1/*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *	$FreeBSD$
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/malloc.h>
33#include <sys/kernel.h>
34#include <sys/bus.h>
35#include <sys/conf.h>
36#include <sys/ctype.h>
37#include <sys/ioccom.h>
38#include <sys/stat.h>
39
40#include <machine/bus.h>
41#include <machine/resource.h>
42#include <sys/rman.h>
43
44#include <cam/cam.h>
45#include <cam/cam_ccb.h>
46#include <cam/cam_periph.h>
47#include <cam/cam_sim.h>
48#include <cam/cam_xpt_sim.h>
49#include <cam/scsi/scsi_all.h>
50#include <cam/scsi/scsi_message.h>
51
52#include <dev/pci/pcireg.h>
53#include <dev/pci/pcivar.h>
54
55#include <dev/mly/mlyreg.h>
56#include <dev/mly/mlyio.h>
57#include <dev/mly/mlyvar.h>
58#include <dev/mly/mly_tables.h>
59
60static int	mly_probe(device_t dev);
61static int	mly_attach(device_t dev);
62static int	mly_pci_attach(struct mly_softc *sc);
63static int	mly_detach(device_t dev);
64static int	mly_shutdown(device_t dev);
65static void	mly_intr(void *arg);
66
67static int	mly_sg_map(struct mly_softc *sc);
68static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
69static int	mly_mmbox_map(struct mly_softc *sc);
70static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71static void	mly_free(struct mly_softc *sc);
72
73static int	mly_get_controllerinfo(struct mly_softc *sc);
74static void	mly_scan_devices(struct mly_softc *sc);
75static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
76static void	mly_complete_rescan(struct mly_command *mc);
77static int	mly_get_eventstatus(struct mly_softc *sc);
78static int	mly_enable_mmbox(struct mly_softc *sc);
79static int	mly_flush(struct mly_softc *sc);
80static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
81			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
82static void	mly_check_event(struct mly_softc *sc);
83static void	mly_fetch_event(struct mly_softc *sc);
84static void	mly_complete_event(struct mly_command *mc);
85static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
86static void	mly_periodic(void *data);
87
88static int	mly_immediate_command(struct mly_command *mc);
89static int	mly_start(struct mly_command *mc);
90static void	mly_done(struct mly_softc *sc);
91static void	mly_complete(void *context, int pending);
92
93static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
94static void	mly_release_command(struct mly_command *mc);
95static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
96static int	mly_alloc_commands(struct mly_softc *sc);
97static void	mly_release_commands(struct mly_softc *sc);
98static void	mly_map_command(struct mly_command *mc);
99static void	mly_unmap_command(struct mly_command *mc);
100
101static int	mly_cam_attach(struct mly_softc *sc);
102static void	mly_cam_detach(struct mly_softc *sc);
103static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
104static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
105static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
106static void	mly_cam_poll(struct cam_sim *sim);
107static void	mly_cam_complete(struct mly_command *mc);
108static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
109static int	mly_name_device(struct mly_softc *sc, int bus, int target);
110
111static int	mly_fwhandshake(struct mly_softc *sc);
112
113static void	mly_describe_controller(struct mly_softc *sc);
114#ifdef MLY_DEBUG
115static void	mly_printstate(struct mly_softc *sc);
116static void	mly_print_command(struct mly_command *mc);
117static void	mly_print_packet(struct mly_command *mc);
118static void	mly_panic(struct mly_softc *sc, char *reason);
119static int	mly_timeout(struct mly_softc *sc);
120#endif
121void		mly_print_controller(int controller);
122
123
124static d_open_t		mly_user_open;
125static d_close_t	mly_user_close;
126static d_ioctl_t	mly_user_ioctl;
127static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
128static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
129
130#define MLY_CMD_TIMEOUT		20
131
132static device_method_t mly_methods[] = {
133    /* Device interface */
134    DEVMETHOD(device_probe,	mly_probe),
135    DEVMETHOD(device_attach,	mly_attach),
136    DEVMETHOD(device_detach,	mly_detach),
137    DEVMETHOD(device_shutdown,	mly_shutdown),
138    { 0, 0 }
139};
140
141static driver_t mly_pci_driver = {
142	"mly",
143	mly_methods,
144	sizeof(struct mly_softc)
145};
146
147static devclass_t	mly_devclass;
148DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
149MODULE_DEPEND(mly, pci, 1, 1, 1);
150MODULE_DEPEND(mly, cam, 1, 1, 1);
151
152static struct cdevsw mly_cdevsw = {
153	.d_version =	D_VERSION,
154	.d_flags =	D_NEEDGIANT,
155	.d_open =	mly_user_open,
156	.d_close =	mly_user_close,
157	.d_ioctl =	mly_user_ioctl,
158	.d_name =	"mly",
159};
160
161/********************************************************************************
162 ********************************************************************************
163                                                                 Device Interface
164 ********************************************************************************
165 ********************************************************************************/
166
167static struct mly_ident
168{
169    u_int16_t		vendor;
170    u_int16_t		device;
171    u_int16_t		subvendor;
172    u_int16_t		subdevice;
173    int			hwif;
174    char		*desc;
175} mly_identifiers[] = {
176    {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
177    {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
178    {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
179    {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
180    {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
181    {0, 0, 0, 0, 0, 0}
182};
183
184/********************************************************************************
185 * Compare the provided PCI device with the list we support.
186 */
187static int
188mly_probe(device_t dev)
189{
190    struct mly_ident	*m;
191
192    debug_called(1);
193
194    for (m = mly_identifiers; m->vendor != 0; m++) {
195	if ((m->vendor == pci_get_vendor(dev)) &&
196	    (m->device == pci_get_device(dev)) &&
197	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
198				     (m->subdevice == pci_get_subdevice(dev))))) {
199
200	    device_set_desc(dev, m->desc);
201	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
202	}
203    }
204    return(ENXIO);
205}
206
207/********************************************************************************
208 * Initialise the controller and softc
209 */
210static int
211mly_attach(device_t dev)
212{
213    struct mly_softc	*sc = device_get_softc(dev);
214    int			error;
215
216    debug_called(1);
217
218    sc->mly_dev = dev;
219
220#ifdef MLY_DEBUG
221    if (device_get_unit(sc->mly_dev) == 0)
222	mly_softc0 = sc;
223#endif
224
225    /*
226     * Do PCI-specific initialisation.
227     */
228    if ((error = mly_pci_attach(sc)) != 0)
229	goto out;
230
231    /*
232     * Initialise per-controller queues.
233     */
234    mly_initq_free(sc);
235    mly_initq_busy(sc);
236    mly_initq_complete(sc);
237
238    /*
239     * Initialise command-completion task.
240     */
241    TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
242
243    /* disable interrupts before we start talking to the controller */
244    MLY_MASK_INTERRUPTS(sc);
245
246    /*
247     * Wait for the controller to come ready, handshake with the firmware if required.
248     * This is typically only necessary on platforms where the controller BIOS does not
249     * run.
250     */
251    if ((error = mly_fwhandshake(sc)))
252	goto out;
253
254    /*
255     * Allocate initial command buffers.
256     */
257    if ((error = mly_alloc_commands(sc)))
258	goto out;
259
260    /*
261     * Obtain controller feature information
262     */
263    if ((error = mly_get_controllerinfo(sc)))
264	goto out;
265
266    /*
267     * Reallocate command buffers now we know how many we want.
268     */
269    mly_release_commands(sc);
270    if ((error = mly_alloc_commands(sc)))
271	goto out;
272
273    /*
274     * Get the current event counter for health purposes, populate the initial
275     * health status buffer.
276     */
277    if ((error = mly_get_eventstatus(sc)))
278	goto out;
279
280    /*
281     * Enable memory-mailbox mode.
282     */
283    if ((error = mly_enable_mmbox(sc)))
284	goto out;
285
286    /*
287     * Attach to CAM.
288     */
289    if ((error = mly_cam_attach(sc)))
290	goto out;
291
292    /*
293     * Print a little information about the controller
294     */
295    mly_describe_controller(sc);
296
297    /*
298     * Mark all attached devices for rescan.
299     */
300    mly_scan_devices(sc);
301
302    /*
303     * Instigate the first status poll immediately.  Rescan completions won't
304     * happen until interrupts are enabled, which should still be before
305     * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
306     */
307    mly_periodic((void *)sc);
308
309    /*
310     * Create the control device.
311     */
312    sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
313			     S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
314    sc->mly_dev_t->si_drv1 = sc;
315
316    /* enable interrupts now */
317    MLY_UNMASK_INTERRUPTS(sc);
318
319#ifdef MLY_DEBUG
320    timeout((timeout_t *)mly_timeout, sc, MLY_CMD_TIMEOUT * hz);
321#endif
322
323 out:
324    if (error != 0)
325	mly_free(sc);
326    return(error);
327}
328
329/********************************************************************************
330 * Perform PCI-specific initialisation.
331 */
332static int
333mly_pci_attach(struct mly_softc *sc)
334{
335    int			i, error;
336
337    debug_called(1);
338
339    /* assume failure is 'not configured' */
340    error = ENXIO;
341
342    /*
343     * Verify that the adapter is correctly set up in PCI space.
344     */
345    pci_enable_busmaster(sc->mly_dev);
346
347    /*
348     * Allocate the PCI register window.
349     */
350    sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
351    if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
352	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
353	mly_printf(sc, "can't allocate register window\n");
354	goto fail;
355    }
356    sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
357    sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
358
359    /*
360     * Allocate and connect our interrupt.
361     */
362    sc->mly_irq_rid = 0;
363    if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
364		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
365	mly_printf(sc, "can't allocate interrupt\n");
366	goto fail;
367    }
368    if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY, NULL, mly_intr, sc, &sc->mly_intr)) {
369	mly_printf(sc, "can't set up interrupt\n");
370	goto fail;
371    }
372
373    /* assume failure is 'out of memory' */
374    error = ENOMEM;
375
376    /*
377     * Allocate the parent bus DMA tag appropriate for our PCI interface.
378     *
379     * Note that all of these controllers are 64-bit capable.
380     */
381    if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
382			   1, 0, 			/* alignment, boundary */
383			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
384			   BUS_SPACE_MAXADDR, 		/* highaddr */
385			   NULL, NULL, 			/* filter, filterarg */
386			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
387			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
388			   BUS_DMA_ALLOCNOW,		/* flags */
389			   NULL,			/* lockfunc */
390			   NULL,			/* lockarg */
391			   &sc->mly_parent_dmat)) {
392	mly_printf(sc, "can't allocate parent DMA tag\n");
393	goto fail;
394    }
395
396    /*
397     * Create DMA tag for mapping buffers into controller-addressable space.
