1/*	$KAME: sha2.c,v 1.11 2004/06/02 09:52:45 itojun Exp $	*/
2
3/*
4 * sha2.c
5 *
6 * Version 1.0.0beta1
7 *
8 * Written by Aaron D. Gifford <me@aarongifford.com>
9 *
10 * Copyright 2000 Aaron D. Gifford.  All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the copyright holder nor the names of contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41#include <sys/types.h>
42#include <sys/time.h>
43#ifdef _KERNEL
44#include <sys/systm.h>
45#else
46#include <string.h>
47#endif
48#include <machine/endian.h>
49#include <crypto/sha2/sha2.h>
50
51/*
52 * ASSERT NOTE:
53 * Some sanity checking code is included using assert().  On my FreeBSD
54 * system, this additional code can be removed by compiling with NDEBUG
55 * defined.  Check your own systems manpage on assert() to see how to
56 * compile WITHOUT the sanity checking code on your system.
57 *
58 * UNROLLED TRANSFORM LOOP NOTE:
59 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
60 * loop version for the hash transform rounds (defined using macros
61 * later in this file).  Either define on the command line, for example:
62 *
63 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
64 *
65 * or define below:
66 *
67 *   #define SHA2_UNROLL_TRANSFORM
68 *
69 */
70
71#if defined(_KERNEL) && defined(__FreeBSD__)
72#define assert(x)
73#else
74#include <assert.h>
75#endif
76
77
78/*** SHA-256/384/512 Machine Architecture Definitions *****************/
79/*
80 * BYTE_ORDER NOTE:
81 *
82 * Please make sure that your system defines BYTE_ORDER.  If your
83 * architecture is little-endian, make sure it also defines
84 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
85 * equivilent.
86 *
87 * If your system does not define the above, then you can do so by
88 * hand like this:
89 *
90 *   #define LITTLE_ENDIAN 1234
91 *   #define BIG_ENDIAN    4321
92 *
93 * And for little-endian machines, add:
94 *
95 *   #define BYTE_ORDER LITTLE_ENDIAN
96 *
97 * Or for big-endian machines:
98 *
99 *   #define BYTE_ORDER BIG_ENDIAN
100 *
101 * The FreeBSD machine this was written on defines BYTE_ORDER
102 * appropriately by including <sys/types.h> (which in turn includes
103 * <machine/endian.h> where the appropriate definitions are actually
104 * made).
105 */
106#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
107#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
108#endif
109
110/*
111 * Define the followingsha2_* types to types of the correct length on
112 * the native archtecture.   Most BSD systems and Linux define u_intXX_t
113 * types.  Machines with very recent ANSI C headers, can use the
114 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
115 * during compile or in the sha.h header file.
116 *
117 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
118 * will need to define these three typedefs below (and the appropriate
119 * ones in sha.h too) by hand according to their system architecture.
120 *
121 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
122 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
123 */
124#if 0 /*def SHA2_USE_INTTYPES_H*/
125
126typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
127typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
128typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
129
130#else /* SHA2_USE_INTTYPES_H */
131
132typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
133typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
134typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
135
136#endif /* SHA2_USE_INTTYPES_H */
137
138
139/*** SHA-256/384/512 Various Length Definitions ***********************/
140/* NOTE: Most of these are in sha2.h */
141#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
142#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
143#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
144
145
146/*** ENDIAN REVERSAL MACROS *******************************************/
147#if BYTE_ORDER == LITTLE_ENDIAN
148#define REVERSE32(w,x)	{ \
149	sha2_word32 tmp = (w); \
150	tmp = (tmp >> 16) | (tmp << 16); \
151	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
152}
153#define REVERSE64(w,x)	{ \
154	sha2_word64 tmp = (w); \
155	tmp = (tmp >> 32) | (tmp << 32); \
156	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
157	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
158	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
159	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
160}
161#endif /* BYTE_ORDER == LITTLE_ENDIAN */
162
163/*
164 * Macro for incrementally adding the unsigned 64-bit integer n to the
165 * unsigned 128-bit integer (represented using a two-element array of
166 * 64-bit words):
167 */
168#define ADDINC128(w,n)	{ \
169	(w)[0] += (sha2_word64)(n); \
170	if ((w)[0] < (n)) { \
171		(w)[1]++; \
172	} \
173}
174
175/*** THE SIX LOGICAL FUNCTIONS ****************************************/
176/*
177 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
178 *
179 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
180 *   S is a ROTATION) because the SHA-256/384/512 description document
181 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
182 *   same "backwards" definition.
