG;
1640	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1641		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1642		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1643		ts->ts_ftick = t - SCHED_TICK_TARG;
1644	}
1645	if (run)
1646		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1647	ts->ts_ltick = t;
1648}
1649
1650/*
1651 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1652 * if necessary.  This is the back-end for several priority related
1653 * functions.
1654 */
1655static void
1656sched_thread_priority(struct thread *td, u_char prio)
1657{
1658	struct td_sched *ts;
1659	struct tdq *tdq;
1660	int oldpri;
1661
1662	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1663	    "prio:%d", td->td_priority, "new prio:%d", prio,
1664	    KTR_ATTR_LINKED, sched_tdname(curthread));
1665	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1666	if (td != curthread && prio < td->td_priority) {
1667		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1668		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1669		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1670		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1671		    curthread);
1672	}
1673	ts = td->td_sched;
1674	THREAD_LOCK_ASSERT(td, MA_OWNED);
1675	if (td->td_priority == prio)
1676		return;
1677	/*
1678	 * If the priority has been elevated due to priority
1679	 * propagation, we may have to move ourselves to a new
1680	 * queue.  This could be optimized to not re-add in some
1681	 * cases.
1682	 */
1683	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1684		sched_rem(td);
1685		td->td_priority = prio;
1686		sched_add(td, SRQ_BORROWING);
1687		return;
1688	}
1689	/*
1690	 * If the thread is currently running we may have to adjust the lowpri
1691	 * information so other cpus are aware of our current priority.
1692	 */
1693	if (TD_IS_RUNNING(td)) {
1694		tdq = TDQ_CPU(ts->ts_cpu);
1695		oldpri = td->td_priority;
1696		td->td_priority = prio;
1697		if (prio < tdq->tdq_lowpri)
1698			tdq->tdq_lowpri = prio;
1699		else if (tdq->tdq_lowpri == oldpri)
1700			tdq_setlowpri(tdq, td);
1701		return;
1702	}
1703	td->td_priority = prio;
1704}
1705
1706/*
1707 * Update a thread's priority when it is lent another thread's
1708 * priority.
1709 */
1710void
1711sched_lend_prio(struct thread *td, u_char prio)
1712{
1713
1714	td->td_flags |= TDF_BORROWING;
1715	sched_thread_priority(td, prio);
1716}
1717
1718/*
1719 * Restore a thread's priority when priority propagation is
1720 * over.  The prio argument is the minimum priority the thread
1721 * needs to have to satisfy other possible priority lending
1722 * requests.  If the thread's regular priority is less
1723 * important than prio, the thread will keep a priority boost
1724 * of prio.
1725 */
1726void
1727sched_unlend_prio(struct thread *td, u_char prio)
1728{
1729	u_char base_pri;
1730
1731	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1732	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1733		base_pri = td->td_user_pri;
1734	else
1735		base_pri = td->td_base_pri;
1736	if (prio >= base_pri) {
1737		td->td_flags &= ~TDF_BORROWING;
1738		sched_thread_priority(td, base_pri);
1739	} else
1740		sched_lend_prio(td, prio);
1741}
1742
1743/*
1744 * Standard entry for setting the priority to an absolute value.
1745 */
1746void
1747sched_prio(struct thread *td, u_char prio)
1748{
1749	u_char oldprio;
1750
1751	/* First, update the base priority. */
1752	td->td_base_pri = prio;
1753
1754	/*
1755	 * If the thread is borrowing another thread's priority, don't
1756	 * ever lower the priority.
1757	 */
1758	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1759		return;
1760
1761	/* Change the real priority. */
1762	oldprio = td->td_priority;
1763	sched_thread_priority(td, prio);
1764
1765	/*
1766	 * If the thread is on a turnstile, then let the turnstile update
1767	 * its state.
1768	 */
1769	if (TD_ON_LOCK(td) && oldprio != prio)
1770		turnstile_adjust(td, oldprio);
1771}
1772
1773/*
1774 * Set the base user priority, does not effect current running priority.
1775 */
1776void
1777sched_user_prio(struct thread *td, u_char prio)
1778{
1779
1780	td->td_base_user_pri = prio;
1781	if (td->td_lend_user_pri <= prio)
1782		return;
1783	td->td_user_pri = prio;
1784}
1785
1786void
1787sched_lend_user_prio(struct thread *td, u_char prio)
1788{
1789
1790	THREAD_LOCK_ASSERT(td, MA_OWNED);
1791	td->td_lend_user_pri = prio;
1792	td->td_user_pri = min(prio, td->td_base_user_pri);
1793	if (td->td_priority > td->td_user_pri)
1794		sched_prio(td, td->td_user_pri);
1795	else if (td->td_priority != td->td_user_pri)
1796		td->td_flags |= TDF_NEEDRESCHED;
1797}
1798
1799/*
1800 * Handle migration from sched_switch().  This happens only for
1801 * cpu binding.