398     */
399    if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
400			   1, 0, 			/* alignment, boundary */
401			   BUS_SPACE_MAXADDR,		/* lowaddr */
402			   BUS_SPACE_MAXADDR, 		/* highaddr */
403			   NULL, NULL, 			/* filter, filterarg */
404			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
405			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
406			   0,				/* flags */
407			   busdma_lock_mutex,		/* lockfunc */
408			   &Giant,			/* lockarg */
409			   &sc->mly_buffer_dmat)) {
410	mly_printf(sc, "can't allocate buffer DMA tag\n");
411	goto fail;
412    }
413
414    /*
415     * Initialise the DMA tag for command packets.
416     */
417    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
418			   1, 0, 			/* alignment, boundary */
419			   BUS_SPACE_MAXADDR,		/* lowaddr */
420			   BUS_SPACE_MAXADDR, 		/* highaddr */
421			   NULL, NULL, 			/* filter, filterarg */
422			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
423			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
424			   BUS_DMA_ALLOCNOW,		/* flags */
425			   NULL, NULL,			/* lockfunc, lockarg */
426			   &sc->mly_packet_dmat)) {
427	mly_printf(sc, "can't allocate command packet DMA tag\n");
428	goto fail;
429    }
430
431    /*
432     * Detect the hardware interface version
433     */
434    for (i = 0; mly_identifiers[i].vendor != 0; i++) {
435	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
436	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
437	    sc->mly_hwif = mly_identifiers[i].hwif;
438	    switch(sc->mly_hwif) {
439	    case MLY_HWIF_I960RX:
440		debug(1, "set hardware up for i960RX");
441		sc->mly_doorbell_true = 0x00;
442		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
443		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
444		sc->mly_idbr =             MLY_I960RX_IDBR;
445		sc->mly_odbr =             MLY_I960RX_ODBR;
446		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
447		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
448		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
449		break;
450	    case MLY_HWIF_STRONGARM:
451		debug(1, "set hardware up for StrongARM");
452		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
453		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
454		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
455		sc->mly_idbr =             MLY_STRONGARM_IDBR;
456		sc->mly_odbr =             MLY_STRONGARM_ODBR;
457		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
458		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
459		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
460		break;
461	    }
462	    break;
463	}
464    }
465
466    /*
467     * Create the scatter/gather mappings.
468     */
469    if ((error = mly_sg_map(sc)))
470	goto fail;
471
472    /*
473     * Allocate and map the memory mailbox
474     */
475    if ((error = mly_mmbox_map(sc)))
476	goto fail;
477
478    error = 0;
479
480fail:
481    return(error);
482}
483
484/********************************************************************************
485 * Shut the controller down and detach all our resources.
486 */
487static int
488mly_detach(device_t dev)
489{
490    int			error;
491
492    if ((error = mly_shutdown(dev)) != 0)
493	return(error);
494
495    mly_free(device_get_softc(dev));
496    return(0);
497}
498
499/********************************************************************************
500 * Bring the controller to a state where it can be safely left alone.
501 *
502 * Note that it should not be necessary to wait for any outstanding commands,
503 * as they should be completed prior to calling here.
504 *
505 * XXX this applies for I/O, but not status polls; we should beware of
506 *     the case where a status command is running while we detach.
507 */
508static int
509mly_shutdown(device_t dev)
510{
511    struct mly_softc	*sc = device_get_softc(dev);
512
513    debug_called(1);
514
515    if (sc->mly_state & MLY_STATE_OPEN)
516	return(EBUSY);
517
518    /* kill the periodic event */
519    untimeout(mly_periodic, sc, sc->mly_periodic);
520
521    /* flush controller */
522    mly_printf(sc, "flushing cache...");
523    printf("%s\n", mly_flush(sc) ? "failed" : "done");
524
525    MLY_MASK_INTERRUPTS(sc);
526
527    return(0);
528}
529
530/*******************************************************************************
531 * Take an interrupt, or be poked by other code to look for interrupt-worthy
532 * status.
533 */
534static void
535mly_intr(void *arg)
536{
537    struct mly_softc	*sc = (struct mly_softc *)arg;
538
539    debug_called(2);
540
541    mly_done(sc);
542};
543
544/********************************************************************************
545 ********************************************************************************
546                                                Bus-dependant Resource Management
547 ********************************************************************************
548 ********************************************************************************/
549
550/********************************************************************************
551 * Allocate memory for the scatter/gather tables
552 */
553static int
554mly_sg_map(struct mly_softc *sc)
555{
556    size_t	segsize;
557
558    debug_called(1);
559
560    /*
561     * Create a single tag describing a region large enough to hold all of
562     * the s/g lists we will need.
563     */
564    segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
565    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
566			   1, 0, 			/* alignment,boundary */
567			   BUS_SPACE_MAXADDR,		/* lowaddr */
568			   BUS_SPACE_MAXADDR, 		/* highaddr */
569			   NULL, NULL, 			/* filter, filterarg */
570			   segsize, 1,			/* maxsize, nsegments */
571			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
572			   BUS_DMA_ALLOCNOW,		/* flags */
573			   NULL, NULL,			/* lockfunc, lockarg */
574			   &sc->mly_sg_dmat)) {
575	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
576	return(ENOMEM);
577    }
578
579    /*
580     * Allocate enough s/g maps for all commands and permanently map them into
581     * controller-visible space.
582     *
583     * XXX this assumes we can get enough space for all the s/g maps in one
584     * contiguous slab.
585     */
586    if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
587			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
588	mly_printf(sc, "can't allocate s/g table\n");
589	return(ENOMEM);
590    }
591    if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
592			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
593	return (ENOMEM);
594    return(0);
595}
596
597/********************************************************************************
598 * Save the physical address of the base of the s/g table.
599 */
600static void
601mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
602{
603    struct mly_softc	*sc = (struct mly_softc *)arg;
604
605    debug_called(1);
606
607    /* save base of s/g table's address in bus space */
608    sc->mly_sg_busaddr = segs->ds_addr;
609}
610
611/********************************************************************************
612 * Allocate memory for the memory-mailbox interface
613 */
614static int
615mly_mmbox_map(struct mly_softc *sc)
616{
617
618    /*
619     * Create a DMA tag for a single contiguous region large enough for the
620     * memory mailbox structure.
621     */
622    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
623			   1, 0, 			/* alignment,boundary */
624			   BUS_SPACE_MAXADDR,		/* lowaddr */
625			   BUS_SPACE_MAXADDR, 		/* highaddr */
626			   NULL, NULL, 			/* filter, filterarg */
627			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
628			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
629			   BUS_DMA_ALLOCNOW,		/* flags */
630			   NULL, NULL,			/* lockfunc, lockarg */
631			   &sc->mly_mmbox_dmat)) {
632	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
633	return(ENOMEM);
634    }
635
636    /*
637     * Allocate the buffer
638     */
639    if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
640	mly_printf(sc, "can't allocate memory mailbox\n");
641	return(ENOMEM);
642    }
643    if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
644			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
645			BUS_DMA_NOWAIT) != 0)
646	return (ENOMEM);
647    bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
648    return(0);
649
650}
651
652/********************************************************************************
653 * Save the physical address of the memory mailbox
654 */
655static void
656mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
657{
658    struct mly_softc	*sc = (struct mly_softc *)arg;
659
660    debug_called(1);
661
662    sc->mly_mmbox_busaddr = segs->ds_addr;
663}
664
665/********************************************************************************
666 * Free all of the resources associated with (sc)
667 *
668 * Should not be called if the controller is active.
669 */
670static void
671mly_free(struct mly_softc *sc)
672{
673
674    debug_called(1);
675
676    /* Remove the management device */
677    destroy_dev(sc->mly_dev_t);
678
679    /* detach from CAM */
680    mly_cam_detach(sc);
681
682    /* release command memory */
683    mly_release_commands(sc);
684
685    /* throw away the controllerinfo structure */
686    if (sc->mly_controllerinfo != NULL)
687	free(sc->mly_controllerinfo, M_DEVBUF);
688
689    /* throw away the controllerparam structure */
690    if (sc->mly_controllerparam != NULL)
691	free(sc->mly_controllerparam, M_DEVBUF);
692
693    /* destroy data-transfer DMA tag */
694    if (sc->mly_buffer_dmat)
695	bus_dma_tag_destroy(sc->mly_buffer_dmat);
696
697    /* free and destroy DMA memory and tag for s/g lists */
698    if (sc->mly_sg_table) {
699	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
700	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
701    }
702    if (sc->mly_sg_dmat)
703	bus_dma_tag_destroy(sc->mly_sg_dmat);
704
705    /* free and destroy DMA memory and tag for memory mailbox */
706    if (sc->mly_mmbox) {
707	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
708	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
709    }
710    if (sc->mly_mmbox_dmat)
711	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
712
713    /* disconnect the interrupt handler */
714    if (sc->mly_intr)
715	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
716    if (sc->mly_irq != NULL)
717	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
718
719    /* destroy the parent DMA tag */
720    if (sc->mly_parent_dmat)
721	bus_dma_tag_destroy(sc->mly_parent_dmat);
722
723    /* release the register window mapping */
724    if (sc->mly_regs_resource != NULL)
725	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
726}
727
728/********************************************************************************
729 ********************************************************************************
730                                                                 Command Wrappers
731 ********************************************************************************
732 ********************************************************************************/
733
734/********************************************************************************
735 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
736 */
737static int
738mly_get_controllerinfo(struct mly_softc *sc)
739{
740    struct mly_command_ioctl	mci;
741    u_int8_t			status;
742    int				error;
743
744    debug_called(1);
745
746    if (sc->mly_controllerinfo != NULL)
747	free(sc->mly_controllerinfo, M_DEVBUF);
748
749    /* build the getcontrollerinfo ioctl and send it */
750    bzero(&mci, sizeof(mci));
751    sc->mly_controllerinfo = NULL;
752    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
753    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
754			   &status, NULL, NULL)))
755	return(error);
756    if (status != 0)
757	return(EIO);
758
759    if (sc->mly_controllerparam != NULL)
760	free(sc->mly_controllerparam, M_DEVBUF);
761
762    /* build the getcontrollerparameter ioctl and send it */
763    bzero(&mci, sizeof(mci));
764    sc->mly_controllerparam = NULL;
765    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
766    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
767			   &status, NULL, NULL)))
768	return(error);
769    if (status != 0)
770	return(EIO);
771
772    return(0);
773}
774
775/********************************************************************************
776 * Schedule all possible devices for a rescan.