183 */
184/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
185#define R(b,x) 		((x) >> (b))
186/* 32-bit Rotate-right (used in SHA-256): */
187#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
188/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
189#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
190
191/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
192#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
193#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
194
195/* Four of six logical functions used in SHA-256: */
196#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
197#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
198#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
199#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
200
201/* Four of six logical functions used in SHA-384 and SHA-512: */
202#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
203#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
204#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
205#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
206
207/*** INTERNAL FUNCTION PROTOTYPES *************************************/
208/* NOTE: These should not be accessed directly from outside this
209 * library -- they are intended for private internal visibility/use
210 * only.
211 */
212static void SHA512_Last(SHA512_CTX*);
213static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
214static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
215
216
217/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
218/* Hash constant words K for SHA-256: */
219static const sha2_word32 K256[64] = {
220	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
221	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
222	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
223	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
224	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
225	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
226	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
227	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
228	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
229	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
230	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
231	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
232	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
233	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
234	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
235	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
236};
237
238/* Initial hash value H for SHA-256: */
239static const sha2_word32 sha256_initial_hash_value[8] = {
240	0x6a09e667UL,
241	0xbb67ae85UL,
242	0x3c6ef372UL,
243	0xa54ff53aUL,
244	0x510e527fUL,
245	0x9b05688cUL,
246	0x1f83d9abUL,
247	0x5be0cd19UL
248};
249
250/* Hash constant words K for SHA-384 and SHA-512: */
251static const sha2_word64 K512[80] = {
252	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
253	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
254	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
255	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
256	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
257	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
258	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
259	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
260	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
261	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
262	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
263	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
264	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
265	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
266	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
267	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
268	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
269	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
270	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
271	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
272	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
273	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
274	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
275	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
276	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
277	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
278	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
279	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
280	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
281	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
282	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
