1/*-
2 * Copyright (c) 1996 Gardner Buchanan <gbuchanan@shl.com>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *      This product includes software developed by Gardner Buchanan.
16 * 4. The name of Gardner Buchanan may not be used to endorse or promote
17 *    products derived from this software without specific prior written
18 *    permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35/*
36 * This is a driver for SMC's 9000 series of Ethernet adapters.
37 *
38 * This FreeBSD driver is derived from the smc9194 Linux driver by
39 * Erik Stahlman and is Copyright (C) 1996 by Erik Stahlman.
40 * This driver also shamelessly borrows from the FreeBSD ep driver
41 * which is Copyright (C) 1994 Herb Peyerl <hpeyerl@novatel.ca>
42 * All rights reserved.
43 *
44 * It is set up for my SMC91C92 equipped Ampro LittleBoard embedded
45 * PC.  It is adapted from Erik Stahlman's Linux driver which worked
46 * with his EFA Info*Express SVC VLB adaptor.  According to SMC's databook,
47 * it will work for the entire SMC 9xxx series. (Ha Ha)
48 *
49 * "Features" of the SMC chip:
50 *   4608 byte packet memory. (for the 91C92.  Others have more)
51 *   EEPROM for configuration
52 *   AUI/TP selection
53 *
54 * Authors:
55 *      Erik Stahlman                   erik@vt.edu
56 *      Herb Peyerl                     hpeyerl@novatel.ca
57 *      Andres Vega Garcia              avega@sophia.inria.fr
58 *      Serge Babkin                    babkin@hq.icb.chel.su
59 *      Gardner Buchanan                gbuchanan@shl.com
60 *
61 * Sources:
62 *    o   SMC databook
63 *    o   "smc9194.c:v0.10(FIXED) 02/15/96 by Erik Stahlman (erik@vt.edu)"
64 *    o   "if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp"
65 *
66 * Known Bugs:
67 *    o   Setting of the hardware address isn't supported.
68 *    o   Hardware padding isn't used.
69 */
70
71/*
72 * Modifications for Megahertz X-Jack Ethernet Card (XJ-10BT)
73 *
74 * Copyright (c) 1996 by Tatsumi Hosokawa <hosokawa@jp.FreeBSD.org>
75 *                       BSD-nomads, Tokyo, Japan.
76 */
77/*
78 * Multicast support by Kei TANAKA <kei@pal.xerox.com>
79 * Special thanks to itojun@itojun.org
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/errno.h>
85#include <sys/kernel.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/socket.h>
89#include <sys/syslog.h>
90
91#include <sys/module.h>
92#include <sys/bus.h>
93
94#include <machine/bus.h>
95#include <machine/resource.h>
96#include <sys/rman.h>
97
98#include <net/ethernet.h>
99#include <net/if.h>
100#include <net/if_arp.h>
101#include <net/if_dl.h>
102#include <net/if_types.h>
103#include <net/if_mib.h>
104
105#ifdef INET
106#include <netinet/in.h>
107#include <netinet/in_systm.h>
108#include <netinet/in_var.h>
109#include <netinet/ip.h>
110#endif
111
112#include <net/bpf.h>
113#include <net/bpfdesc.h>
114
115#include <dev/sn/if_snreg.h>
116#include <dev/sn/if_snvar.h>
117
118/* Exported variables */
119devclass_t sn_devclass;
120
121static int snioctl(struct ifnet * ifp, u_long, caddr_t);
122
123static void snresume(struct ifnet *);
124
125static void snintr_locked(struct sn_softc *);
126static void sninit_locked(void *);
127static void snstart_locked(struct ifnet *);
128
129static void sninit(void *);
130static void snread(struct ifnet *);
131static void snstart(struct ifnet *);
132static void snstop(struct sn_softc *);
133static void snwatchdog(void *);
134
135static void sn_setmcast(struct sn_softc *);
136static int sn_getmcf(struct ifnet *ifp, u_char *mcf);
137
138/* I (GB) have been unlucky getting the hardware padding
139 * to work properly.
140 */
141#define SW_PAD
142
143static const char *chip_ids[15] = {
144	NULL, NULL, NULL,
145	 /* 3 */ "SMC91C90/91C92",
146	 /* 4 */ "SMC91C94/91C96",
147	 /* 5 */ "SMC91C95",
148	NULL,
149	 /* 7 */ "SMC91C100",
150	 /* 8 */ "SMC91C100FD",
151	 /* 9 */ "SMC91C110",
152	NULL, NULL,
153	NULL, NULL, NULL
154};
155
156int
157sn_attach(device_t dev)
158{
159	struct sn_softc *sc = device_get_softc(dev);
160	struct ifnet    *ifp;
161	uint16_t        i;
162	uint8_t         *p;
163	int             rev;
164	uint16_t        address;
165	int		err;
166	u_char		eaddr[6];
167
168	ifp = sc->ifp = if_alloc(IFT_ETHER);
169	if (ifp == NULL) {
170		device_printf(dev, "can not if_alloc()\n");
171		return (ENOSPC);
172	}
173
174	SN_LOCK_INIT(sc);
175	callout_init_mtx(&sc->watchdog, &sc->sc_mtx, 0);
176	snstop(sc);
177	sc->pages_wanted = -1;
178
179	if (bootverbose || 1) {
180		SMC_SELECT_BANK(sc, 3);
181		rev = (CSR_READ_2(sc, REVISION_REG_W) >> 4) & 0xf;
182		if (chip_ids[rev])
183			device_printf(dev, " %s ", chip_ids[rev]);
184		else
185			device_printf(dev, " unsupported chip: rev %d ", rev);
186		SMC_SELECT_BANK(sc, 1);
187		i = CSR_READ_2(sc, CONFIG_REG_W);
188		printf("%s\n", i & CR_AUI_SELECT ? "AUI" : "UTP");
189	}
190
191	/*
192	 * Read the station address from the chip. The MAC address is bank 1,
193	 * regs 4 - 9
194	 */
195	SMC_SELECT_BANK(sc, 1);
196	p = (uint8_t *) eaddr;
197	for (i = 0; i < 6; i += 2) {
198		address = CSR_READ_2(sc, IAR_ADDR0_REG_W + i);
199		p[i + 1] = address >> 8;
200		p[i] = address & 0xFF;
201	}
202	ifp->if_softc = sc;
203	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
204	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
205	ifp->if_start = snstart;
206	ifp->if_ioctl = snioctl;
207	ifp->if_init = sninit;
208	ifp->if_baudrate = 10000000;
209	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
210	ifp->if_snd.ifq_maxlen = ifqmaxlen;
211	IFQ_SET_READY(&ifp->if_snd);
212
213	ether_ifattach(ifp, eaddr);
214
215	/*
216	 * Activate the interrupt so we can get card interrupts.  This
217	 * needs to be done last so that we don't have/hold the lock
218	 * during startup to avoid LORs in the network layer.