777 *
778 */
779static void
780mly_scan_devices(struct mly_softc *sc)
781{
782    int		bus, target;
783
784    debug_called(1);
785
786    /*
787     * Clear any previous BTL information.
788     */
789    bzero(&sc->mly_btl, sizeof(sc->mly_btl));
790
791    /*
792     * Mark all devices as requiring a rescan, and let the next
793     * periodic scan collect them.
794     */
795    for (bus = 0; bus < sc->mly_cam_channels; bus++)
796	if (MLY_BUS_IS_VALID(sc, bus))
797	    for (target = 0; target < MLY_MAX_TARGETS; target++)
798		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
799
800}
801
802/********************************************************************************
803 * Rescan a device, possibly as a consequence of getting an event which suggests
804 * that it may have changed.
805 *
806 * If we suffer resource starvation, we can abandon the rescan as we'll be
807 * retried.
808 */
809static void
810mly_rescan_btl(struct mly_softc *sc, int bus, int target)
811{
812    struct mly_command		*mc;
813    struct mly_command_ioctl	*mci;
814
815    debug_called(1);
816
817    /* check that this bus is valid */
818    if (!MLY_BUS_IS_VALID(sc, bus))
819	return;
820
821    /* get a command */
822    if (mly_alloc_command(sc, &mc))
823	return;
824
825    /* set up the data buffer */
826    if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
827	mly_release_command(mc);
828	return;
829    }
830    mc->mc_flags |= MLY_CMD_DATAIN;
831    mc->mc_complete = mly_complete_rescan;
832
833    /*
834     * Build the ioctl.
835     */
836    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
837    mci->opcode = MDACMD_IOCTL;
838    mci->addr.phys.controller = 0;
839    mci->timeout.value = 30;
840    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
841    if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
842	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
843	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
844	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
845	debug(1, "logical device %d", mci->addr.log.logdev);
846    } else {
847	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
848	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
849	mci->addr.phys.lun = 0;
850	mci->addr.phys.target = target;
851	mci->addr.phys.channel = bus;
852	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
853    }
854
855    /*
856     * Dispatch the command.  If we successfully send the command, clear the rescan
857     * bit.
858     */
859    if (mly_start(mc) != 0) {
860	mly_release_command(mc);
861    } else {
862	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
863    }
864}
865
866/********************************************************************************
867 * Handle the completion of a rescan operation
868 */
869static void
870mly_complete_rescan(struct mly_command *mc)
871{
872    struct mly_softc				*sc = mc->mc_sc;
873    struct mly_ioctl_getlogdevinfovalid		*ldi;
874    struct mly_ioctl_getphysdevinfovalid	*pdi;
875    struct mly_command_ioctl			*mci;
876    struct mly_btl				btl, *btlp;
877    int						bus, target, rescan;
878
879    debug_called(1);
880
881    /*
882     * Recover the bus and target from the command.  We need these even in
883     * the case where we don't have a useful response.
884     */
885    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
886    if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
887	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
888	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
889    } else {
890	bus = mci->addr.phys.channel;
891	target = mci->addr.phys.target;
892    }
893    /* XXX validate bus/target? */
894
895    /* the default result is 'no device' */
896    bzero(&btl, sizeof(btl));
897
898    /* if the rescan completed OK, we have possibly-new BTL data */
899    if (mc->mc_status == 0) {
900	if (mc->mc_length == sizeof(*ldi)) {
901	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
902	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
903		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
904		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
905			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
906			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
907		/* XXX what can we do about this? */
908	    }
909	    btl.mb_flags = MLY_BTL_LOGICAL;
910	    btl.mb_type = ldi->raid_level;
911	    btl.mb_state = ldi->state;
912	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
913		  mly_describe_code(mly_table_device_type, ldi->raid_level),
914		  mly_describe_code(mly_table_device_state, ldi->state));
915	} else if (mc->mc_length == sizeof(*pdi)) {
916	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
917	    if ((pdi->channel != bus) || (pdi->target != target)) {
918		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
919			   bus, target, pdi->channel, pdi->target);
920		/* XXX what can we do about this? */
921	    }
922	    btl.mb_flags = MLY_BTL_PHYSICAL;
923	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
924	    btl.mb_state = pdi->state;
925	    btl.mb_speed = pdi->speed;
926	    btl.mb_width = pdi->width;
927	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
928		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
929	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
930		  mly_describe_code(mly_table_device_state, pdi->state));
931	} else {
932	    mly_printf(sc, "BTL rescan result invalid\n");
933	}
934    }
935
936    free(mc->mc_data, M_DEVBUF);
937    mly_release_command(mc);
938
939    /*
940     * Decide whether we need to rescan the device.
941     */
942    rescan = 0;
943
944    /* device type changes (usually between 'nothing' and 'something') */
945    btlp = &sc->mly_btl[bus][target];
946    if (btl.mb_flags != btlp->mb_flags) {
947	debug(1, "flags changed, rescanning");
948	rescan = 1;
949    }
950
951    /* XXX other reasons? */
952
953    /*
954     * Update BTL information.
955     */
956    *btlp = btl;
957
958    /*
959     * Perform CAM rescan if required.
960     */
961    if (rescan)
962	mly_cam_rescan_btl(sc, bus, target);
963}
964
965/********************************************************************************
966 * Get the current health status and set the 'next event' counter to suit.
967 */
968static int
969mly_get_eventstatus(struct mly_softc *sc)
970{
971    struct mly_command_ioctl	mci;
972    struct mly_health_status	*mh;
973    u_int8_t			status;
974    int				error;
975
976    /* build the gethealthstatus ioctl and send it */
977    bzero(&mci, sizeof(mci));
978    mh = NULL;
979    mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
980
981    if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
982	return(error);
983    if (status != 0)
984	return(EIO);
985
986    /* get the event counter */
987    sc->mly_event_change = mh->change_counter;
988    sc->mly_event_waiting = mh->next_event;
989    sc->mly_event_counter = mh->next_event;
990
991    /* save the health status into the memory mailbox */
992    bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
993
994    debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
995
996    free(mh, M_DEVBUF);
997    return(0);
998}
999
1000/********************************************************************************
1001 * Enable the memory mailbox mode.
1002 */
1003static int
1004mly_enable_mmbox(struct mly_softc *sc)
1005{
1006    struct mly_command_ioctl	mci;
1007    u_int8_t			*sp, status;
1008    int				error;
1009
1010    debug_called(1);
1011
1012    /* build the ioctl and send it */
1013    bzero(&mci, sizeof(mci));
1014    mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1015    /* set buffer addresses */
1016    mci.param.setmemorymailbox.command_mailbox_physaddr =
1017	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1018    mci.param.setmemorymailbox.status_mailbox_physaddr =
1019	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1020    mci.param.setmemorymailbox.health_buffer_physaddr =
1021	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1022
1023    /* set buffer sizes - abuse of data_size field is revolting */
1024    sp = (u_int8_t *)&mci.data_size;
1025    sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1026    sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1027    mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1028
1029    debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1030	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1031	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1032	  mci.param.setmemorymailbox.health_buffer_physaddr,
1033	  mci.param.setmemorymailbox.health_buffer_size);
1034
1035    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1036	return(error);
1037    if (status != 0)
1038	return(EIO);
1039    sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1040    debug(1, "memory mailbox active");
1041    return(0);
1042}
1043
1044/********************************************************************************
1045 * Flush all pending I/O from the controller.
1046 */
1047static int
1048mly_flush(struct mly_softc *sc)
1049{
1050    struct mly_command_ioctl	mci;
1051    u_int8_t			status;
1052    int				error;
1053
1054    debug_called(1);
1055
1056    /* build the ioctl */
1057    bzero(&mci, sizeof(mci));
1058    mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1059    mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1060
1061    /* pass it off to the controller */
1062    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1063	return(error);
1064
1065    return((status == 0) ? 0 : EIO);
1066}
1067
1068/********************************************************************************
1069 * Perform an ioctl command.
1070 *
1071 * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1072 * the command requires data transfer from the controller, and we will allocate
1073 * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1074 * to the controller.
1075 *
1076 * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1077 *
1078 * XXX we don't even try to handle the case where datasize > 4k.  We should.
1079 */
1080static int
1081mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1082	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1083{
1084    struct mly_command		*mc;
1085    struct mly_command_ioctl	*mci;
1086    int				error;
1087
1088    debug_called(1);
1089
1090    mc = NULL;
1091    if (mly_alloc_command(sc, &mc)) {
1092	error = ENOMEM;
1093	goto out;
1094    }
1095
1096    /* copy the ioctl structure, but save some important fields and then fixup */
1097    mci = &mc->mc_packet->ioctl;
1098    ioctl->sense_buffer_address = mci->sense_buffer_address;
1099    ioctl->maximum_sense_size = mci->maximum_sense_size;
1100    *mci = *ioctl;
1101    mci->opcode = MDACMD_IOCTL;
1102    mci->timeout.value = 30;
1103    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1104
1105    /* handle the data buffer */
1106    if (data != NULL) {
1107	if (*data == NULL) {
1108	    /* allocate data buffer */
1109	    if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1110		error = ENOMEM;
1111		goto out;
1112	    }
1113	    mc->mc_flags |= MLY_CMD_DATAIN;
1114	} else {
1115	    mc->mc_data = *data;
1116	    mc->mc_flags |= MLY_CMD_DATAOUT;
1117	}
1118	mc->mc_length = datasize;
1119	mc->mc_packet->generic.data_size = datasize;
1120    }
1121
1122    /* run the command */
1123    if ((error = mly_immediate_command(mc)))
1124	goto out;
1125
1126    /* clean up and return any data */
1127    *status = mc->mc_status;
1128    if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1129	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1130	*sense_length = mc->mc_sense;
1131	goto out;
1132    }
1133
1134    /* should we return a data pointer? */
1135    if ((data != NULL) && (*data == NULL))
1136	*data = mc->mc_data;
1137
1138    /* command completed OK */
1139    error = 0;
1140
1141out:
1142    if (mc != NULL) {
1143	/* do we need to free a data buffer we allocated? */
1144	if (error && (mc->mc_data != NULL) && (*data == NULL))
1145	    free(mc->mc_data, M_DEVBUF);
1146	mly_release_command(mc);
1147    }
1148    return(error);
1149}
1150
1151/********************************************************************************
1152 * Check for event(s) outstanding in the controller.