283	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
284	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
285	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
286	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
287	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
288	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
289	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
290	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
291	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
292};
293
294/* Initial hash value H for SHA-384 */
295static const sha2_word64 sha384_initial_hash_value[8] = {
296	0xcbbb9d5dc1059ed8ULL,
297	0x629a292a367cd507ULL,
298	0x9159015a3070dd17ULL,
299	0x152fecd8f70e5939ULL,
300	0x67332667ffc00b31ULL,
301	0x8eb44a8768581511ULL,
302	0xdb0c2e0d64f98fa7ULL,
303	0x47b5481dbefa4fa4ULL
304};
305
306/* Initial hash value H for SHA-512 */
307static const sha2_word64 sha512_initial_hash_value[8] = {
308	0x6a09e667f3bcc908ULL,
309	0xbb67ae8584caa73bULL,
310	0x3c6ef372fe94f82bULL,
311	0xa54ff53a5f1d36f1ULL,
312	0x510e527fade682d1ULL,
313	0x9b05688c2b3e6c1fULL,
314	0x1f83d9abfb41bd6bULL,
315	0x5be0cd19137e2179ULL
316};
317
318/*
319 * Constant used by SHA256/384/512_End() functions for converting the
320 * digest to a readable hexadecimal character string:
321 */
322static const char *sha2_hex_digits = "0123456789abcdef";
323
324
325/*** SHA-256: *********************************************************/
326void SHA256_Init(SHA256_CTX* context) {
327	if (context == (SHA256_CTX*)0) {
328		return;
329	}
330	bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
331	bzero(context->buffer, SHA256_BLOCK_LENGTH);
332	context->bitcount = 0;
333}
334
335#ifdef SHA2_UNROLL_TRANSFORM
336
337/* Unrolled SHA-256 round macros: */
338
339#if BYTE_ORDER == LITTLE_ENDIAN
340
341#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
342	REVERSE32(*data++, W256[j]); \
343	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
344             K256[j] + W256[j]; \
345	(d) += T1; \
346	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
347	j++
348
349
350#else /* BYTE_ORDER == LITTLE_ENDIAN */
351
352#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
353	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
354	     K256[j] + (W256[j] = *data++); \
355	(d) += T1; \
356	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
357	j++
358
359#endif /* BYTE_ORDER == LITTLE_ENDIAN */
360
361#define ROUND256(a,b,c,d,e,f,g,h)	\
362	s0 = W256[(j+1)&0x0f]; \
363	s0 = sigma0_256(s0); \
364	s1 = W256[(j+14)&0x0f]; \
365	s1 = sigma1_256(s1); \
366	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
367	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
368	(d) += T1; \
369	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
370	j++
371
372static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
373	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
374	sha2_word32	T1, *W256;
375	int		j;
376
377	W256 = (sha2_word32*)context->buffer;
378
379	/* Initialize registers with the prev. intermediate value */
380	a = context->state[0];
381	b = context->state[1];
382	c = context->state[2];
383	d = context->state[3];
384	e = context->state[4];
385	f = context->state[5];
386	g = context->state[6];
387	h = context->state[7];
388
389	j = 0;
390	do {
391		/* Rounds 0 to 15 (unrolled): */
392		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
393		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
394		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
395		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
396		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
397		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
398		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
399		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
400	} while (j < 16);
401
402	/* Now for the remaining rounds to 64: */
403	do {
404		ROUND256(a,b,c,d,e,f,g,h);
405		ROUND256(h,a,b,c,d,e,f,g);
406		ROUND256(g,h,a,b,c,d,e,f);
407		ROUND256(f,g,h,a,b,c,d,e);
408		ROUND256(e,f,g,h,a,b,c,d);
409		ROUND256(d,e,f,g,h,a,b,c);
410		ROUND256(c,d,e,f,g,h,a,b);
411		ROUND256(b,c,d,e,f,g,h,a);
412	} while (j < 64);
413
414	/* Compute the current intermediate hash value */
415	context->state[0] += a;
416	context->state[1] += b;
417	context->state[2] += c;
418	context->state[3] += d;
419	context->state[4] += e;
420	context->state[5] += f;
421	context->state[6] += g;
422	context->state[7] += h;
423
424	/* Clean up */
425	a = b = c = d = e = f = g = h = T1 = 0;
426}
427
428#else /* SHA2_UNROLL_TRANSFORM */
429
430static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
431	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
432	sha2_word32	T1, T2, *W256;
