1/*-
2 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/module.h>
34#include <sys/limits.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/bio.h>
38#include <sys/sbuf.h>
39#include <sys/sysctl.h>
40#include <sys/malloc.h>
41#include <sys/eventhandler.h>
42#include <vm/uma.h>
43#include <geom/geom.h>
44#include <sys/proc.h>
45#include <sys/kthread.h>
46#include <sys/sched.h>
47#include <geom/raid3/g_raid3.h>
48
49FEATURE(geom_raid3, "GEOM RAID-3 functionality");
50
51static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
52
53SYSCTL_DECL(_kern_geom);
54static SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0,
55    "GEOM_RAID3 stuff");
56u_int g_raid3_debug = 0;
57TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
58SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
59    "Debug level");
60static u_int g_raid3_timeout = 4;
61TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
62SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
63    0, "Time to wait on all raid3 components");
64static u_int g_raid3_idletime = 5;
65TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
66SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
67    &g_raid3_idletime, 0, "Mark components as clean when idling");
68static u_int g_raid3_disconnect_on_failure = 1;
69TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
70    &g_raid3_disconnect_on_failure);
71SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
72    &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
73static u_int g_raid3_syncreqs = 2;
74TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
75SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
76    &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
77static u_int g_raid3_use_malloc = 0;
78TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
79SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
80    &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
81
82static u_int g_raid3_n64k = 50;
83TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
84SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
85    "Maximum number of 64kB allocations");
86static u_int g_raid3_n16k = 200;
87TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
88SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
89    "Maximum number of 16kB allocations");
90static u_int g_raid3_n4k = 1200;
91TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
92SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
93    "Maximum number of 4kB allocations");
94
95static SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
96    "GEOM_RAID3 statistics");
97static u_int g_raid3_parity_mismatch = 0;
98SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
99    &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
100
101#define	MSLEEP(ident, mtx, priority, wmesg, timeout)	do {		\
102	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));	\
103	msleep((ident), (mtx), (priority), (wmesg), (timeout));		\
104	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));	\
105} while (0)
106
107static eventhandler_tag g_raid3_post_sync = NULL;
108static int g_raid3_shutdown = 0;
109
110static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
111    struct g_geom *gp);
112static g_taste_t g_raid3_taste;
113static void g_raid3_init(struct g_class *mp);
114static void g_raid3_fini(struct g_class *mp);
115
116struct g_class g_raid3_class = {
117	.name = G_RAID3_CLASS_NAME,
118	.version = G_VERSION,
119	.ctlreq = g_raid3_config,
120	.taste = g_raid3_taste,
121	.destroy_geom = g_raid3_destroy_geom,
122	.init = g_raid3_init,
123	.fini = g_raid3_fini
124};
125
126
127static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
128static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
129static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
130static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
131    struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
132static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
133static int g_raid3_register_request(struct bio *pbp);
134static void g_raid3_sync_release(struct g_raid3_softc *sc);
135
136
137static const char *
138g_raid3_disk_state2str(int state)
139{
140
141	switch (state) {
142	case G_RAID3_DISK_STATE_NODISK:
143		return ("NODISK");
144	case G_RAID3_DISK_STATE_NONE:
145		return ("NONE");
146	case G_RAID3_DISK_STATE_NEW:
147		return ("NEW");
148	case G_RAID3_DISK_STATE_ACTIVE:
149		return ("ACTIVE");
150	case G_RAID3_DISK_STATE_STALE:
151		return ("STALE");
152	case G_RAID3_DISK_STATE_SYNCHRONIZING:
153		return ("SYNCHRONIZING");
154	case G_RAID3_DISK_STATE_DISCONNECTED:
155		return ("DISCONNECTED");
156	default:
157		return ("INVALID");
158	}
159}
160
161static const char *
162g_raid3_device_state2str(int state)
163{
164
165	switch (state) {
166	case G_RAID3_DEVICE_STATE_STARTING:
167		return ("STARTING");
168	case G_RAID3_DEVICE_STATE_DEGRADED:
169		return ("DEGRADED");
170	case G_RAID3_DEVICE_STATE_COMPLETE:
171		return ("COMPLETE");
172	default:
173		return ("INVALID");
174	}
175}
176
177const char *
178g_raid3_get_diskname(struct g_raid3_disk *disk)
179{
180
181	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
182		return ("[unknown]");
183	return (disk->d_name);
184}
185
186static void *
187g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
188{
189	void *ptr;
190	enum g_raid3_zones zone;
191
192	if (g_raid3_use_malloc ||
193	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
194		ptr = malloc(size, M_RAID3, flags);
195	else {
196		ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
197		   &sc->sc_zones[zone], flags);
198		sc->sc_zones[zone].sz_requested++;
199		if (ptr == NULL)
200			sc->sc_zones[zone].sz_failed++;
201	}
202	return (ptr);
203}
204
205static void
206g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
207{
208	enum g_raid3_zones zone;
209
210	if (g_raid3_use_malloc ||
211	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
212		free(ptr, M_RAID3);
213	else {
214		uma_zfree_arg(sc->sc_zones[zone].sz_zone,
215		    ptr, &sc->sc_zones[zone]);
216	}
217}
218
219static int
220g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
221{
222	struct g_raid3_zone *sz = arg;
223
224	if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
225		return (ENOMEM);
226	sz->sz_inuse++;
227	return (0);
228}
229
230static void
231g_raid3_uma_dtor(void *mem, int size, void *arg)
232{
233	struct g_raid3_zone *sz = arg;
234
235	sz->sz_inuse--;
236}
237
238#define	g_raid3_xor(src, dst, size)					\
239	_g_raid3_xor((uint64_t *)(src),					\
240	    (uint64_t *)(dst), (size_t)size)
241static void
242_g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
243{
244
245	KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
246	for (; size > 0; size -= 128) {
247		*dst++ ^= (*src++);
248		*dst++ ^= (*src++);
249		*dst++ ^= (*src++);
250		*dst++ ^= (*src++);
251		*dst++ ^= (*src++);
252		*dst++ ^= (*src++);
253		*dst++ ^= (*src++);
254		*dst++ ^= (*src++);
255		*dst++ ^= (*src++);
256		*dst++ ^= (*src++);
257		*dst++ ^= (*src++);
258		*dst++ ^= (*src++);
259		*dst++ ^= (*src++);
260		*dst++ ^= (*src++);
261		*dst++ ^= (*src++);
262		*dst++ ^= (*src++);
263	}
264}
265
266static int
267g_raid3_is_zero(struct bio *bp)
268{
269	static const uint64_t zeros[] = {
270	    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
271	};
272	u_char *addr;
273	ssize_t size;
274
275	size = bp->bio_length;
276	addr = (u_char *)bp->bio_data;
277	for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
278		if (bcmp(addr, zeros, sizeof(zeros)) != 0)
279			return (0);
280	}
281	return (1);
282}
283
284/*
285 * --- Events handling functions ---
286 * Events in geom_raid3 are used to maintain disks and device status
287 * from one thread to simplify locking.
288 */
289static void
290g_raid3_event_free(struct g_raid3_event *ep)
291{
292
293	free(ep, M_RAID3);
294}
295
296int
297g_raid3_event_send(void *arg, int state, int flags)
298{
299	struct g_raid3_softc *sc;
300	struct g_raid3_disk *disk;
301	struct g_raid3_event *ep;
302	int error;
303
304	ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
305	G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
306	if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
307		disk = NULL;
308		sc = arg;
309	} else {
310		disk = arg;
311		sc = disk->d_softc;
312	}
313	ep->e_disk = disk;
314	ep->e_state = state;
315	ep->e_flags = flags;
316	ep->e_error = 0;
317	mtx_lock(&sc->sc_events_mtx);
318	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
319	mtx_unlock(&sc->sc_events_mtx);
320	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
321	mtx_lock(&sc->sc_queue_mtx);
322	wakeup(sc);
323	wakeup(&sc->sc_queue);
324	mtx_unlock(&sc->sc_queue_mtx);
325	if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
326		return (0);
327	sx_assert(&sc->sc_lock, SX_XLOCKED);
328	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
329	sx_xunlock(&sc->sc_lock);
330	while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
331		mtx_lock(&sc->sc_events_mtx);
332		MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
333		    hz * 5);
334	}
335	error = ep->e_error;
336	g_raid3_event_free(ep);
337	sx_xlock(&sc->sc_lock);
338	return (error);
339}
340
341static struct g_raid3_event *
342g_raid3_event_get(struct g_raid3_softc *sc)
343{
344	struct g_raid3_event *ep;
345
346	mtx_lock(&sc->sc_events_mtx);
347	ep = TAILQ_FIRST(&sc->sc_events);
348	mtx_unlock(&sc->sc_events_mtx);
349	return (ep);
350}
351
352static void
353g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
354{
355
356	mtx_lock(&sc->sc_events_mtx);
357	TAILQ_REMOVE(&sc->sc_events, ep, e_next);
358	mtx_unlock(&sc->sc_events_mtx);
359}
360
361static void
362g_raid3_event_cancel(struct g_raid3_disk *disk)
363{
364	struct g_raid3_softc *sc;
365	struct g_raid3_event *ep, *tmpep;
366
367	sc = disk->d_softc;
368	sx_assert(&sc->sc_lock, SX_XLOCKED);
369
370	mtx_lock(&sc->sc_events_mtx);
371	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
372		if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
373			continue;
374		if (ep->e_disk != disk)
375			continue;
376		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
377		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
378			g_raid3_event_free(ep);
379		else {
380			ep->e_error = ECANCELED;
381			wakeup(ep);
382		}
383	}
384	mtx_unlock(&sc->sc_events_mtx);
385}
386
387/*
388 * Return the number of disks in the given state.
389 * If state is equal to -1, count all connected disks.
390 */
391u_int
392g_raid3_ndisks(struct g_raid3_softc *sc, int state)
393{
394	struct g_raid3_disk *disk;
395	u_int n, ndisks;
396
397	sx_assert(&sc->sc_lock, SX_LOCKED);
398
399	for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
400		disk = &sc->sc_disks[n];
401		if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
402			continue;
403		if (state == -1 || disk->d_state == state)
404			ndisks++;
405	}
406	return (ndisks);
407}
408
409static u_int
410g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
411{
412	struct bio *bp;
413	u_int nreqs = 0;
414
415	mtx_lock(&sc->sc_queue_mtx);
416	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
417		if (bp->bio_from == cp)
418			nreqs++;
419	}
420	mtx_unlock(&sc->sc_queue_mtx);
421	return (nreqs);
422}
423
424static int
425g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
426{
427
428	if (cp->index > 0) {
429		G_RAID3_DEBUG(2,
430		    "I/O requests for %s exist, can't destroy it now.",
431		    cp->provider->name);
432		return (1);
433	}
434	if (g_raid3_nrequests(sc, cp) > 0) {
435		G_RAID3_DEBUG(2,
436		    "I/O requests for %s in queue, can't destroy it now.",
437		    cp->provider->name);
438		return (1);
439	}
440	return (0);
441}
442
443static void
444g_raid3_destroy_consumer(void *arg, int flags __unused)
445{
446	struct g_consumer *cp;
447
448	g_topology_assert();
449
450	cp = arg;
451	G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
452	g_detach(cp);
453	g_destroy_consumer(cp);
454}
455
456static void
457g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
458{
459	struct g_provider *pp;
460	int retaste_wait;
461
462	g_topology_assert();
463
464	cp->private = NULL;
465	if (g_raid3_is_busy(sc, cp))
466		return;
467	G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
468	pp = cp->provider;
469	retaste_wait = 0;
470	if (cp->acw == 1) {
471		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
472			retaste_wait = 1;
473	}
474	G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
475	    -cp->acw, -cp->ace, 0);
476	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
477		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
478	if (retaste_wait) {
479		/*
480		 * After retaste event was send (inside g_access()), we can send
481		 * event to detach and destroy consumer.
482		 * A class, which has consumer to the given provider connected
483		 * will not receive retaste event for the provider.
484		 * This is the way how I ignore retaste events when I close
485		 * consumers opened for write: I detach and destroy consumer
486		 * after retaste event is sent.
487		 */
488		g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
489		return;
490	}
491	G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
492	g_detach(cp);
493	g_destroy_consumer(cp);
494}
495
496static int
497g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
498{
499	struct g_consumer *cp;
500	int error;
501
502	g_topology_assert_not();
503	KASSERT(disk->d_consumer == NULL,
504	    ("Disk already connected (device %s).", disk->d_softc->sc_name));
505
506	g_topology_lock();
507	cp = g_new_consumer(disk->d_softc->sc_geom);
508	error = g_attach(cp, pp);
509	if (error != 0) {
510		g_destroy_consumer(cp);
511		g_topology_unlock();
512		return (error);
513	}
514	error = g_access(cp, 1, 1, 1);
515		g_topology_unlock();
516	if (error != 0) {
517		g_detach(cp);
518		g_destroy_consumer(cp);
519		G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
520		    pp->name, error);
521		return (error);
522	}
523	disk->d_consumer = cp;
524	disk->d_consumer->private = disk;
525	disk->d_consumer->index = 0;
526	G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
527	return (0);
528}
529
530static void
531g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
532{
533
534	g_topology_assert();
535
536	if (cp == NULL)
537		return;
538	if (cp->provider != NULL)
539		g_raid3_kill_consumer(sc, cp);
540	else
541		g_destroy_consumer(cp);
542}
543
544/*
545 * Initialize disk. This means allocate memory, create consumer, attach it
546 * to the provider and open access (r1w1e1) to it.