1153 */
1154static void
1155mly_check_event(struct mly_softc *sc)
1156{
1157
1158    /*
1159     * The controller may have updated the health status information,
1160     * so check for it here.  Note that the counters are all in host memory,
1161     * so this check is very cheap.  Also note that we depend on checking on
1162     * completion
1163     */
1164    if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1165	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1166	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1167	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1168	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1169
1170	/* wake up anyone that might be interested in this */
1171	wakeup(&sc->mly_event_change);
1172    }
1173    if (sc->mly_event_counter != sc->mly_event_waiting)
1174    mly_fetch_event(sc);
1175}
1176
1177/********************************************************************************
1178 * Fetch one event from the controller.
1179 *
1180 * If we fail due to resource starvation, we'll be retried the next time a
1181 * command completes.
1182 */
1183static void
1184mly_fetch_event(struct mly_softc *sc)
1185{
1186    struct mly_command		*mc;
1187    struct mly_command_ioctl	*mci;
1188    int				s;
1189    u_int32_t			event;
1190
1191    debug_called(1);
1192
1193    /* get a command */
1194    if (mly_alloc_command(sc, &mc))
1195	return;
1196
1197    /* set up the data buffer */
1198    if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1199	mly_release_command(mc);
1200	return;
1201    }
1202    mc->mc_length = sizeof(struct mly_event);
1203    mc->mc_flags |= MLY_CMD_DATAIN;
1204    mc->mc_complete = mly_complete_event;
1205
1206    /*
1207     * Get an event number to fetch.  It's possible that we've raced with another
1208     * context for the last event, in which case there will be no more events.
1209     */
1210    s = splcam();
1211    if (sc->mly_event_counter == sc->mly_event_waiting) {
1212	mly_release_command(mc);
1213	splx(s);
1214	return;
1215    }
1216    event = sc->mly_event_counter++;
1217    splx(s);
1218
1219    /*
1220     * Build the ioctl.
1221     *
1222     * At this point we are committed to sending this request, as it
1223     * will be the only one constructed for this particular event number.
1224     */
1225    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1226    mci->opcode = MDACMD_IOCTL;
1227    mci->data_size = sizeof(struct mly_event);
1228    mci->addr.phys.lun = (event >> 16) & 0xff;
1229    mci->addr.phys.target = (event >> 24) & 0xff;
1230    mci->addr.phys.channel = 0;
1231    mci->addr.phys.controller = 0;
1232    mci->timeout.value = 30;
1233    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1234    mci->sub_ioctl = MDACIOCTL_GETEVENT;
1235    mci->param.getevent.sequence_number_low = event & 0xffff;
1236
1237    debug(1, "fetch event %u", event);
1238
1239    /*
1240     * Submit the command.
1241     *
1242     * Note that failure of mly_start() will result in this event never being
1243     * fetched.
1244     */
1245    if (mly_start(mc) != 0) {
1246	mly_printf(sc, "couldn't fetch event %u\n", event);
1247	mly_release_command(mc);
1248    }
1249}
1250
1251/********************************************************************************
1252 * Handle the completion of an event poll.
1253 */
1254static void
1255mly_complete_event(struct mly_command *mc)
1256{
1257    struct mly_softc	*sc = mc->mc_sc;
1258    struct mly_event	*me = (struct mly_event *)mc->mc_data;
1259
1260    debug_called(1);
1261
1262    /*
1263     * If the event was successfully fetched, process it.
1264     */
1265    if (mc->mc_status == SCSI_STATUS_OK) {
1266	mly_process_event(sc, me);
1267	free(me, M_DEVBUF);
1268    }
1269    mly_release_command(mc);
1270
1271    /*
1272     * Check for another event.
1273     */
1274    mly_check_event(sc);
1275}
1276
1277/********************************************************************************
1278 * Process a controller event.
1279 */
1280static void
1281mly_process_event(struct mly_softc *sc, struct mly_event *me)
1282{
1283    struct scsi_sense_data_fixed *ssd;
1284    char			 *fp, *tp;
1285    int				 bus, target, event, class, action;
1286
1287    ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
1288
1289    /*
1290     * Errors can be reported using vendor-unique sense data.  In this case, the
1291     * event code will be 0x1c (Request sense data present), the sense key will
1292     * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1293     * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1294     * and low seven bits of the ASC (low seven bits of the high byte).
1295     */
1296    if ((me->code == 0x1c) &&
1297	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1298	(ssd->add_sense_code & 0x80)) {
1299	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1300    } else {
1301	event = me->code;
1302    }
1303
1304    /* look up event, get codes */
1305    fp = mly_describe_code(mly_table_event, event);
1306
1307    debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1308
1309    /* quiet event? */
1310    class = fp[0];
1311    if (isupper(class) && bootverbose)
1312	class = tolower(class);
1313
1314    /* get action code, text string */
1315    action = fp[1];
1316    tp = &fp[2];
1317
1318    /*
1319     * Print some information about the event.
1320     *
1321     * This code uses a table derived from the corresponding portion of the Linux
1322     * driver, and thus the parser is very similar.
1323     */
1324    switch(class) {
1325    case 'p':		/* error on physical device */
1326	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1327	if (action == 'r')
1328	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1329	break;
1330    case 'l':		/* error on logical unit */
1331    case 'm':		/* message about logical unit */
1332	bus = MLY_LOGDEV_BUS(sc, me->lun);
1333	target = MLY_LOGDEV_TARGET(sc, me->lun);
1334	mly_name_device(sc, bus, target);
1335	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1336	if (action == 'r')
1337	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1338	break;
1339    case 's':		/* report of sense data */
1340	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1341	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1342	     (ssd->add_sense_code == 0x04) &&
1343	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1344	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1345
1346	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1347	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1348		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1349	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1350	if (action == 'r')
1351	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1352	break;
1353    case 'e':
1354	mly_printf(sc, tp, me->target, me->lun);
1355	printf("\n");
1356	break;
1357    case 'c':
1358	mly_printf(sc, "controller %s\n", tp);
1359	break;
1360    case '?':
1361	mly_printf(sc, "%s - %d\n", tp, me->code);
1362	break;
1363    default:	/* probably a 'noisy' event being ignored */
1364	break;
1365    }
1366}
1367
1368/********************************************************************************
1369 * Perform periodic activities.
1370 */
1371static void
1372mly_periodic(void *data)
1373{
1374    struct mly_softc	*sc = (struct mly_softc *)data;
1375    int			bus, target;
1376
1377    debug_called(2);
1378
1379    /*
1380     * Scan devices.
1381     */
1382    for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1383	if (MLY_BUS_IS_VALID(sc, bus)) {
1384	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1385
1386		/* ignore the controller in this scan */
1387		if (target == sc->mly_controllerparam->initiator_id)
1388		    continue;
1389
1390		/* perform device rescan? */
1391		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1392		    mly_rescan_btl(sc, bus, target);
1393	    }
1394	}
1395    }
1396
1397    /* check for controller events */
1398    mly_check_event(sc);
1399
1400    /* reschedule ourselves */
1401    sc->mly_periodic = timeout(mly_periodic, sc, MLY_PERIODIC_INTERVAL * hz);
1402}
1403
1404/********************************************************************************
1405 ********************************************************************************
1406                                                               Command Processing
1407 ********************************************************************************
1408 ********************************************************************************/
1409
1410/********************************************************************************
1411 * Run a command and wait for it to complete.
1412 *
1413 */
1414static int
1415mly_immediate_command(struct mly_command *mc)
1416{
1417    struct mly_softc	*sc = mc->mc_sc;
1418    int			error, s;
1419
1420    debug_called(1);
1421
1422    /* spinning at splcam is ugly, but we're only used during controller init */
1423    s = splcam();
1424    if ((error = mly_start(mc))) {
1425	splx(s);
1426	return(error);
1427    }
1428
1429    if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1430	/* sleep on the command */
1431	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1432	    tsleep(mc, PRIBIO, "mlywait", 0);
1433	}
1434    } else {
1435	/* spin and collect status while we do */
1436	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1437	    mly_done(mc->mc_sc);
1438	}
1439    }
1440    splx(s);
1441    return(0);
1442}
1443
1444/********************************************************************************
1445 * Deliver a command to the controller.
1446 *
1447 * XXX it would be good to just queue commands that we can't submit immediately
1448 *     and send them later, but we probably want a wrapper for that so that
1449 *     we don't hang on a failed submission for an immediate command.
1450 */
1451static int
1452mly_start(struct mly_command *mc)
1453{
1454    struct mly_softc		*sc = mc->mc_sc;
1455    union mly_command_packet	*pkt;
1456    int				s;
1457
1458    debug_called(2);
1459
1460    /*
1461     * Set the command up for delivery to the controller.
1462     */
1463    mly_map_command(mc);
1464    mc->mc_packet->generic.command_id = mc->mc_slot;
1465
1466#ifdef MLY_DEBUG
1467    mc->mc_timestamp = time_second;
1468#endif
1469
1470    s = splcam();
1471
1472    /*
1473     * Do we have to use the hardware mailbox?
1474     */
1475    if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1476	/*
1477	 * Check to see if the controller is ready for us.
1478	 */
1479	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1480	    splx(s);
1481	    return(EBUSY);
1482	}
1483	mc->mc_flags |= MLY_CMD_BUSY;
1484
1485	/*
1486	 * It's ready, send the command.
