1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/limits.h>
38#include <sys/clock.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/eventhandler.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/kernel.h>
46#include <sys/sleepqueue.h>
47#include <sys/syscallsubr.h>
48#include <sys/sysctl.h>
49#include <sys/sysent.h>
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/posix4.h>
53#include <sys/time.h>
54#include <sys/timers.h>
55#include <sys/timetc.h>
56#include <sys/vnode.h>
57
58#include <vm/vm.h>
59#include <vm/vm_extern.h>
60
61#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
62#define CPUCLOCK_BIT		0x80000000
63#define CPUCLOCK_PROCESS_BIT	0x40000000
64#define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
65#define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
66#define MAKE_PROCESS_CPUCLOCK(pid)	\
67	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
68
69static struct kclock	posix_clocks[MAX_CLOCKS];
70static uma_zone_t	itimer_zone = NULL;
71
72/*
73 * Time of day and interval timer support.
74 *
75 * These routines provide the kernel entry points to get and set
76 * the time-of-day and per-process interval timers.  Subroutines
77 * here provide support for adding and subtracting timeval structures
78 * and decrementing interval timers, optionally reloading the interval
79 * timers when they expire.
80 */
81
82static int	settime(struct thread *, struct timeval *);
83static void	timevalfix(struct timeval *);
84
85static void	itimer_start(void);
86static int	itimer_init(void *, int, int);
87static void	itimer_fini(void *, int);
88static void	itimer_enter(struct itimer *);
89static void	itimer_leave(struct itimer *);
90static struct itimer *itimer_find(struct proc *, int);
91static void	itimers_alloc(struct proc *);
92static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
93static void	itimers_event_hook_exit(void *arg, struct proc *p);
94static int	realtimer_create(struct itimer *);
95static int	realtimer_gettime(struct itimer *, struct itimerspec *);
96static int	realtimer_settime(struct itimer *, int,
97			struct itimerspec *, struct itimerspec *);
98static int	realtimer_delete(struct itimer *);
99static void	realtimer_clocktime(clockid_t, struct timespec *);
100static void	realtimer_expire(void *);
101
102int		register_posix_clock(int, struct kclock *);
103void		itimer_fire(struct itimer *it);
104int		itimespecfix(struct timespec *ts);
105
106#define CLOCK_CALL(clock, call, arglist)		\
107	((*posix_clocks[clock].call) arglist)
108
109SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
110
111
112static int
113settime(struct thread *td, struct timeval *tv)
114{
115	struct timeval delta, tv1, tv2;
116	static struct timeval maxtime, laststep;
117	struct timespec ts;
118	int s;
119
120	s = splclock();
121	microtime(&tv1);
122	delta = *tv;
123	timevalsub(&delta, &tv1);
124
125	/*
126	 * If the system is secure, we do not allow the time to be
127	 * set to a value earlier than 1 second less than the highest
128	 * time we have yet seen. The worst a miscreant can do in
129	 * this circumstance is "freeze" time. He couldn't go
130	 * back to the past.
131	 *
132	 * We similarly do not allow the clock to be stepped more
133	 * than one second, nor more than once per second. This allows
134	 * a miscreant to make the clock march double-time, but no worse.
135	 */
136	if (securelevel_gt(td->td_ucred, 1) != 0) {
137		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
138			/*
139			 * Update maxtime to latest time we've seen.
140			 */
141			if (tv1.tv_sec > maxtime.tv_sec)
142				maxtime = tv1;
143			tv2 = *tv;
144			timevalsub(&tv2, &maxtime);
145			if (tv2.tv_sec < -1) {
146				tv->tv_sec = maxtime.tv_sec - 1;
147				printf("Time adjustment clamped to -1 second\n");
148			}
149		} else {
150			if (tv1.tv_sec == laststep.tv_sec) {
151				splx(s);
152				return (EPERM);
153			}
154			if (delta.tv_sec > 1) {
155				tv->tv_sec = tv1.tv_sec + 1;
156				printf("Time adjustment clamped to +1 second\n");
157			}
158			laststep = *tv;
159		}
160	}
161
162	ts.tv_sec = tv->tv_sec;
163	ts.tv_nsec = tv->tv_usec * 1000;
164	mtx_lock(&Giant);
165	tc_setclock(&ts);
166	resettodr();
167	mtx_unlock(&Giant);
168	return (0);
169}
170
171#ifndef _SYS_SYSPROTO_H_
172struct clock_getcpuclockid2_args {
173	id_t id;
174	int which,
175	clockid_t *clock_id;
176};
177#endif
178/* ARGSUSED */
179int
180sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
181{
182	clockid_t clk_id;
183	int error;
184
185	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
186	if (error == 0)
187		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
188	return (error);
189}
190
191int
192kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
193    clockid_t *clk_id)
194{
195	struct proc *p;
196	pid_t pid;
197	lwpid_t tid;
198	int error;
199
200	switch (which) {
201	case CPUCLOCK_WHICH_PID:
202		if (id != 0) {
203			p = pfind(id);
204			if (p == NULL)
205				return (ESRCH);
206			error = p_cansee(td, p);
207			PROC_UNLOCK(p);
208			if (error != 0)
209				return (error);
210			pid = id;
211		} else {
212			pid = td->td_proc->p_pid;
213		}
214		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
215		return (0);
216	case CPUCLOCK_WHICH_TID:
217		tid = id == 0 ? td->td_tid : id;
218		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
219		return (0);
220	default:
221		return (EINVAL);