433	int		j;
434
435	W256 = (sha2_word32*)context->buffer;
436
437	/* Initialize registers with the prev. intermediate value */
438	a = context->state[0];
439	b = context->state[1];
440	c = context->state[2];
441	d = context->state[3];
442	e = context->state[4];
443	f = context->state[5];
444	g = context->state[6];
445	h = context->state[7];
446
447	j = 0;
448	do {
449#if BYTE_ORDER == LITTLE_ENDIAN
450		/* Copy data while converting to host byte order */
451		REVERSE32(*data++,W256[j]);
452		/* Apply the SHA-256 compression function to update a..h */
453		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
454#else /* BYTE_ORDER == LITTLE_ENDIAN */
455		/* Apply the SHA-256 compression function to update a..h with copy */
456		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
457#endif /* BYTE_ORDER == LITTLE_ENDIAN */
458		T2 = Sigma0_256(a) + Maj(a, b, c);
459		h = g;
460		g = f;
461		f = e;
462		e = d + T1;
463		d = c;
464		c = b;
465		b = a;
466		a = T1 + T2;
467
468		j++;
469	} while (j < 16);
470
471	do {
472		/* Part of the message block expansion: */
473		s0 = W256[(j+1)&0x0f];
474		s0 = sigma0_256(s0);
475		s1 = W256[(j+14)&0x0f];
476		s1 = sigma1_256(s1);
477
478		/* Apply the SHA-256 compression function to update a..h */
479		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
480		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
481		T2 = Sigma0_256(a) + Maj(a, b, c);
482		h = g;
483		g = f;
484		f = e;
485		e = d + T1;
486		d = c;
487		c = b;
488		b = a;
489		a = T1 + T2;
490
491		j++;
492	} while (j < 64);
493
494	/* Compute the current intermediate hash value */
495	context->state[0] += a;
496	context->state[1] += b;
497	context->state[2] += c;
498	context->state[3] += d;
499	context->state[4] += e;
500	context->state[5] += f;
501	context->state[6] += g;
502	context->state[7] += h;
503
504	/* Clean up */
505	a = b = c = d = e = f = g = h = T1 = T2 = 0;
506}
507
508#endif /* SHA2_UNROLL_TRANSFORM */
509
510void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
511	unsigned int	freespace, usedspace;
512
513	if (len == 0) {
514		/* Calling with no data is valid - we do nothing */
515		return;
516	}
517
518	/* Sanity check: */
519	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
520
521	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
522	if (usedspace > 0) {
523		/* Calculate how much free space is available in the buffer */
524		freespace = SHA256_BLOCK_LENGTH - usedspace;
525
526		if (len >= freespace) {
527			/* Fill the buffer completely and process it */
528			bcopy(data, &context->buffer[usedspace], freespace);
529			context->bitcount += freespace << 3;
530			len -= freespace;
531			data += freespace;
532			SHA256_Transform(context, (sha2_word32*)context->buffer);
533		} else {
534			/* The buffer is not yet full */
535			bcopy(data, &context->buffer[usedspace], len);
536			context->bitcount += len << 3;
537			/* Clean up: */
538			usedspace = freespace = 0;
539			return;
540		}
541	}
542	while (len >= SHA256_BLOCK_LENGTH) {
543		/* Process as many complete blocks as we can */
544		SHA256_Transform(context, (const sha2_word32*)data);
545		context->bitcount += SHA256_BLOCK_LENGTH << 3;
546		len -= SHA256_BLOCK_LENGTH;
547		data += SHA256_BLOCK_LENGTH;
548	}
549	if (len > 0) {
550		/* There's left-overs, so save 'em */
551		bcopy(data, context->buffer, len);
552		context->bitcount += len << 3;
553	}
554	/* Clean up: */
555	usedspace = freespace = 0;
556}
557
558void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
559	sha2_word32	*d = (sha2_word32*)digest;
560	unsigned int	usedspace;
561
562	/* Sanity check: */
563	assert(context != (SHA256_CTX*)0);
564
565	/* If no digest buffer is passed, we don't bother doing this: */
566	if (digest != (sha2_byte*)0) {
567		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
568#if BYTE_ORDER == LITTLE_ENDIAN
569		/* Convert FROM host byte order */
570		REVERSE64(context->bitcount,context->bitcount);
571#endif
572		if (usedspace > 0) {
573			/* Begin padding with a 1 bit: */
574			context->buffer[usedspace++] = 0x80;
575
576			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
577				/* Set-up for the last transform: */
578				bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
579			} else {
580				if (usedspace < SHA256_BLOCK_LENGTH) {
581					bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
582				}
583				/* Do second-to-last transform: */
584				SHA256_Transform(context, (sha2_word32*)context->buffer);
585
586				/* And set-up for the last transform: */
587				bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
588			}
589		} else {
590			/* Set-up for the last transform: */
591			bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
592