219	 */
220	if ((err = bus_setup_intr(dev, sc->irq_res,
221	    INTR_TYPE_NET | INTR_MPSAFE, NULL, sn_intr, sc,
222	    &sc->intrhand)) != 0) {
223		sn_detach(dev);
224		return err;
225	}
226	return 0;
227}
228
229
230int
231sn_detach(device_t dev)
232{
233	struct sn_softc	*sc = device_get_softc(dev);
234	struct ifnet	*ifp = sc->ifp;
235
236	ether_ifdetach(ifp);
237	SN_LOCK(sc);
238	snstop(sc);
239	SN_UNLOCK(sc);
240	callout_drain(&sc->watchdog);
241	sn_deactivate(dev);
242	if_free(ifp);
243	SN_LOCK_DESTROY(sc);
244	return 0;
245}
246
247static void
248sninit(void *xsc)
249{
250	struct sn_softc *sc = xsc;
251	SN_LOCK(sc);
252	sninit_locked(sc);
253	SN_UNLOCK(sc);
254}
255
256/*
257 * Reset and initialize the chip
258 */
259static void
260sninit_locked(void *xsc)
261{
262	struct sn_softc *sc = xsc;
263	struct ifnet *ifp = sc->ifp;
264	int             flags;
265	int             mask;
266
267	SN_ASSERT_LOCKED(sc);
268
269	/*
270	 * This resets the registers mostly to defaults, but doesn't affect
271	 * EEPROM.  After the reset cycle, we pause briefly for the chip to
272	 * be happy.
273	 */
274	SMC_SELECT_BANK(sc, 0);
275	CSR_WRITE_2(sc, RECV_CONTROL_REG_W, RCR_SOFTRESET);
276	SMC_DELAY(sc);
277	CSR_WRITE_2(sc, RECV_CONTROL_REG_W, 0x0000);
278	SMC_DELAY(sc);
279	SMC_DELAY(sc);
280
281	CSR_WRITE_2(sc, TXMIT_CONTROL_REG_W, 0x0000);
282
283	/*
284	 * Set the control register to automatically release succesfully
285	 * transmitted packets (making the best use out of our limited
286	 * memory) and to enable the EPH interrupt on certain TX errors.
287	 */
288	SMC_SELECT_BANK(sc, 1);
289	CSR_WRITE_2(sc, CONTROL_REG_W, (CTR_AUTO_RELEASE | CTR_TE_ENABLE |
290				    CTR_CR_ENABLE | CTR_LE_ENABLE));
291
292	/* Set squelch level to 240mV (default 480mV) */
293	flags = CSR_READ_2(sc, CONFIG_REG_W);
294	flags |= CR_SET_SQLCH;
295	CSR_WRITE_2(sc, CONFIG_REG_W, flags);
296
297	/*
298	 * Reset the MMU and wait for it to be un-busy.
299	 */
300	SMC_SELECT_BANK(sc, 2);
301	CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_RESET);
302	while (CSR_READ_2(sc, MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
303		;
304
305	/*
306	 * Disable all interrupts
307	 */
308	CSR_WRITE_1(sc, INTR_MASK_REG_B, 0x00);
309
310	sn_setmcast(sc);
311
312	/*
313	 * Set the transmitter control.  We want it enabled.
314	 */
315	flags = TCR_ENABLE;
316
317#ifndef SW_PAD
318	/*
319	 * I (GB) have been unlucky getting this to work.
320	 */
321	flags |= TCR_PAD_ENABLE;
322#endif	/* SW_PAD */
323
324	CSR_WRITE_2(sc, TXMIT_CONTROL_REG_W, flags);
325
326
327	/*
328	 * Now, enable interrupts
329	 */
330	SMC_SELECT_BANK(sc, 2);
331
332	mask = IM_EPH_INT |
333		IM_RX_OVRN_INT |
334		IM_RCV_INT |
335		IM_TX_INT;
336
337	CSR_WRITE_1(sc, INTR_MASK_REG_B, mask);
338	sc->intr_mask = mask;
339	sc->pages_wanted = -1;
340
341
342	/*
343	 * Mark the interface running but not active.
344	 */
345	ifp->if_drv_flags |= IFF_DRV_RUNNING;
346	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
347	callout_reset(&sc->watchdog, hz, snwatchdog, sc);
348
349	/*
350	 * Attempt to push out any waiting packets.