547 */
548static struct g_raid3_disk *
549g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
550    struct g_raid3_metadata *md, int *errorp)
551{
552	struct g_raid3_disk *disk;
553	int error;
554
555	disk = &sc->sc_disks[md->md_no];
556	error = g_raid3_connect_disk(disk, pp);
557	if (error != 0) {
558		if (errorp != NULL)
559			*errorp = error;
560		return (NULL);
561	}
562	disk->d_state = G_RAID3_DISK_STATE_NONE;
563	disk->d_flags = md->md_dflags;
564	if (md->md_provider[0] != '\0')
565		disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
566	disk->d_sync.ds_consumer = NULL;
567	disk->d_sync.ds_offset = md->md_sync_offset;
568	disk->d_sync.ds_offset_done = md->md_sync_offset;
569	disk->d_genid = md->md_genid;
570	disk->d_sync.ds_syncid = md->md_syncid;
571	if (errorp != NULL)
572		*errorp = 0;
573	return (disk);
574}
575
576static void
577g_raid3_destroy_disk(struct g_raid3_disk *disk)
578{
579	struct g_raid3_softc *sc;
580
581	g_topology_assert_not();
582	sc = disk->d_softc;
583	sx_assert(&sc->sc_lock, SX_XLOCKED);
584
585	if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
586		return;
587	g_raid3_event_cancel(disk);
588	switch (disk->d_state) {
589	case G_RAID3_DISK_STATE_SYNCHRONIZING:
590		if (sc->sc_syncdisk != NULL)
591			g_raid3_sync_stop(sc, 1);
592		/* FALLTHROUGH */
593	case G_RAID3_DISK_STATE_NEW:
594	case G_RAID3_DISK_STATE_STALE:
595	case G_RAID3_DISK_STATE_ACTIVE:
596		g_topology_lock();
597		g_raid3_disconnect_consumer(sc, disk->d_consumer);
598		g_topology_unlock();
599		disk->d_consumer = NULL;
600		break;
601	default:
602		KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
603		    g_raid3_get_diskname(disk),
604		    g_raid3_disk_state2str(disk->d_state)));
605	}
606	disk->d_state = G_RAID3_DISK_STATE_NODISK;
607}
608
609static void
610g_raid3_destroy_device(struct g_raid3_softc *sc)
611{
612	struct g_raid3_event *ep;
613	struct g_raid3_disk *disk;
614	struct g_geom *gp;
615	struct g_consumer *cp;
616	u_int n;
617
618	g_topology_assert_not();
619	sx_assert(&sc->sc_lock, SX_XLOCKED);
620
621	gp = sc->sc_geom;
622	if (sc->sc_provider != NULL)
623		g_raid3_destroy_provider(sc);
624	for (n = 0; n < sc->sc_ndisks; n++) {
625		disk = &sc->sc_disks[n];
626		if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
627			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
628			g_raid3_update_metadata(disk);
629			g_raid3_destroy_disk(disk);
630		}
631	}
632	while ((ep = g_raid3_event_get(sc)) != NULL) {
633		g_raid3_event_remove(sc, ep);
634		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
635			g_raid3_event_free(ep);
636		else {
637			ep->e_error = ECANCELED;
638			ep->e_flags |= G_RAID3_EVENT_DONE;
639			G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
640			mtx_lock(&sc->sc_events_mtx);
641			wakeup(ep);
642			mtx_unlock(&sc->sc_events_mtx);
643		}
644	}
645	callout_drain(&sc->sc_callout);
646	cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
647	g_topology_lock();
648	if (cp != NULL)
649		g_raid3_disconnect_consumer(sc, cp);
650	g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
651	G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
652	g_wither_geom(gp, ENXIO);
653	g_topology_unlock();
654	if (!g_raid3_use_malloc) {
655		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
656		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
657		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
658	}
659	mtx_destroy(&sc->sc_queue_mtx);
660	mtx_destroy(&sc->sc_events_mtx);
661	sx_xunlock(&sc->sc_lock);
662	sx_destroy(&sc->sc_lock);
663}
664
665static void
666g_raid3_orphan(struct g_consumer *cp)
667{
668	struct g_raid3_disk *disk;
669
670	g_topology_assert();
671
672	disk = cp->private;
673	if (disk == NULL)
674		return;
675	disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
676	g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
677	    G_RAID3_EVENT_DONTWAIT);
678}
679
680static int
681g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
682{
683	struct g_raid3_softc *sc;
684	struct g_consumer *cp;
685	off_t offset, length;
686	u_char *sector;
687	int error = 0;
688
689	g_topology_assert_not();
690	sc = disk->d_softc;
691	sx_assert(&sc->sc_lock, SX_LOCKED);
692
693	cp = disk->d_consumer;
694	KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
695	KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
696	KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
697	    ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
698	    cp->acw, cp->ace));
699	length = cp->provider->sectorsize;
700	offset = cp->provider->mediasize - length;
701	sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
702	if (md != NULL)
703		raid3_metadata_encode(md, sector);
704	error = g_write_data(cp, offset, sector, length);
705	free(sector, M_RAID3);
706	if (error != 0) {
707		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
708			G_RAID3_DEBUG(0, "Cannot write metadata on %s "
709			    "(device=%s, error=%d).",
710			    g_raid3_get_diskname(disk), sc->sc_name, error);
711			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
712		} else {
713			G_RAID3_DEBUG(1, "Cannot write metadata on %s "
714			    "(device=%s, error=%d).",
715			    g_raid3_get_diskname(disk), sc->sc_name, error);
716		}
717		if (g_raid3_disconnect_on_failure &&
718		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
719			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
720			g_raid3_event_send(disk,
721			    G_RAID3_DISK_STATE_DISCONNECTED,
722			    G_RAID3_EVENT_DONTWAIT);
723		}
724	}
725	return (error);
726}
727
728int
729g_raid3_clear_metadata(struct g_raid3_disk *disk)
730{
731	int error;
732
733	g_topology_assert_not();
734	sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
735
736	error = g_raid3_write_metadata(disk, NULL);
737	if (error == 0) {
738		G_RAID3_DEBUG(2, "Metadata on %s cleared.",
739		    g_raid3_get_diskname(disk));
740	} else {
741		G_RAID3_DEBUG(0,
742		    "Cannot clear metadata on disk %s (error=%d).",
743		    g_raid3_get_diskname(disk), error);
744	}
745	return (error);
746}
747
748void
749g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
750{
751	struct g_raid3_softc *sc;
752	struct g_provider *pp;
753
754	sc = disk->d_softc;
755	strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
756	md->md_version = G_RAID3_VERSION;
757	strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
758	md->md_id = sc->sc_id;
759	md->md_all = sc->sc_ndisks;
760	md->md_genid = sc->sc_genid;
761	md->md_mediasize = sc->sc_mediasize;
762	md->md_sectorsize = sc->sc_sectorsize;
763	md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
764	md->md_no = disk->d_no;
765	md->md_syncid = disk->d_sync.ds_syncid;
766	md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
767	if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
768		md->md_sync_offset = 0;
769	else {
770		md->md_sync_offset =
771		    disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
772	}
773	if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
774		pp = disk->d_consumer->provider;
775	else
776		pp = NULL;
777	if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
778		strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
779	else
780		bzero(md->md_provider, sizeof(md->md_provider));
781	if (pp != NULL)
782		md->md_provsize = pp->mediasize;
783	else
784		md->md_provsize = 0;
785}
786
787void
788g_raid3_update_metadata(struct g_raid3_disk *disk)
789{
790	struct g_raid3_softc *sc;
791	struct g_raid3_metadata md;
792	int error;
793
794	g_topology_assert_not();
795	sc = disk->d_softc;
796	sx_assert(&sc->sc_lock, SX_LOCKED);
797
798	g_raid3_fill_metadata(disk, &md);
799	error = g_raid3_write_metadata(disk, &md);
800	if (error == 0) {
801		G_RAID3_DEBUG(2, "Metadata on %s updated.",
802		    g_raid3_get_diskname(disk));
803	} else {
804		G_RAID3_DEBUG(0,
805		    "Cannot update metadata on disk %s (error=%d).",
806		    g_raid3_get_diskname(disk), error);
807	}
808}
809
810static void
811g_raid3_bump_syncid(struct g_raid3_softc *sc)
812{
813	struct g_raid3_disk *disk;
814	u_int n;
815
816	g_topology_assert_not();
817	sx_assert(&sc->sc_lock, SX_XLOCKED);
818	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
819	    ("%s called with no active disks (device=%s).", __func__,
820	    sc->sc_name));
821
822	sc->sc_syncid++;
823	G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
824	    sc->sc_syncid);
825	for (n = 0; n < sc->sc_ndisks; n++) {
826		disk = &sc->sc_disks[n];
827		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
828		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
829			disk->d_sync.ds_syncid = sc->sc_syncid;
830			g_raid3_update_metadata(disk);
831		}
832	}
833}
834
835static void
836g_raid3_bump_genid(struct g_raid3_softc *sc)
837{
838	struct g_raid3_disk *disk;
839	u_int n;
840
841	g_topology_assert_not();
842	sx_assert(&sc->sc_lock, SX_XLOCKED);
843	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
844	    ("%s called with no active disks (device=%s).", __func__,
845	    sc->sc_name));
846
847	sc->sc_genid++;
848	G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
849	    sc->sc_genid);
850	for (n = 0; n < sc->sc_ndisks; n++) {
851		disk = &sc->sc_disks[n];
852		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
853		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
854			disk->d_genid = sc->sc_genid;
855			g_raid3_update_metadata(disk);
856		}
857	}
858}
859
860static int
861g_raid3_idle(struct g_raid3_softc *sc, int acw)
862{
863	struct g_raid3_disk *disk;
864	u_int i;
865	int timeout;
866
867	g_topology_assert_not();
868	sx_assert(&sc->sc_lock, SX_XLOCKED);
869
870	if (sc->sc_provider == NULL)
871		return (0);
872	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
873		return (0);
874	if (sc->sc_idle)
875		return (0);
876	if (sc->sc_writes > 0)
877		return (0);
878	if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
879		timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
880		if (!g_raid3_shutdown && timeout > 0)
881			return (timeout);
882	}
883	sc->sc_idle = 1;
884	for (i = 0; i < sc->sc_ndisks; i++) {
885		disk = &sc->sc_disks[i];
886		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
887			continue;
888		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
889		    g_raid3_get_diskname(disk), sc->sc_name);
890		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
891		g_raid3_update_metadata(disk);
892	}
893	return (0);
894}
895
896static void
897g_raid3_unidle(struct g_raid3_softc *sc)
898{
899	struct g_raid3_disk *disk;
900	u_int i;
901
902	g_topology_assert_not();
903	sx_assert(&sc->sc_lock, SX_XLOCKED);
904
905	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
906		return;
907	sc->sc_idle = 0;
908	sc->sc_last_write = time_uptime;
909	for (i = 0; i < sc->sc_ndisks; i++) {
910		disk = &sc->sc_disks[i];
911		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
912			continue;
913		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
914		    g_raid3_get_diskname(disk), sc->sc_name);
915		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
916		g_raid3_update_metadata(disk);
917	}
918}
919
920/*
921 * Treat bio_driver1 field in parent bio as list head and field bio_caller1
922 * in child bio as pointer to the next element on the list.
923 */
924#define	G_RAID3_HEAD_BIO(pbp)	(pbp)->bio_driver1
925
926#define	G_RAID3_NEXT_BIO(cbp)	(cbp)->bio_caller1
927
928#define	G_RAID3_FOREACH_BIO(pbp, bp)					\
929	for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;		\
930	    (bp) = G_RAID3_NEXT_BIO(bp))
931
932#define	G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)			\
933	for ((bp) = G_RAID3_HEAD_BIO(pbp);				\
934	    (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);	\
935	    (bp) = (tmpbp))
936
937static void
938g_raid3_init_bio(struct bio *pbp)
939{
940
941	G_RAID3_HEAD_BIO(pbp) = NULL;
942}
943
944static void
945g_raid3_remove_bio(struct bio *cbp)
946{
947	struct bio *pbp, *bp;
948
949	pbp = cbp->bio_parent;
950	if (G_RAID3_HEAD_BIO(pbp) == cbp)
951		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
952	else {
953		G_RAID3_FOREACH_BIO(pbp, bp) {
954			if (G_RAID3_NEXT_BIO(bp) == cbp) {
955				G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
956				break;
957			}
958		}
959	}
960	G_RAID3_NEXT_BIO(cbp) = NULL;
961}
962
963static void
964g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
965{
966	struct bio *pbp, *bp;
967
968	g_raid3_remove_bio(sbp);
969	pbp = dbp->bio_parent;
970	G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
971	if (G_RAID3_HEAD_BIO(pbp) == dbp)
972		G_RAID3_HEAD_BIO(pbp) = sbp;
973	else {
974		G_RAID3_FOREACH_BIO(pbp, bp) {
975			if (G_RAID3_NEXT_BIO(bp) == dbp) {
976				G_RAID3_NEXT_BIO(bp) = sbp;
977				break;
978			}
979		}
980	}
981	G_RAID3_NEXT_BIO(dbp) = NULL;
982}
983
984static void
985g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
986{
987	struct bio *bp, *pbp;
988	size_t size;
989
990	pbp = cbp->bio_parent;
991	pbp->bio_children--;
992	KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
993	size = pbp->bio_length / (sc->sc_ndisks - 1);
994	g_raid3_free(sc, cbp->bio_data, size);
995	if (G_RAID3_HEAD_BIO(pbp) == cbp) {
996		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
997		G_RAID3_NEXT_BIO(cbp) = NULL;
998		g_destroy_bio(cbp);
999	} else {
1000		G_RAID3_FOREACH_BIO(pbp, bp) {
1001			if (G_RAID3_NEXT_BIO(bp) == cbp)
1002				break;
1003		}
1004		if (bp != NULL) {
1005			KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
1006			    ("NULL bp->bio_driver1"));
1007			G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1008			G_RAID3_NEXT_BIO(cbp) = NULL;
1009		}
1010		g_destroy_bio(cbp);
1011	}
1012}
1013
1014static struct bio *
1015g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1016{
1017	struct bio *bp, *cbp;
1018	size_t size;
1019	int memflag;
1020
1021	cbp = g_clone_bio(pbp);
1022	if (cbp == NULL)
1023		return (NULL);
1024	size = pbp->bio_length / (sc->sc_ndisks - 1);
1025	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1026		memflag = M_WAITOK;
1027	else
1028		memflag = M_NOWAIT;
1029	cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1030	if (cbp->bio_data == NULL) {
1031		pbp->bio_children--;
1032		g_destroy_bio(cbp);
1033		return (NULL);
1034	}
1035	G_RAID3_NEXT_BIO(cbp) = NULL;
1036	if (G_RAID3_HEAD_BIO(pbp) == NULL)
1037		G_RAID3_HEAD_BIO(pbp) = cbp;
1038	else {
1039		G_RAID3_FOREACH_BIO(pbp, bp) {
1040			if (G_RAID3_NEXT_BIO(bp) == NULL) {
1041				G_RAID3_NEXT_BIO(bp) = cbp;
1042				break;
1043			}
1044		}
1045	}
1046	return (cbp);
1047}
1048
1049static void
1050g_raid3_scatter(struct bio *pbp)
1051{
1052	struct g_raid3_softc *sc;
1053	struct g_raid3_disk *disk;
1054	struct bio *bp, *cbp, *tmpbp;
1055	off_t atom, cadd, padd, left;
1056	int first;
1057
1058	sc = pbp->bio_to->geom->softc;
1059	bp = NULL;
1060	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1061		/*
1062		 * Find bio for which we should calculate data.