1802 */
1803static struct mtx *
1804sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1805{
1806	struct tdq *tdn;
1807
1808	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1809#ifdef SMP
1810	tdq_load_rem(tdq, td);
1811	/*
1812	 * Do the lock dance required to avoid LOR.  We grab an extra
1813	 * spinlock nesting to prevent preemption while we're
1814	 * not holding either run-queue lock.
1815	 */
1816	spinlock_enter();
1817	thread_lock_block(td);	/* This releases the lock on tdq. */
1818
1819	/*
1820	 * Acquire both run-queue locks before placing the thread on the new
1821	 * run-queue to avoid deadlocks created by placing a thread with a
1822	 * blocked lock on the run-queue of a remote processor.  The deadlock
1823	 * occurs when a third processor attempts to lock the two queues in
1824	 * question while the target processor is spinning with its own
1825	 * run-queue lock held while waiting for the blocked lock to clear.
1826	 */
1827	tdq_lock_pair(tdn, tdq);
1828	tdq_add(tdn, td, flags);
1829	tdq_notify(tdn, td);
1830	TDQ_UNLOCK(tdn);
1831	spinlock_exit();
1832#endif
1833	return (TDQ_LOCKPTR(tdn));
1834}
1835
1836/*
1837 * Variadic version of thread_lock_unblock() that does not assume td_lock
1838 * is blocked.
1839 */
1840static inline void
1841thread_unblock_switch(struct thread *td, struct mtx *mtx)
1842{
1843	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1844	    (uintptr_t)mtx);
1845}
1846
1847/*
1848 * Switch threads.  This function has to handle threads coming in while
1849 * blocked for some reason, running, or idle.  It also must deal with
1850 * migrating a thread from one queue to another as running threads may
1851 * be assigned elsewhere via binding.
1852 */
1853void
1854sched_switch(struct thread *td, struct thread *newtd, int flags)
1855{
1856	struct tdq *tdq;
1857	struct td_sched *ts;
1858	struct mtx *mtx;
1859	int srqflag;
1860	int cpuid, preempted;
1861
1862	THREAD_LOCK_ASSERT(td, MA_OWNED);
1863	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1864
1865	cpuid = PCPU_GET(cpuid);
1866	tdq = TDQ_CPU(cpuid);
1867	ts = td->td_sched;
1868	mtx = td->td_lock;
1869	sched_pctcpu_update(ts, 1);
1870	ts->ts_rltick = ticks;
1871	td->td_lastcpu = td->td_oncpu;
1872	td->td_oncpu = NOCPU;
1873	preempted = !((td->td_flags & TDF_SLICEEND) ||
1874	    (flags & SWT_RELINQUISH));
1875	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1876	td->td_owepreempt = 0;
1877	if (!TD_IS_IDLETHREAD(td))
1878		tdq->tdq_switchcnt++;
1879	/*
1880	 * The lock pointer in an idle thread should never change.  Reset it
1881	 * to CAN_RUN as well.
1882	 */
1883	if (TD_IS_IDLETHREAD(td)) {
1884		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1885		TD_SET_CAN_RUN(td);
1886	} else if (TD_IS_RUNNING(td)) {
1887		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1888		srqflag = preempted ?
1889		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1890		    SRQ_OURSELF|SRQ_YIELDING;
1891#ifdef SMP
1892		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1893			ts->ts_cpu = sched_pickcpu(td, 0);
1894#endif
1895		if (ts->ts_cpu == cpuid)
1896			tdq_runq_add(tdq, td, srqflag);
1897		else {
1898			KASSERT(THREAD_CAN_MIGRATE(td) ||
1899			    (ts->ts_flags & TSF_BOUND) != 0,
1900			    ("Thread %p shouldn't migrate", td));
1901			mtx = sched_switch_migrate(tdq, td, srqflag);
1902		}
1903	} else {
1904		/* This thread must be going to sleep. */
1905		TDQ_LOCK(tdq);
1906		mtx = thread_lock_block(td);
1907		tdq_load_rem(tdq, td);
1908	}
1909	/*
1910	 * We enter here with the thread blocked and assigned to the
1911	 * appropriate cpu run-queue or sleep-queue and with the current
1912	 * thread-queue locked.
1913	 */
1914	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1915	newtd = choosethread();
1916	/*
1917	 * Call the MD code to switch contexts if necessary.
1918	 */
1919	if (td != newtd) {
1920#ifdef	HWPMC_HOOKS
1921		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1922			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1923#endif
1924		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1925		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1926		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1927		sched_pctcpu_update(newtd->td_sched, 0);
1928
1929#ifdef KDTRACE_HOOKS
1930		/*
1931		 * If DTrace has set the active vtime enum to anything
1932		 * other than INACTIVE (0), then it should have set the
1933		 * function to call.