351	 */
352	snstart_locked(ifp);
353}
354
355static void
356snstart(struct ifnet *ifp)
357{
358	struct sn_softc *sc = ifp->if_softc;
359	SN_LOCK(sc);
360	snstart_locked(ifp);
361	SN_UNLOCK(sc);
362}
363
364
365static void
366snstart_locked(struct ifnet *ifp)
367{
368	struct sn_softc *sc = ifp->if_softc;
369	u_int		len;
370	struct mbuf	*m;
371	struct mbuf	*top;
372	int             pad;
373	int             mask;
374	uint16_t        length;
375	uint16_t        numPages;
376	uint8_t         packet_no;
377	int             time_out;
378	int		junk = 0;
379
380	SN_ASSERT_LOCKED(sc);
381
382	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
383		return;
384	if (sc->pages_wanted != -1) {
385		if_printf(ifp, "snstart() while memory allocation pending\n");
386		return;
387	}
388startagain:
389
390	/*
391	 * Sneak a peek at the next packet
392	 */
393	m = ifp->if_snd.ifq_head;
394	if (m == 0)
395		return;
396	/*
397	 * Compute the frame length and set pad to give an overall even
398	 * number of bytes.  Below we assume that the packet length is even.
399	 */
400	for (len = 0, top = m; m; m = m->m_next)
401		len += m->m_len;
402
403	pad = (len & 1);
404
405	/*
406	 * We drop packets that are too large. Perhaps we should truncate
407	 * them instead?
408	 */
409	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
410		if_printf(ifp, "large packet discarded (A)\n");
411		++ifp->if_oerrors;
412		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
413		m_freem(m);
414		goto readcheck;
415	}
416#ifdef SW_PAD
417
418	/*
419	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
420	 */
421	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
422		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
423
424#endif	/* SW_PAD */
425
426	length = pad + len;
427
428	/*
429	 * The MMU wants the number of pages to be the number of 256 byte
430	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
431	 * include space for the status word, byte count and control bytes in
432	 * the allocation request.
433	 */
434	numPages = (length + 6) >> 8;
435
436
437	/*
438	 * Now, try to allocate the memory
439	 */
440	SMC_SELECT_BANK(sc, 2);
441	CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_ALLOC | numPages);
442
443	/*
444	 * Wait a short amount of time to see if the allocation request
445	 * completes.  Otherwise, I enable the interrupt and wait for
446	 * completion asynchronously.
447	 */
448
449	time_out = MEMORY_WAIT_TIME;
450	do {
451		if (CSR_READ_1(sc, INTR_STAT_REG_B) & IM_ALLOC_INT)
452			break;
453	} while (--time_out);
454
455	if (!time_out || junk > 10) {
456
457		/*
458		 * No memory now.  Oh well, wait until the chip finds memory
459		 * later.   Remember how many pages we were asking for and
460		 * enable the allocation completion interrupt. Also set a
461		 * watchdog in case  we miss the interrupt. We mark the
462		 * interface active since there is no point in attempting an
463		 * snstart() until after the memory is available.
464		 */
465		mask = CSR_READ_1(sc, INTR_MASK_REG_B) | IM_ALLOC_INT;
466		CSR_WRITE_1(sc, INTR_MASK_REG_B, mask);
467		sc->intr_mask = mask;
468
469		sc->timer = 1;
470		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
471		sc->pages_wanted = numPages;
472		return;
473	}
474	/*
475	 * The memory allocation completed.  Check the results.
476	 */
477	packet_no = CSR_READ_1(sc, ALLOC_RESULT_REG_B);
478	if (packet_no & ARR_FAILED) {
479		if (junk++ > 10)
480			if_printf(ifp, "Memory allocation failed\n");
481		goto startagain;
482	}
483	/*
484	 * We have a packet number, so tell the card to use it.
485	 */
486	CSR_WRITE_1(sc, PACKET_NUM_REG_B, packet_no);
487
488	/*
489	 * Point to the beginning of the packet
490	 */
491	CSR_WRITE_2(sc, POINTER_REG_W, PTR_AUTOINC | 0x0000);
492
493	/*
494	 * Send the packet length (+6 for status, length and control byte)
495	 * and the status word (set to zeros)
496	 */
497	CSR_WRITE_2(sc, DATA_REG_W, 0);
498	CSR_WRITE_1(sc, DATA_REG_B, (length + 6) & 0xFF);
499	CSR_WRITE_1(sc, DATA_REG_B, (length + 6) >> 8);
500
501	/*
502	 * Get the packet from the kernel.  This will include the Ethernet
503	 * frame header, MAC Addresses etc.
504	 */
505	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
506
507	/*
508	 * Push out the data to the card.
509	 */
510	for (top = m; m != 0; m = m->m_next) {
511
512		/*
513		 * Push out words.
514		 */
515		CSR_WRITE_MULTI_2(sc, DATA_REG_W, mtod(m, uint16_t *),
516		    m->m_len / 2);
517
518		/*
519		 * Push out remaining byte.
520		 */
521		if (m->m_len & 1)
522			CSR_WRITE_1(sc, DATA_REG_B,
523			    *(mtod(m, caddr_t) + m->m_len - 1));
524	}
525
526	/*
527	 * Push out padding.
528	 */
529	while (pad > 1) {
530		CSR_WRITE_2(sc, DATA_REG_W, 0);
531		pad -= 2;
532	}
533	if (pad)
534		CSR_WRITE_1(sc, DATA_REG_B, 0);
535
536	/*
537	 * Push out control byte and unused packet byte The control byte is 0
538	 * meaning the packet is even lengthed and no special CRC handling is
539	 * desired.
540	 */
541	CSR_WRITE_2(sc, DATA_REG_W, 0);
542
543	/*
544	 * Enable the interrupts and let the chipset deal with it Also set a
545	 * watchdog in case we miss the interrupt.