1063		 */
1064		G_RAID3_FOREACH_BIO(pbp, cbp) {
1065			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1066				bp = cbp;
1067				break;
1068			}
1069		}
1070		KASSERT(bp != NULL, ("NULL parity bio."));
1071	}
1072	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1073	cadd = padd = 0;
1074	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1075		G_RAID3_FOREACH_BIO(pbp, cbp) {
1076			if (cbp == bp)
1077				continue;
1078			bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1079			padd += atom;
1080		}
1081		cadd += atom;
1082	}
1083	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1084		/*
1085		 * Calculate parity.
1086		 */
1087		first = 1;
1088		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1089			if (cbp == bp)
1090				continue;
1091			if (first) {
1092				bcopy(cbp->bio_data, bp->bio_data,
1093				    bp->bio_length);
1094				first = 0;
1095			} else {
1096				g_raid3_xor(cbp->bio_data, bp->bio_data,
1097				    bp->bio_length);
1098			}
1099			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1100				g_raid3_destroy_bio(sc, cbp);
1101		}
1102	}
1103	G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1104		struct g_consumer *cp;
1105
1106		disk = cbp->bio_caller2;
1107		cp = disk->d_consumer;
1108		cbp->bio_to = cp->provider;
1109		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1110		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1111		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1112		    cp->acr, cp->acw, cp->ace));
1113		cp->index++;
1114		sc->sc_writes++;
1115		g_io_request(cbp, cp);
1116	}
1117}
1118
1119static void
1120g_raid3_gather(struct bio *pbp)
1121{
1122	struct g_raid3_softc *sc;
1123	struct g_raid3_disk *disk;
1124	struct bio *xbp, *fbp, *cbp;
1125	off_t atom, cadd, padd, left;
1126
1127	sc = pbp->bio_to->geom->softc;
1128	/*
1129	 * Find bio for which we have to calculate data.
1130	 * While going through this path, check if all requests
1131	 * succeeded, if not, deny whole request.
1132	 * If we're in COMPLETE mode, we allow one request to fail,
1133	 * so if we find one, we're sending it to the parity consumer.
1134	 * If there are more failed requests, we deny whole request.
1135	 */
1136	xbp = fbp = NULL;
1137	G_RAID3_FOREACH_BIO(pbp, cbp) {
1138		if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1139			KASSERT(xbp == NULL, ("More than one parity bio."));
1140			xbp = cbp;
1141		}
1142		if (cbp->bio_error == 0)
1143			continue;
1144		/*
1145		 * Found failed request.
1146		 */
1147		if (fbp == NULL) {
1148			if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1149				/*
1150				 * We are already in degraded mode, so we can't
1151				 * accept any failures.
1152				 */
1153				if (pbp->bio_error == 0)
1154					pbp->bio_error = cbp->bio_error;
1155			} else {
1156				fbp = cbp;
1157			}
1158		} else {
1159			/*
1160			 * Next failed request, that's too many.
1161			 */
1162			if (pbp->bio_error == 0)
1163				pbp->bio_error = fbp->bio_error;
1164		}
1165		disk = cbp->bio_caller2;
1166		if (disk == NULL)
1167			continue;
1168		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1169			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1170			G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1171			    cbp->bio_error);
1172		} else {
1173			G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1174			    cbp->bio_error);
1175		}
1176		if (g_raid3_disconnect_on_failure &&
1177		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1178			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1179			g_raid3_event_send(disk,
1180			    G_RAID3_DISK_STATE_DISCONNECTED,
1181			    G_RAID3_EVENT_DONTWAIT);
1182		}
1183	}
1184	if (pbp->bio_error != 0)
1185		goto finish;
1186	if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1187		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1188		if (xbp != fbp)
1189			g_raid3_replace_bio(xbp, fbp);
1190		g_raid3_destroy_bio(sc, fbp);
1191	} else if (fbp != NULL) {
1192		struct g_consumer *cp;
1193
1194		/*
1195		 * One request failed, so send the same request to
1196		 * the parity consumer.
1197		 */
1198		disk = pbp->bio_driver2;
1199		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1200			pbp->bio_error = fbp->bio_error;
1201			goto finish;
1202		}
1203		pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1204		pbp->bio_inbed--;
1205		fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1206		if (disk->d_no == sc->sc_ndisks - 1)
1207			fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1208		fbp->bio_error = 0;
1209		fbp->bio_completed = 0;
1210		fbp->bio_children = 0;
1211		fbp->bio_inbed = 0;
1212		cp = disk->d_consumer;
1213		fbp->bio_caller2 = disk;
1214		fbp->bio_to = cp->provider;
1215		G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1216		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1217		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1218		    cp->acr, cp->acw, cp->ace));
1219		cp->index++;
1220		g_io_request(fbp, cp);
1221		return;
1222	}
1223	if (xbp != NULL) {
1224		/*
1225		 * Calculate parity.
1226		 */
1227		G_RAID3_FOREACH_BIO(pbp, cbp) {
1228			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1229				continue;
1230			g_raid3_xor(cbp->bio_data, xbp->bio_data,
1231			    xbp->bio_length);
1232		}
1233		xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1234		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1235			if (!g_raid3_is_zero(xbp)) {
1236				g_raid3_parity_mismatch++;
1237				pbp->bio_error = EIO;
1238				goto finish;
1239			}
1240			g_raid3_destroy_bio(sc, xbp);
1241		}
1242	}
1243	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1244	cadd = padd = 0;
1245	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1246		G_RAID3_FOREACH_BIO(pbp, cbp) {
1247			bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1248			pbp->bio_completed += atom;
1249			padd += atom;
1250		}
1251		cadd += atom;
1252	}
1253finish:
1254	if (pbp->bio_error == 0)
1255		G_RAID3_LOGREQ(3, pbp, "Request finished.");
1256	else {
1257		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1258			G_RAID3_LOGREQ(1, pbp, "Verification error.");
1259		else
1260			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1261	}
1262	pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1263	while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1264		g_raid3_destroy_bio(sc, cbp);
1265	g_io_deliver(pbp, pbp->bio_error);
1266}
1267
1268static void
1269g_raid3_done(struct bio *bp)
1270{
1271	struct g_raid3_softc *sc;
1272
1273	sc = bp->bio_from->geom->softc;
1274	bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1275	G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1276	mtx_lock(&sc->sc_queue_mtx);
1277	bioq_insert_head(&sc->sc_queue, bp);
1278	mtx_unlock(&sc->sc_queue_mtx);
1279	wakeup(sc);
1280	wakeup(&sc->sc_queue);
1281}
1282
1283static void
1284g_raid3_regular_request(struct bio *cbp)
1285{
1286	struct g_raid3_softc *sc;
1287	struct g_raid3_disk *disk;
1288	struct bio *pbp;
1289
1290	g_topology_assert_not();
1291
1292	pbp = cbp->bio_parent;
1293	sc = pbp->bio_to->geom->softc;
1294	cbp->bio_from->index--;
1295	if (cbp->bio_cmd == BIO_WRITE)
1296		sc->sc_writes--;
1297	disk = cbp->bio_from->private;
1298	if (disk == NULL) {
1299		g_topology_lock();
1300		g_raid3_kill_consumer(sc, cbp->bio_from);
1301		g_topology_unlock();
1302	}
1303
1304	G_RAID3_LOGREQ(3, cbp, "Request finished.");
1305	pbp->bio_inbed++;
1306	KASSERT(pbp->bio_inbed <= pbp->bio_children,
1307	    ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1308	    pbp->bio_children));
1309	if (pbp->bio_inbed != pbp->bio_children)
1310		return;
1311	switch (pbp->bio_cmd) {
1312	case BIO_READ:
1313		g_raid3_gather(pbp);
1314		break;
1315	case BIO_WRITE:
1316	case BIO_DELETE:
1317	    {
1318		int error = 0;
1319
1320		pbp->bio_completed = pbp->bio_length;
1321		while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1322			if (cbp->bio_error == 0) {
1323				g_raid3_destroy_bio(sc, cbp);
1324				continue;
1325			}
1326
1327			if (error == 0)
1328				error = cbp->bio_error;
1329			else if (pbp->bio_error == 0) {
1330				/*
1331				 * Next failed request, that's too many.
1332				 */
1333				pbp->bio_error = error;
1334			}
1335
1336			disk = cbp->bio_caller2;
1337			if (disk == NULL) {
1338				g_raid3_destroy_bio(sc, cbp);
1339				continue;
1340			}
1341
1342			if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1343				disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1344				G_RAID3_LOGREQ(0, cbp,
1345				    "Request failed (error=%d).",
1346				    cbp->bio_error);
1347			} else {
1348				G_RAID3_LOGREQ(1, cbp,
1349				    "Request failed (error=%d).",
1350				    cbp->bio_error);
1351			}
1352			if (g_raid3_disconnect_on_failure &&
1353			    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1354				sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1355				g_raid3_event_send(disk,
1356				    G_RAID3_DISK_STATE_DISCONNECTED,
1357				    G_RAID3_EVENT_DONTWAIT);
1358			}
1359			g_raid3_destroy_bio(sc, cbp);
1360		}
1361		if (pbp->bio_error == 0)
1362			G_RAID3_LOGREQ(3, pbp, "Request finished.");
1363		else
1364			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1365		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1366		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1367		bioq_remove(&sc->sc_inflight, pbp);
1368		/* Release delayed sync requests if possible. */
1369		g_raid3_sync_release(sc);
1370		g_io_deliver(pbp, pbp->bio_error);
1371		break;
1372	    }
1373	}
1374}
1375
1376static void
1377g_raid3_sync_done(struct bio *bp)
1378{
1379	struct g_raid3_softc *sc;
1380
1381	G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1382	sc = bp->bio_from->geom->softc;
1383	bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1384	mtx_lock(&sc->sc_queue_mtx);
1385	bioq_insert_head(&sc->sc_queue, bp);
1386	mtx_unlock(&sc->sc_queue_mtx);
1387	wakeup(sc);
1388	wakeup(&sc->sc_queue);
1389}
1390
1391static void
1392g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1393{
1394	struct bio_queue_head queue;
1395	struct g_raid3_disk *disk;
1396	struct g_consumer *cp;
1397	struct bio *cbp;
1398	u_int i;
1399
1400	bioq_init(&queue);
1401	for (i = 0; i < sc->sc_ndisks; i++) {
1402		disk = &sc->sc_disks[i];
1403		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1404			continue;
1405		cbp = g_clone_bio(bp);
1406		if (cbp == NULL) {
1407			for (cbp = bioq_first(&queue); cbp != NULL;
1408			    cbp = bioq_first(&queue)) {
1409				bioq_remove(&queue, cbp);
1410				g_destroy_bio(cbp);
1411			}
1412			if (bp->bio_error == 0)
1413				bp->bio_error = ENOMEM;
1414			g_io_deliver(bp, bp->bio_error);
1415			return;
1416		}
1417		bioq_insert_tail(&queue, cbp);
1418		cbp->bio_done = g_std_done;
1419		cbp->bio_caller1 = disk;
1420		cbp->bio_to = disk->d_consumer->provider;
1421	}
1422	for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1423		bioq_remove(&queue, cbp);
1424		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1425		disk = cbp->bio_caller1;
1426		cbp->bio_caller1 = NULL;
1427		cp = disk->d_consumer;
1428		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1429		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1430		    cp->acr, cp->acw, cp->ace));
1431		g_io_request(cbp, disk->d_consumer);
1432	}
1433}
1434
1435static void
1436g_raid3_start(struct bio *bp)
1437{
1438	struct g_raid3_softc *sc;
1439
1440	sc = bp->bio_to->geom->softc;
1441	/*
1442	 * If sc == NULL or there are no valid disks, provider's error
1443	 * should be set and g_raid3_start() should not be called at all.