222	}
223}
224
225#ifndef _SYS_SYSPROTO_H_
226struct clock_gettime_args {
227	clockid_t clock_id;
228	struct	timespec *tp;
229};
230#endif
231/* ARGSUSED */
232int
233sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
234{
235	struct timespec ats;
236	int error;
237
238	error = kern_clock_gettime(td, uap->clock_id, &ats);
239	if (error == 0)
240		error = copyout(&ats, uap->tp, sizeof(ats));
241
242	return (error);
243}
244
245static inline void
246cputick2timespec(uint64_t runtime, struct timespec *ats)
247{
248	runtime = cputick2usec(runtime);
249	ats->tv_sec = runtime / 1000000;
250	ats->tv_nsec = runtime % 1000000 * 1000;
251}
252
253static void
254get_thread_cputime(struct thread *targettd, struct timespec *ats)
255{
256	uint64_t runtime, curtime, switchtime;
257
258	if (targettd == NULL) { /* current thread */
259		critical_enter();
260		switchtime = PCPU_GET(switchtime);
261		curtime = cpu_ticks();
262		runtime = curthread->td_runtime;
263		critical_exit();
264		runtime += curtime - switchtime;
265	} else {
266		thread_lock(targettd);
267		runtime = targettd->td_runtime;
268		thread_unlock(targettd);
269	}
270	cputick2timespec(runtime, ats);
271}
272
273static void
274get_process_cputime(struct proc *targetp, struct timespec *ats)
275{
276	uint64_t runtime;
277	struct rusage ru;
278
279	PROC_SLOCK(targetp);
280	rufetch(targetp, &ru);
281	runtime = targetp->p_rux.rux_runtime;
282	PROC_SUNLOCK(targetp);
283	cputick2timespec(runtime, ats);
284}
285
286static int
287get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
288{
289	struct proc *p, *p2;
290	struct thread *td2;
291	lwpid_t tid;
292	pid_t pid;
293	int error;
294
295	p = td->td_proc;
296	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
297		tid = clock_id & CPUCLOCK_ID_MASK;
298		td2 = tdfind(tid, p->p_pid);
299		if (td2 == NULL)
300			return (EINVAL);
301		get_thread_cputime(td2, ats);
302		PROC_UNLOCK(td2->td_proc);
303	} else {
304		pid = clock_id & CPUCLOCK_ID_MASK;
305		error = pget(pid, PGET_CANSEE, &p2);
306		if (error != 0)
307			return (EINVAL);
308		get_process_cputime(p2, ats);
309		PROC_UNLOCK(p2);
310	}
311	return (0);
312}
313
314int
315kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
316{
317	struct timeval sys, user;
318	struct proc *p;
319
320	p = td->td_proc;
321	switch (clock_id) {
322	case CLOCK_REALTIME:		/* Default to precise. */
323	case CLOCK_REALTIME_PRECISE:
324		nanotime(ats);
325		break;
326	case CLOCK_REALTIME_FAST:
327		getnanotime(ats);
328		break;
329	case CLOCK_VIRTUAL:
330		PROC_LOCK(p);
331		PROC_SLOCK(p);
332		calcru(p, &user, &sys);
333		PROC_SUNLOCK(p);
334		PROC_UNLOCK(p);
335		TIMEVAL_TO_TIMESPEC(&user, ats);
336		break;
337	case CLOCK_PROF:
338		PROC_LOCK(p);
339		PROC_SLOCK(p);
340		calcru(p, &user, &sys);
341		PROC_SUNLOCK(p);
342		PROC_UNLOCK(p);
343		timevaladd(&user, &sys);
344		TIMEVAL_TO_TIMESPEC(&user, ats);
345		break;
346	case CLOCK_MONOTONIC:		/* Default to precise. */
347	case CLOCK_MONOTONIC_PRECISE:
348	case CLOCK_UPTIME:
349	case CLOCK_UPTIME_PRECISE:
350		nanouptime(ats);
351		break;
352	case CLOCK_UPTIME_FAST:
353	case CLOCK_MONOTONIC_FAST:
354		getnanouptime(ats);
355		break;
356	case CLOCK_SECOND:
357		ats->tv_sec = time_second;
358		ats->tv_nsec = 0;
359		break;
360	case CLOCK_THREAD_CPUTIME_ID:
361		get_thread_cputime(NULL, ats);
362		break;
363	case CLOCK_PROCESS_CPUTIME_ID:
364		PROC_LOCK(p);
365		get_process_cputime(p, ats);
366		PROC_UNLOCK(p);
367		break;
368	default:
369		if ((int)clock_id >= 0)
370			return (EINVAL);
371		return (get_cputime(td, clock_id, ats));
372	}
373	return (0);
374}
375
376#ifndef _SYS_SYSPROTO_H_
377struct clock_settime_args {
378	clockid_t clock_id;
379	const struct	timespec *tp;
380};
381#endif
382/* ARGSUSED */
383int
384sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
385{
386	struct timespec ats;
387	int error;
388
389	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
390		return (error);
391	return (kern_clock_settime(td, uap->clock_id, &ats));
392}
393
394int
395kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
396{
397	struct timeval atv;
398	int error;
399
400	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
401		return (error);
402	if (clock_id != CLOCK_REALTIME)
403		return (EINVAL);
404	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
405		return (EINVAL);
406	/* XXX Don't convert nsec->usec and back */
407	TIMESPEC_TO_TIMEVAL(&atv, ats);
408	error = settime(td, &atv);
409	return (error);
410}
411
412#ifndef _SYS_SYSPROTO_H_
413struct clock_getres_args {
414	clockid_t clock_id;
415	struct	timespec *tp;
416};
417#endif
418int
419sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
420{
421	struct timespec ts;
422	int error;
423
424	if (uap->tp == NULL)
425		return (0);
426
427	error = kern_clock_getres(td, uap->clock_id, &ts);
428	if (error == 0)
429		error = copyout(&ts, uap->tp, sizeof(ts));
430	return (error);
431}
432
433int
434kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
435{
436
437	ts->tv_sec = 0;
438	switch (clock_id) {
439	case CLOCK_REALTIME:
440	case CLOCK_REALTIME_FAST:
441	case CLOCK_REALTIME_PRECISE:
442	case CLOCK_MONOTONIC:
443	case CLOCK_MONOTONIC_FAST:
444	case CLOCK_MONOTONIC_PRECISE:
445	case CLOCK_UPTIME:
446	case CLOCK_UPTIME_FAST:
447	case CLOCK_UPTIME_PRECISE:
448		/*
449		 * Round up the result of the division cheaply by adding 1.