546	 */
547	mask = CSR_READ_1(sc, INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
548	CSR_WRITE_1(sc, INTR_MASK_REG_B, mask);
549	sc->intr_mask = mask;
550
551	CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_ENQUEUE);
552
553	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
554	sc->timer = 1;
555
556	BPF_MTAP(ifp, top);
557
558	ifp->if_opackets++;
559	m_freem(top);
560
561
562readcheck:
563
564	/*
565	 * Is another packet coming in?  We don't want to overflow the tiny
566	 * RX FIFO.  If nothing has arrived then attempt to queue another
567	 * transmit packet.
568	 */
569	if (CSR_READ_2(sc, FIFO_PORTS_REG_W) & FIFO_REMPTY)
570		goto startagain;
571	return;
572}
573
574
575
576/* Resume a packet transmit operation after a memory allocation
577 * has completed.
578 *
579 * This is basically a hacked up copy of snstart() which handles
580 * a completed memory allocation the same way snstart() does.
581 * It then passes control to snstart to handle any other queued
582 * packets.
583 */
584static void
585snresume(struct ifnet *ifp)
586{
587	struct sn_softc *sc = ifp->if_softc;
588	u_int		len;
589	struct mbuf	*m;
590	struct mbuf    *top;
591	int             pad;
592	int             mask;
593	uint16_t        length;
594	uint16_t        numPages;
595	uint16_t        pages_wanted;
596	uint8_t         packet_no;
597
598	if (sc->pages_wanted < 0)
599		return;
600
601	pages_wanted = sc->pages_wanted;
602	sc->pages_wanted = -1;
603
604	/*
605	 * Sneak a peek at the next packet
606	 */
607	m = ifp->if_snd.ifq_head;
608	if (m == 0) {
609		if_printf(ifp, "snresume() with nothing to send\n");
610		return;
611	}
612	/*
613	 * Compute the frame length and set pad to give an overall even
614	 * number of bytes.  Below we assume that the packet length is even.
615	 */
616	for (len = 0, top = m; m; m = m->m_next)
617		len += m->m_len;
618
619	pad = (len & 1);
620
621	/*
622	 * We drop packets that are too large. Perhaps we should truncate
623	 * them instead?
624	 */
625	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
626		if_printf(ifp, "large packet discarded (B)\n");
627		++ifp->if_oerrors;
628		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
629		m_freem(m);
630		return;
631	}
632#ifdef SW_PAD
633
634	/*
635	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
636	 */
637	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
638		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
639
640#endif	/* SW_PAD */
641
642	length = pad + len;
643
644
645	/*
646	 * The MMU wants the number of pages to be the number of 256 byte
647	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
648	 * include space for the status word, byte count and control bytes in
649	 * the allocation request.
650	 */
651	numPages = (length + 6) >> 8;
652
653
654	SMC_SELECT_BANK(sc, 2);
655
656	/*
657	 * The memory allocation completed.  Check the results. If it failed,
658	 * we simply set a watchdog timer and hope for the best.
659	 */
660	packet_no = CSR_READ_1(sc, ALLOC_RESULT_REG_B);
661	if (packet_no & ARR_FAILED) {
662		if_printf(ifp, "Memory allocation failed.  Weird.\n");
663		sc->timer = 1;
664		goto try_start;
665	}
666	/*
667	 * We have a packet number, so tell the card to use it.
668	 */
669	CSR_WRITE_1(sc, PACKET_NUM_REG_B, packet_no);
670
671	/*
672	 * Now, numPages should match the pages_wanted recorded when the
673	 * memory allocation was initiated.
674	 */
675	if (pages_wanted != numPages) {
676		if_printf(ifp, "memory allocation wrong size.  Weird.\n");
677		/*
678		 * If the allocation was the wrong size we simply release the
679		 * memory once it is granted. Wait for the MMU to be un-busy.
680		 */
681		while (CSR_READ_2(sc, MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
682			;
683		CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_FREEPKT);
684
685		return;
686	}
687	/*
688	 * Point to the beginning of the packet
689	 */
690	CSR_WRITE_2(sc, POINTER_REG_W, PTR_AUTOINC | 0x0000);
691
692	/*
693	 * Send the packet length (+6 for status, length and control byte)
694	 * and the status word (set to zeros)
695	 */
696	CSR_WRITE_2(sc, DATA_REG_W, 0);
697	CSR_WRITE_1(sc, DATA_REG_B, (length + 6) & 0xFF);
698	CSR_WRITE_1(sc, DATA_REG_B, (length + 6) >> 8);
699
700	/*
701	 * Get the packet from the kernel.  This will include the Ethernet
702	 * frame header, MAC Addresses etc.
703	 */
704	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
705
706	/*
707	 * Push out the data to the card.
708	 */
709	for (top = m; m != 0; m = m->m_next) {
710
711		/*
712		 * Push out words.
713		 */
714		CSR_WRITE_MULTI_2(sc, DATA_REG_W, mtod(m, uint16_t *),
715		    m->m_len / 2);
716		/*
717		 * Push out remaining byte.
718		 */
719		if (m->m_len & 1)
720			CSR_WRITE_1(sc, DATA_REG_B,
721			    *(mtod(m, caddr_t) + m->m_len - 1));
722	}
723
724	/*
725	 * Push out padding.
726	 */
727	while (pad > 1) {
728		CSR_WRITE_2(sc, DATA_REG_W, 0);
729		pad -= 2;
730	}
731	if (pad)
732		CSR_WRITE_1(sc, DATA_REG_B, 0);
733
734	/*
735	 * Push out control byte and unused packet byte The control byte is 0
736	 * meaning the packet is even lengthed and no special CRC handling is
737	 * desired.
738	 */
739	CSR_WRITE_2(sc, DATA_REG_W, 0);
740
741	/*
742	 * Enable the interrupts and let the chipset deal with it Also set a
743	 * watchdog in case we miss the interrupt.