1444	 */
1445	KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1446	    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1447	    ("Provider's error should be set (error=%d)(device=%s).",
1448	    bp->bio_to->error, bp->bio_to->name));
1449	G_RAID3_LOGREQ(3, bp, "Request received.");
1450
1451	switch (bp->bio_cmd) {
1452	case BIO_READ:
1453	case BIO_WRITE:
1454	case BIO_DELETE:
1455		break;
1456	case BIO_FLUSH:
1457		g_raid3_flush(sc, bp);
1458		return;
1459	case BIO_GETATTR:
1460	default:
1461		g_io_deliver(bp, EOPNOTSUPP);
1462		return;
1463	}
1464	mtx_lock(&sc->sc_queue_mtx);
1465	bioq_insert_tail(&sc->sc_queue, bp);
1466	mtx_unlock(&sc->sc_queue_mtx);
1467	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1468	wakeup(sc);
1469}
1470
1471/*
1472 * Return TRUE if the given request is colliding with a in-progress
1473 * synchronization request.
1474 */
1475static int
1476g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1477{
1478	struct g_raid3_disk *disk;
1479	struct bio *sbp;
1480	off_t rstart, rend, sstart, send;
1481	int i;
1482
1483	disk = sc->sc_syncdisk;
1484	if (disk == NULL)
1485		return (0);
1486	rstart = bp->bio_offset;
1487	rend = bp->bio_offset + bp->bio_length;
1488	for (i = 0; i < g_raid3_syncreqs; i++) {
1489		sbp = disk->d_sync.ds_bios[i];
1490		if (sbp == NULL)
1491			continue;
1492		sstart = sbp->bio_offset;
1493		send = sbp->bio_length;
1494		if (sbp->bio_cmd == BIO_WRITE) {
1495			sstart *= sc->sc_ndisks - 1;
1496			send *= sc->sc_ndisks - 1;
1497		}
1498		send += sstart;
1499		if (rend > sstart && rstart < send)
1500			return (1);
1501	}
1502	return (0);
1503}
1504
1505/*
1506 * Return TRUE if the given sync request is colliding with a in-progress regular
1507 * request.
1508 */
1509static int
1510g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1511{
1512	off_t rstart, rend, sstart, send;
1513	struct bio *bp;
1514
1515	if (sc->sc_syncdisk == NULL)
1516		return (0);
1517	sstart = sbp->bio_offset;
1518	send = sstart + sbp->bio_length;
1519	TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1520		rstart = bp->bio_offset;
1521		rend = bp->bio_offset + bp->bio_length;
1522		if (rend > sstart && rstart < send)
1523			return (1);
1524	}
1525	return (0);
1526}
1527
1528/*
1529 * Puts request onto delayed queue.
1530 */
1531static void
1532g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1533{
1534
1535	G_RAID3_LOGREQ(2, bp, "Delaying request.");
1536	bioq_insert_head(&sc->sc_regular_delayed, bp);
1537}
1538
1539/*
1540 * Puts synchronization request onto delayed queue.
1541 */
1542static void
1543g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1544{
1545
1546	G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1547	bioq_insert_tail(&sc->sc_sync_delayed, bp);
1548}
1549
1550/*
1551 * Releases delayed regular requests which don't collide anymore with sync
1552 * requests.
1553 */
1554static void
1555g_raid3_regular_release(struct g_raid3_softc *sc)
1556{
1557	struct bio *bp, *bp2;
1558
1559	TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1560		if (g_raid3_sync_collision(sc, bp))
1561			continue;
1562		bioq_remove(&sc->sc_regular_delayed, bp);
1563		G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1564		mtx_lock(&sc->sc_queue_mtx);
1565		bioq_insert_head(&sc->sc_queue, bp);
1566#if 0
1567		/*
1568		 * wakeup() is not needed, because this function is called from
1569		 * the worker thread.
1570		 */
1571		wakeup(&sc->sc_queue);
1572#endif
1573		mtx_unlock(&sc->sc_queue_mtx);
1574	}
1575}
1576
1577/*
1578 * Releases delayed sync requests which don't collide anymore with regular
1579 * requests.
1580 */
1581static void
1582g_raid3_sync_release(struct g_raid3_softc *sc)
1583{
1584	struct bio *bp, *bp2;
1585
1586	TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1587		if (g_raid3_regular_collision(sc, bp))
1588			continue;
1589		bioq_remove(&sc->sc_sync_delayed, bp);
1590		G_RAID3_LOGREQ(2, bp,
1591		    "Releasing delayed synchronization request.");
1592		g_io_request(bp, bp->bio_from);
1593	}
1594}
1595
1596/*
1597 * Handle synchronization requests.
1598 * Every synchronization request is two-steps process: first, READ request is
1599 * send to active provider and then WRITE request (with read data) to the provider
1600 * beeing synchronized. When WRITE is finished, new synchronization request is
1601 * send.
1602 */
1603static void
1604g_raid3_sync_request(struct bio *bp)
1605{
1606	struct g_raid3_softc *sc;
1607	struct g_raid3_disk *disk;
1608
1609	bp->bio_from->index--;
1610	sc = bp->bio_from->geom->softc;
1611	disk = bp->bio_from->private;
1612	if (disk == NULL) {
1613		sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1614		g_topology_lock();
1615		g_raid3_kill_consumer(sc, bp->bio_from);
1616		g_topology_unlock();
1617		free(bp->bio_data, M_RAID3);
1618		g_destroy_bio(bp);
1619		sx_xlock(&sc->sc_lock);
1620		return;
1621	}
1622
1623	/*
1624	 * Synchronization request.
1625	 */
1626	switch (bp->bio_cmd) {
1627	case BIO_READ:
1628	    {
1629		struct g_consumer *cp;
1630		u_char *dst, *src;
1631		off_t left;
1632		u_int atom;
1633
1634		if (bp->bio_error != 0) {
1635			G_RAID3_LOGREQ(0, bp,
1636			    "Synchronization request failed (error=%d).",
1637			    bp->bio_error);
1638			g_destroy_bio(bp);
1639			return;
1640		}
1641		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1642		atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1643		dst = src = bp->bio_data;
1644		if (disk->d_no == sc->sc_ndisks - 1) {
1645			u_int n;
1646
1647			/* Parity component. */
1648			for (left = bp->bio_length; left > 0;
1649			    left -= sc->sc_sectorsize) {
1650				bcopy(src, dst, atom);
1651				src += atom;
1652				for (n = 1; n < sc->sc_ndisks - 1; n++) {
1653					g_raid3_xor(src, dst, atom);
1654					src += atom;
1655				}
1656				dst += atom;
1657			}
1658		} else {
1659			/* Regular component. */
1660			src += atom * disk->d_no;
1661			for (left = bp->bio_length; left > 0;
1662			    left -= sc->sc_sectorsize) {
1663				bcopy(src, dst, atom);
1664				src += sc->sc_sectorsize;
1665				dst += atom;
1666			}
1667		}
1668		bp->bio_driver1 = bp->bio_driver2 = NULL;
1669		bp->bio_pflags = 0;
1670		bp->bio_offset /= sc->sc_ndisks - 1;
1671		bp->bio_length /= sc->sc_ndisks - 1;
1672		bp->bio_cmd = BIO_WRITE;
1673		bp->bio_cflags = 0;
1674		bp->bio_children = bp->bio_inbed = 0;
1675		cp = disk->d_consumer;
1676		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1677		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1678		    cp->acr, cp->acw, cp->ace));
1679		cp->index++;
1680		g_io_request(bp, cp);
1681		return;
1682	    }
1683	case BIO_WRITE:
1684	    {
1685		struct g_raid3_disk_sync *sync;
1686		off_t boffset, moffset;
1687		void *data;
1688		int i;
1689
1690		if (bp->bio_error != 0) {
1691			G_RAID3_LOGREQ(0, bp,
1692			    "Synchronization request failed (error=%d).",
1693			    bp->bio_error);
1694			g_destroy_bio(bp);
1695			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1696			g_raid3_event_send(disk,
1697			    G_RAID3_DISK_STATE_DISCONNECTED,
1698			    G_RAID3_EVENT_DONTWAIT);
1699			return;
1700		}
1701		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1702		sync = &disk->d_sync;
1703		if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1704		    sync->ds_consumer == NULL ||
1705		    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1706			/* Don't send more synchronization requests. */
1707			sync->ds_inflight--;
1708			if (sync->ds_bios != NULL) {
1709				i = (int)(uintptr_t)bp->bio_caller1;
1710				sync->ds_bios[i] = NULL;
1711			}
1712			free(bp->bio_data, M_RAID3);
1713			g_destroy_bio(bp);
1714			if (sync->ds_inflight > 0)
1715				return;
1716			if (sync->ds_consumer == NULL ||
1717			    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1718				return;
1719			}
1720			/*
1721			 * Disk up-to-date, activate it.
1722			 */
1723			g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1724			    G_RAID3_EVENT_DONTWAIT);
1725			return;
1726		}
1727
1728		/* Send next synchronization request. */
1729		data = bp->bio_data;
1730		bzero(bp, sizeof(*bp));
1731		bp->bio_cmd = BIO_READ;
1732		bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1733		bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1734		sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1735		bp->bio_done = g_raid3_sync_done;
1736		bp->bio_data = data;
1737		bp->bio_from = sync->ds_consumer;
1738		bp->bio_to = sc->sc_provider;
1739		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1740		sync->ds_consumer->index++;
1741		/*
1742		 * Delay the request if it is colliding with a regular request.
1743		 */
1744		if (g_raid3_regular_collision(sc, bp))
1745			g_raid3_sync_delay(sc, bp);
1746		else
1747			g_io_request(bp, sync->ds_consumer);
1748
1749		/* Release delayed requests if possible. */
1750		g_raid3_regular_release(sc);
1751
1752		/* Find the smallest offset. */
1753		moffset = sc->sc_mediasize;
1754		for (i = 0; i < g_raid3_syncreqs; i++) {
1755			bp = sync->ds_bios[i];
1756			boffset = bp->bio_offset;
1757			if (bp->bio_cmd == BIO_WRITE)
1758				boffset *= sc->sc_ndisks - 1;
1759			if (boffset < moffset)
1760				moffset = boffset;
1761		}
1762		if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1763			/* Update offset_done on every 100 blocks. */
1764			sync->ds_offset_done = moffset;
1765			g_raid3_update_metadata(disk);
1766		}
1767		return;
1768	    }
1769	default:
1770		KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1771		    bp->bio_cmd, sc->sc_name));
1772		break;
1773	}
1774}
1775
1776static int
1777g_raid3_register_request(struct bio *pbp)
1778{
1779	struct g_raid3_softc *sc;
1780	struct g_raid3_disk *disk;
1781	struct g_consumer *cp;
1782	struct bio *cbp, *tmpbp;
1783	off_t offset, length;
1784	u_int n, ndisks;
1785	int round_robin, verify;
1786
1787	ndisks = 0;
1788	sc = pbp->bio_to->geom->softc;
1789	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1790	    sc->sc_syncdisk == NULL) {
1791		g_io_deliver(pbp, EIO);
1792		return (0);
1793	}
1794	g_raid3_init_bio(pbp);
1795	length = pbp->bio_length / (sc->sc_ndisks - 1);
1796	offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1797	round_robin = verify = 0;
1798	switch (pbp->bio_cmd) {
1799	case BIO_READ:
1800		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1801		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1802			pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1803			verify = 1;
1804			ndisks = sc->sc_ndisks;
1805		} else {
1806			verify = 0;
1807			ndisks = sc->sc_ndisks - 1;
1808		}
1809		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1810		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1811			round_robin = 1;
1812		} else {
1813			round_robin = 0;
1814		}
1815		KASSERT(!round_robin || !verify,
1816		    ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1817		pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1818		break;
1819	case BIO_WRITE:
1820	case BIO_DELETE:
1821		/*
1822		 * Delay the request if it is colliding with a synchronization
1823		 * request.
1824		 */
1825		if (g_raid3_sync_collision(sc, pbp)) {
1826			g_raid3_regular_delay(sc, pbp);
1827			return (0);
1828		}
1829
1830		if (sc->sc_idle)
1831			g_raid3_unidle(sc);
1832		else
1833			sc->sc_last_write = time_uptime;
1834
1835		ndisks = sc->sc_ndisks;
1836		break;
1837	}
1838	for (n = 0; n < ndisks; n++) {
1839		disk = &sc->sc_disks[n];
1840		cbp = g_raid3_clone_bio(sc, pbp);
1841		if (cbp == NULL) {
1842			while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1843				g_raid3_destroy_bio(sc, cbp);
1844			/*
1845			 * To prevent deadlock, we must run back up
1846			 * with the ENOMEM for failed requests of any
1847			 * of our consumers.  Our own sync requests
1848			 * can stick around, as they are finite.
1849			 */
1850			if ((pbp->bio_cflags &
1851			    G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1852				g_io_deliver(pbp, ENOMEM);
1853				return (0);
1854			}
1855			return (ENOMEM);
1856		}
1857		cbp->bio_offset = offset;
1858		cbp->bio_length = length;
1859		cbp->bio_done = g_raid3_done;
1860		switch (pbp->bio_cmd) {
1861		case BIO_READ:
1862			if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1863				/*
1864				 * Replace invalid component with the parity
1865				 * component.