1487	 */
1488	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1489	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1490
1491    } else {	/* use memory-mailbox mode */
1492
1493	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1494
1495	/* check to see if the next index is free yet */
1496	if (pkt->mmbox.flag != 0) {
1497	    splx(s);
1498	    return(EBUSY);
1499	}
1500	mc->mc_flags |= MLY_CMD_BUSY;
1501
1502	/* copy in new command */
1503	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1504	/* barrier to ensure completion of previous write before we write the flag */
1505	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1506	    BUS_SPACE_BARRIER_WRITE);
1507	/* copy flag last */
1508	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1509	/* barrier to ensure completion of previous write before we notify the controller */
1510	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1511	    BUS_SPACE_BARRIER_WRITE);
1512
1513	/* signal controller, update index */
1514	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1515	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1516    }
1517
1518    mly_enqueue_busy(mc);
1519    splx(s);
1520    return(0);
1521}
1522
1523/********************************************************************************
1524 * Pick up command status from the controller, schedule a completion event
1525 */
1526static void
1527mly_done(struct mly_softc *sc)
1528{
1529    struct mly_command		*mc;
1530    union mly_status_packet	*sp;
1531    u_int16_t			slot;
1532    int				s, worked;
1533
1534    s = splcam();
1535    worked = 0;
1536
1537    /* pick up hardware-mailbox commands */
1538    if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1539	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1540	if (slot < MLY_SLOT_MAX) {
1541	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1542	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1543	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1544	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1545	    mly_remove_busy(mc);
1546	    mc->mc_flags &= ~MLY_CMD_BUSY;
1547	    mly_enqueue_complete(mc);
1548	    worked = 1;
1549	} else {
1550	    /* slot 0xffff may mean "extremely bogus command" */
1551	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1552	}
1553	/* unconditionally acknowledge status */
1554	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1555	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1556    }
1557
1558    /* pick up memory-mailbox commands */
1559    if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1560	for (;;) {
1561	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1562
1563	    /* check for more status */
1564	    if (sp->mmbox.flag == 0)
1565		break;
1566
1567	    /* get slot number */
1568	    slot = sp->status.command_id;
1569	    if (slot < MLY_SLOT_MAX) {
1570		mc = &sc->mly_command[slot - MLY_SLOT_START];
1571		mc->mc_status = sp->status.status;
1572		mc->mc_sense = sp->status.sense_length;
1573		mc->mc_resid = sp->status.residue;
1574		mly_remove_busy(mc);
1575		mc->mc_flags &= ~MLY_CMD_BUSY;
1576		mly_enqueue_complete(mc);
1577		worked = 1;
1578	    } else {
1579		/* slot 0xffff may mean "extremely bogus command" */
1580		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1581			   slot, sc->mly_mmbox_status_index);
1582	    }
1583
1584	    /* clear and move to next index */
1585	    sp->mmbox.flag = 0;
1586	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1587	}
1588	/* acknowledge that we have collected status value(s) */
1589	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1590    }
1591
1592    splx(s);
1593    if (worked) {
1594	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1595	    taskqueue_enqueue(taskqueue_swi_giant, &sc->mly_task_complete);
1596	else
1597	    mly_complete(sc, 0);
1598    }
1599}
1600
1601/********************************************************************************
1602 * Process completed commands
1603 */
1604static void
1605mly_complete(void *context, int pending)
1606{
1607    struct mly_softc	*sc = (struct mly_softc *)context;
1608    struct mly_command	*mc;
1609    void	        (* mc_complete)(struct mly_command *mc);
1610
1611
1612    debug_called(2);
1613
1614    /*
1615     * Spin pulling commands off the completed queue and processing them.
1616     */
1617    while ((mc = mly_dequeue_complete(sc)) != NULL) {
1618
1619	/*
1620	 * Free controller resources, mark command complete.
1621	 *
1622	 * Note that as soon as we mark the command complete, it may be freed
1623	 * out from under us, so we need to save the mc_complete field in
1624	 * order to later avoid dereferencing mc.  (We would not expect to
1625	 * have a polling/sleeping consumer with mc_complete != NULL).
1626	 */
1627	mly_unmap_command(mc);
1628	mc_complete = mc->mc_complete;
1629	mc->mc_flags |= MLY_CMD_COMPLETE;
1630
1631	/*
1632	 * Call completion handler or wake up sleeping consumer.
1633	 */
1634	if (mc_complete != NULL) {
1635	    mc_complete(mc);
1636	} else {
1637	    wakeup(mc);
1638	}
1639    }
1640
1641    /*
1642     * XXX if we are deferring commands due to controller-busy status, we should
1643     *     retry submitting them here.
1644     */
1645}
1646
1647/********************************************************************************
1648 ********************************************************************************
1649                                                        Command Buffer Management
1650 ********************************************************************************
1651 ********************************************************************************/
1652
1653/********************************************************************************
1654 * Allocate a command.
1655 */
1656static int
1657mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1658{
1659    struct mly_command	*mc;
1660
1661    debug_called(3);
1662
1663    if ((mc = mly_dequeue_free(sc)) == NULL)
1664	return(ENOMEM);
1665
1666    *mcp = mc;
1667    return(0);
1668}
1669
1670/********************************************************************************
1671 * Release a command back to the freelist.
1672 */
1673static void
1674mly_release_command(struct mly_command *mc)
1675{
1676    debug_called(3);
1677
1678    /*
1679     * Fill in parts of the command that may cause confusion if
1680     * a consumer doesn't when we are later allocated.
1681     */
1682    mc->mc_data = NULL;
1683    mc->mc_flags = 0;
1684    mc->mc_complete = NULL;
1685    mc->mc_private = NULL;
1686
1687    /*
1688     * By default, we set up to overwrite the command packet with
1689     * sense information.
1690     */
1691    mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1692    mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1693
1694    mly_enqueue_free(mc);
1695}
1696
1697/********************************************************************************
1698 * Map helper for command allocation.
1699 */
1700static void
1701mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1702{
1703    struct mly_softc	*sc = (struct mly_softc *)arg;
1704
1705    debug_called(1);
1706
1707    sc->mly_packetphys = segs[0].ds_addr;
1708}
1709
1710/********************************************************************************
1711 * Allocate and initialise command and packet structures.
1712 *
1713 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1714 * allocation to that number.  If we don't yet know how many commands the
1715 * controller supports, allocate a very small set (suitable for initialisation
1716 * purposes only).
1717 */
1718static int
1719mly_alloc_commands(struct mly_softc *sc)
1720{
1721    struct mly_command		*mc;
1722    int				i, ncmd;
1723
1724    if (sc->mly_controllerinfo == NULL) {
1725	ncmd = 4;
1726    } else {
1727	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1728    }
1729
1730    /*
1731     * Allocate enough space for all the command packets in one chunk and
1732     * map them permanently into controller-visible space.
1733     */
1734    if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1735			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1736	return(ENOMEM);
1737    }
1738    if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1739			ncmd * sizeof(union mly_command_packet),
1740			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1741	return (ENOMEM);
1742
1743    for (i = 0; i < ncmd; i++) {
1744	mc = &sc->mly_command[i];
1745	bzero(mc, sizeof(*mc));
1746	mc->mc_sc = sc;
1747	mc->mc_slot = MLY_SLOT_START + i;
1748	mc->mc_packet = sc->mly_packet + i;
1749	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1750	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1751	    mly_release_command(mc);
1752    }
1753    return(0);
1754}
1755
1756/********************************************************************************
1757 * Free all the storage held by commands.
1758 *
1759 * Must be called with all commands on the free list.
1760 */
1761static void
1762mly_release_commands(struct mly_softc *sc)
1763{
1764    struct mly_command	*mc;
1765
1766    /* throw away command buffer DMA maps */
1767    while (mly_alloc_command(sc, &mc) == 0)
1768	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1769
1770    /* release the packet storage */
1771    if (sc->mly_packet != NULL) {
1772	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1773	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1774	sc->mly_packet = NULL;
1775    }
1776}
1777
1778
1779/********************************************************************************
1780 * Command-mapping helper function - populate this command's s/g table
1781 * with the s/g entries for its data.
1782 */
1783static void
1784mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1785{
1786    struct mly_command		*mc = (struct mly_command *)arg;
1787    struct mly_softc		*sc = mc->mc_sc;
1788    struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1789    struct mly_sg_entry		*sg;
1790    int				i, tabofs;
1791
1792    debug_called(2);
1793
1794    /* can we use the transfer structure directly? */
1795    if (nseg <= 2) {
1796	sg = &gen->transfer.direct.sg[0];
1797	gen->command_control.extended_sg_table = 0;
1798    } else {
1799	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1800	sg = sc->mly_sg_table + tabofs;
1801	gen->transfer.indirect.entries[0] = nseg;
1802	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1803	gen->command_control.extended_sg_table = 1;
1804    }
1805
1806    /* copy the s/g table */
1807    for (i = 0; i < nseg; i++) {
1808	sg[i].physaddr = segs[i].ds_addr;
1809	sg[i].length = segs[i].ds_len;
1810    }
1811
1812}
1813
1814#if 0
1815/********************************************************************************
1816 * Command-mapping helper function - save the cdb's physical address.
1817 *
1818 * We don't support 'large' SCSI commands at this time, so this is unused.
1819 */
1820static void
1821mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1822{
1823    struct mly_command			*mc = (struct mly_command *)arg;
1824
1825    debug_called(2);
1826
1827    /* XXX can we safely assume that a CDB will never cross a page boundary? */
1828    if ((segs[0].ds_addr % PAGE_SIZE) >
1829	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1830	panic("cdb crosses page boundary");
1831
1832    /* fix up fields in the command packet */
1833    mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1834}
1835#endif
1836
1837/********************************************************************************
1838 * Map a command into controller-visible space
1839 */
1840static void
1841mly_map_command(struct mly_command *mc)
1842{
1843    struct mly_softc	*sc = mc->mc_sc;
1844
1845    debug_called(2);
1846
1847    /* don't map more than once */
1848    if (mc->mc_flags & MLY_CMD_MAPPED)
1849	return;
1850
1851    /* does the command have a data buffer? */
1852    if (mc->mc_data != NULL) {
1853	if (mc->mc_flags & MLY_CMD_CCB)
1854		bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
1855				mc->mc_data, mly_map_command_sg, mc, 0);
1856	else
1857		bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
1858				mc->mc_data, mc->mc_length,
1859				mly_map_command_sg, mc, 0);
1860	if (mc->mc_flags & MLY_CMD_DATAIN)
1861	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1862	if (mc->mc_flags & MLY_CMD_DATAOUT)
1863	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1864    }
1865    mc->mc_flags |= MLY_CMD_MAPPED;
1866}
1867
1868/********************************************************************************
1869 * Unmap a command from controller-visible space
1870 */
1871static void
1872mly_unmap_command(struct mly_command *mc)
1873{
1874    struct mly_softc	*sc = mc->mc_sc;
1875
1876    debug_called(2);
1877
1878    if (!(mc->mc_flags & MLY_CMD_MAPPED))
1879	return;
1880
1881    /* does the command have a data buffer? */
1882    if (mc->mc_data != NULL) {
1883	if (mc->mc_flags & MLY_CMD_DATAIN)
1884	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1885	if (mc->mc_flags & MLY_CMD_DATAOUT)
1886	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1887
1888	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1889    }
1890    mc->mc_flags &= ~MLY_CMD_MAPPED;
1891}
1892
1893
1894/********************************************************************************
1895 ********************************************************************************
1896                                                                    CAM interface
1897 ********************************************************************************
1898 ********************************************************************************/
1899
1900/********************************************************************************
1901 * Attach the physical and virtual SCSI busses to CAM.