450		 * Rounding up is especially important if rounding down
451		 * would give 0.  Perfect rounding is unimportant.
452		 */
453		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
454		break;
455	case CLOCK_VIRTUAL:
456	case CLOCK_PROF:
457		/* Accurately round up here because we can do so cheaply. */
458		ts->tv_nsec = (1000000000 + hz - 1) / hz;
459		break;
460	case CLOCK_SECOND:
461		ts->tv_sec = 1;
462		ts->tv_nsec = 0;
463		break;
464	case CLOCK_THREAD_CPUTIME_ID:
465	case CLOCK_PROCESS_CPUTIME_ID:
466	cputime:
467		/* sync with cputick2usec */
468		ts->tv_nsec = 1000000 / cpu_tickrate();
469		if (ts->tv_nsec == 0)
470			ts->tv_nsec = 1000;
471		break;
472	default:
473		if ((int)clock_id < 0)
474			goto cputime;
475		return (EINVAL);
476	}
477	return (0);
478}
479
480static uint8_t nanowait[MAXCPU];
481
482int
483kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
484{
485	struct timespec ts;
486	sbintime_t sbt, sbtt, prec, tmp;
487	time_t over;
488	int error;
489
490	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
491		return (EINVAL);
492	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
493		return (0);
494	ts = *rqt;
495	if (ts.tv_sec > INT32_MAX / 2) {
496		over = ts.tv_sec - INT32_MAX / 2;
497		ts.tv_sec -= over;
498	} else
499		over = 0;
500	tmp = tstosbt(ts);
501	prec = tmp;
502	prec >>= tc_precexp;
503	if (TIMESEL(&sbt, tmp))
504		sbt += tc_tick_sbt;
505	sbt += tmp;
506	error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
507	    sbt, prec, C_ABSOLUTE);
508	if (error != EWOULDBLOCK) {
509		if (error == ERESTART)
510			error = EINTR;
511		TIMESEL(&sbtt, tmp);
512		if (rmt != NULL) {
513			ts = sbttots(sbt - sbtt);
514			ts.tv_sec += over;
515			if (ts.tv_sec < 0)
516				timespecclear(&ts);
517			*rmt = ts;
518		}
519		if (sbtt >= sbt)
520			return (0);
521		return (error);
522	}
523	return (0);
524}
525
526#ifndef _SYS_SYSPROTO_H_
527struct nanosleep_args {
528	struct	timespec *rqtp;
529	struct	timespec *rmtp;
530};
531#endif
532/* ARGSUSED */
533int
534sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
535{
536	struct timespec rmt, rqt;
537	int error;
538
539	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
540	if (error)
541		return (error);
542
543	if (uap->rmtp &&
544	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
545			return (EFAULT);
546	error = kern_nanosleep(td, &rqt, &rmt);
547	if (error && uap->rmtp) {
548		int error2;
549
550		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
551		if (error2)
552			error = error2;
553	}
554	return (error);
555}
556
557#ifndef _SYS_SYSPROTO_H_
558struct gettimeofday_args {
559	struct	timeval *tp;
560	struct	timezone *tzp;
561};
562#endif
563/* ARGSUSED */
564int
565sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
566{
567	struct timeval atv;
568	struct timezone rtz;
569	int error = 0;
570
571	if (uap->tp) {
572		microtime(&atv);
573		error = copyout(&atv, uap->tp, sizeof (atv));
574	}
575	if (error == 0 && uap->tzp != NULL) {
576		rtz.tz_minuteswest = tz_minuteswest;
577		rtz.tz_dsttime = tz_dsttime;
578		error = copyout(&rtz, uap->tzp, sizeof (rtz));
579	}
580	return (error);
581}
582
583#ifndef _SYS_SYSPROTO_H_
584struct settimeofday_args {
585	struct	timeval *tv;
586	struct	timezone *tzp;
587};
588#endif
589/* ARGSUSED */
590int
591sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
592{
593	struct timeval atv, *tvp;
594	struct timezone atz, *tzp;
595	int error;
596
597	if (uap->tv) {
598		error = copyin(uap->tv, &atv, sizeof(atv));
599		if (error)
600			return (error);
601		tvp = &atv;
602	} else
603		tvp = NULL;
604	if (uap->tzp) {
605		error = copyin(uap->tzp, &atz, sizeof(atz));
606		if (error)
607			return (error);
608		tzp = &atz;
609	} else
610		tzp = NULL;
611	return (kern_settimeofday(td, tvp, tzp));
612}
613
614int
615kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
616{
617	int error;
618
619	error = priv_check(td, PRIV_SETTIMEOFDAY);
620	if (error)
621		return (error);
622	/* Verify all parameters before changing time. */
623	if (tv) {
624		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
625			return (EINVAL);
626		error = settime(td, tv);
627	}
628	if (tzp && error == 0) {
629		tz_minuteswest = tzp->tz_minuteswest;
630		tz_dsttime = tzp->tz_dsttime;
631	}
632	return (error);
633}
634
635/*
636 * Get value of an interval timer.  The process virtual and profiling virtual
637 * time timers are kept in the p_stats area, since they can be swapped out.
638 * These are kept internally in the way they are specified externally: in
639 * time until they expire.
640 *
641 * The real time interval timer is kept in the process table slot for the
642 * process, and its value (it_value) is kept as an absolute time rather than
643 * as a delta, so that it is easy to keep periodic real-time signals from
644 * drifting.
645 *
646 * Virtual time timers are processed in the hardclock() routine of
647 * kern_clock.c.  The real time timer is processed by a timeout routine,
648 * called from the softclock() routine.  Since a callout may be delayed in
649 * real time due to interrupt processing in the system, it is possible for
650 * the real time timeout routine (realitexpire, given below), to be delayed
651 * in real time past when it is supposed to occur.  It does not suffice,
652 * therefore, to reload the real timer .it_value from the real time timers
653 * .it_interval.  Rather, we compute the next time in absolute time the timer
654 * should go off.