1934		 */
1935		if (dtrace_vtime_active)
1936			(*dtrace_vtime_switch_func)(newtd);
1937#endif
1938
1939		cpu_switch(td, newtd, mtx);
1940		/*
1941		 * We may return from cpu_switch on a different cpu.  However,
1942		 * we always return with td_lock pointing to the current cpu's
1943		 * run queue lock.
1944		 */
1945		cpuid = PCPU_GET(cpuid);
1946		tdq = TDQ_CPU(cpuid);
1947		lock_profile_obtain_lock_success(
1948		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1949
1950		SDT_PROBE0(sched, , , on__cpu);
1951#ifdef	HWPMC_HOOKS
1952		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1953			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1954#endif
1955	} else {
1956		thread_unblock_switch(td, mtx);
1957		SDT_PROBE0(sched, , , remain__cpu);
1958	}
1959	/*
1960	 * Assert that all went well and return.
1961	 */
1962	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1963	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1964	td->td_oncpu = cpuid;
1965}
1966
1967/*
1968 * Adjust thread priorities as a result of a nice request.
1969 */
1970void
1971sched_nice(struct proc *p, int nice)
1972{
1973	struct thread *td;
1974
1975	PROC_LOCK_ASSERT(p, MA_OWNED);
1976
1977	p->p_nice = nice;
1978	FOREACH_THREAD_IN_PROC(p, td) {
1979		thread_lock(td);
1980		sched_priority(td);
1981		sched_prio(td, td->td_base_user_pri);
1982		thread_unlock(td);
1983	}
1984}
1985
1986/*
1987 * Record the sleep time for the interactivity scorer.
1988 */
1989void
1990sched_sleep(struct thread *td, int prio)
1991{
1992
1993	THREAD_LOCK_ASSERT(td, MA_OWNED);
1994
1995	td->td_slptick = ticks;
1996	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1997		td->td_flags |= TDF_CANSWAP;
1998	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1999		return;
2000	if (static_boost == 1 && prio)
2001		sched_prio(td, prio);
2002	else if (static_boost && td->td_priority > static_boost)
2003		sched_prio(td, static_boost);
2004}
2005
2006/*
2007 * Schedule a thread to resume execution and record how long it voluntarily
2008 * slept.  We also update the pctcpu, interactivity, and priority.
2009 */
2010void
2011sched_wakeup(struct thread *td)
2012{
2013	struct td_sched *ts;
2014	int slptick;
2015
2016	THREAD_LOCK_ASSERT(td, MA_OWNED);
2017	ts = td->td_sched;
2018	td->td_flags &= ~TDF_CANSWAP;
2019	/*
2020	 * If we slept for more than a tick update our interactivity and
2021	 * priority.
2022	 */
2023	slptick = td->td_slptick;
2024	td->td_slptick = 0;
2025	if (slptick && slptick != ticks) {
2026		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2027		sched_interact_update(td);
2028		sched_pctcpu_update(ts, 0);
2029	}
2030	/*
2031	 * Reset the slice value since we slept and advanced the round-robin.
2032	 */
2033	ts->ts_slice = 0;
2034	sched_add(td, SRQ_BORING);
2035}
2036
2037/*
2038 * Penalize the parent for creating a new child and initialize the child's
2039 * priority.
2040 */
2041void
2042sched_fork(struct thread *td, struct thread *child)
2043{
2044	THREAD_LOCK_ASSERT(td, MA_OWNED);
2045	sched_pctcpu_update(td->td_sched, 1);
2046	sched_fork_thread(td, child);
2047	/*
2048	 * Penalize the parent and child for forking.
2049	 */
2050	sched_interact_fork(child);
2051	sched_priority(child);
2052	td->td_sched->ts_runtime += tickincr;
2053	sched_interact_update(td);
2054	sched_priority(td);
2055}
2056
2057/*
2058 * Fork a new thread, may be within the same process.
2059 */
2060void
2061sched_fork_thread(struct thread *td, struct thread *child)
2062{
2063	struct td_sched *ts;
2064	struct td_sched *ts2;
2065	struct tdq *tdq;
2066
2067	tdq = TDQ_SELF();
2068	THREAD_LOCK_ASSERT(td, MA_OWNED);
2069	/*
2070	 * Initialize child.
2071	 */
2072	ts = td->td_sched;
2073	ts2 = child->td_sched;
2074	child->td_lock = TDQ_LOCKPTR(tdq);
2075	child->td_cpuset = cpuset_ref(td->td_cpuset);
2076	ts2->ts_cpu = ts->ts_cpu;
2077	ts2->ts_flags = 0;
2078	/*
2079	 * Grab our parents cpu estimation information.