593			/* Begin padding with a 1 bit: */
594			*context->buffer = 0x80;
595		}
596		/* Set the bit count: */
597		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
598
599		/* Final transform: */
600		SHA256_Transform(context, (sha2_word32*)context->buffer);
601
602#if BYTE_ORDER == LITTLE_ENDIAN
603		{
604			/* Convert TO host byte order */
605			int	j;
606			for (j = 0; j < 8; j++) {
607				REVERSE32(context->state[j],context->state[j]);
608				*d++ = context->state[j];
609			}
610		}
611#else
612		bcopy(context->state, d, SHA256_DIGEST_LENGTH);
613#endif
614	}
615
616	/* Clean up state data: */
617	bzero(context, sizeof(*context));
618	usedspace = 0;
619}
620
621char *SHA256_End(SHA256_CTX* context, char buffer[]) {
622	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
623	int		i;
624
625	/* Sanity check: */
626	assert(context != (SHA256_CTX*)0);
627
628	if (buffer != (char*)0) {
629		SHA256_Final(digest, context);
630
631		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
632			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
633			*buffer++ = sha2_hex_digits[*d & 0x0f];
634			d++;
635		}
636		*buffer = (char)0;
637	} else {
638		bzero(context, sizeof(*context));
639	}
640	bzero(digest, SHA256_DIGEST_LENGTH);
641	return buffer;
642}
643
644char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
645	SHA256_CTX	context;
646
647	SHA256_Init(&context);
648	SHA256_Update(&context, data, len);
649	return SHA256_End(&context, digest);
650}
651
652
653/*** SHA-512: *********************************************************/
654void SHA512_Init(SHA512_CTX* context) {
655	if (context == (SHA512_CTX*)0) {
656		return;
657	}
658	bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
659	bzero(context->buffer, SHA512_BLOCK_LENGTH);
660	context->bitcount[0] = context->bitcount[1] =  0;
661}
662
663#ifdef SHA2_UNROLL_TRANSFORM
664
665/* Unrolled SHA-512 round macros: */
666#if BYTE_ORDER == LITTLE_ENDIAN
667
668#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
669	REVERSE64(*data++, W512[j]); \
670	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
671             K512[j] + W512[j]; \
672	(d) += T1, \
673	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
674	j++
675
676
677#else /* BYTE_ORDER == LITTLE_ENDIAN */
678
679#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
680	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
681             K512[j] + (W512[j] = *data++); \
682	(d) += T1; \
683	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
684	j++
685
686#endif /* BYTE_ORDER == LITTLE_ENDIAN */
687
688#define ROUND512(a,b,c,d,e,f,g,h)	\
689	s0 = W512[(j+1)&0x0f]; \
690	s0 = sigma0_512(s0); \
691	s1 = W512[(j+14)&0x0f]; \
692	s1 = sigma1_512(s1); \
693	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
694             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
695	(d) += T1; \
696	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
697	j++
698
699static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
700	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
701	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
702	int		j;
703
704	/* Initialize registers with the prev. intermediate value */
705	a = context->state[0];
706	b = context->state[1];
707	c = context->state[2];
708	d = context->state[3];
709	e = context->state[4];
710	f = context->state[5];
711	g = context->state[6];
712	h = context->state[7];
713
714	j = 0;
715	do {
716		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
717		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
718		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
719		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
720		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
721		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
722		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
723		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
724	} while (j < 16);
725
726	/* Now for the remaining rounds up to 79: */
727	do {
728		ROUND512(a,b,c,d,e,f,g,h);
729		ROUND512(h,a,b,c,d,e,f,g);
730		ROUND512(g,h,a,b,c,d,e,f);
731		ROUND512(f,g,h,a,b,c,d,e);
732		ROUND512(e,f,g,h,a,b,c,d);
733		ROUND512(d,e,f,g,h,a,b,c);
734		ROUND512(c,d,e,f,g,h,a,b);
735		ROUND512(b,c,d,e,f,g,h,a);
736	} while (j < 80);
737
738	/* Compute the current intermediate hash value */
739	context->state[0] += a;
740	context->state[1] += b;
741	context->state[2] += c;
742	context->state[3] += d;
743	context->state[4] += e;
744	context->state[5] += f;
745	context->state[6] += g;
746	context->state[7] += h;
747
748	/* Clean up */
749	a = b = c = d = e = f = g = h = T1 = 0;
750}
751
752#else /* SHA2_UNROLL_TRANSFORM */
753
754static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