655 */
656#ifndef _SYS_SYSPROTO_H_
657struct getitimer_args {
658	u_int	which;
659	struct	itimerval *itv;
660};
661#endif
662int
663sys_getitimer(struct thread *td, struct getitimer_args *uap)
664{
665	struct itimerval aitv;
666	int error;
667
668	error = kern_getitimer(td, uap->which, &aitv);
669	if (error != 0)
670		return (error);
671	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
672}
673
674int
675kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
676{
677	struct proc *p = td->td_proc;
678	struct timeval ctv;
679
680	if (which > ITIMER_PROF)
681		return (EINVAL);
682
683	if (which == ITIMER_REAL) {
684		/*
685		 * Convert from absolute to relative time in .it_value
686		 * part of real time timer.  If time for real time timer
687		 * has passed return 0, else return difference between
688		 * current time and time for the timer to go off.
689		 */
690		PROC_LOCK(p);
691		*aitv = p->p_realtimer;
692		PROC_UNLOCK(p);
693		if (timevalisset(&aitv->it_value)) {
694			microuptime(&ctv);
695			if (timevalcmp(&aitv->it_value, &ctv, <))
696				timevalclear(&aitv->it_value);
697			else
698				timevalsub(&aitv->it_value, &ctv);
699		}
700	} else {
701		PROC_SLOCK(p);
702		*aitv = p->p_stats->p_timer[which];
703		PROC_SUNLOCK(p);
704	}
705	return (0);
706}
707
708#ifndef _SYS_SYSPROTO_H_
709struct setitimer_args {
710	u_int	which;
711	struct	itimerval *itv, *oitv;
712};
713#endif
714int
715sys_setitimer(struct thread *td, struct setitimer_args *uap)
716{
717	struct itimerval aitv, oitv;
718	int error;
719
720	if (uap->itv == NULL) {
721		uap->itv = uap->oitv;
722		return (sys_getitimer(td, (struct getitimer_args *)uap));
723	}
724
725	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
726		return (error);
727	error = kern_setitimer(td, uap->which, &aitv, &oitv);
728	if (error != 0 || uap->oitv == NULL)
729		return (error);
730	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
731}
732
733int
734kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
735    struct itimerval *oitv)
736{
737	struct proc *p = td->td_proc;
738	struct timeval ctv;
739	sbintime_t sbt, pr;
740
741	if (aitv == NULL)
742		return (kern_getitimer(td, which, oitv));
743
744	if (which > ITIMER_PROF)
745		return (EINVAL);
746	if (itimerfix(&aitv->it_value) ||
747	    aitv->it_value.tv_sec > INT32_MAX / 2)
748		return (EINVAL);
749	if (!timevalisset(&aitv->it_value))
750		timevalclear(&aitv->it_interval);
751	else if (itimerfix(&aitv->it_interval) ||
752	    aitv->it_interval.tv_sec > INT32_MAX / 2)
753		return (EINVAL);
754
755	if (which == ITIMER_REAL) {
756		PROC_LOCK(p);
757		if (timevalisset(&p->p_realtimer.it_value))
758			callout_stop(&p->p_itcallout);
759		microuptime(&ctv);
760		if (timevalisset(&aitv->it_value)) {
761			pr = tvtosbt(aitv->it_value) >> tc_precexp;
762			timevaladd(&aitv->it_value, &ctv);
763			sbt = tvtosbt(aitv->it_value);
764			callout_reset_sbt(&p->p_itcallout, sbt, pr,
765			    realitexpire, p, C_ABSOLUTE);
766		}
767		*oitv = p->p_realtimer;
768		p->p_realtimer = *aitv;
769		PROC_UNLOCK(p);
770		if (timevalisset(&oitv->it_value)) {
771			if (timevalcmp(&oitv->it_value, &ctv, <))
772				timevalclear(&oitv->it_value);
773			else
774				timevalsub(&oitv->it_value, &ctv);
775		}
776	} else {
777		if (aitv->it_interval.tv_sec == 0 &&
778		    aitv->it_interval.tv_usec != 0 &&
779		    aitv->it_interval.tv_usec < tick)
780			aitv->it_interval.tv_usec = tick;
781		if (aitv->it_value.tv_sec == 0 &&
782		    aitv->it_value.tv_usec != 0 &&
783		    aitv->it_value.tv_usec < tick)
784			aitv->it_value.tv_usec = tick;
785		PROC_SLOCK(p);
786		*oitv = p->p_stats->p_timer[which];
787		p->p_stats->p_timer[which] = *aitv;
788		PROC_SUNLOCK(p);
789	}
790	return (0);
791}
792
793/*
794 * Real interval timer expired:
795 * send process whose timer expired an alarm signal.
796 * If time is not set up to reload, then just return.
797 * Else compute next time timer should go off which is > current time.
798 * This is where delay in processing this timeout causes multiple
799 * SIGALRM calls to be compressed into one.
800 * tvtohz() always adds 1 to allow for the time until the next clock
801 * interrupt being strictly less than 1 clock tick, but we don't want
802 * that here since we want to appear to be in sync with the clock
803 * interrupt even when we're delayed.
804 */
805void
806realitexpire(void *arg)
807{
808	struct proc *p;
809	struct timeval ctv;
810	sbintime_t isbt;
811
812	p = (struct proc *)arg;
813	kern_psignal(p, SIGALRM);
814	if (!timevalisset(&p->p_realtimer.it_interval)) {
815		timevalclear(&p->p_realtimer.it_value);
816		if (p->p_flag & P_WEXIT)
817			wakeup(&p->p_itcallout);
818		return;
819	}
820	isbt = tvtosbt(p->p_realtimer.it_interval);
821	if (isbt >= sbt_timethreshold)
822		getmicrouptime(&ctv);
823	else
824		microuptime(&ctv);
825	do {
826		timevaladd(&p->p_realtimer.it_value,
827		    &p->p_realtimer.it_interval);
828	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
829	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
830	    isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
831}
832
833/*
834 * Check that a proposed value to load into the .it_value or
835 * .it_interval part of an interval timer is acceptable, and
836 * fix it to have at least minimal value (i.e. if it is less
837 * than the resolution of the clock, round it up.)