2080	 */
2081	ts2->ts_ticks = ts->ts_ticks;
2082	ts2->ts_ltick = ts->ts_ltick;
2083	ts2->ts_ftick = ts->ts_ftick;
2084	/*
2085	 * Do not inherit any borrowed priority from the parent.
2086	 */
2087	child->td_priority = child->td_base_pri;
2088	/*
2089	 * And update interactivity score.
2090	 */
2091	ts2->ts_slptime = ts->ts_slptime;
2092	ts2->ts_runtime = ts->ts_runtime;
2093	/* Attempt to quickly learn interactivity. */
2094	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2095#ifdef KTR
2096	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2097#endif
2098}
2099
2100/*
2101 * Adjust the priority class of a thread.
2102 */
2103void
2104sched_class(struct thread *td, int class)
2105{
2106
2107	THREAD_LOCK_ASSERT(td, MA_OWNED);
2108	if (td->td_pri_class == class)
2109		return;
2110	td->td_pri_class = class;
2111}
2112
2113/*
2114 * Return some of the child's priority and interactivity to the parent.
2115 */
2116void
2117sched_exit(struct proc *p, struct thread *child)
2118{
2119	struct thread *td;
2120
2121	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2122	    "prio:%d", child->td_priority);
2123	PROC_LOCK_ASSERT(p, MA_OWNED);
2124	td = FIRST_THREAD_IN_PROC(p);
2125	sched_exit_thread(td, child);
2126}
2127
2128/*
2129 * Penalize another thread for the time spent on this one.  This helps to
2130 * worsen the priority and interactivity of processes which schedule batch
2131 * jobs such as make.  This has little effect on the make process itself but
2132 * causes new processes spawned by it to receive worse scores immediately.
2133 */
2134void
2135sched_exit_thread(struct thread *td, struct thread *child)
2136{
2137
2138	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2139	    "prio:%d", child->td_priority);
2140	/*
2141	 * Give the child's runtime to the parent without returning the
2142	 * sleep time as a penalty to the parent.  This causes shells that
2143	 * launch expensive things to mark their children as expensive.
2144	 */
2145	thread_lock(td);
2146	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2147	sched_interact_update(td);
2148	sched_priority(td);
2149	thread_unlock(td);
2150}
2151
2152void
2153sched_preempt(struct thread *td)
2154{
2155	struct tdq *tdq;
2156
2157	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2158
2159	thread_lock(td);
2160	tdq = TDQ_SELF();
2161	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2162	tdq->tdq_ipipending = 0;
2163	if (td->td_priority > tdq->tdq_lowpri) {
2164		int flags;
2165
2166		flags = SW_INVOL | SW_PREEMPT;
2167		if (td->td_critnest > 1)
2168			td->td_owepreempt = 1;
2169		else if (TD_IS_IDLETHREAD(td))
2170			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2171		else
2172			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2173	}
2174	thread_unlock(td);
2175}
2176
2177/*
2178 * Fix priorities on return to user-space.  Priorities may be elevated due
2179 * to static priorities in msleep() or similar.
2180 */
2181void
2182sched_userret(struct thread *td)
2183{
2184	/*
2185	 * XXX we cheat slightly on the locking here to avoid locking in
2186	 * the usual case.  Setting td_priority here is essentially an
2187	 * incomplete workaround for not setting it properly elsewhere.
2188	 * Now that some interrupt handlers are threads, not setting it
2189	 * properly elsewhere can clobber it in the window between setting
2190	 * it here and returning to user mode, so don't waste time setting
2191	 * it perfectly here.
2192	 */
2193	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2194	    ("thread with borrowed priority returning to userland"));
2195	if (td->td_priority != td->td_user_pri) {
2196		thread_lock(td);
2197		td->td_priority = td->td_user_pri;
2198		td->td_base_pri = td->td_user_pri;
2199		tdq_setlowpri(TDQ_SELF(), td);
2200		thread_unlock(td);
2201        }
2202}
2203
2204/*
2205 * Handle a stathz tick.  This is really only relevant for timeshare
2206 * threads.
2207 */
2208void
2209sched_clock(struct thread *td)
2210{
2211	struct tdq *tdq;
2212	struct td_sched *ts;
2213
2214	THREAD_LOCK_ASSERT(td, MA_OWNED);
2215	tdq = TDQ_SELF();
2216#ifdef SMP
2217	/*
2218	 * We run the long term load balancer infrequently on the first cpu.
2219	 */
2220	if (balance_tdq == tdq) {
2221		if (balance_ticks && --balance_ticks == 0)
2222			sched_balance();
2223	}
2224#endif
2225	/*
2226	 * Save the old switch count so we have a record of the last ticks
2227	 * activity.   Initialize the new switch count based on our load.
2228	 * If there is some activity seed it to reflect that.