744	 */
745	mask = CSR_READ_1(sc, INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
746	CSR_WRITE_1(sc, INTR_MASK_REG_B, mask);
747	sc->intr_mask = mask;
748	CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_ENQUEUE);
749
750	BPF_MTAP(ifp, top);
751
752	ifp->if_opackets++;
753	m_freem(top);
754
755try_start:
756
757	/*
758	 * Now pass control to snstart() to queue any additional packets
759	 */
760	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
761	snstart_locked(ifp);
762
763	/*
764	 * We've sent something, so we're active.  Set a watchdog in case the
765	 * TX_EMPTY interrupt is lost.
766	 */
767	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
768	sc->timer = 1;
769
770	return;
771}
772
773void
774sn_intr(void *arg)
775{
776	struct sn_softc *sc = (struct sn_softc *) arg;
777
778	SN_LOCK(sc);
779	snintr_locked(sc);
780	SN_UNLOCK(sc);
781}
782
783static void
784snintr_locked(struct sn_softc *sc)
785{
786	int             status, interrupts;
787	struct ifnet   *ifp = sc->ifp;
788
789	/*
790	 * Chip state registers
791	 */
792	uint8_t          mask;
793	uint8_t         packet_no;
794	uint16_t        tx_status;
795	uint16_t        card_stats;
796
797	/*
798	 * Clear the watchdog.
799	 */
800	sc->timer = 0;
801
802	SMC_SELECT_BANK(sc, 2);
803
804	/*
805	 * Obtain the current interrupt mask and clear the hardware mask
806	 * while servicing interrupts.
807	 */
808	mask = CSR_READ_1(sc, INTR_MASK_REG_B);
809	CSR_WRITE_1(sc, INTR_MASK_REG_B, 0x00);
810
811	/*
812	 * Get the set of interrupts which occurred and eliminate any which
813	 * are masked.
814	 */
815	interrupts = CSR_READ_1(sc, INTR_STAT_REG_B);
816	status = interrupts & mask;
817
818	/*
819	 * Now, process each of the interrupt types.
820	 */
821
822	/*
823	 * Receive Overrun.
824	 */
825	if (status & IM_RX_OVRN_INT) {
826		/*
827		 * Acknowlege Interrupt
828		 */
829		SMC_SELECT_BANK(sc, 2);
830		CSR_WRITE_1(sc, INTR_ACK_REG_B, IM_RX_OVRN_INT);
831
832		++ifp->if_ierrors;
833	}
834	/*
835	 * Got a packet.
836	 */
837	if (status & IM_RCV_INT) {
838		int             packet_number;
839
840		SMC_SELECT_BANK(sc, 2);
841		packet_number = CSR_READ_2(sc, FIFO_PORTS_REG_W);
842
843		if (packet_number & FIFO_REMPTY) {
844			/*
845			 * we got called , but nothing was on the FIFO
846			 */
847			printf("sn: Receive interrupt with nothing on FIFO\n");
848			goto out;
849		}
850		snread(ifp);
851	}
852	/*
853	 * An on-card memory allocation came through.
854	 */
855	if (status & IM_ALLOC_INT) {
856		/*
857		 * Disable this interrupt.
858		 */
859		mask &= ~IM_ALLOC_INT;
860		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
861		snresume(ifp);
862	}
863	/*
864	 * TX Completion.  Handle a transmit error message. This will only be
865	 * called when there is an error, because of the AUTO_RELEASE mode.
866	 */
867	if (status & IM_TX_INT) {
868		/*
869		 * Acknowlege Interrupt
870		 */
871		SMC_SELECT_BANK(sc, 2);
872		CSR_WRITE_1(sc, INTR_ACK_REG_B, IM_TX_INT);
873
874		packet_no = CSR_READ_2(sc, FIFO_PORTS_REG_W);
875		packet_no &= FIFO_TX_MASK;
876
877		/*
878		 * select this as the packet to read from
879		 */
880		CSR_WRITE_1(sc, PACKET_NUM_REG_B, packet_no);
881
882		/*
883		 * Position the pointer to the first word from this packet
884		 */
885		CSR_WRITE_2(sc, POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000);
886
887		/*
888		 * Fetch the TX status word.  The value found here will be a
889		 * copy of the EPH_STATUS_REG_W at the time the transmit
890		 * failed.
891		 */
892		tx_status = CSR_READ_2(sc, DATA_REG_W);
893
894		if (tx_status & EPHSR_TX_SUC) {
895			device_printf(sc->dev,
896			    "Successful packet caused interrupt\n");
897		} else {
898			++ifp->if_oerrors;
899		}
900
901		if (tx_status & EPHSR_LATCOL)
902			++ifp->if_collisions;
903
904		/*
905		 * Some of these errors will have disabled transmit.
906		 * Re-enable transmit now.
907		 */
908		SMC_SELECT_BANK(sc, 0);
909
910#ifdef SW_PAD
911		CSR_WRITE_2(sc, TXMIT_CONTROL_REG_W, TCR_ENABLE);
912#else
913		CSR_WRITE_2(sc, TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE);
914#endif	/* SW_PAD */
915
916		/*
917		 * kill the failed packet. Wait for the MMU to be un-busy.
918		 */
919		SMC_SELECT_BANK(sc, 2);
920		while (CSR_READ_2(sc, MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
921			;
922		CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_FREEPKT);
923
924		/*
925		 * Attempt to queue more transmits.
926		 */
927		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
928		snstart_locked(ifp);
929	}
930	/*
931	 * Transmit underrun.  We use this opportunity to update transmit
932	 * statistics from the card.