838 */
839int
840itimerfix(struct timeval *tv)
841{
842
843	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
844		return (EINVAL);
845	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
846	    tv->tv_usec < (u_int)tick / 16)
847		tv->tv_usec = (u_int)tick / 16;
848	return (0);
849}
850
851/*
852 * Decrement an interval timer by a specified number
853 * of microseconds, which must be less than a second,
854 * i.e. < 1000000.  If the timer expires, then reload
855 * it.  In this case, carry over (usec - old value) to
856 * reduce the value reloaded into the timer so that
857 * the timer does not drift.  This routine assumes
858 * that it is called in a context where the timers
859 * on which it is operating cannot change in value.
860 */
861int
862itimerdecr(struct itimerval *itp, int usec)
863{
864
865	if (itp->it_value.tv_usec < usec) {
866		if (itp->it_value.tv_sec == 0) {
867			/* expired, and already in next interval */
868			usec -= itp->it_value.tv_usec;
869			goto expire;
870		}
871		itp->it_value.tv_usec += 1000000;
872		itp->it_value.tv_sec--;
873	}
874	itp->it_value.tv_usec -= usec;
875	usec = 0;
876	if (timevalisset(&itp->it_value))
877		return (1);
878	/* expired, exactly at end of interval */
879expire:
880	if (timevalisset(&itp->it_interval)) {
881		itp->it_value = itp->it_interval;
882		itp->it_value.tv_usec -= usec;
883		if (itp->it_value.tv_usec < 0) {
884			itp->it_value.tv_usec += 1000000;
885			itp->it_value.tv_sec--;
886		}
887	} else
888		itp->it_value.tv_usec = 0;		/* sec is already 0 */
889	return (0);
890}
891
892/*
893 * Add and subtract routines for timevals.
894 * N.B.: subtract routine doesn't deal with
895 * results which are before the beginning,
896 * it just gets very confused in this case.
897 * Caveat emptor.
898 */
899void
900timevaladd(struct timeval *t1, const struct timeval *t2)
901{
902
903	t1->tv_sec += t2->tv_sec;
904	t1->tv_usec += t2->tv_usec;
905	timevalfix(t1);
906}
907
908void
909timevalsub(struct timeval *t1, const struct timeval *t2)
910{
911
912	t1->tv_sec -= t2->tv_sec;
913	t1->tv_usec -= t2->tv_usec;
914	timevalfix(t1);
915}
916
917static void
918timevalfix(struct timeval *t1)
919{
920
921	if (t1->tv_usec < 0) {
922		t1->tv_sec--;
923		t1->tv_usec += 1000000;
924	}
925	if (t1->tv_usec >= 1000000) {
926		t1->tv_sec++;
927		t1->tv_usec -= 1000000;
928	}
929}
930
931/*
932 * ratecheck(): simple time-based rate-limit checking.
933 */
934int
935ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
936{
937	struct timeval tv, delta;
938	int rv = 0;
939
940	getmicrouptime(&tv);		/* NB: 10ms precision */
941	delta = tv;
942	timevalsub(&delta, lasttime);
943
944	/*
945	 * check for 0,0 is so that the message will be seen at least once,
946	 * even if interval is huge.
947	 */
948	if (timevalcmp(&delta, mininterval, >=) ||
949	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
950		*lasttime = tv;
951		rv = 1;
952	}
953
954	return (rv);
955}
956
957/*
958 * ppsratecheck(): packets (or events) per second limitation.
959 *
960 * Return 0 if the limit is to be enforced (e.g. the caller
961 * should drop a packet because of the rate limitation).
962 *
963 * maxpps of 0 always causes zero to be returned.  maxpps of -1
964 * always causes 1 to be returned; this effectively defeats rate
965 * limiting.
966 *
967 * Note that we maintain the struct timeval for compatibility
968 * with other bsd systems.  We reuse the storage and just monitor
969 * clock ticks for minimal overhead.
970 */
971int
972ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
973{
974	int now;
975
976	/*
977	 * Reset the last time and counter if this is the first call
978	 * or more than a second has passed since the last update of
979	 * lasttime.