2229	 */
2230	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2231	tdq->tdq_switchcnt = tdq->tdq_load;
2232	/*
2233	 * Advance the insert index once for each tick to ensure that all
2234	 * threads get a chance to run.
2235	 */
2236	if (tdq->tdq_idx == tdq->tdq_ridx) {
2237		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2238		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2239			tdq->tdq_ridx = tdq->tdq_idx;
2240	}
2241	ts = td->td_sched;
2242	sched_pctcpu_update(ts, 1);
2243	if (td->td_pri_class & PRI_FIFO_BIT)
2244		return;
2245	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2246		/*
2247		 * We used a tick; charge it to the thread so
2248		 * that we can compute our interactivity.
2249		 */
2250		td->td_sched->ts_runtime += tickincr;
2251		sched_interact_update(td);
2252		sched_priority(td);
2253	}
2254
2255	/*
2256	 * Force a context switch if the current thread has used up a full
2257	 * time slice (default is 100ms).
2258	 */
2259	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2260		ts->ts_slice = 0;
2261		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2262	}
2263}
2264
2265/*
2266 * Called once per hz tick.
2267 */
2268void
2269sched_tick(int cnt)
2270{
2271
2272}
2273
2274/*
2275 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2276 * cooperative idle threads.
2277 */
2278int
2279sched_runnable(void)
2280{
2281	struct tdq *tdq;
2282	int load;
2283
2284	load = 1;
2285
2286	tdq = TDQ_SELF();
2287	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2288		if (tdq->tdq_load > 0)
2289			goto out;
2290	} else
2291		if (tdq->tdq_load - 1 > 0)
2292			goto out;
2293	load = 0;
2294out:
2295	return (load);
2296}
2297
2298/*
2299 * Choose the highest priority thread to run.  The thread is removed from
2300 * the run-queue while running however the load remains.  For SMP we set
2301 * the tdq in the global idle bitmask if it idles here.
2302 */
2303struct thread *
2304sched_choose(void)
2305{
2306	struct thread *td;
2307	struct tdq *tdq;
2308
2309	tdq = TDQ_SELF();
2310	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2311	td = tdq_choose(tdq);
2312	if (td) {
2313		tdq_runq_rem(tdq, td);
2314		tdq->tdq_lowpri = td->td_priority;
2315		return (td);
2316	}
2317	tdq->tdq_lowpri = PRI_MAX_IDLE;
2318	return (PCPU_GET(idlethread));
2319}
2320
2321/*
2322 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2323 * we always request it once we exit a critical section.
2324 */
2325static inline void
2326sched_setpreempt(struct thread *td)
2327{
2328	struct thread *ctd;
2329	int cpri;
2330	int pri;
2331
2332	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2333
2334	ctd = curthread;
2335	pri = td->td_priority;
2336	cpri = ctd->td_priority;
2337	if (pri < cpri)
2338		ctd->td_flags |= TDF_NEEDRESCHED;
2339	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2340		return;
2341	if (!sched_shouldpreempt(pri, cpri, 0))
2342		return;
2343	ctd->td_owepreempt = 1;
2344}
2345
2346/*
2347 * Add a thread to a thread queue.  Select the appropriate runq and add the
2348 * thread to it.  This is the internal function called when the tdq is
2349 * predetermined.
2350 */
2351void
2352tdq_add(struct tdq *tdq, struct thread *td, int flags)
2353{
2354
2355	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2356	KASSERT((td->td_inhibitors == 0),
2357	    ("sched_add: trying to run inhibited thread"));
2358	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2359	    ("sched_add: bad thread state"));
2360	KASSERT(td->td_flags & TDF_INMEM,
2361	    ("sched_add: thread swapped out"));
2362
2363	if (td->td_priority < tdq->tdq_lowpri)
2364		tdq->tdq_lowpri = td->td_priority;
2365	tdq_runq_add(tdq, td, flags);
2366	tdq_load_add(tdq, td);
2367}
2368
2369/*
2370 * Select the target thread queue and add a thread to it.  Request
2371 * preemption or IPI a remote processor if required.
2372 */
2373void
2374sched_add(struct thread *td, int flags)
2375{
2376	struct tdq *tdq;
2377#ifdef SMP
2378	int cpu;
2379#endif
2380
2381	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2382	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2383	    sched_tdname(curthread));
2384	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2385	    KTR_ATTR_LINKED, sched_tdname(td));
2386	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2387	    flags & SRQ_PREEMPTED);
2388	THREAD_LOCK_ASSERT(td, MA_OWNED);
2389	/*
2390	 * Recalculate the priority before we select the target cpu or
2391	 * run-queue.
2392	 */
2393	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2394		sched_priority(td);
2395#ifdef SMP
2396	/*
2397	 * Pick the destination cpu and if it isn't ours transfer to the
2398	 * target cpu.