933	 */
934	if (status & IM_TX_EMPTY_INT) {
935
936		/*
937		 * Acknowlege Interrupt
938		 */
939		SMC_SELECT_BANK(sc, 2);
940		CSR_WRITE_1(sc, INTR_ACK_REG_B, IM_TX_EMPTY_INT);
941
942		/*
943		 * Disable this interrupt.
944		 */
945		mask &= ~IM_TX_EMPTY_INT;
946
947		SMC_SELECT_BANK(sc, 0);
948		card_stats = CSR_READ_2(sc, COUNTER_REG_W);
949
950		/*
951		 * Single collisions
952		 */
953		ifp->if_collisions += card_stats & ECR_COLN_MASK;
954
955		/*
956		 * Multiple collisions
957		 */
958		ifp->if_collisions += (card_stats & ECR_MCOLN_MASK) >> 4;
959
960		SMC_SELECT_BANK(sc, 2);
961
962		/*
963		 * Attempt to enqueue some more stuff.
964		 */
965		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
966		snstart_locked(ifp);
967	}
968	/*
969	 * Some other error.  Try to fix it by resetting the adapter.
970	 */
971	if (status & IM_EPH_INT) {
972		snstop(sc);
973		sninit_locked(sc);
974	}
975
976out:
977	/*
978	 * Handled all interrupt sources.
979	 */
980
981	SMC_SELECT_BANK(sc, 2);
982
983	/*
984	 * Reestablish interrupts from mask which have not been deselected
985	 * during this interrupt.  Note that the hardware mask, which was set
986	 * to 0x00 at the start of this service routine, may have been
987	 * updated by one or more of the interrupt handers and we must let
988	 * those new interrupts stay enabled here.
989	 */
990	mask |= CSR_READ_1(sc, INTR_MASK_REG_B);
991	CSR_WRITE_1(sc, INTR_MASK_REG_B, mask);
992	sc->intr_mask = mask;
993}
994
995static void
996snread(struct ifnet *ifp)
997{
998        struct sn_softc *sc = ifp->if_softc;
999	struct ether_header *eh;
1000	struct mbuf    *m;
1001	short           status;
1002	int             packet_number;
1003	uint16_t        packet_length;
1004	uint8_t        *data;
1005
1006	SMC_SELECT_BANK(sc, 2);
1007#if 0
1008	packet_number = CSR_READ_2(sc, FIFO_PORTS_REG_W);
1009
1010	if (packet_number & FIFO_REMPTY) {
1011
1012		/*
1013		 * we got called , but nothing was on the FIFO
1014		 */
1015		printf("sn: Receive interrupt with nothing on FIFO\n");
1016		return;
1017	}
1018#endif
1019read_another:
1020
1021	/*
1022	 * Start reading from the start of the packet. Since PTR_RCV is set,
1023	 * packet number is found in FIFO_PORTS_REG_W, FIFO_RX_MASK.
1024	 */
1025	CSR_WRITE_2(sc, POINTER_REG_W, PTR_READ | PTR_RCV | PTR_AUTOINC | 0x0000);
1026
1027	/*
1028	 * First two words are status and packet_length
1029	 */
1030	status = CSR_READ_2(sc, DATA_REG_W);
1031	packet_length = CSR_READ_2(sc, DATA_REG_W) & RLEN_MASK;
1032
1033	/*
1034	 * The packet length contains 3 extra words: status, length, and a
1035	 * extra word with the control byte.
1036	 */
1037	packet_length -= 6;
1038
1039	/*
1040	 * Account for receive errors and discard.
1041	 */
1042	if (status & RS_ERRORS) {
1043		++ifp->if_ierrors;
1044		goto out;
1045	}
1046	/*
1047	 * A packet is received.
1048	 */
1049
1050	/*
1051	 * Adjust for odd-length packet.
1052	 */
1053	if (status & RS_ODDFRAME)
1054		packet_length++;
1055
1056	/*
1057	 * Allocate a header mbuf from the kernel.
1058	 */
1059	MGETHDR(m, M_NOWAIT, MT_DATA);
1060	if (m == NULL)
1061		goto out;
1062
1063	m->m_pkthdr.rcvif = ifp;
1064	m->m_pkthdr.len = m->m_len = packet_length;
1065
1066	/*
1067	 * Attach an mbuf cluster
1068	 */
1069	MCLGET(m, M_NOWAIT);
1070
1071	/*
1072	 * Insist on getting a cluster
1073	 */
1074	if ((m->m_flags & M_EXT) == 0) {
1075		m_freem(m);
1076		++ifp->if_ierrors;
1077		printf("sn: snread() kernel memory allocation problem\n");
1078		goto out;
1079	}
1080	eh = mtod(m, struct ether_header *);
1081
1082	/*
1083	 * Get packet, including link layer address, from interface.
1084	 */
1085	data = (uint8_t *) eh;
1086	CSR_READ_MULTI_2(sc, DATA_REG_W, (uint16_t *) data, packet_length >> 1);
1087	if (packet_length & 1) {
1088		data += packet_length & ~1;
1089		*data = CSR_READ_1(sc, DATA_REG_B);
1090	}
1091	++ifp->if_ipackets;
1092
1093	/*
1094	 * Remove link layer addresses and whatnot.
1095	 */
1096	m->m_pkthdr.len = m->m_len = packet_length;
1097
1098	/*
1099	 * Drop locks before calling if_input() since it may re-enter
1100	 * snstart() in the netisr case.  This would result in a
1101	 * lock reversal.  Better performance might be obtained by
1102	 * chaining all packets received, dropping the lock, and then
1103	 * calling if_input() on each one.
1104	 */
1105	SN_UNLOCK(sc);
1106	(*ifp->if_input)(ifp, m);
1107	SN_LOCK(sc);
1108
1109out:
1110
1111	/*
1112	 * Error or good, tell the card to get rid of this packet Wait for
1113	 * the MMU to be un-busy.