1866				 */
1867				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1868				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1869				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1870			} else if (round_robin &&
1871			    disk->d_no == sc->sc_round_robin) {
1872				/*
1873				 * In round-robin mode skip one data component
1874				 * and use parity component when reading.
1875				 */
1876				pbp->bio_driver2 = disk;
1877				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1878				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1879				sc->sc_round_robin++;
1880				round_robin = 0;
1881			} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1882				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1883			}
1884			break;
1885		case BIO_WRITE:
1886		case BIO_DELETE:
1887			if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1888			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1889				if (n == ndisks - 1) {
1890					/*
1891					 * Active parity component, mark it as such.
1892					 */
1893					cbp->bio_cflags |=
1894					    G_RAID3_BIO_CFLAG_PARITY;
1895				}
1896			} else {
1897				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1898				if (n == ndisks - 1) {
1899					/*
1900					 * Parity component is not connected,
1901					 * so destroy its request.
1902					 */
1903					pbp->bio_pflags |=
1904					    G_RAID3_BIO_PFLAG_NOPARITY;
1905					g_raid3_destroy_bio(sc, cbp);
1906					cbp = NULL;
1907				} else {
1908					cbp->bio_cflags |=
1909					    G_RAID3_BIO_CFLAG_NODISK;
1910					disk = NULL;
1911				}
1912			}
1913			break;
1914		}
1915		if (cbp != NULL)
1916			cbp->bio_caller2 = disk;
1917	}
1918	switch (pbp->bio_cmd) {
1919	case BIO_READ:
1920		if (round_robin) {
1921			/*
1922			 * If we are in round-robin mode and 'round_robin' is
1923			 * still 1, it means, that we skipped parity component
1924			 * for this read and must reset sc_round_robin field.
1925			 */
1926			sc->sc_round_robin = 0;
1927		}
1928		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1929			disk = cbp->bio_caller2;
1930			cp = disk->d_consumer;
1931			cbp->bio_to = cp->provider;
1932			G_RAID3_LOGREQ(3, cbp, "Sending request.");
1933			KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1934			    ("Consumer %s not opened (r%dw%de%d).",
1935			    cp->provider->name, cp->acr, cp->acw, cp->ace));
1936			cp->index++;
1937			g_io_request(cbp, cp);
1938		}
1939		break;
1940	case BIO_WRITE:
1941	case BIO_DELETE:
1942		/*
1943		 * Put request onto inflight queue, so we can check if new
1944		 * synchronization requests don't collide with it.
1945		 */
1946		bioq_insert_tail(&sc->sc_inflight, pbp);
1947
1948		/*
1949		 * Bump syncid on first write.
1950		 */
1951		if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1952			sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1953			g_raid3_bump_syncid(sc);
1954		}
1955		g_raid3_scatter(pbp);
1956		break;
1957	}
1958	return (0);
1959}
1960
1961static int
1962g_raid3_can_destroy(struct g_raid3_softc *sc)
1963{
1964	struct g_geom *gp;
1965	struct g_consumer *cp;
1966
1967	g_topology_assert();
1968	gp = sc->sc_geom;
1969	if (gp->softc == NULL)
1970		return (1);
1971	LIST_FOREACH(cp, &gp->consumer, consumer) {
1972		if (g_raid3_is_busy(sc, cp))
1973			return (0);
1974	}
1975	gp = sc->sc_sync.ds_geom;
1976	LIST_FOREACH(cp, &gp->consumer, consumer) {
1977		if (g_raid3_is_busy(sc, cp))
1978			return (0);
1979	}
1980	G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1981	    sc->sc_name);
1982	return (1);
1983}
1984
1985static int
1986g_raid3_try_destroy(struct g_raid3_softc *sc)
1987{
1988
1989	g_topology_assert_not();
1990	sx_assert(&sc->sc_lock, SX_XLOCKED);
1991
1992	if (sc->sc_rootmount != NULL) {
1993		G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1994		    sc->sc_rootmount);
1995		root_mount_rel(sc->sc_rootmount);
1996		sc->sc_rootmount = NULL;
1997	}
1998
1999	g_topology_lock();
2000	if (!g_raid3_can_destroy(sc)) {
2001		g_topology_unlock();
2002		return (0);
2003	}
2004	sc->sc_geom->softc = NULL;
2005	sc->sc_sync.ds_geom->softc = NULL;
2006	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2007		g_topology_unlock();
2008		G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2009		    &sc->sc_worker);
2010		/* Unlock sc_lock here, as it can be destroyed after wakeup. */
2011		sx_xunlock(&sc->sc_lock);
2012		wakeup(&sc->sc_worker);
2013		sc->sc_worker = NULL;
2014	} else {
2015		g_topology_unlock();
2016		g_raid3_destroy_device(sc);
2017		free(sc->sc_disks, M_RAID3);
2018		free(sc, M_RAID3);
2019	}
2020	return (1);
2021}
2022
2023/*
2024 * Worker thread.
2025 */
2026static void
2027g_raid3_worker(void *arg)
2028{
2029	struct g_raid3_softc *sc;
2030	struct g_raid3_event *ep;
2031	struct bio *bp;
2032	int timeout;
2033
2034	sc = arg;
2035	thread_lock(curthread);
2036	sched_prio(curthread, PRIBIO);
2037	thread_unlock(curthread);
2038
2039	sx_xlock(&sc->sc_lock);
2040	for (;;) {
2041		G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2042		/*
2043		 * First take a look at events.
2044		 * This is important to handle events before any I/O requests.
2045		 */
2046		ep = g_raid3_event_get(sc);
2047		if (ep != NULL) {
2048			g_raid3_event_remove(sc, ep);
2049			if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2050				/* Update only device status. */
2051				G_RAID3_DEBUG(3,
2052				    "Running event for device %s.",
2053				    sc->sc_name);
2054				ep->e_error = 0;
2055				g_raid3_update_device(sc, 1);
2056			} else {
2057				/* Update disk status. */
2058				G_RAID3_DEBUG(3, "Running event for disk %s.",
2059				     g_raid3_get_diskname(ep->e_disk));
2060				ep->e_error = g_raid3_update_disk(ep->e_disk,
2061				    ep->e_state);
2062				if (ep->e_error == 0)
2063					g_raid3_update_device(sc, 0);
2064			}
2065			if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2066				KASSERT(ep->e_error == 0,
2067				    ("Error cannot be handled."));
2068				g_raid3_event_free(ep);
2069			} else {
2070				ep->e_flags |= G_RAID3_EVENT_DONE;
2071				G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2072				    ep);
2073				mtx_lock(&sc->sc_events_mtx);
2074				wakeup(ep);
2075				mtx_unlock(&sc->sc_events_mtx);
2076			}
2077			if ((sc->sc_flags &
2078			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2079				if (g_raid3_try_destroy(sc)) {
2080					curthread->td_pflags &= ~TDP_GEOM;
2081					G_RAID3_DEBUG(1, "Thread exiting.");
2082					kproc_exit(0);
2083				}
2084			}
2085			G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2086			continue;
2087		}
2088		/*
2089		 * Check if we can mark array as CLEAN and if we can't take
2090		 * how much seconds should we wait.
2091		 */
2092		timeout = g_raid3_idle(sc, -1);
2093		/*
2094		 * Now I/O requests.
2095		 */
2096		/* Get first request from the queue. */
2097		mtx_lock(&sc->sc_queue_mtx);
2098		bp = bioq_first(&sc->sc_queue);
2099		if (bp == NULL) {
2100			if ((sc->sc_flags &
2101			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2102				mtx_unlock(&sc->sc_queue_mtx);
2103				if (g_raid3_try_destroy(sc)) {
2104					curthread->td_pflags &= ~TDP_GEOM;
2105					G_RAID3_DEBUG(1, "Thread exiting.");
2106					kproc_exit(0);
2107				}
2108				mtx_lock(&sc->sc_queue_mtx);
2109			}
2110			sx_xunlock(&sc->sc_lock);
2111			/*
2112			 * XXX: We can miss an event here, because an event
2113			 *      can be added without sx-device-lock and without
2114			 *      mtx-queue-lock. Maybe I should just stop using
2115			 *      dedicated mutex for events synchronization and
2116			 *      stick with the queue lock?
2117			 *      The event will hang here until next I/O request
2118			 *      or next event is received.
2119			 */
2120			MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2121			    timeout * hz);
2122			sx_xlock(&sc->sc_lock);
2123			G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2124			continue;
2125		}
2126process:
2127		bioq_remove(&sc->sc_queue, bp);
2128		mtx_unlock(&sc->sc_queue_mtx);
2129
2130		if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2131		    (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2132			g_raid3_sync_request(bp);	/* READ */
2133		} else if (bp->bio_to != sc->sc_provider) {
2134			if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2135				g_raid3_regular_request(bp);
2136			else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2137				g_raid3_sync_request(bp);	/* WRITE */
2138			else {
2139				KASSERT(0,
2140				    ("Invalid request cflags=0x%hhx to=%s.",
2141				    bp->bio_cflags, bp->bio_to->name));
2142			}
2143		} else if (g_raid3_register_request(bp) != 0) {
2144			mtx_lock(&sc->sc_queue_mtx);
2145			bioq_insert_head(&sc->sc_queue, bp);
2146			/*
2147			 * We are short in memory, let see if there are finished
2148			 * request we can free.
2149			 */
2150			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2151				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2152					goto process;
2153			}
2154			/*
2155			 * No finished regular request, so at least keep
2156			 * synchronization running.
2157			 */
2158			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2159				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2160					goto process;
2161			}
2162			sx_xunlock(&sc->sc_lock);
2163			MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2164			    "r3:lowmem", hz / 10);
2165			sx_xlock(&sc->sc_lock);
2166		}
2167		G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2168	}
2169}
2170
2171static void
2172g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2173{
2174
2175	sx_assert(&sc->sc_lock, SX_LOCKED);
2176	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2177		return;
2178	if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2179		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2180		    g_raid3_get_diskname(disk), sc->sc_name);
2181		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2182	} else if (sc->sc_idle &&
2183	    (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2184		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2185		    g_raid3_get_diskname(disk), sc->sc_name);
2186		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2187	}
2188}
2189
2190static void
2191g_raid3_sync_start(struct g_raid3_softc *sc)
2192{
2193	struct g_raid3_disk *disk;
2194	struct g_consumer *cp;
2195	struct bio *bp;
2196	int error;
2197	u_int n;
2198
2199	g_topology_assert_not();
2200	sx_assert(&sc->sc_lock, SX_XLOCKED);
2201
2202	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2203	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2204	    sc->sc_state));
2205	KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2206	    sc->sc_name, sc->sc_state));
2207	disk = NULL;
2208	for (n = 0; n < sc->sc_ndisks; n++) {
2209		if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2210			continue;
2211		disk = &sc->sc_disks[n];
2212		break;
2213	}
2214	if (disk == NULL)
2215		return;
2216
2217	sx_xunlock(&sc->sc_lock);
2218	g_topology_lock();
2219	cp = g_new_consumer(sc->sc_sync.ds_geom);
2220	error = g_attach(cp, sc->sc_provider);
2221	KASSERT(error == 0,
2222	    ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2223	error = g_access(cp, 1, 0, 0);
2224	KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2225	g_topology_unlock();
2226	sx_xlock(&sc->sc_lock);
2227
2228	G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2229	    g_raid3_get_diskname(disk));
2230	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2231		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2232	KASSERT(disk->d_sync.ds_consumer == NULL,
2233	    ("Sync consumer already exists (device=%s, disk=%s).",
2234	    sc->sc_name, g_raid3_get_diskname(disk)));
2235
2236	disk->d_sync.ds_consumer = cp;
2237	disk->d_sync.ds_consumer->private = disk;
2238	disk->d_sync.ds_consumer->index = 0;
2239	sc->sc_syncdisk = disk;
2240
2241	/*
2242	 * Allocate memory for synchronization bios and initialize them.
2243	 */
2244	disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2245	    M_RAID3, M_WAITOK);
2246	for (n = 0; n < g_raid3_syncreqs; n++) {
2247		bp = g_alloc_bio();
2248		disk->d_sync.ds_bios[n] = bp;
2249		bp->bio_parent = NULL;
2250		bp->bio_cmd = BIO_READ;
2251		bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2252		bp->bio_cflags = 0;
2253		bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2254		bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2255		disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2256		bp->bio_done = g_raid3_sync_done;
2257		bp->bio_from = disk->d_sync.ds_consumer;
2258		bp->bio_to = sc->sc_provider;
2259		bp->bio_caller1 = (void *)(uintptr_t)n;
2260	}
2261
2262	/* Set the number of in-flight synchronization requests. */
2263	disk->d_sync.ds_inflight = g_raid3_syncreqs;
2264
2265	/*
2266	 * Fire off first synchronization requests.
2267	 */
2268	for (n = 0; n < g_raid3_syncreqs; n++) {
2269		bp = disk->d_sync.ds_bios[n];
2270		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2271		disk->d_sync.ds_consumer->index++;
2272		/*
2273		 * Delay the request if it is colliding with a regular request.
2274		 */
2275		if (g_raid3_regular_collision(sc, bp))
2276			g_raid3_sync_delay(sc, bp);
2277		else
2278			g_io_request(bp, disk->d_sync.ds_consumer);
2279	}
2280}
2281
2282/*
2283 * Stop synchronization process.