2399	 */
2400	cpu = sched_pickcpu(td, flags);
2401	tdq = sched_setcpu(td, cpu, flags);
2402	tdq_add(tdq, td, flags);
2403	if (cpu != PCPU_GET(cpuid)) {
2404		tdq_notify(tdq, td);
2405		return;
2406	}
2407#else
2408	tdq = TDQ_SELF();
2409	TDQ_LOCK(tdq);
2410	/*
2411	 * Now that the thread is moving to the run-queue, set the lock
2412	 * to the scheduler's lock.
2413	 */
2414	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2415	tdq_add(tdq, td, flags);
2416#endif
2417	if (!(flags & SRQ_YIELDING))
2418		sched_setpreempt(td);
2419}
2420
2421/*
2422 * Remove a thread from a run-queue without running it.  This is used
2423 * when we're stealing a thread from a remote queue.  Otherwise all threads
2424 * exit by calling sched_exit_thread() and sched_throw() themselves.
2425 */
2426void
2427sched_rem(struct thread *td)
2428{
2429	struct tdq *tdq;
2430
2431	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2432	    "prio:%d", td->td_priority);
2433	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2434	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2435	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2436	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2437	KASSERT(TD_ON_RUNQ(td),
2438	    ("sched_rem: thread not on run queue"));
2439	tdq_runq_rem(tdq, td);
2440	tdq_load_rem(tdq, td);
2441	TD_SET_CAN_RUN(td);
2442	if (td->td_priority == tdq->tdq_lowpri)
2443		tdq_setlowpri(tdq, NULL);
2444}
2445
2446/*
2447 * Fetch cpu utilization information.  Updates on demand.
2448 */
2449fixpt_t
2450sched_pctcpu(struct thread *td)
2451{
2452	fixpt_t pctcpu;
2453	struct td_sched *ts;
2454
2455	pctcpu = 0;
2456	ts = td->td_sched;
2457	if (ts == NULL)
2458		return (0);
2459
2460	THREAD_LOCK_ASSERT(td, MA_OWNED);
2461	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2462	if (ts->ts_ticks) {
2463		int rtick;
2464
2465		/* How many rtick per second ? */
2466		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2467		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2468	}
2469
2470	return (pctcpu);
2471}
2472
2473/*
2474 * Enforce affinity settings for a thread.  Called after adjustments to
2475 * cpumask.
2476 */
2477void
2478sched_affinity(struct thread *td)
2479{
2480#ifdef SMP
2481	struct td_sched *ts;
2482
2483	THREAD_LOCK_ASSERT(td, MA_OWNED);
2484	ts = td->td_sched;
2485	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2486		return;
2487	if (TD_ON_RUNQ(td)) {
2488		sched_rem(td);
2489		sched_add(td, SRQ_BORING);
2490		return;
2491	}
2492	if (!TD_IS_RUNNING(td))
2493		return;
2494	/*
2495	 * Force a switch before returning to userspace.  If the
2496	 * target thread is not running locally send an ipi to force
2497	 * the issue.
2498	 */
2499	td->td_flags |= TDF_NEEDRESCHED;
2500	if (td != curthread)
2501		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2502#endif
2503}
2504
2505/*
2506 * Bind a thread to a target cpu.
2507 */
2508void
2509sched_bind(struct thread *td, int cpu)
2510{
2511	struct td_sched *ts;
2512
2513	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2514	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2515	ts = td->td_sched;
2516	if (ts->ts_flags & TSF_BOUND)
2517		sched_unbind(td);
2518	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2519	ts->ts_flags |= TSF_BOUND;
2520	sched_pin();
2521	if (PCPU_GET(cpuid) == cpu)
2522		return;
2523	ts->ts_cpu = cpu;
2524	/* When we return from mi_switch we'll be on the correct cpu. */
2525	mi_switch(SW_VOL, NULL);
2526}
2527
2528/*
2529 * Release a bound thread.
2530 */
2531void
2532sched_unbind(struct thread *td)
2533{
2534	struct td_sched *ts;
2535
2536	THREAD_LOCK_ASSERT(td, MA_OWNED);
2537	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2538	ts = td->td_sched;
2539	if ((ts->ts_flags & TSF_BOUND) == 0)
2540		return;
2541	ts->ts_flags &= ~TSF_BOUND;
2542	sched_unpin();
2543}
2544
2545int
2546sched_is_bound(struct thread *td)
2547{
2548	THREAD_LOCK_ASSERT(td, MA_OWNED);
2549	return (td->td_sched->ts_flags & TSF_BOUND);
2550}
2551
2552/*
2553 * Basic yield call.
2554 */
2555void
2556sched_relinquish(struct thread *td)
2557{
2558	thread_lock(td);
2559	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2560	thread_unlock(td);
2561}
2562
2563/*
2564 * Return the total system load.