980	 */
981	now = ticks;
982	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
983		lasttime->tv_sec = now;
984		*curpps = 1;
985		return (maxpps != 0);
986	} else {
987		(*curpps)++;		/* NB: ignore potential overflow */
988		return (maxpps < 0 || *curpps < maxpps);
989	}
990}
991
992static void
993itimer_start(void)
994{
995	struct kclock rt_clock = {
996		.timer_create  = realtimer_create,
997		.timer_delete  = realtimer_delete,
998		.timer_settime = realtimer_settime,
999		.timer_gettime = realtimer_gettime,
1000		.event_hook    = NULL
1001	};
1002
1003	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1004		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1005	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1006	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1007	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1008	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1009	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1010	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
1011		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
1012	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
1013		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
1014}
1015
1016int
1017register_posix_clock(int clockid, struct kclock *clk)
1018{
1019	if ((unsigned)clockid >= MAX_CLOCKS) {
1020		printf("%s: invalid clockid\n", __func__);
1021		return (0);
1022	}
1023	posix_clocks[clockid] = *clk;
1024	return (1);
1025}
1026
1027static int
1028itimer_init(void *mem, int size, int flags)
1029{
1030	struct itimer *it;
1031
1032	it = (struct itimer *)mem;
1033	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1034	return (0);
1035}
1036
1037static void
1038itimer_fini(void *mem, int size)
1039{
1040	struct itimer *it;
1041
1042	it = (struct itimer *)mem;
1043	mtx_destroy(&it->it_mtx);
1044}
1045
1046static void
1047itimer_enter(struct itimer *it)
1048{
1049
1050	mtx_assert(&it->it_mtx, MA_OWNED);
1051	it->it_usecount++;
1052}
1053
1054static void
1055itimer_leave(struct itimer *it)
1056{
1057
1058	mtx_assert(&it->it_mtx, MA_OWNED);
1059	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1060
1061	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1062		wakeup(it);
1063}
1064
1065#ifndef _SYS_SYSPROTO_H_
1066struct ktimer_create_args {
1067	clockid_t clock_id;
1068	struct sigevent * evp;
1069	int * timerid;
1070};
1071#endif
1072int
1073sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1074{
1075	struct sigevent *evp, ev;
1076	int id;
1077	int error;
1078
1079	if (uap->evp == NULL) {
1080		evp = NULL;
1081	} else {
1082		error = copyin(uap->evp, &ev, sizeof(ev));
1083		if (error != 0)
1084			return (error);
1085		evp = &ev;
1086	}
1087	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1088	if (error == 0) {
1089		error = copyout(&id, uap->timerid, sizeof(int));
1090		if (error != 0)
1091			kern_ktimer_delete(td, id);
1092	}
1093	return (error);
1094}
1095
1096int
1097kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1098    int *timerid, int preset_id)
1099{
1100	struct proc *p = td->td_proc;
1101	struct itimer *it;
1102	int id;
1103	int error;
1104
1105	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1106		return (EINVAL);
1107
1108	if (posix_clocks[clock_id].timer_create == NULL)
1109		return (EINVAL);
1110
1111	if (evp != NULL) {
1112		if (evp->sigev_notify != SIGEV_NONE &&
1113		    evp->sigev_notify != SIGEV_SIGNAL &&
1114		    evp->sigev_notify != SIGEV_THREAD_ID)
1115			return (EINVAL);
1116		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1117		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1118			!_SIG_VALID(evp->sigev_signo))
1119			return (EINVAL);
1120	}
1121
1122	if (p->p_itimers == NULL)
1123		itimers_alloc(p);
1124
1125	it = uma_zalloc(itimer_zone, M_WAITOK);
1126	it->it_flags = 0;
1127	it->it_usecount = 0;
1128	it->it_active = 0;
1129	timespecclear(&it->it_time.it_value);
1130	timespecclear(&it->it_time.it_interval);
1131	it->it_overrun = 0;
1132	it->it_overrun_last = 0;
1133	it->it_clockid = clock_id;
1134	it->it_timerid = -1;
1135	it->it_proc = p;
1136	ksiginfo_init(&it->it_ksi);
1137	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1138	error = CLOCK_CALL(clock_id, timer_create, (it));
1139	if (error != 0)
1140		goto out;
1141
1142	PROC_LOCK(p);
1143	if (preset_id != -1) {
1144		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1145		id = preset_id;
1146		if (p->p_itimers->its_timers[id] != NULL) {
1147			PROC_UNLOCK(p);
1148			error = 0;
1149			goto out;
1150		}
1151	} else {
1152		/*
1153		 * Find a free timer slot, skipping those reserved
1154		 * for setitimer().
1155		 */
1156		for (id = 3; id < TIMER_MAX; id++)
1157			if (p->p_itimers->its_timers[id] == NULL)
1158				break;
1159		if (id == TIMER_MAX) {
1160			PROC_UNLOCK(p);
1161			error = EAGAIN;
1162			goto out;
1163		}
1164	}
1165	it->it_timerid = id;
1166	p->p_itimers->its_timers[id] = it;
1167	if (evp != NULL)
1168		it->it_sigev = *evp;
1169	else {
1170		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1171		switch (clock_id) {
1172		default:
1173		case CLOCK_REALTIME:
1174			it->it_sigev.sigev_signo = SIGALRM;
1175			break;
1176		case CLOCK_VIRTUAL:
1177 			it->it_sigev.sigev_signo = SIGVTALRM;
1178			break;
1179		case CLOCK_PROF:
1180			it->it_sigev.sigev_signo = SIGPROF;
1181			break;
1182		}
1183		it->it_sigev.sigev_value.sival_int = id;
1184	}
1185
1186	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1187	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1188		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1189		it->it_ksi.ksi_code = SI_TIMER;
1190		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1191		it->it_ksi.ksi_timerid = id;
1192	}
1193	PROC_UNLOCK(p);
1194	*timerid = id;
1195	return (0);
1196
1197out:
1198	ITIMER_LOCK(it);
1199	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1200	ITIMER_UNLOCK(it);
1201	uma_zfree(itimer_zone, it);
1202	return (error);
1203}
1204
1205#ifndef _SYS_SYSPROTO_H_
1206struct ktimer_delete_args {
1207	int timerid;
1208};
1209#endif
1210int
1211sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1212{
1213
1214	return (kern_ktimer_delete(td, uap->timerid));
1215}
1216
1217static struct itimer *