2284 * type: 0 - synchronization finished
2285 *       1 - synchronization stopped
2286 */
2287static void
2288g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2289{
2290	struct g_raid3_disk *disk;
2291	struct g_consumer *cp;
2292
2293	g_topology_assert_not();
2294	sx_assert(&sc->sc_lock, SX_LOCKED);
2295
2296	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2297	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2298	    sc->sc_state));
2299	disk = sc->sc_syncdisk;
2300	sc->sc_syncdisk = NULL;
2301	KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2302	KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2303	    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2304	    g_raid3_disk_state2str(disk->d_state)));
2305	if (disk->d_sync.ds_consumer == NULL)
2306		return;
2307
2308	if (type == 0) {
2309		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2310		    sc->sc_name, g_raid3_get_diskname(disk));
2311	} else /* if (type == 1) */ {
2312		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2313		    sc->sc_name, g_raid3_get_diskname(disk));
2314	}
2315	free(disk->d_sync.ds_bios, M_RAID3);
2316	disk->d_sync.ds_bios = NULL;
2317	cp = disk->d_sync.ds_consumer;
2318	disk->d_sync.ds_consumer = NULL;
2319	disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2320	sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2321	g_topology_lock();
2322	g_raid3_kill_consumer(sc, cp);
2323	g_topology_unlock();
2324	sx_xlock(&sc->sc_lock);
2325}
2326
2327static void
2328g_raid3_launch_provider(struct g_raid3_softc *sc)
2329{
2330	struct g_provider *pp;
2331	struct g_raid3_disk *disk;
2332	int n;
2333
2334	sx_assert(&sc->sc_lock, SX_LOCKED);
2335
2336	g_topology_lock();
2337	pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2338	pp->mediasize = sc->sc_mediasize;
2339	pp->sectorsize = sc->sc_sectorsize;
2340	pp->stripesize = 0;
2341	pp->stripeoffset = 0;
2342	for (n = 0; n < sc->sc_ndisks; n++) {
2343		disk = &sc->sc_disks[n];
2344		if (disk->d_consumer && disk->d_consumer->provider &&
2345		    disk->d_consumer->provider->stripesize > pp->stripesize) {
2346			pp->stripesize = disk->d_consumer->provider->stripesize;
2347			pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2348		}
2349	}
2350	pp->stripesize *= sc->sc_ndisks - 1;
2351	pp->stripeoffset *= sc->sc_ndisks - 1;
2352	sc->sc_provider = pp;
2353	g_error_provider(pp, 0);
2354	g_topology_unlock();
2355	G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2356	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2357
2358	if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2359		g_raid3_sync_start(sc);
2360}
2361
2362static void
2363g_raid3_destroy_provider(struct g_raid3_softc *sc)
2364{
2365	struct bio *bp;
2366
2367	g_topology_assert_not();
2368	KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2369	    sc->sc_name));
2370
2371	g_topology_lock();
2372	g_error_provider(sc->sc_provider, ENXIO);
2373	mtx_lock(&sc->sc_queue_mtx);
2374	while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2375		bioq_remove(&sc->sc_queue, bp);
2376		g_io_deliver(bp, ENXIO);
2377	}
2378	mtx_unlock(&sc->sc_queue_mtx);
2379	G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2380	    sc->sc_provider->name);
2381	sc->sc_provider->flags |= G_PF_WITHER;
2382	g_orphan_provider(sc->sc_provider, ENXIO);
2383	g_topology_unlock();
2384	sc->sc_provider = NULL;
2385	if (sc->sc_syncdisk != NULL)
2386		g_raid3_sync_stop(sc, 1);
2387}
2388
2389static void
2390g_raid3_go(void *arg)
2391{
2392	struct g_raid3_softc *sc;
2393
2394	sc = arg;
2395	G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2396	g_raid3_event_send(sc, 0,
2397	    G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2398}
2399
2400static u_int
2401g_raid3_determine_state(struct g_raid3_disk *disk)
2402{
2403	struct g_raid3_softc *sc;
2404	u_int state;
2405
2406	sc = disk->d_softc;
2407	if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2408		if ((disk->d_flags &
2409		    G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2410			/* Disk does not need synchronization. */
2411			state = G_RAID3_DISK_STATE_ACTIVE;
2412		} else {
2413			if ((sc->sc_flags &
2414			     G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2415			    (disk->d_flags &
2416			     G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2417				/*
2418				 * We can start synchronization from
2419				 * the stored offset.
2420				 */
2421				state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2422			} else {
2423				state = G_RAID3_DISK_STATE_STALE;
2424			}
2425		}
2426	} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2427		/*
2428		 * Reset all synchronization data for this disk,
2429		 * because if it even was synchronized, it was
2430		 * synchronized to disks with different syncid.
2431		 */
2432		disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2433		disk->d_sync.ds_offset = 0;
2434		disk->d_sync.ds_offset_done = 0;
2435		disk->d_sync.ds_syncid = sc->sc_syncid;
2436		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2437		    (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2438			state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2439		} else {
2440			state = G_RAID3_DISK_STATE_STALE;
2441		}
2442	} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2443		/*
2444		 * Not good, NOT GOOD!
2445		 * It means that device was started on stale disks
2446		 * and more fresh disk just arrive.
2447		 * If there were writes, device is broken, sorry.
2448		 * I think the best choice here is don't touch
2449		 * this disk and inform the user loudly.
2450		 */
2451		G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2452		    "disk (%s) arrives!! It will not be connected to the "
2453		    "running device.", sc->sc_name,
2454		    g_raid3_get_diskname(disk));
2455		g_raid3_destroy_disk(disk);
2456		state = G_RAID3_DISK_STATE_NONE;
2457		/* Return immediately, because disk was destroyed. */
2458		return (state);
2459	}
2460	G_RAID3_DEBUG(3, "State for %s disk: %s.",
2461	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2462	return (state);
2463}
2464
2465/*
2466 * Update device state.
2467 */
2468static void
2469g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2470{
2471	struct g_raid3_disk *disk;
2472	u_int state;
2473
2474	sx_assert(&sc->sc_lock, SX_XLOCKED);
2475
2476	switch (sc->sc_state) {
2477	case G_RAID3_DEVICE_STATE_STARTING:
2478	    {
2479		u_int n, ndirty, ndisks, genid, syncid;
2480
2481		KASSERT(sc->sc_provider == NULL,
2482		    ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2483		/*
2484		 * Are we ready? We are, if all disks are connected or
2485		 * one disk is missing and 'force' is true.
2486		 */
2487		if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2488			if (!force)
2489				callout_drain(&sc->sc_callout);
2490		} else {
2491			if (force) {
2492				/*
2493				 * Timeout expired, so destroy device.
2494				 */
2495				sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2496				G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2497				    __LINE__, sc->sc_rootmount);
2498				root_mount_rel(sc->sc_rootmount);
2499				sc->sc_rootmount = NULL;
2500			}
2501			return;
2502		}
2503
2504		/*
2505		 * Find the biggest genid.
2506		 */
2507		genid = 0;
2508		for (n = 0; n < sc->sc_ndisks; n++) {
2509			disk = &sc->sc_disks[n];
2510			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2511				continue;
2512			if (disk->d_genid > genid)
2513				genid = disk->d_genid;
2514		}
2515		sc->sc_genid = genid;
2516		/*
2517		 * Remove all disks without the biggest genid.
2518		 */
2519		for (n = 0; n < sc->sc_ndisks; n++) {
2520			disk = &sc->sc_disks[n];
2521			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2522				continue;
2523			if (disk->d_genid < genid) {
2524				G_RAID3_DEBUG(0,
2525				    "Component %s (device %s) broken, skipping.",
2526				    g_raid3_get_diskname(disk), sc->sc_name);
2527				g_raid3_destroy_disk(disk);
2528			}
2529		}
2530
2531		/*
2532		 * There must be at least 'sc->sc_ndisks - 1' components
2533		 * with the same syncid and without SYNCHRONIZING flag.
2534		 */
2535
2536		/*
2537		 * Find the biggest syncid, number of valid components and
2538		 * number of dirty components.
2539		 */
2540		ndirty = ndisks = syncid = 0;
2541		for (n = 0; n < sc->sc_ndisks; n++) {
2542			disk = &sc->sc_disks[n];
2543			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2544				continue;
2545			if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2546				ndirty++;
2547			if (disk->d_sync.ds_syncid > syncid) {
2548				syncid = disk->d_sync.ds_syncid;
2549				ndisks = 0;
2550			} else if (disk->d_sync.ds_syncid < syncid) {
2551				continue;
2552			}
2553			if ((disk->d_flags &
2554			    G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2555				continue;
2556			}
2557			ndisks++;
2558		}
2559		/*
2560		 * Do we have enough valid components?
2561		 */
2562		if (ndisks + 1 < sc->sc_ndisks) {
2563			G_RAID3_DEBUG(0,
2564			    "Device %s is broken, too few valid components.",
2565			    sc->sc_name);
2566			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2567			return;
2568		}
2569		/*
2570		 * If there is one DIRTY component and all disks are present,
2571		 * mark it for synchronization. If there is more than one DIRTY
2572		 * component, mark parity component for synchronization.
2573		 */
2574		if (ndisks == sc->sc_ndisks && ndirty == 1) {
2575			for (n = 0; n < sc->sc_ndisks; n++) {
2576				disk = &sc->sc_disks[n];
2577				if ((disk->d_flags &
2578				    G_RAID3_DISK_FLAG_DIRTY) == 0) {
2579					continue;
2580				}
2581				disk->d_flags |=
2582				    G_RAID3_DISK_FLAG_SYNCHRONIZING;
2583			}
2584		} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2585			disk = &sc->sc_disks[sc->sc_ndisks - 1];
2586			disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2587		}
2588
2589		sc->sc_syncid = syncid;
2590		if (force) {
2591			/* Remember to bump syncid on first write. */
2592			sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2593		}
2594		if (ndisks == sc->sc_ndisks)
2595			state = G_RAID3_DEVICE_STATE_COMPLETE;
2596		else /* if (ndisks == sc->sc_ndisks - 1) */
2597			state = G_RAID3_DEVICE_STATE_DEGRADED;
2598		G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2599		    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2600		    g_raid3_device_state2str(state));
2601		sc->sc_state = state;
2602		for (n = 0; n < sc->sc_ndisks; n++) {
2603			disk = &sc->sc_disks[n];
2604			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2605				continue;
2606			state = g_raid3_determine_state(disk);
2607			g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2608			if (state == G_RAID3_DISK_STATE_STALE)
2609				sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2610		}
2611		break;
2612	    }
2613	case G_RAID3_DEVICE_STATE_DEGRADED:
2614		/*
2615		 * Genid need to be bumped immediately, so do it here.
2616		 */
2617		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2618			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2619			g_raid3_bump_genid(sc);
2620		}
2621
2622		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2623			return;
2624		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2625		    sc->sc_ndisks - 1) {
2626			if (sc->sc_provider != NULL)
2627				g_raid3_destroy_provider(sc);
2628			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2629			return;
2630		}
2631		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2632		    sc->sc_ndisks) {
2633			state = G_RAID3_DEVICE_STATE_COMPLETE;
2634			G_RAID3_DEBUG(1,
2635			    "Device %s state changed from %s to %s.",
2636			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2637			    g_raid3_device_state2str(state));
2638			sc->sc_state = state;
2639		}
2640		if (sc->sc_provider == NULL)
2641			g_raid3_launch_provider(sc);
2642		if (sc->sc_rootmount != NULL) {
2643			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2644			    sc->sc_rootmount);
2645			root_mount_rel(sc->sc_rootmount);
2646			sc->sc_rootmount = NULL;
2647		}
2648		break;
2649	case G_RAID3_DEVICE_STATE_COMPLETE:
2650		/*
2651		 * Genid need to be bumped immediately, so do it here.
2652		 */
2653		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2654			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2655			g_raid3_bump_genid(sc);
2656		}
2657
2658		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2659			return;
2660		KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2661		    sc->sc_ndisks - 1,
2662		    ("Too few ACTIVE components in COMPLETE state (device %s).",
2663		    sc->sc_name));
2664		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2665		    sc->sc_ndisks - 1) {
2666			state = G_RAID3_DEVICE_STATE_DEGRADED;
2667			G_RAID3_DEBUG(1,
2668			    "Device %s state changed from %s to %s.",
2669			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2670			    g_raid3_device_state2str(state));
2671			sc->sc_state = state;
2672		}
2673		if (sc->sc_provider == NULL)
2674			g_raid3_launch_provider(sc);
2675		if (sc->sc_rootmount != NULL) {
2676			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2677			    sc->sc_rootmount);
2678			root_mount_rel(sc->sc_rootmount);
2679			sc->sc_rootmount = NULL;
2680		}
2681		break;
2682	default:
2683		KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2684		    g_raid3_device_state2str(sc->sc_state)));
2685		break;
2686	}
2687}
2688
2689/*
2690 * Update disk state and device state if needed.
2691 */
2692#define	DISK_STATE_CHANGED()	G_RAID3_DEBUG(1,			\
2693	"Disk %s state changed from %s to %s (device %s).",		\
2694	g_raid3_get_diskname(disk),					\
2695	g_raid3_disk_state2str(disk->d_state),				\
2696	g_raid3_disk_state2str(state), sc->sc_name)
2697static int
2698g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2699{
2700	struct g_raid3_softc *sc;
2701
2702	sc = disk->d_softc;
2703	sx_assert(&sc->sc_lock, SX_XLOCKED);
2704
2705again:
2706	G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2707	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2708	    g_raid3_disk_state2str(state));
2709	switch (state) {
2710	case G_RAID3_DISK_STATE_NEW:
2711		/*
2712		 * Possible scenarios:
2713		 * 1. New disk arrive.