2565 */
2566int
2567sched_load(void)
2568{
2569#ifdef SMP
2570	int total;
2571	int i;
2572
2573	total = 0;
2574	CPU_FOREACH(i)
2575		total += TDQ_CPU(i)->tdq_sysload;
2576	return (total);
2577#else
2578	return (TDQ_SELF()->tdq_sysload);
2579#endif
2580}
2581
2582int
2583sched_sizeof_proc(void)
2584{
2585	return (sizeof(struct proc));
2586}
2587
2588int
2589sched_sizeof_thread(void)
2590{
2591	return (sizeof(struct thread) + sizeof(struct td_sched));
2592}
2593
2594#ifdef SMP
2595#define	TDQ_IDLESPIN(tdq)						\
2596    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2597#else
2598#define	TDQ_IDLESPIN(tdq)	1
2599#endif
2600
2601/*
2602 * The actual idle process.
2603 */
2604void
2605sched_idletd(void *dummy)
2606{
2607	struct thread *td;
2608	struct tdq *tdq;
2609	int oldswitchcnt, switchcnt;
2610	int i;
2611
2612	mtx_assert(&Giant, MA_NOTOWNED);
2613	td = curthread;
2614	tdq = TDQ_SELF();
2615	THREAD_NO_SLEEPING();
2616	oldswitchcnt = -1;
2617	for (;;) {
2618		if (tdq->tdq_load) {
2619			thread_lock(td);
2620			mi_switch(SW_VOL | SWT_IDLE, NULL);
2621			thread_unlock(td);
2622		}
2623		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2624#ifdef SMP
2625		if (switchcnt != oldswitchcnt) {
2626			oldswitchcnt = switchcnt;
2627			if (tdq_idled(tdq) == 0)
2628				continue;
2629		}
2630		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2631#else
2632		oldswitchcnt = switchcnt;
2633#endif
2634		/*
2635		 * If we're switching very frequently, spin while checking
2636		 * for load rather than entering a low power state that
2637		 * may require an IPI.  However, don't do any busy
2638		 * loops while on SMT machines as this simply steals
2639		 * cycles from cores doing useful work.
2640		 */
2641		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2642			for (i = 0; i < sched_idlespins; i++) {
2643				if (tdq->tdq_load)
2644					break;
2645				cpu_spinwait();
2646			}
2647		}
2648
2649		/* If there was context switch during spin, restart it. */
2650		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2651		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2652			continue;
2653
2654		/* Run main MD idle handler. */
2655		tdq->tdq_cpu_idle = 1;
2656		/*
2657		 * Make sure that tdq_cpu_idle update is globally visible
2658		 * before cpu_idle() read tdq_load.  The order is important
2659		 * to avoid race with tdq_notify.
2660		 */
2661		mb();
2662		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2663		tdq->tdq_cpu_idle = 0;
2664
2665		/*
2666		 * Account thread-less hardware interrupts and
2667		 * other wakeup reasons equal to context switches.
2668		 */
2669		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2670		if (switchcnt != oldswitchcnt)
2671			continue;
2672		tdq->tdq_switchcnt++;
2673		oldswitchcnt++;
2674	}
2675}
2676
2677/*
2678 * A CPU is entering for the first time or a thread is exiting.
2679 */
2680void
2681sched_throw(struct thread *td)
2682{
2683	struct thread *newtd;
2684	struct tdq *tdq;
2685
2686	tdq = TDQ_SELF();
2687	if (td == NULL) {
2688		/* Correct spinlock nesting and acquire the correct lock. */
2689		TDQ_LOCK(tdq);
2690		spinlock_exit();
2691		PCPU_SET(switchtime, cpu_ticks());
2692		PCPU_SET(switchticks, ticks);
2693	} else {
2694		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2695		tdq_load_rem(tdq, td);
2696		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2697	}
2698	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2699	newtd = choosethread();
2700	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2701	cpu_throw(td, newtd);		/* doesn't return */
2702}
2703
2704/*
2705 * This is called from fork_exit().  Just acquire the correct locks and
2706 * let fork do the rest of the work.
2707 */
2708void
2709sched_fork_exit(struct thread *td)
2710{
2711	struct tdq *tdq;
2712	int cpuid;
2713
2714	/*
2715	 * Finish setting up thread glue so that it begins execution in a
2716	 * non-nested critical section with the scheduler lock held.
2717	 */
2718	cpuid = PCPU_GET(cpuid);
2719	tdq = TDQ_CPU(cpuid);
2720	if (TD_IS_IDLETHREAD(td))
2721		td->td_lock = TDQ_LOCKPTR(tdq);
2722	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2723	td->td_oncpu = cpuid;
2724	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2725	lock_profile_obtain_lock_success(
2726	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2727}
2728
2729/*
2730 * Create on first use to catch odd startup conditons.