1114	 */
1115	SMC_SELECT_BANK(sc, 2);
1116	while (CSR_READ_2(sc, MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
1117		;
1118	CSR_WRITE_2(sc, MMU_CMD_REG_W, MMUCR_RELEASE);
1119
1120	/*
1121	 * Check whether another packet is ready
1122	 */
1123	packet_number = CSR_READ_2(sc, FIFO_PORTS_REG_W);
1124	if (packet_number & FIFO_REMPTY) {
1125		return;
1126	}
1127	goto read_another;
1128}
1129
1130
1131/*
1132 * Handle IOCTLS.  This function is completely stolen from if_ep.c
1133 * As with its progenitor, it does not handle hardware address
1134 * changes.
1135 */
1136static int
1137snioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1138{
1139	struct sn_softc *sc = ifp->if_softc;
1140	int             error = 0;
1141
1142	switch (cmd) {
1143	case SIOCSIFFLAGS:
1144		SN_LOCK(sc);
1145		if ((ifp->if_flags & IFF_UP) == 0 &&
1146		    ifp->if_drv_flags & IFF_DRV_RUNNING) {
1147			snstop(sc);
1148		} else {
1149			/* reinitialize card on any parameter change */
1150			sninit_locked(sc);
1151		}
1152		SN_UNLOCK(sc);
1153		break;
1154
1155	case SIOCADDMULTI:
1156	case SIOCDELMULTI:
1157		/* update multicast filter list. */
1158		SN_LOCK(sc);
1159		sn_setmcast(sc);
1160		error = 0;
1161		SN_UNLOCK(sc);
1162		break;
1163	default:
1164		error = ether_ioctl(ifp, cmd, data);
1165		break;
1166	}
1167	return (error);
1168}
1169
1170static void
1171snwatchdog(void *arg)
1172{
1173	struct sn_softc *sc;
1174
1175	sc = arg;
1176	SN_ASSERT_LOCKED(sc);
1177	callout_reset(&sc->watchdog, hz, snwatchdog, sc);
1178	if (sc->timer == 0 || --sc->timer > 0)
1179		return;
1180	snintr_locked(sc);
1181}
1182
1183
1184/* 1. zero the interrupt mask
1185 * 2. clear the enable receive flag
1186 * 3. clear the enable xmit flags
1187 */
1188static void
1189snstop(struct sn_softc *sc)
1190{
1191
1192	struct ifnet   *ifp = sc->ifp;
1193
1194	/*
1195	 * Clear interrupt mask; disable all interrupts.
1196	 */
1197	SMC_SELECT_BANK(sc, 2);
1198	CSR_WRITE_1(sc, INTR_MASK_REG_B, 0x00);
1199
1200	/*
1201	 * Disable transmitter and Receiver
1202	 */
1203	SMC_SELECT_BANK(sc, 0);
1204	CSR_WRITE_2(sc, RECV_CONTROL_REG_W, 0x0000);
1205	CSR_WRITE_2(sc, TXMIT_CONTROL_REG_W, 0x0000);
1206
1207	/*
1208	 * Cancel watchdog.
1209	 */
1210	sc->timer = 0;
1211	callout_stop(&sc->watchdog);
1212	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1213}
1214
1215
1216int
1217sn_activate(device_t dev)
1218{
1219	struct sn_softc *sc = device_get_softc(dev);
1220
1221	sc->port_rid = 0;
1222	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
1223	    0, ~0, SMC_IO_EXTENT, RF_ACTIVE);
1224	if (!sc->port_res) {
1225		if (bootverbose)
1226			device_printf(dev, "Cannot allocate ioport\n");
1227		return ENOMEM;
1228	}
1229
1230	sc->irq_rid = 0;
1231	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
1232	    RF_ACTIVE);
1233	if (!sc->irq_res) {
1234		if (bootverbose)
1235			device_printf(dev, "Cannot allocate irq\n");
1236		sn_deactivate(dev);
1237		return ENOMEM;
1238	}
1239	return (0);
1240}
1241
1242void
1243sn_deactivate(device_t dev)
1244{
1245	struct sn_softc *sc = device_get_softc(dev);
1246
1247	if (sc->intrhand)
1248		bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
1249	sc->intrhand = 0;
1250	if (sc->port_res)
1251		bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid,
1252		    sc->port_res);
1253	sc->port_res = 0;
1254	if (sc->modem_res)
1255		bus_release_resource(dev, SYS_RES_IOPORT, sc->modem_rid,
1256		    sc->modem_res);
1257	sc->modem_res = 0;
1258	if (sc->irq_res)
1259		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid,
1260		    sc->irq_res);
1261	sc->irq_res = 0;
1262	return;
1263}
1264
1265/*
1266 * Function: sn_probe(device_t dev)
1267 *
1268 * Purpose:
1269 *      Tests to see if a given ioaddr points to an SMC9xxx chip.
1270 *      Tries to cause as little damage as possible if it's not a SMC chip.
1271 *      Returns a 0 on success
1272 *
1273 * Algorithm:
1274 *      (1) see if the high byte of BANK_SELECT is 0x33
1275 *      (2) compare the ioaddr with the base register's address
1276 *      (3) see if I recognize the chip ID in the appropriate register
1277 *
1278 *
1279 */
1280int
1281sn_probe(device_t dev)
1282{
1283	struct sn_softc *sc = device_get_softc(dev);
1284	uint16_t        bank;
1285	uint16_t        revision_register;
1286	uint16_t        base_address_register;
1287	int		err;
1288
1289	if ((err = sn_activate(dev)) != 0)
1290		return err;
1291
1292	/*
1293	 * First, see if the high byte is 0x33
1294	 */
1295	bank = CSR_READ_2(sc, BANK_SELECT_REG_W);
1296	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1297#ifdef	SN_DEBUG
1298		device_printf(dev, "test1 failed\n");
1299#endif
1300		goto error;
1301	}
1302	/*
1303	 * The above MIGHT indicate a device, but I need to write to further
1304	 * test this.  Go to bank 0, then test that the register still
1305	 * reports the high byte is 0x33.