1218itimer_find(struct proc *p, int timerid)
1219{
1220	struct itimer *it;
1221
1222	PROC_LOCK_ASSERT(p, MA_OWNED);
1223	if ((p->p_itimers == NULL) ||
1224	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1225	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1226		return (NULL);
1227	}
1228	ITIMER_LOCK(it);
1229	if ((it->it_flags & ITF_DELETING) != 0) {
1230		ITIMER_UNLOCK(it);
1231		it = NULL;
1232	}
1233	return (it);
1234}
1235
1236int
1237kern_ktimer_delete(struct thread *td, int timerid)
1238{
1239	struct proc *p = td->td_proc;
1240	struct itimer *it;
1241
1242	PROC_LOCK(p);
1243	it = itimer_find(p, timerid);
1244	if (it == NULL) {
1245		PROC_UNLOCK(p);
1246		return (EINVAL);
1247	}
1248	PROC_UNLOCK(p);
1249
1250	it->it_flags |= ITF_DELETING;
1251	while (it->it_usecount > 0) {
1252		it->it_flags |= ITF_WANTED;
1253		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1254	}
1255	it->it_flags &= ~ITF_WANTED;
1256	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1257	ITIMER_UNLOCK(it);
1258
1259	PROC_LOCK(p);
1260	if (KSI_ONQ(&it->it_ksi))
1261		sigqueue_take(&it->it_ksi);
1262	p->p_itimers->its_timers[timerid] = NULL;
1263	PROC_UNLOCK(p);
1264	uma_zfree(itimer_zone, it);
1265	return (0);
1266}
1267
1268#ifndef _SYS_SYSPROTO_H_
1269struct ktimer_settime_args {
1270	int timerid;
1271	int flags;
1272	const struct itimerspec * value;
1273	struct itimerspec * ovalue;
1274};
1275#endif
1276int
1277sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1278{
1279	struct itimerspec val, oval, *ovalp;
1280	int error;
1281
1282	error = copyin(uap->value, &val, sizeof(val));
1283	if (error != 0)
1284		return (error);
1285	ovalp = uap->ovalue != NULL ? &oval : NULL;
1286	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1287	if (error == 0 && uap->ovalue != NULL)
1288		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1289	return (error);
1290}
1291
1292int
1293kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1294    struct itimerspec *val, struct itimerspec *oval)
1295{
1296	struct proc *p;
1297	struct itimer *it;
1298	int error;
1299
1300	p = td->td_proc;
1301	PROC_LOCK(p);
1302	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1303		PROC_UNLOCK(p);
1304		error = EINVAL;
1305	} else {
1306		PROC_UNLOCK(p);
1307		itimer_enter(it);
1308		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1309		    flags, val, oval));
1310		itimer_leave(it);
1311		ITIMER_UNLOCK(it);
1312	}
1313	return (error);
1314}
1315
1316#ifndef _SYS_SYSPROTO_H_
1317struct ktimer_gettime_args {
1318	int timerid;
1319	struct itimerspec * value;
1320};
1321#endif
1322int
1323sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1324{
1325	struct itimerspec val;
1326	int error;
1327
1328	error = kern_ktimer_gettime(td, uap->timerid, &val);
1329	if (error == 0)
1330		error = copyout(&val, uap->value, sizeof(val));
1331	return (error);
1332}
1333
1334int
1335kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1336{
1337	struct proc *p;
1338	struct itimer *it;
1339	int error;
1340
1341	p = td->td_proc;
1342	PROC_LOCK(p);
1343	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1344		PROC_UNLOCK(p);
1345		error = EINVAL;
1346	} else {
1347		PROC_UNLOCK(p);
1348		itimer_enter(it);
1349		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1350		itimer_leave(it);
1351		ITIMER_UNLOCK(it);
1352	}
1353	return (error);
1354}
1355
1356#ifndef _SYS_SYSPROTO_H_
1357struct timer_getoverrun_args {
1358	int timerid;
1359};
1360#endif
1361int
1362sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1363{
1364
1365	return (kern_ktimer_getoverrun(td, uap->timerid));
1366}
1367
1368int
1369kern_ktimer_getoverrun(struct thread *td, int timer_id)
1370{
1371	struct proc *p = td->td_proc;
1372	struct itimer *it;
1373	int error ;
1374
1375	PROC_LOCK(p);
1376	if (timer_id < 3 ||
1377	    (it = itimer_find(p, timer_id)) == NULL) {
1378		PROC_UNLOCK(p);
1379		error = EINVAL;
1380	} else {
1381		td->td_retval[0] = it->it_overrun_last;
1382		ITIMER_UNLOCK(it);
1383		PROC_UNLOCK(p);
1384		error = 0;
1385	}
1386	return (error);
1387}
1388
1389static int
1390realtimer_create(struct itimer *it)
1391{
1392	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1393	return (0);
1394}
1395
1396static int
1397realtimer_delete(struct itimer *it)
1398{
1399	mtx_assert(&it->it_mtx, MA_OWNED);
1400
1401	/*
1402	 * clear timer's value and interval to tell realtimer_expire
1403	 * to not rearm the timer.
1404	 */
1405	timespecclear(&it->it_time.it_value);
1406	timespecclear(&it->it_time.it_interval);
1407	ITIMER_UNLOCK(it);
1408	callout_drain(&it->it_callout);
1409	ITIMER_LOCK(it);
1410	return (0);
1411}
1412
1413static int
1414realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1415{
1416	struct timespec cts;
1417
1418	mtx_assert(&it->it_mtx, MA_OWNED);
1419
1420	realtimer_clocktime(it->it_clockid, &cts);
1421	*ovalue = it->it_time;
1422	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1423		timespecsub(&ovalue->it_value, &cts);
1424		if (ovalue->it_value.tv_sec < 0 ||
1425		    (ovalue->it_value.tv_sec == 0 &&
1426		     ovalue->it_value.tv_nsec == 0)) {
1427			ovalue->it_value.tv_sec  = 0;
1428			ovalue->it_value.tv_nsec = 1;
1429		}
1430	}
1431	return (0);
1432}
1433
1434static int
1435realtimer_settime(struct itimer *it, int flags,
1436	struct itimerspec *value, struct itimerspec *ovalue)
1437{
1438	struct timespec cts, ts;
1439	struct timeval tv;
1440	struct itimerspec val;
1441
1442	mtx_assert(&it->it_mtx, MA_OWNED);
1443
1444	val = *value;
1445	if (itimespecfix(&val.it_value))
1446		return (EINVAL);
1447
1448	if (timespecisset(&val.it_value)) {
1449		if (itimespecfix(&val.it_interval))
1450			return (EINVAL);
1451	} else {
1452		timespecclear(&val.it_interval);
1453	}
1454
1455	if (ovalue != NULL)
1456		realtimer_gettime(it, ovalue);
1457
1458	it->it_time = val;
1459	if (timespecisset(&val.it_value)) {
1460		realtimer_clocktime(it->it_clockid, &cts);
1461		ts = val.it_value;
1462		if ((flags & TIMER_ABSTIME) == 0) {
1463			/* Convert to absolute time. */
1464			timespecadd(&it->it_time.it_value, &cts);
1465		} else {
1466			timespecsub(&ts, &cts);
1467			/*
1468			 * We don't care if ts is negative, tztohz will
1469			 * fix it.