2714		 */
2715		/* Previous state should be NONE. */
2716		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2717		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2718		    g_raid3_disk_state2str(disk->d_state)));
2719		DISK_STATE_CHANGED();
2720
2721		disk->d_state = state;
2722		G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2723		    sc->sc_name, g_raid3_get_diskname(disk));
2724		if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2725			break;
2726		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2727		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2728		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2729		    g_raid3_device_state2str(sc->sc_state),
2730		    g_raid3_get_diskname(disk),
2731		    g_raid3_disk_state2str(disk->d_state)));
2732		state = g_raid3_determine_state(disk);
2733		if (state != G_RAID3_DISK_STATE_NONE)
2734			goto again;
2735		break;
2736	case G_RAID3_DISK_STATE_ACTIVE:
2737		/*
2738		 * Possible scenarios:
2739		 * 1. New disk does not need synchronization.
2740		 * 2. Synchronization process finished successfully.
2741		 */
2742		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2743		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2744		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2745		    g_raid3_device_state2str(sc->sc_state),
2746		    g_raid3_get_diskname(disk),
2747		    g_raid3_disk_state2str(disk->d_state)));
2748		/* Previous state should be NEW or SYNCHRONIZING. */
2749		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2750		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2751		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2752		    g_raid3_disk_state2str(disk->d_state)));
2753		DISK_STATE_CHANGED();
2754
2755		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2756			disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2757			disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2758			g_raid3_sync_stop(sc, 0);
2759		}
2760		disk->d_state = state;
2761		disk->d_sync.ds_offset = 0;
2762		disk->d_sync.ds_offset_done = 0;
2763		g_raid3_update_idle(sc, disk);
2764		g_raid3_update_metadata(disk);
2765		G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2766		    sc->sc_name, g_raid3_get_diskname(disk));
2767		break;
2768	case G_RAID3_DISK_STATE_STALE:
2769		/*
2770		 * Possible scenarios:
2771		 * 1. Stale disk was connected.
2772		 */
2773		/* Previous state should be NEW. */
2774		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2775		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2776		    g_raid3_disk_state2str(disk->d_state)));
2777		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2778		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2779		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2780		    g_raid3_device_state2str(sc->sc_state),
2781		    g_raid3_get_diskname(disk),
2782		    g_raid3_disk_state2str(disk->d_state)));
2783		/*
2784		 * STALE state is only possible if device is marked
2785		 * NOAUTOSYNC.
2786		 */
2787		KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2788		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2789		    g_raid3_device_state2str(sc->sc_state),
2790		    g_raid3_get_diskname(disk),
2791		    g_raid3_disk_state2str(disk->d_state)));
2792		DISK_STATE_CHANGED();
2793
2794		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2795		disk->d_state = state;
2796		g_raid3_update_metadata(disk);
2797		G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2798		    sc->sc_name, g_raid3_get_diskname(disk));
2799		break;
2800	case G_RAID3_DISK_STATE_SYNCHRONIZING:
2801		/*
2802		 * Possible scenarios:
2803		 * 1. Disk which needs synchronization was connected.
2804		 */
2805		/* Previous state should be NEW. */
2806		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2807		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2808		    g_raid3_disk_state2str(disk->d_state)));
2809		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2810		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2811		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2812		    g_raid3_device_state2str(sc->sc_state),
2813		    g_raid3_get_diskname(disk),
2814		    g_raid3_disk_state2str(disk->d_state)));
2815		DISK_STATE_CHANGED();
2816
2817		if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2818			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2819		disk->d_state = state;
2820		if (sc->sc_provider != NULL) {
2821			g_raid3_sync_start(sc);
2822			g_raid3_update_metadata(disk);
2823		}
2824		break;
2825	case G_RAID3_DISK_STATE_DISCONNECTED:
2826		/*
2827		 * Possible scenarios:
2828		 * 1. Device wasn't running yet, but disk disappear.
2829		 * 2. Disk was active and disapppear.
2830		 * 3. Disk disappear during synchronization process.
2831		 */
2832		if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2833		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2834			/*
2835			 * Previous state should be ACTIVE, STALE or
2836			 * SYNCHRONIZING.
2837			 */
2838			KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2839			    disk->d_state == G_RAID3_DISK_STATE_STALE ||
2840			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2841			    ("Wrong disk state (%s, %s).",
2842			    g_raid3_get_diskname(disk),
2843			    g_raid3_disk_state2str(disk->d_state)));
2844		} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2845			/* Previous state should be NEW. */
2846			KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2847			    ("Wrong disk state (%s, %s).",
2848			    g_raid3_get_diskname(disk),
2849			    g_raid3_disk_state2str(disk->d_state)));
2850			/*
2851			 * Reset bumping syncid if disk disappeared in STARTING
2852			 * state.
2853			 */
2854			if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2855				sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2856#ifdef	INVARIANTS
2857		} else {
2858			KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2859			    sc->sc_name,
2860			    g_raid3_device_state2str(sc->sc_state),
2861			    g_raid3_get_diskname(disk),
2862			    g_raid3_disk_state2str(disk->d_state)));
2863#endif
2864		}
2865		DISK_STATE_CHANGED();
2866		G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2867		    sc->sc_name, g_raid3_get_diskname(disk));
2868
2869		g_raid3_destroy_disk(disk);
2870		break;
2871	default:
2872		KASSERT(1 == 0, ("Unknown state (%u).", state));
2873		break;
2874	}
2875	return (0);
2876}
2877#undef	DISK_STATE_CHANGED
2878
2879int
2880g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2881{
2882	struct g_provider *pp;
2883	u_char *buf;
2884	int error;
2885
2886	g_topology_assert();
2887
2888	error = g_access(cp, 1, 0, 0);
2889	if (error != 0)
2890		return (error);
2891	pp = cp->provider;
2892	g_topology_unlock();
2893	/* Metadata are stored on last sector. */
2894	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2895	    &error);
2896	g_topology_lock();
2897	g_access(cp, -1, 0, 0);
2898	if (buf == NULL) {
2899		G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2900		    cp->provider->name, error);
2901		return (error);
2902	}
2903
2904	/* Decode metadata. */
2905	error = raid3_metadata_decode(buf, md);
2906	g_free(buf);
2907	if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2908		return (EINVAL);
2909	if (md->md_version > G_RAID3_VERSION) {
2910		G_RAID3_DEBUG(0,
2911		    "Kernel module is too old to handle metadata from %s.",
2912		    cp->provider->name);
2913		return (EINVAL);
2914	}
2915	if (error != 0) {
2916		G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2917		    cp->provider->name);
2918		return (error);
2919	}
2920	if (md->md_sectorsize > MAXPHYS) {
2921		G_RAID3_DEBUG(0, "The blocksize is too big.");
2922		return (EINVAL);
2923	}
2924
2925	return (0);
2926}
2927
2928static int
2929g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2930    struct g_raid3_metadata *md)
2931{
2932
2933	if (md->md_no >= sc->sc_ndisks) {
2934		G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2935		    pp->name, md->md_no);
2936		return (EINVAL);
2937	}
2938	if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2939		G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2940		    pp->name, md->md_no);
2941		return (EEXIST);
2942	}
2943	if (md->md_all != sc->sc_ndisks) {
2944		G_RAID3_DEBUG(1,
2945		    "Invalid '%s' field on disk %s (device %s), skipping.",
2946		    "md_all", pp->name, sc->sc_name);
2947		return (EINVAL);
2948	}
2949	if ((md->md_mediasize % md->md_sectorsize) != 0) {
2950		G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2951		    "0) on disk %s (device %s), skipping.", pp->name,
2952		    sc->sc_name);
2953		return (EINVAL);
2954	}
2955	if (md->md_mediasize != sc->sc_mediasize) {
2956		G_RAID3_DEBUG(1,
2957		    "Invalid '%s' field on disk %s (device %s), skipping.",
2958		    "md_mediasize", pp->name, sc->sc_name);
2959		return (EINVAL);
2960	}
2961	if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2962		G_RAID3_DEBUG(1,
2963		    "Invalid '%s' field on disk %s (device %s), skipping.",
2964		    "md_mediasize", pp->name, sc->sc_name);
2965		return (EINVAL);
2966	}
2967	if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2968		G_RAID3_DEBUG(1,
2969		    "Invalid size of disk %s (device %s), skipping.", pp->name,
2970		    sc->sc_name);
2971		return (EINVAL);
2972	}
2973	if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2974		G_RAID3_DEBUG(1,
2975		    "Invalid '%s' field on disk %s (device %s), skipping.",
2976		    "md_sectorsize", pp->name, sc->sc_name);
2977		return (EINVAL);
2978	}
2979	if (md->md_sectorsize != sc->sc_sectorsize) {
2980		G_RAID3_DEBUG(1,
2981		    "Invalid '%s' field on disk %s (device %s), skipping.",
2982		    "md_sectorsize", pp->name, sc->sc_name);
2983		return (EINVAL);
2984	}
2985	if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2986		G_RAID3_DEBUG(1,
2987		    "Invalid sector size of disk %s (device %s), skipping.",
2988		    pp->name, sc->sc_name);
2989		return (EINVAL);
2990	}
2991	if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2992		G_RAID3_DEBUG(1,
2993		    "Invalid device flags on disk %s (device %s), skipping.",
2994		    pp->name, sc->sc_name);
2995		return (EINVAL);
2996	}
2997	if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2998	    (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2999		/*
3000		 * VERIFY and ROUND-ROBIN options are mutally exclusive.
3001		 */
3002		G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
3003		    "disk %s (device %s), skipping.", pp->name, sc->sc_name);
3004		return (EINVAL);
3005	}
3006	if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
3007		G_RAID3_DEBUG(1,
3008		    "Invalid disk flags on disk %s (device %s), skipping.",
3009		    pp->name, sc->sc_name);
3010		return (EINVAL);
3011	}
3012	return (0);
3013}
3014
3015int
3016g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3017    struct g_raid3_metadata *md)
3018{
3019	struct g_raid3_disk *disk;
3020	int error;
3021
3022	g_topology_assert_not();
3023	G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3024
3025	error = g_raid3_check_metadata(sc, pp, md);
3026	if (error != 0)
3027		return (error);
3028	if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3029	    md->md_genid < sc->sc_genid) {
3030		G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3031		    pp->name, sc->sc_name);
3032		return (EINVAL);
3033	}
3034	disk = g_raid3_init_disk(sc, pp, md, &error);
3035	if (disk == NULL)
3036		return (error);
3037	error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3038	    G_RAID3_EVENT_WAIT);
3039	if (error != 0)
3040		return (error);
3041	if (md->md_version < G_RAID3_VERSION) {
3042		G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3043		    pp->name, md->md_version, G_RAID3_VERSION);
3044		g_raid3_update_metadata(disk);
3045	}
3046	return (0);
3047}
3048
3049static void
3050g_raid3_destroy_delayed(void *arg, int flag)
3051{
3052	struct g_raid3_softc *sc;
3053	int error;
3054
3055	if (flag == EV_CANCEL) {
3056		G_RAID3_DEBUG(1, "Destroying canceled.");
3057		return;
3058	}
3059	sc = arg;
3060	g_topology_unlock();
3061	sx_xlock(&sc->sc_lock);
3062	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3063	    ("DESTROY flag set on %s.", sc->sc_name));
3064	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3065	    ("DESTROYING flag not set on %s.", sc->sc_name));
3066	G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3067	error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3068	if (error != 0) {
3069		G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3070		sx_xunlock(&sc->sc_lock);
3071	}
3072	g_topology_lock();
3073}
3074
3075static int
3076g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3077{
3078	struct g_raid3_softc *sc;
3079	int dcr, dcw, dce, error = 0;
3080
3081	g_topology_assert();
3082	G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3083	    acw, ace);
3084
3085	sc = pp->geom->softc;
3086	if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3087		return (0);
3088	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3089
3090	dcr = pp->acr + acr;
3091	dcw = pp->acw + acw;
3092	dce = pp->ace + ace;
3093
3094	g_topology_unlock();
3095	sx_xlock(&sc->sc_lock);
3096	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3097	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3098		if (acr > 0 || acw > 0 || ace > 0)
3099			error = ENXIO;
3100		goto end;
3101	}
3102	if (dcw == 0)
3103		g_raid3_idle(sc, dcw);
3104	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3105		if (acr > 0 || acw > 0 || ace > 0) {
3106			error = ENXIO;
3107			goto end;
3108		}
3109		if (dcr == 0 && dcw == 0 && dce == 0) {
3110			g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3111			    sc, NULL);
3112		}
3113	}
3114end:
3115	sx_xunlock(&sc->sc_lock);
3116	g_topology_lock();
3117	return (error);
3118}
3119
3120static struct g_geom *
3121g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3122{
3123	struct g_raid3_softc *sc;
3124	struct g_geom *gp;
3125	int error, timeout;
3126	u_int n;
3127
3128	g_topology_assert();
3129	G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3130
3131	/* One disk is minimum. */
3132	if (md->md_all < 1)
3133		return (NULL);
3134	/*
3135	 * Action geom.