1306	 */
1307	CSR_WRITE_2(sc, BANK_SELECT_REG_W, 0x0000);
1308	bank = CSR_READ_2(sc, BANK_SELECT_REG_W);
1309	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1310#ifdef	SN_DEBUG
1311		device_printf(dev, "test2 failed\n");
1312#endif
1313		goto error;
1314	}
1315	/*
1316	 * well, we've already written once, so hopefully another time won't
1317	 * hurt.  This time, I need to switch the bank register to bank 1, so
1318	 * I can access the base address register.  The contents of the
1319	 * BASE_ADDR_REG_W register, after some jiggery pokery, is expected
1320	 * to match the I/O port address where the adapter is being probed.
1321	 */
1322	CSR_WRITE_2(sc, BANK_SELECT_REG_W, 0x0001);
1323	base_address_register = (CSR_READ_2(sc, BASE_ADDR_REG_W) >> 3) & 0x3e0;
1324
1325	if (rman_get_start(sc->port_res) != base_address_register) {
1326
1327		/*
1328		 * Well, the base address register didn't match.  Must not
1329		 * have been a SMC chip after all.
1330		 */
1331#ifdef	SN_DEBUG
1332		device_printf(dev, "test3 failed ioaddr = 0x%x, "
1333		    "base_address_register = 0x%x\n",
1334		    rman_get_start(sc->port_res), base_address_register);
1335#endif
1336		goto error;
1337	}
1338
1339	/*
1340	 * Check if the revision register is something that I recognize.
1341	 * These might need to be added to later, as future revisions could
1342	 * be added.
1343	 */
1344	CSR_WRITE_2(sc, BANK_SELECT_REG_W, 0x3);
1345	revision_register = CSR_READ_2(sc, REVISION_REG_W);
1346	if (!chip_ids[(revision_register >> 4) & 0xF]) {
1347
1348		/*
1349		 * I don't regonize this chip, so...
1350		 */
1351#ifdef	SN_DEBUG
1352		device_printf(dev, "test4 failed\n");
1353#endif
1354		goto error;
1355	}
1356
1357	/*
1358	 * at this point I'll assume that the chip is an SMC9xxx. It might be
1359	 * prudent to check a listing of MAC addresses against the hardware
1360	 * address, or do some other tests.
1361	 */
1362	sn_deactivate(dev);
1363	return 0;
1364 error:
1365	sn_deactivate(dev);
1366	return ENXIO;
1367}
1368
1369#define MCFSZ 8
1370
1371static void
1372sn_setmcast(struct sn_softc *sc)
1373{
1374	struct ifnet *ifp = sc->ifp;
1375	int flags;
1376	uint8_t mcf[MCFSZ];
1377
1378	SN_ASSERT_LOCKED(sc);
1379
1380	/*
1381	 * Set the receiver filter.  We want receive enabled and auto strip
1382	 * of CRC from received packet.  If we are promiscuous then set that
1383	 * bit too.
1384	 */
1385	flags = RCR_ENABLE | RCR_STRIP_CRC;
1386
1387	if (ifp->if_flags & IFF_PROMISC) {
1388		flags |= RCR_PROMISC | RCR_ALMUL;
1389	} else if (ifp->if_flags & IFF_ALLMULTI) {
1390		flags |= RCR_ALMUL;
1391	} else {
1392		if (sn_getmcf(ifp, mcf)) {
1393			/* set filter */
1394			SMC_SELECT_BANK(sc, 3);
1395			CSR_WRITE_2(sc, MULTICAST1_REG_W,
1396			    ((uint16_t)mcf[1] << 8) |  mcf[0]);
1397			CSR_WRITE_2(sc, MULTICAST2_REG_W,
1398			    ((uint16_t)mcf[3] << 8) |  mcf[2]);
1399			CSR_WRITE_2(sc, MULTICAST3_REG_W,
1400			    ((uint16_t)mcf[5] << 8) |  mcf[4]);
1401			CSR_WRITE_2(sc, MULTICAST4_REG_W,
1402			    ((uint16_t)mcf[7] << 8) |  mcf[6]);
1403		} else {
1404			flags |= RCR_ALMUL;
1405		}
1406	}
1407	SMC_SELECT_BANK(sc, 0);
1408	CSR_WRITE_2(sc, RECV_CONTROL_REG_W, flags);
1409}
1410
1411static int
1412sn_getmcf(struct ifnet *ifp, uint8_t *mcf)
1413{
1414	int i;
1415	uint32_t index, index2;
1416	uint8_t *af = mcf;
1417	struct ifmultiaddr *ifma;
1418
1419	bzero(mcf, MCFSZ);
1420
1421	if_maddr_rlock(ifp);
1422	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1423	    if (ifma->ifma_addr->sa_family != AF_LINK) {
1424		if_maddr_runlock(ifp);
1425		return 0;
1426	    }
1427	    index = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1428		ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3f;
1429	    index2 = 0;
1430	    for (i = 0; i < 6; i++) {
1431		index2 <<= 1;
1432		index2 |= (index & 0x01);
1433		index >>= 1;
1434	    }
1435	    af[index2 >> 3] |= 1 << (index2 & 7);
1436	}
1437	if_maddr_runlock(ifp);
1438	return 1;  /* use multicast filter */
1439}
1440