2731 */
2732char *
2733sched_tdname(struct thread *td)
2734{
2735#ifdef KTR
2736	struct td_sched *ts;
2737
2738	ts = td->td_sched;
2739	if (ts->ts_name[0] == '\0')
2740		snprintf(ts->ts_name, sizeof(ts->ts_name),
2741		    "%s tid %d", td->td_name, td->td_tid);
2742	return (ts->ts_name);
2743#else
2744	return (td->td_name);
2745#endif
2746}
2747
2748#ifdef KTR
2749void
2750sched_clear_tdname(struct thread *td)
2751{
2752	struct td_sched *ts;
2753
2754	ts = td->td_sched;
2755	ts->ts_name[0] = '\0';
2756}
2757#endif
2758
2759#ifdef SMP
2760
2761/*
2762 * Build the CPU topology dump string. Is recursively called to collect
2763 * the topology tree.
2764 */
2765static int
2766sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2767    int indent)
2768{
2769	char cpusetbuf[CPUSETBUFSIZ];
2770	int i, first;
2771
2772	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2773	    "", 1 + indent / 2, cg->cg_level);
2774	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2775	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2776	first = TRUE;
2777	for (i = 0; i < MAXCPU; i++) {
2778		if (CPU_ISSET(i, &cg->cg_mask)) {
2779			if (!first)
2780				sbuf_printf(sb, ", ");
2781			else
2782				first = FALSE;
2783			sbuf_printf(sb, "%d", i);
2784		}
2785	}
2786	sbuf_printf(sb, "</cpu>\n");
2787
2788	if (cg->cg_flags != 0) {
2789		sbuf_printf(sb, "%*s <flags>", indent, "");
2790		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2791			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2792		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2793			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2794		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2795			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2796		sbuf_printf(sb, "</flags>\n");
2797	}
2798
2799	if (cg->cg_children > 0) {
2800		sbuf_printf(sb, "%*s <children>\n", indent, "");
2801		for (i = 0; i < cg->cg_children; i++)
2802			sysctl_kern_sched_topology_spec_internal(sb,
2803			    &cg->cg_child[i], indent+2);
2804		sbuf_printf(sb, "%*s </children>\n", indent, "");
2805	}
2806	sbuf_printf(sb, "%*s</group>\n", indent, "");
2807	return (0);
2808}
2809
2810/*
2811 * Sysctl handler for retrieving topology dump. It's a wrapper for
2812 * the recursive sysctl_kern_smp_topology_spec_internal().
2813 */
2814static int
2815sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2816{
2817	struct sbuf *topo;
2818	int err;
2819
2820	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2821
2822	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2823	if (topo == NULL)
2824		return (ENOMEM);
2825
2826	sbuf_printf(topo, "<groups>\n");
2827	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2828	sbuf_printf(topo, "</groups>\n");
2829
2830	if (err == 0) {
2831		sbuf_finish(topo);
2832		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2833	}
2834	sbuf_delete(topo);
2835	return (err);
2836}
2837
2838#endif
2839
2840static int
2841sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2842{
2843	int error, new_val, period;
2844
2845	period = 1000000 / realstathz;
2846	new_val = period * sched_slice;
2847	error = sysctl_handle_int(oidp, &new_val, 0, req);
2848	if (error != 0 || req->newptr == NULL)
2849		return (error);
2850	if (new_val <= 0)
2851		return (EINVAL);
2852	sched_slice = imax(1, (new_val + period / 2) / period);
2853	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
2854	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2855	    realstathz);
2856	return (0);
2857}
2858
2859SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2860SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2861    "Scheduler name");
2862SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2863    NULL, 0, sysctl_kern_quantum, "I",
2864    "Quantum for timeshare threads in microseconds");
2865SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2866    "Quantum for timeshare threads in stathz ticks");
2867SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2868    "Interactivity score threshold");
2869SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2870    &preempt_thresh, 0,
2871    "Maximal (lowest) priority for preemption");
2872SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2873    "Assign static kernel priorities to sleeping threads");
2874SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2875    "Number of times idle thread will spin waiting for new work");
2876SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2877    &sched_idlespinthresh, 0,
2878    "Threshold before we will permit idle thread spinning");
2879#ifdef SMP
2880SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2881    "Number of hz ticks to keep thread affinity for");
2882SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2883    "Enables the long-term load balancer");
2884SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2885    &balance_interval, 0,
2886    "Average period in stathz ticks to run the long-term balancer");
2887SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2888    "Attempts to steal work from other cores before idling");
2889SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2890    "Minimum load on remote CPU before we'll steal");
2891SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2892    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2893    "XML dump of detected CPU topology");
2894#endif
2895
2896/* ps compat.  All cpu percentages from ULE are weighted. */
2897static int ccpu = 0;
2898SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2899