1902 *
1903 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1904 * than the highest physical bus.  Physical busses are only registered if
1905 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1906 *
1907 * When we refer to a "bus", we are referring to the bus number registered with
1908 * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
1909 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1910 * interchangeably.
1911 */
1912static int
1913mly_cam_attach(struct mly_softc *sc)
1914{
1915    struct cam_devq	*devq;
1916    int			chn, i;
1917
1918    debug_called(1);
1919
1920    /*
1921     * Allocate a devq for all our channels combined.
1922     */
1923    if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1924	mly_printf(sc, "can't allocate CAM SIM queue\n");
1925	return(ENOMEM);
1926    }
1927
1928    /*
1929     * If physical channel registration has been requested, register these first.
1930     * Note that we enable tagged command queueing for physical channels.
1931     */
1932    if (testenv("hw.mly.register_physical_channels")) {
1933	chn = 0;
1934	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1935
1936	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1937						      device_get_unit(sc->mly_dev),
1938						      &Giant,
1939						      sc->mly_controllerinfo->maximum_parallel_commands,
1940						      1, devq)) == NULL) {
1941		return(ENOMEM);
1942	    }
1943	    if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1944		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1945		return(ENXIO);
1946	    }
1947	    debug(1, "registered physical channel %d", chn);
1948	}
1949    }
1950
1951    /*
1952     * Register our virtual channels, with bus numbers matching channel numbers.
1953     */
1954    chn = sc->mly_controllerinfo->physical_channels_present;
1955    for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1956	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1957						  device_get_unit(sc->mly_dev),
1958						  &Giant,
1959						  sc->mly_controllerinfo->maximum_parallel_commands,
1960						  0, devq)) == NULL) {
1961	    return(ENOMEM);
1962	}
1963	if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1964	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1965	    return(ENXIO);
1966	}
1967	debug(1, "registered virtual channel %d", chn);
1968    }
1969
1970    /*
1971     * This is the total number of channels that (might have been) registered with
1972     * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1973     */
1974    sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1975	sc->mly_controllerinfo->virtual_channels_present;
1976
1977    return(0);
1978}
1979
1980/********************************************************************************
1981 * Detach from CAM
1982 */
1983static void
1984mly_cam_detach(struct mly_softc *sc)
1985{
1986    int		i;
1987
1988    debug_called(1);
1989
1990    for (i = 0; i < sc->mly_cam_channels; i++) {
1991	if (sc->mly_cam_sim[i] != NULL) {
1992	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1993	    cam_sim_free(sc->mly_cam_sim[i], 0);
1994	}
1995    }
1996    if (sc->mly_cam_devq != NULL)
1997	cam_simq_free(sc->mly_cam_devq);
1998}
1999
2000/************************************************************************
2001 * Rescan a device.
2002 */
2003static void
2004mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2005{
2006    union ccb	*ccb;
2007
2008    debug_called(1);
2009
2010    if ((ccb = xpt_alloc_ccb()) == NULL) {
2011	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2012	return;
2013    }
2014    if (xpt_create_path(&ccb->ccb_h.path, NULL,
2015	    cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2016	mly_printf(sc, "rescan failed (can't create path)\n");
2017	xpt_free_ccb(ccb);
2018	return;
2019    }
2020    debug(1, "rescan target %d:%d", bus, target);
2021    xpt_rescan(ccb);
2022}
2023
2024/********************************************************************************
2025 * Handle an action requested by CAM
2026 */
2027static void
2028mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2029{
2030    struct mly_softc	*sc = cam_sim_softc(sim);
2031
2032    debug_called(2);
2033
2034    switch (ccb->ccb_h.func_code) {
2035
2036	/* perform SCSI I/O */
2037    case XPT_SCSI_IO:
2038	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2039	    return;
2040	break;
2041
2042	/* perform geometry calculations */
2043    case XPT_CALC_GEOMETRY:
2044    {
2045	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2046        u_int32_t			secs_per_cylinder;
2047
2048	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2049
2050	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2051	    ccg->heads = 255;
2052            ccg->secs_per_track = 63;
2053	} else {				/* MLY_BIOSGEOM_2G */
2054	    ccg->heads = 128;
2055            ccg->secs_per_track = 32;
2056	}
2057	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2058        ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2059        ccb->ccb_h.status = CAM_REQ_CMP;
2060        break;
2061    }
2062
2063	/* handle path attribute inquiry */
2064    case XPT_PATH_INQ:
2065    {
2066	struct ccb_pathinq	*cpi = &ccb->cpi;
2067
2068	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2069
2070	cpi->version_num = 1;
2071	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2072	cpi->target_sprt = 0;
2073	cpi->hba_misc = 0;
2074	cpi->max_target = MLY_MAX_TARGETS - 1;
2075	cpi->max_lun = MLY_MAX_LUNS - 1;
2076	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2077	strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2078        strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2079        strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2080        cpi->unit_number = cam_sim_unit(sim);
2081        cpi->bus_id = cam_sim_bus(sim);
2082	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2083	cpi->transport = XPORT_SPI;
2084	cpi->transport_version = 2;
2085	cpi->protocol = PROTO_SCSI;
2086	cpi->protocol_version = SCSI_REV_2;
2087	ccb->ccb_h.status = CAM_REQ_CMP;
2088	break;
2089    }
2090
2091    case XPT_GET_TRAN_SETTINGS:
2092    {
2093	struct ccb_trans_settings	*cts = &ccb->cts;
2094	int				bus, target;
2095	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2096	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2097
2098	cts->protocol = PROTO_SCSI;
2099	cts->protocol_version = SCSI_REV_2;
2100	cts->transport = XPORT_SPI;
2101	cts->transport_version = 2;
2102
2103	scsi->flags = 0;
2104	scsi->valid = 0;
2105	spi->flags = 0;
2106	spi->valid = 0;
2107
2108	bus = cam_sim_bus(sim);
2109	target = cts->ccb_h.target_id;
2110	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2111	/* logical device? */
2112	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2113	    /* nothing special for these */
2114	/* physical device? */
2115	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2116	    /* allow CAM to try tagged transactions */
2117	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2118	    scsi->valid |= CTS_SCSI_VALID_TQ;
2119
2120	    /* convert speed (MHz) to usec */
2121	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2122		spi->sync_period = 1000000 / 5;
2123	    } else {
2124		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2125	    }
2126
2127	    /* convert bus width to CAM internal encoding */
2128	    switch (sc->mly_btl[bus][target].mb_width) {
2129	    case 32:
2130		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2131		break;
2132	    case 16:
2133		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2134		break;
2135	    case 8:
2136	    default:
2137		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2138		break;
2139	    }
2140	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2141
2142	    /* not a device, bail out */
2143	} else {
2144	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2145	    break;
2146	}
2147
2148	/* disconnect always OK */
2149	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2150	spi->valid |= CTS_SPI_VALID_DISC;
2151
2152	cts->ccb_h.status = CAM_REQ_CMP;
2153	break;
2154    }
2155
2156    default:		/* we can't do this */
2157	debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2158	ccb->ccb_h.status = CAM_REQ_INVALID;
2159	break;
2160    }
2161
2162    xpt_done(ccb);
2163}
2164
2165/********************************************************************************
2166 * Handle an I/O operation requested by CAM
2167 */
2168static int
2169mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2170{
2171    struct mly_softc			*sc = cam_sim_softc(sim);
2172    struct mly_command			*mc;
2173    struct mly_command_scsi_small	*ss;
2174    int					bus, target;
2175    int					error;
2176    int					s;
2177
2178    bus = cam_sim_bus(sim);
2179    target = csio->ccb_h.target_id;
2180
2181    debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2182
2183    /* validate bus number */
2184    if (!MLY_BUS_IS_VALID(sc, bus)) {
2185	debug(0, " invalid bus %d", bus);
2186	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2187    }
2188
2189    /*  check for I/O attempt to a protected device */
2190    if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2191	debug(2, "  device protected");
2192	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2193    }
2194
2195    /* check for I/O attempt to nonexistent device */
2196    if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2197	debug(2, "  device %d:%d does not exist", bus, target);
2198	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2199    }
2200
2201    /* XXX increase if/when we support large SCSI commands */
2202    if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2203	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2204	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2205    }
2206
2207    /* check that the CDB pointer is not to a physical address */
2208    if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2209	debug(0, "  CDB pointer is to physical address");
2210	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2211    }
2212
2213    /* abandon aborted ccbs or those that have failed validation */
2214    if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2215	debug(2, "abandoning CCB due to abort/validation failure");
2216	return(EINVAL);
2217    }
2218
2219    /*
2220     * Get a command, or push the ccb back to CAM and freeze the queue.
2221     */
2222    if ((error = mly_alloc_command(sc, &mc))) {
2223	s = splcam();
2224	xpt_freeze_simq(sim, 1);
2225	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2226	sc->mly_qfrzn_cnt++;
2227	splx(s);
2228	return(error);
2229    }
2230
2231    /* build the command */
2232    mc->mc_data = csio;
2233    mc->mc_length = csio->dxfer_len;
2234    mc->mc_complete = mly_cam_complete;
2235    mc->mc_private = csio;
2236    mc->mc_flags |= MLY_CMD_CCB;
2237    /* XXX This code doesn't set the data direction in mc_flags. */
2238
2239    /* save the bus number in the ccb for later recovery XXX should be a better way */
2240     csio->ccb_h.sim_priv.entries[0].field = bus;
2241
2242    /* build the packet for the controller */
2243    ss = &mc->mc_packet->scsi_small;
2244    ss->opcode = MDACMD_SCSI;
2245    if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2246	ss->command_control.disable_disconnect = 1;
2247    if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2248	ss->command_control.data_direction = MLY_CCB_WRITE;
2249    ss->data_size = csio->dxfer_len;
2250    ss->addr.phys.lun = csio->ccb_h.target_lun;
2251    ss->addr.phys.target = csio->ccb_h.target_id;
2252    ss->addr.phys.channel = bus;
2253    if (csio->ccb_h.timeout < (60 * 1000)) {
2254	ss->timeout.value = csio->ccb_h.timeout / 1000;
2255	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2256    } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2257	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2258	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2259    } else {
2260	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2261	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2262    }
2263    ss->maximum_sense_size = csio->sense_len;
2264    ss->cdb_length = csio->cdb_len;
2265    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2266	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2267    } else {
2268	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2269    }
2270
2271    /* give the command to the controller */
2272    if ((error = mly_start(mc))) {
2273	s = splcam();
2274	xpt_freeze_simq(sim, 1);
2275	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2276	sc->mly_qfrzn_cnt++;
2277	splx(s);
2278	return(error);
2279    }
2280
2281    return(0);
2282}
2283
2284/********************************************************************************
2285 * Check for possibly-completed commands.