3136	 */
3137	gp = g_new_geomf(mp, "%s", md->md_name);
3138	sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3139	sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3140	    M_WAITOK | M_ZERO);
3141	gp->start = g_raid3_start;
3142	gp->orphan = g_raid3_orphan;
3143	gp->access = g_raid3_access;
3144	gp->dumpconf = g_raid3_dumpconf;
3145
3146	sc->sc_id = md->md_id;
3147	sc->sc_mediasize = md->md_mediasize;
3148	sc->sc_sectorsize = md->md_sectorsize;
3149	sc->sc_ndisks = md->md_all;
3150	sc->sc_round_robin = 0;
3151	sc->sc_flags = md->md_mflags;
3152	sc->sc_bump_id = 0;
3153	sc->sc_idle = 1;
3154	sc->sc_last_write = time_uptime;
3155	sc->sc_writes = 0;
3156	for (n = 0; n < sc->sc_ndisks; n++) {
3157		sc->sc_disks[n].d_softc = sc;
3158		sc->sc_disks[n].d_no = n;
3159		sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3160	}
3161	sx_init(&sc->sc_lock, "graid3:lock");
3162	bioq_init(&sc->sc_queue);
3163	mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3164	bioq_init(&sc->sc_regular_delayed);
3165	bioq_init(&sc->sc_inflight);
3166	bioq_init(&sc->sc_sync_delayed);
3167	TAILQ_INIT(&sc->sc_events);
3168	mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3169	callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
3170	sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3171	gp->softc = sc;
3172	sc->sc_geom = gp;
3173	sc->sc_provider = NULL;
3174	/*
3175	 * Synchronization geom.
3176	 */
3177	gp = g_new_geomf(mp, "%s.sync", md->md_name);
3178	gp->softc = sc;
3179	gp->orphan = g_raid3_orphan;
3180	sc->sc_sync.ds_geom = gp;
3181
3182	if (!g_raid3_use_malloc) {
3183		sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3184		    65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3185		    UMA_ALIGN_PTR, 0);
3186		sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3187		sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3188		sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3189		    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3190		sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3191		    16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3192		    UMA_ALIGN_PTR, 0);
3193		sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3194		sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3195		sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3196		    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3197		sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3198		    4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3199		    UMA_ALIGN_PTR, 0);
3200		sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3201		sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3202		sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3203		    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3204	}
3205
3206	error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3207	    "g_raid3 %s", md->md_name);
3208	if (error != 0) {
3209		G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3210		    sc->sc_name);
3211		if (!g_raid3_use_malloc) {
3212			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3213			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3214			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3215		}
3216		g_destroy_geom(sc->sc_sync.ds_geom);
3217		mtx_destroy(&sc->sc_events_mtx);
3218		mtx_destroy(&sc->sc_queue_mtx);
3219		sx_destroy(&sc->sc_lock);
3220		g_destroy_geom(sc->sc_geom);
3221		free(sc->sc_disks, M_RAID3);
3222		free(sc, M_RAID3);
3223		return (NULL);
3224	}
3225
3226	G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3227	    sc->sc_name, sc->sc_ndisks, sc->sc_id);
3228
3229	sc->sc_rootmount = root_mount_hold("GRAID3");
3230	G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3231
3232	/*
3233	 * Run timeout.
3234	 */
3235	timeout = atomic_load_acq_int(&g_raid3_timeout);
3236	callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3237	return (sc->sc_geom);
3238}
3239
3240int
3241g_raid3_destroy(struct g_raid3_softc *sc, int how)
3242{
3243	struct g_provider *pp;
3244
3245	g_topology_assert_not();
3246	if (sc == NULL)
3247		return (ENXIO);
3248	sx_assert(&sc->sc_lock, SX_XLOCKED);
3249
3250	pp = sc->sc_provider;
3251	if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3252		switch (how) {
3253		case G_RAID3_DESTROY_SOFT:
3254			G_RAID3_DEBUG(1,
3255			    "Device %s is still open (r%dw%de%d).", pp->name,
3256			    pp->acr, pp->acw, pp->ace);
3257			return (EBUSY);
3258		case G_RAID3_DESTROY_DELAYED:
3259			G_RAID3_DEBUG(1,
3260			    "Device %s will be destroyed on last close.",
3261			    pp->name);
3262			if (sc->sc_syncdisk != NULL)
3263				g_raid3_sync_stop(sc, 1);
3264			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3265			return (EBUSY);
3266		case G_RAID3_DESTROY_HARD:
3267			G_RAID3_DEBUG(1, "Device %s is still open, so it "
3268			    "can't be definitely removed.", pp->name);
3269			break;
3270		}
3271	}
3272
3273	g_topology_lock();
3274	if (sc->sc_geom->softc == NULL) {
3275		g_topology_unlock();
3276		return (0);
3277	}
3278	sc->sc_geom->softc = NULL;
3279	sc->sc_sync.ds_geom->softc = NULL;
3280	g_topology_unlock();
3281
3282	sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3283	sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3284	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3285	sx_xunlock(&sc->sc_lock);
3286	mtx_lock(&sc->sc_queue_mtx);
3287	wakeup(sc);
3288	wakeup(&sc->sc_queue);
3289	mtx_unlock(&sc->sc_queue_mtx);
3290	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3291	while (sc->sc_worker != NULL)
3292		tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3293	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3294	sx_xlock(&sc->sc_lock);
3295	g_raid3_destroy_device(sc);
3296	free(sc->sc_disks, M_RAID3);
3297	free(sc, M_RAID3);
3298	return (0);
3299}
3300
3301static void
3302g_raid3_taste_orphan(struct g_consumer *cp)
3303{
3304
3305	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3306	    cp->provider->name));
3307}
3308
3309static struct g_geom *
3310g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3311{
3312	struct g_raid3_metadata md;
3313	struct g_raid3_softc *sc;
3314	struct g_consumer *cp;
3315	struct g_geom *gp;
3316	int error;
3317
3318	g_topology_assert();
3319	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3320	G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3321
3322	gp = g_new_geomf(mp, "raid3:taste");
3323	/* This orphan function should be never called. */
3324	gp->orphan = g_raid3_taste_orphan;
3325	cp = g_new_consumer(gp);
3326	g_attach(cp, pp);
3327	error = g_raid3_read_metadata(cp, &md);
3328	g_detach(cp);
3329	g_destroy_consumer(cp);
3330	g_destroy_geom(gp);
3331	if (error != 0)
3332		return (NULL);
3333	gp = NULL;
3334
3335	if (md.md_provider[0] != '\0' &&
3336	    !g_compare_names(md.md_provider, pp->name))
3337		return (NULL);
3338	if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3339		return (NULL);
3340	if (g_raid3_debug >= 2)
3341		raid3_metadata_dump(&md);
3342
3343	/*
3344	 * Let's check if device already exists.
3345	 */
3346	sc = NULL;
3347	LIST_FOREACH(gp, &mp->geom, geom) {
3348		sc = gp->softc;
3349		if (sc == NULL)
3350			continue;
3351		if (sc->sc_sync.ds_geom == gp)
3352			continue;
3353		if (strcmp(md.md_name, sc->sc_name) != 0)
3354			continue;
3355		if (md.md_id != sc->sc_id) {
3356			G_RAID3_DEBUG(0, "Device %s already configured.",
3357			    sc->sc_name);
3358			return (NULL);
3359		}
3360		break;
3361	}
3362	if (gp == NULL) {
3363		gp = g_raid3_create(mp, &md);
3364		if (gp == NULL) {
3365			G_RAID3_DEBUG(0, "Cannot create device %s.",
3366			    md.md_name);
3367			return (NULL);
3368		}
3369		sc = gp->softc;
3370	}
3371	G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3372	g_topology_unlock();
3373	sx_xlock(&sc->sc_lock);
3374	error = g_raid3_add_disk(sc, pp, &md);
3375	if (error != 0) {
3376		G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3377		    pp->name, gp->name, error);
3378		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3379		    sc->sc_ndisks) {
3380			g_cancel_event(sc);
3381			g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3382			g_topology_lock();
3383			return (NULL);
3384		}
3385		gp = NULL;
3386	}
3387	sx_xunlock(&sc->sc_lock);
3388	g_topology_lock();
3389	return (gp);
3390}
3391
3392static int
3393g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3394    struct g_geom *gp)
3395{
3396	struct g_raid3_softc *sc;
3397	int error;
3398
3399	g_topology_unlock();
3400	sc = gp->softc;
3401	sx_xlock(&sc->sc_lock);
3402	g_cancel_event(sc);
3403	error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3404	if (error != 0)
3405		sx_xunlock(&sc->sc_lock);
3406	g_topology_lock();
3407	return (error);
3408}
3409
3410static void
3411g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3412    struct g_consumer *cp, struct g_provider *pp)
3413{
3414	struct g_raid3_softc *sc;
3415
3416	g_topology_assert();
3417
3418	sc = gp->softc;
3419	if (sc == NULL)
3420		return;
3421	/* Skip synchronization geom. */
3422	if (gp == sc->sc_sync.ds_geom)
3423		return;
3424	if (pp != NULL) {
3425		/* Nothing here. */
3426	} else if (cp != NULL) {
3427		struct g_raid3_disk *disk;
3428
3429		disk = cp->private;
3430		if (disk == NULL)
3431			return;
3432		g_topology_unlock();
3433		sx_xlock(&sc->sc_lock);
3434		sbuf_printf(sb, "%s<Type>", indent);
3435		if (disk->d_no == sc->sc_ndisks - 1)
3436			sbuf_printf(sb, "PARITY");
3437		else
3438			sbuf_printf(sb, "DATA");
3439		sbuf_printf(sb, "</Type>\n");
3440		sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3441		    (u_int)disk->d_no);
3442		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3443			sbuf_printf(sb, "%s<Synchronized>", indent);
3444			if (disk->d_sync.ds_offset == 0)
3445				sbuf_printf(sb, "0%%");
3446			else {
3447				sbuf_printf(sb, "%u%%",
3448				    (u_int)((disk->d_sync.ds_offset * 100) /
3449				    (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3450			}
3451			sbuf_printf(sb, "</Synchronized>\n");
3452			if (disk->d_sync.ds_offset > 0) {
3453				sbuf_printf(sb, "%s<BytesSynced>%jd"
3454				    "</BytesSynced>\n", indent,
3455				    (intmax_t)disk->d_sync.ds_offset);
3456			}
3457		}
3458		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3459		    disk->d_sync.ds_syncid);
3460		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3461		sbuf_printf(sb, "%s<Flags>", indent);
3462		if (disk->d_flags == 0)
3463			sbuf_printf(sb, "NONE");
3464		else {
3465			int first = 1;
3466
3467#define	ADD_FLAG(flag, name)	do {					\
3468	if ((disk->d_flags & (flag)) != 0) {				\
3469		if (!first)						\
3470			sbuf_printf(sb, ", ");				\
3471		else							\
3472			first = 0;					\
3473		sbuf_printf(sb, name);					\
3474	}								\
3475} while (0)
3476			ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3477			ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3478			ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3479			    "SYNCHRONIZING");
3480			ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3481			ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3482#undef	ADD_FLAG
3483		}
3484		sbuf_printf(sb, "</Flags>\n");
3485		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3486		    g_raid3_disk_state2str(disk->d_state));
3487		sx_xunlock(&sc->sc_lock);
3488		g_topology_lock();
3489	} else {
3490		g_topology_unlock();
3491		sx_xlock(&sc->sc_lock);
3492		if (!g_raid3_use_malloc) {
3493			sbuf_printf(sb,
3494			    "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3495			    sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3496			sbuf_printf(sb,
3497			    "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3498			    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3499			sbuf_printf(sb,
3500			    "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3501			    sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3502			sbuf_printf(sb,
3503			    "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3504			    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3505			sbuf_printf(sb,
3506			    "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3507			    sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3508			sbuf_printf(sb,
3509			    "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3510			    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3511		}
3512		sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3513		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3514		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3515		sbuf_printf(sb, "%s<Flags>", indent);
3516		if (sc->sc_flags == 0)
3517			sbuf_printf(sb, "NONE");
3518		else {
3519			int first = 1;
3520
3521#define	ADD_FLAG(flag, name)	do {					\
3522	if ((sc->sc_flags & (flag)) != 0) {				\
3523		if (!first)						\
3524			sbuf_printf(sb, ", ");				\
3525		else							\
3526			first = 0;					\
3527		sbuf_printf(sb, name);					\
3528	}								\
3529} while (0)
3530			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3531			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3532			ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3533			    "ROUND-ROBIN");
3534			ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3535#undef	ADD_FLAG
3536		}
3537		sbuf_printf(sb, "</Flags>\n");
3538		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3539		    sc->sc_ndisks);
3540		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3541		    g_raid3_device_state2str(sc->sc_state));
3542		sx_xunlock(&sc->sc_lock);
3543		g_topology_lock();
3544	}
3545}
3546
3547static void
3548g_raid3_shutdown_post_sync(void *arg, int howto)
3549{
3550	struct g_class *mp;
3551	struct g_geom *gp, *gp2;
3552	struct g_raid3_softc *sc;
3553	int error;
3554
3555	mp = arg;
3556	DROP_GIANT();
3557	g_topology_lock();
3558	g_raid3_shutdown = 1;
3559	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3560		if ((sc = gp->softc) == NULL)
3561			continue;
3562		/* Skip synchronization geom. */
3563		if (gp == sc->sc_sync.ds_geom)
3564			continue;
3565		g_topology_unlock();
3566		sx_xlock(&sc->sc_lock);
3567		g_raid3_idle(sc, -1);
3568		g_cancel_event(sc);
3569		error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3570		if (error != 0)
3571			sx_xunlock(&sc->sc_lock);
3572		g_topology_lock();
3573	}
3574	g_topology_unlock();
3575	PICKUP_GIANT();
3576}
3577
3578static void
3579g_raid3_init(struct g_class *mp)
3580{
3581
3582	g_raid3_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
3583	    g_raid3_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
3584	if (g_raid3_post_sync == NULL)
3585		G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3586}
3587
3588static void
3589g_raid3_fini(struct g_class *mp)
3590{
3591
3592	if (g_raid3_post_sync != NULL)
3593		EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid3_post_sync);
3594}
3595
3596DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
3597