1470			 */
1471		}
1472		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1473		callout_reset(&it->it_callout, tvtohz(&tv),
1474			realtimer_expire, it);
1475	} else {
1476		callout_stop(&it->it_callout);
1477	}
1478
1479	return (0);
1480}
1481
1482static void
1483realtimer_clocktime(clockid_t id, struct timespec *ts)
1484{
1485	if (id == CLOCK_REALTIME)
1486		getnanotime(ts);
1487	else	/* CLOCK_MONOTONIC */
1488		getnanouptime(ts);
1489}
1490
1491int
1492itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1493{
1494	struct itimer *it;
1495
1496	PROC_LOCK_ASSERT(p, MA_OWNED);
1497	it = itimer_find(p, timerid);
1498	if (it != NULL) {
1499		ksi->ksi_overrun = it->it_overrun;
1500		it->it_overrun_last = it->it_overrun;
1501		it->it_overrun = 0;
1502		ITIMER_UNLOCK(it);
1503		return (0);
1504	}
1505	return (EINVAL);
1506}
1507
1508int
1509itimespecfix(struct timespec *ts)
1510{
1511
1512	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1513		return (EINVAL);
1514	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1515		ts->tv_nsec = tick * 1000;
1516	return (0);
1517}
1518
1519/* Timeout callback for realtime timer */
1520static void
1521realtimer_expire(void *arg)
1522{
1523	struct timespec cts, ts;
1524	struct timeval tv;
1525	struct itimer *it;
1526
1527	it = (struct itimer *)arg;
1528
1529	realtimer_clocktime(it->it_clockid, &cts);
1530	/* Only fire if time is reached. */
1531	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1532		if (timespecisset(&it->it_time.it_interval)) {
1533			timespecadd(&it->it_time.it_value,
1534				    &it->it_time.it_interval);
1535			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1536				if (it->it_overrun < INT_MAX)
1537					it->it_overrun++;
1538				else
1539					it->it_ksi.ksi_errno = ERANGE;
1540				timespecadd(&it->it_time.it_value,
1541					    &it->it_time.it_interval);
1542			}
1543		} else {
1544			/* single shot timer ? */
1545			timespecclear(&it->it_time.it_value);
1546		}
1547		if (timespecisset(&it->it_time.it_value)) {
1548			ts = it->it_time.it_value;
1549			timespecsub(&ts, &cts);
1550			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1551			callout_reset(&it->it_callout, tvtohz(&tv),
1552				 realtimer_expire, it);
1553		}
1554		itimer_enter(it);
1555		ITIMER_UNLOCK(it);
1556		itimer_fire(it);
1557		ITIMER_LOCK(it);
1558		itimer_leave(it);
1559	} else if (timespecisset(&it->it_time.it_value)) {
1560		ts = it->it_time.it_value;
1561		timespecsub(&ts, &cts);
1562		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1563		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1564 			it);
1565	}
1566}
1567
1568void
1569itimer_fire(struct itimer *it)
1570{
1571	struct proc *p = it->it_proc;
1572	struct thread *td;
1573
1574	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1575	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1576		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1577			ITIMER_LOCK(it);
1578			timespecclear(&it->it_time.it_value);
1579			timespecclear(&it->it_time.it_interval);
1580			callout_stop(&it->it_callout);
1581			ITIMER_UNLOCK(it);
1582			return;
1583		}
1584		if (!KSI_ONQ(&it->it_ksi)) {
1585			it->it_ksi.ksi_errno = 0;
1586			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1587			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1588		} else {
1589			if (it->it_overrun < INT_MAX)
1590				it->it_overrun++;
1591			else
1592				it->it_ksi.ksi_errno = ERANGE;
1593		}
1594		PROC_UNLOCK(p);
1595	}
1596}
1597
1598static void
1599itimers_alloc(struct proc *p)
1600{
1601	struct itimers *its;
1602	int i;
1603
1604	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1605	LIST_INIT(&its->its_virtual);
1606	LIST_INIT(&its->its_prof);
1607	TAILQ_INIT(&its->its_worklist);
1608	for (i = 0; i < TIMER_MAX; i++)
1609		its->its_timers[i] = NULL;
1610	PROC_LOCK(p);
1611	if (p->p_itimers == NULL) {
1612		p->p_itimers = its;
1613		PROC_UNLOCK(p);
1614	}
1615	else {
1616		PROC_UNLOCK(p);
1617		free(its, M_SUBPROC);
1618	}
1619}
1620
1621static void
1622itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1623{
1624	itimers_event_hook_exit(arg, p);
1625}
1626
1627/* Clean up timers when some process events are being triggered. */
1628static void
1629itimers_event_hook_exit(void *arg, struct proc *p)
1630{
1631	struct itimers *its;
1632	struct itimer *it;
1633	int event = (int)(intptr_t)arg;
1634	int i;
1635
1636	if (p->p_itimers != NULL) {
1637		its = p->p_itimers;
1638		for (i = 0; i < MAX_CLOCKS; ++i) {
1639			if (posix_clocks[i].event_hook != NULL)
1640				CLOCK_CALL(i, event_hook, (p, i, event));
1641		}
1642		/*
1643		 * According to susv3, XSI interval timers should be inherited
1644		 * by new image.
1645		 */
1646		if (event == ITIMER_EV_EXEC)
1647			i = 3;
1648		else if (event == ITIMER_EV_EXIT)
1649			i = 0;
1650		else
1651			panic("unhandled event");
1652		for (; i < TIMER_MAX; ++i) {
1653			if ((it = its->its_timers[i]) != NULL)
1654				kern_ktimer_delete(curthread, i);
1655		}
1656		if (its->its_timers[0] == NULL &&
1657		    its->its_timers[1] == NULL &&
1658		    its->its_timers[2] == NULL) {
1659			free(its, M_SUBPROC);
1660			p->p_itimers = NULL;
1661		}
1662	}
1663}
1664