2286 */
2287static void
2288mly_cam_poll(struct cam_sim *sim)
2289{
2290    struct mly_softc	*sc = cam_sim_softc(sim);
2291
2292    debug_called(2);
2293
2294    mly_done(sc);
2295}
2296
2297/********************************************************************************
2298 * Handle completion of a command - pass results back through the CCB
2299 */
2300static void
2301mly_cam_complete(struct mly_command *mc)
2302{
2303    struct mly_softc		*sc = mc->mc_sc;
2304    struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2305    struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2306    struct mly_btl		*btl;
2307    u_int8_t			cmd;
2308    int				bus, target;
2309    int				s;
2310
2311    debug_called(2);
2312
2313    csio->scsi_status = mc->mc_status;
2314    switch(mc->mc_status) {
2315    case SCSI_STATUS_OK:
2316	/*
2317	 * In order to report logical device type and status, we overwrite
2318	 * the result of the INQUIRY command to logical devices.
2319	 */
2320	bus = csio->ccb_h.sim_priv.entries[0].field;
2321	target = csio->ccb_h.target_id;
2322	/* XXX validate bus/target? */
2323	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2324	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2325		cmd = *csio->cdb_io.cdb_ptr;
2326	    } else {
2327		cmd = csio->cdb_io.cdb_bytes[0];
2328	    }
2329	    if (cmd == INQUIRY) {
2330		btl = &sc->mly_btl[bus][target];
2331		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2332		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2333		padstr(inq->revision, "", 4);
2334	    }
2335	}
2336
2337	debug(2, "SCSI_STATUS_OK");
2338	csio->ccb_h.status = CAM_REQ_CMP;
2339	break;
2340
2341    case SCSI_STATUS_CHECK_COND:
2342	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2343	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2344	bzero(&csio->sense_data, SSD_FULL_SIZE);
2345	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2346	csio->sense_len = mc->mc_sense;
2347	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2348	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2349	break;
2350
2351    case SCSI_STATUS_BUSY:
2352	debug(1, "SCSI_STATUS_BUSY");
2353	csio->ccb_h.status = CAM_SCSI_BUSY;
2354	break;
2355
2356    default:
2357	debug(1, "unknown status 0x%x", csio->scsi_status);
2358	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2359	break;
2360    }
2361
2362    s = splcam();
2363    if (sc->mly_qfrzn_cnt) {
2364	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2365	sc->mly_qfrzn_cnt--;
2366    }
2367    splx(s);
2368
2369    xpt_done((union ccb *)csio);
2370    mly_release_command(mc);
2371}
2372
2373/********************************************************************************
2374 * Find a peripheral attahed at (bus),(target)
2375 */
2376static struct cam_periph *
2377mly_find_periph(struct mly_softc *sc, int bus, int target)
2378{
2379    struct cam_periph	*periph;
2380    struct cam_path	*path;
2381    int			status;
2382
2383    status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2384    if (status == CAM_REQ_CMP) {
2385	periph = cam_periph_find(path, NULL);
2386	xpt_free_path(path);
2387    } else {
2388	periph = NULL;
2389    }
2390    return(periph);
2391}
2392
2393/********************************************************************************
2394 * Name the device at (bus)(target)
2395 */
2396static int
2397mly_name_device(struct mly_softc *sc, int bus, int target)
2398{
2399    struct cam_periph	*periph;
2400
2401    if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2402	sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2403	return(0);
2404    }
2405    sc->mly_btl[bus][target].mb_name[0] = 0;
2406    return(ENOENT);
2407}
2408
2409/********************************************************************************
2410 ********************************************************************************
2411                                                                 Hardware Control
2412 ********************************************************************************
2413 ********************************************************************************/
2414
2415/********************************************************************************
2416 * Handshake with the firmware while the card is being initialised.
2417 */
2418static int
2419mly_fwhandshake(struct mly_softc *sc)
2420{
2421    u_int8_t	error, param0, param1;
2422    int		spinup = 0;
2423
2424    debug_called(1);
2425
2426    /* set HM_STSACK and let the firmware initialise */
2427    MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2428    DELAY(1000);	/* too short? */
2429
2430    /* if HM_STSACK is still true, the controller is initialising */
2431    if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2432	return(0);
2433    mly_printf(sc, "controller initialisation started\n");
2434
2435    /* spin waiting for initialisation to finish, or for a message to be delivered */
2436    while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2437	/* check for a message */
2438	if (MLY_ERROR_VALID(sc)) {
2439	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2440	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2441	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2442
2443	    switch(error) {
2444	    case MLY_MSG_SPINUP:
2445		if (!spinup) {
2446		    mly_printf(sc, "drive spinup in progress\n");
2447		    spinup = 1;			/* only print this once (should print drive being spun?) */
2448		}
2449		break;
2450	    case MLY_MSG_RACE_RECOVERY_FAIL:
2451		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2452		break;
2453	    case MLY_MSG_RACE_IN_PROGRESS:
2454		mly_printf(sc, "mirror race recovery in progress\n");
2455		break;
2456	    case MLY_MSG_RACE_ON_CRITICAL:
2457		mly_printf(sc, "mirror race recovery on a critical drive\n");
2458		break;
2459	    case MLY_MSG_PARITY_ERROR:
2460		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2461		return(ENXIO);
2462	    default:
2463		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2464	    }
2465	}
2466    }
2467    return(0);
2468}
2469
2470/********************************************************************************
2471 ********************************************************************************
2472                                                        Debugging and Diagnostics
2473 ********************************************************************************
2474 ********************************************************************************/
2475
2476/********************************************************************************
2477 * Print some information about the controller.
2478 */
2479static void
2480mly_describe_controller(struct mly_softc *sc)
2481{
2482    struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2483
2484    mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2485	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2486	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2487	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2488	       mi->memory_size);
2489
2490    if (bootverbose) {
2491	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2492		   mly_describe_code(mly_table_oemname, mi->oem_information),
2493		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2494		   mi->interface_speed, mi->interface_width, mi->interface_name);
2495	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2496		   mi->memory_size, mi->memory_speed, mi->memory_width,
2497		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2498		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2499		   mi->cache_size);
2500	mly_printf(sc, "CPU: %s @ %dMHz\n",
2501		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2502	if (mi->l2cache_size != 0)
2503	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2504	if (mi->exmemory_size != 0)
2505	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2506		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2507		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2508		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2509	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2510	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2511		   mi->maximum_block_count, mi->maximum_sg_entries);
2512	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2513		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2514	mly_printf(sc, "physical devices present %d\n",
2515		   mi->physical_devices_present);
2516	mly_printf(sc, "physical disks present/offline %d/%d\n",
2517		   mi->physical_disks_present, mi->physical_disks_offline);
2518	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2519		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2520		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2521		   mi->virtual_channels_possible);
2522	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2523	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2524		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2525    }
2526}
2527
2528#ifdef MLY_DEBUG
2529/********************************************************************************
2530 * Print some controller state
2531 */
2532static void
2533mly_printstate(struct mly_softc *sc)
2534{
2535    mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2536		  MLY_GET_REG(sc, sc->mly_idbr),
2537		  MLY_GET_REG(sc, sc->mly_odbr),
2538		  MLY_GET_REG(sc, sc->mly_error_status),
2539		  sc->mly_idbr,
2540		  sc->mly_odbr,
2541		  sc->mly_error_status);
2542    mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2543		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2544		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2545    mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2546		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2547		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2548		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2549		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2550		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2551		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2552		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2553		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2554    mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2555		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2556		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2557		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2558		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2559		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2560		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2561		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2562		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2563    mly_printf(sc, "        %04x        %08x\n",
2564		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2565		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2566}
2567
2568struct mly_softc	*mly_softc0 = NULL;
2569void
2570mly_printstate0(void)
2571{
2572    if (mly_softc0 != NULL)
2573	mly_printstate(mly_softc0);
2574}
2575
2576/********************************************************************************
2577 * Print a command
2578 */
2579static void
2580mly_print_command(struct mly_command *mc)
2581{
2582    struct mly_softc	*sc = mc->mc_sc;
2583
2584    mly_printf(sc, "COMMAND @ %p\n", mc);
2585    mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2586    mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2587    mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2588    mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2589    mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2590    if (mc->mc_packet != NULL)
2591	mly_print_packet(mc);
2592    mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2593    mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2594    mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2595    mly_printf(sc, "  private   %p\n", mc->mc_private);
2596}
2597
2598/********************************************************************************
2599 * Print a command packet
2600 */
2601static void
2602mly_print_packet(struct mly_command *mc)
2603{
2604    struct mly_softc			*sc = mc->mc_sc;
2605    struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2606    struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2607    struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2608    struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2609    int					transfer;
2610
2611    mly_printf(sc, "   command_id           %d\n", ge->command_id);
2612    mly_printf(sc, "   opcode               %d\n", ge->opcode);
2613    mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2614		  ge->command_control.force_unit_access,
2615		  ge->command_control.disable_page_out,
2616		  ge->command_control.extended_sg_table,
2617		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2618		  ge->command_control.no_auto_sense,
2619		  ge->command_control.disable_disconnect);
2620    mly_printf(sc, "   data_size            %d\n", ge->data_size);
2621    mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2622    mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2623    mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2624    mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2625    mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2626    mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2627    mly_printf(sc, "   timeout              %d %s\n",
2628		  ge->timeout.value,
2629		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2630		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2631    mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2632    switch(ge->opcode) {
2633    case MDACMD_SCSIPT:
2634    case MDACMD_SCSI:
2635	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2636	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2637	transfer = 1;
2638	break;
2639    case MDACMD_SCSILC:
2640    case MDACMD_SCSILCPT:
2641	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2642	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2643	transfer = 1;
2644	break;
2645    case MDACMD_IOCTL:
2646	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2647	switch(io->sub_ioctl) {
2648	case MDACIOCTL_SETMEMORYMAILBOX:
2649	    mly_printf(sc, "   health_buffer_size   %d\n",
2650			  io->param.setmemorymailbox.health_buffer_size);
2651	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2652			  io->param.setmemorymailbox.health_buffer_physaddr);
2653	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2654			  io->param.setmemorymailbox.command_mailbox_physaddr);
2655	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2656			  io->param.setmemorymailbox.status_mailbox_physaddr);
2657	    transfer = 0;
2658	    break;
2659
2660	case MDACIOCTL_SETREALTIMECLOCK:
2661	case MDACIOCTL_GETHEALTHSTATUS:
2662	case MDACIOCTL_GETCONTROLLERINFO:
2663	case MDACIOCTL_GETLOGDEVINFOVALID:
2664	case MDACIOCTL_GETPHYSDEVINFOVALID:
2665	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2666	case MDACIOCTL_GETLOGDEVSTATISTICS:
2667	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2668	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2669	case MDACIOCTL_CREATENEWCONF:
2670	case MDACIOCTL_ADDNEWCONF:
2671	case MDACIOCTL_GETDEVCONFINFO:
2672	case MDACIOCTL_GETFREESPACELIST:
2673	case MDACIOCTL_MORE:
2674	case MDACIOCTL_SETPHYSDEVPARAMETER:
2675	case MDACIOCTL_GETPHYSDEVPARAMETER:
2676	case MDACIOCTL_GETLOGDEVPARAMETER:
2677	case MDACIOCTL_SETLOGDEVPARAMETER:
2678	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2679	    transfer = 1;
2680	    break;
2681
2682	case MDACIOCTL_GETEVENT:
2683	    mly_printf(sc, "   event                %d\n",
2684		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2685	    transfer = 1;
2686	    break;
2687
2688	case MDACIOCTL_SETRAIDDEVSTATE:
2689	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2690	    transfer = 0;
2691	    break;
2692
2693	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2694	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2695	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2696	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2697	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2698	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2699	    transfer = 0;
2700	    break;
2701
2702	case MDACIOCTL_GETGROUPCONFINFO:
2703	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2704	    transfer = 1;
2705	    break;
2706
2707	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2708	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2709	case MDACIOCTL_STARTDISOCVERY:
2710	case MDACIOCTL_INITPHYSDEVSTART:
2711	case MDACIOCTL_INITPHYSDEVSTOP:
2712	case MDACIOCTL_INITRAIDDEVSTART:
2713	case MDACIOCTL_INITRAIDDEVSTOP:
2714	case MDACIOCTL_REBUILDRAIDDEVSTART:
2715	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2716	case MDACIOCTL_MAKECONSISTENTDATASTART:
2717	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2718	case MDACIOCTL_CONSISTENCYCHECKSTART:
2719	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2720	case MDACIOCTL_RESETDEVICE:
2721	case MDACIOCTL_FLUSHDEVICEDATA:
2722	case MDACIOCTL_PAUSEDEVICE:
2723	case MDACIOCTL_UNPAUSEDEVICE:
2724	case MDACIOCTL_LOCATEDEVICE:
2725	case MDACIOCTL_SETMASTERSLAVEMODE:
2726	case MDACIOCTL_DELETERAIDDEV:
2727	case MDACIOCTL_REPLACEINTERNALDEV:
2728	case MDACIOCTL_CLEARCONF:
2729	case MDACIOCTL_GETCONTROLLERPARAMETER:
2730	case MDACIOCTL_SETCONTRLLERPARAMETER:
2731	case MDACIOCTL_CLEARCONFSUSPMODE:
2732	case MDACIOCTL_STOREIMAGE:
2733	case MDACIOCTL_READIMAGE:
2734	case MDACIOCTL_FLASHIMAGES:
2735	case MDACIOCTL_RENAMERAIDDEV:
2736	default:			/* no idea what to print */
2737	    transfer = 0;
2738	    break;
2739	}
2740	break;
2741
2742    case MDACMD_IOCTLCHECK:
2743    case MDACMD_MEMCOPY:
2744    default:
2745	transfer = 0;
2746	break;	/* print nothing */
2747    }
2748    if (transfer) {
2749	if (ge->command_control.extended_sg_table) {
2750	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2751			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2752	} else {
2753	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2754			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2755	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2756			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2757	}
2758    }
2759}
2760
2761/********************************************************************************
2762 * Panic in a slightly informative fashion
2763 */
2764static void
2765mly_panic(struct mly_softc *sc, char *reason)
2766{
2767    mly_printstate(sc);
2768    panic(reason);
2769}
2770
2771/********************************************************************************
2772 * Print queue statistics, callable from DDB.
2773 */
2774void
2775mly_print_controller(int controller)
2776{
2777    struct mly_softc	*sc;
2778
2779    if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2780	printf("mly: controller %d invalid\n", controller);
2781    } else {
2782	device_printf(sc->mly_dev, "queue    curr max\n");
2783	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2784		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2785	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2786		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2787	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2788		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2789    }
2790}
2791#endif
2792
2793
2794/********************************************************************************
2795 ********************************************************************************
2796                                                         Control device interface
2797 ********************************************************************************
2798 ********************************************************************************/
2799
2800/********************************************************************************
2801 * Accept an open operation on the control device.
2802 */
2803static int
2804mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2805{
2806    struct mly_softc	*sc = dev->si_drv1;
2807
2808    sc->mly_state |= MLY_STATE_OPEN;
2809    return(0);
2810}
2811
2812/********************************************************************************
2813 * Accept the last close on the control device.
2814 */
2815static int
2816mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2817{
2818    struct mly_softc	*sc = dev->si_drv1;
2819
2820    sc->mly_state &= ~MLY_STATE_OPEN;
2821    return (0);
2822}
2823
2824/********************************************************************************
2825 * Handle controller-specific control operations.
2826 */
2827static int
2828mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
2829				int32_t flag, struct thread *td)
2830{
2831    struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2832    struct mly_user_command	*uc = (struct mly_user_command *)addr;
2833    struct mly_user_health	*uh = (struct mly_user_health *)addr;
2834
2835    switch(cmd) {
2836    case MLYIO_COMMAND:
2837	return(mly_user_command(sc, uc));
2838    case MLYIO_HEALTH:
2839	return(mly_user_health(sc, uh));
2840    default:
2841	return(ENOIOCTL);
2842    }
2843}
2844
2845/********************************************************************************
2846 * Execute a command passed in from userspace.
2847 *
2848 * The control structure contains the actual command for the controller, as well
2849 * as the user-space data pointer and data size, and an optional sense buffer
2850 * size/pointer.  On completion, the data size is adjusted to the command
2851 * residual, and the sense buffer size to the size of the returned sense data.
2852 *
2853 */
2854static int
2855mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2856{
2857    struct mly_command	*mc;
2858    int			error, s;
2859
2860    /* allocate a command */
2861    if (mly_alloc_command(sc, &mc)) {
2862	error = ENOMEM;
2863	goto out;		/* XXX Linux version will wait for a command */
2864    }
2865
2866    /* handle data size/direction */
2867    mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2868    if (mc->mc_length > 0) {
2869	if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2870	    error = ENOMEM;
2871	    goto out;
2872	}
2873    }
2874    if (uc->DataTransferLength > 0) {
2875	mc->mc_flags |= MLY_CMD_DATAIN;
2876	bzero(mc->mc_data, mc->mc_length);
2877    }
2878    if (uc->DataTransferLength < 0) {
2879	mc->mc_flags |= MLY_CMD_DATAOUT;
2880	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2881	    goto out;
2882    }
2883
2884    /* copy the controller command */
2885    bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2886
2887    /* clear command completion handler so that we get woken up */
2888    mc->mc_complete = NULL;
2889
2890    /* execute the command */
2891    if ((error = mly_start(mc)) != 0)
2892	goto out;
2893    s = splcam();
2894    while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2895	tsleep(mc, PRIBIO, "mlyioctl", 0);
2896    splx(s);
2897
2898    /* return the data to userspace */
2899    if (uc->DataTransferLength > 0)
2900	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2901	    goto out;
2902
2903    /* return the sense buffer to userspace */
2904    if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2905	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2906			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2907	    goto out;
2908    }
2909
2910    /* return command results to userspace (caller will copy out) */
2911    uc->DataTransferLength = mc->mc_resid;
2912    uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2913    uc->CommandStatus = mc->mc_status;
2914    error = 0;
2915
2916 out:
2917    if (mc->mc_data != NULL)
2918	free(mc->mc_data, M_DEVBUF);
2919    if (mc != NULL)
2920	mly_release_command(mc);
2921    return(error);
2922}
2923
2924/********************************************************************************
2925 * Return health status to userspace.  If the health change index in the user
2926 * structure does not match that currently exported by the controller, we
2927 * return the current status immediately.  Otherwise, we block until either
2928 * interrupted or new status is delivered.
2929 */
2930static int
2931mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2932{
2933    struct mly_health_status		mh;
2934    int					error, s;
2935
2936    /* fetch the current health status from userspace */
2937    if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2938	return(error);
2939
2940    /* spin waiting for a status update */
2941    s = splcam();
2942    error = EWOULDBLOCK;
2943    while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2944	error = tsleep(&sc->mly_event_change, PRIBIO | PCATCH, "mlyhealth", 0);
2945    splx(s);
2946
2947    /* copy the controller's health status buffer out (there is a race here if it changes again) */
2948    error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2949		    sizeof(uh->HealthStatusBuffer));
2950    return(error);
2951}
2952
2953#ifdef MLY_DEBUG
2954static int
2955mly_timeout(struct mly_softc *sc)
2956{
2957	struct mly_command *mc;
2958	int deadline;
2959
2960	deadline = time_second - MLY_CMD_TIMEOUT;
2961	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2962		if ((mc->mc_timestamp < deadline)) {
2963			device_printf(sc->mly_dev,
2964			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2965			    (int)(time_second - mc->mc_timestamp));
2966		}
2967	}
2968
2969	timeout((timeout_t *)mly_timeout, sc, MLY_CMD_TIMEOUT * hz);
2970
2971	return (0);
2972}
2973#endif
2974