755	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
756	sha2_word64	T1 = 0, T2 = 0, *W512 = (sha2_word64*)context->buffer;
757	int		j;
758
759	/* Initialize registers with the prev. intermediate value */
760	a = context->state[0];
761	b = context->state[1];
762	c = context->state[2];
763	d = context->state[3];
764	e = context->state[4];
765	f = context->state[5];
766	g = context->state[6];
767	h = context->state[7];
768
769	j = 0;
770	do {
771#if BYTE_ORDER == LITTLE_ENDIAN
772		/* Convert TO host byte order */
773		REVERSE64(*data++, W512[j]);
774		/* Apply the SHA-512 compression function to update a..h */
775		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
776#else /* BYTE_ORDER == LITTLE_ENDIAN */
777		/* Apply the SHA-512 compression function to update a..h with copy */
778		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
779#endif /* BYTE_ORDER == LITTLE_ENDIAN */
780		T2 = Sigma0_512(a) + Maj(a, b, c);
781		h = g;
782		g = f;
783		f = e;
784		e = d + T1;
785		d = c;
786		c = b;
787		b = a;
788		a = T1 + T2;
789
790		j++;
791	} while (j < 16);
792
793	do {
794		/* Part of the message block expansion: */
795		s0 = W512[(j+1)&0x0f];
796		s0 = sigma0_512(s0);
797		s1 = W512[(j+14)&0x0f];
798		s1 =  sigma1_512(s1);
799
800		/* Apply the SHA-512 compression function to update a..h */
801		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
802		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
803		T2 = Sigma0_512(a) + Maj(a, b, c);
804		h = g;
805		g = f;
806		f = e;
807		e = d + T1;
808		d = c;
809		c = b;
810		b = a;
811		a = T1 + T2;
812
813		j++;
814	} while (j < 80);
815
816	/* Compute the current intermediate hash value */
817	context->state[0] += a;
818	context->state[1] += b;
819	context->state[2] += c;
820	context->state[3] += d;
821	context->state[4] += e;
822	context->state[5] += f;
823	context->state[6] += g;
824	context->state[7] += h;
825
826	/* Clean up */
827	a = b = c = d = e = f = g = h = T1 = T2 = 0;
828}
829
830#endif /* SHA2_UNROLL_TRANSFORM */
831
832void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
833	unsigned int	freespace, usedspace;
834
835	if (len == 0) {
836		/* Calling with no data is valid - we do nothing */
837		return;
838	}
839
840	/* Sanity check: */
841	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
842
843	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
844	if (usedspace > 0) {
845		/* Calculate how much free space is available in the buffer */
846		freespace = SHA512_BLOCK_LENGTH - usedspace;
847
848		if (len >= freespace) {
849			/* Fill the buffer completely and process it */
850			bcopy(data, &context->buffer[usedspace], freespace);
851			ADDINC128(context->bitcount, freespace << 3);
852			len -= freespace;
853			data += freespace;
854			SHA512_Transform(context, (sha2_word64*)context->buffer);
855		} else {
856			/* The buffer is not yet full */
857			bcopy(data, &context->buffer[usedspace], len);
858			ADDINC128(context->bitcount, len << 3);
859			/* Clean up: */
860			usedspace = freespace = 0;
861			return;
862		}
863	}
864	while (len >= SHA512_BLOCK_LENGTH) {
865		/* Process as many complete blocks as we can */
866		SHA512_Transform(context, (const sha2_word64*)data);
867		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
868		len -= SHA512_BLOCK_LENGTH;
869		data += SHA512_BLOCK_LENGTH;
870	}
871	if (len > 0) {
872		/* There's left-overs, so save 'em */
873		bcopy(data, context->buffer, len);
874		ADDINC128(context->bitcount, len << 3);
875	}
876	/* Clean up: */
877	usedspace = freespace = 0;
878}
879
880static void SHA512_Last(SHA512_CTX* context) {
881	unsigned int	usedspace;
882
883	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
884#if BYTE_ORDER == LITTLE_ENDIAN
885	/* Convert FROM host byte order */
886	REVERSE64(context->bitcount[0],context->bitcount[0]);
887	REVERSE64(context->bitcount[1],context->bitcount[1]);
888#endif
889	if (usedspace > 0) {
890		/* Begin padding with a 1 bit: */
891		context->buffer[usedspace++] = 0x80;
892
893		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
894			/* Set-up for the last transform: */
895			bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
896		} else {
897			if (usedspace < SHA512_BLOCK_LENGTH) {
898				bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
899			}
900			/* Do second-to-last transform: */
901			SHA512_Transform(context, (sha2_word64*)context->buffer);
902
903			/* And set-up for the last transform: */
904			bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
905		}
906	} else {
907		/* Prepare for final transform: */
908		bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
909
910		/* Begin padding with a 1 bit: */
911		*context->buffer = 0x80;
912	}
913	/* Store the length of input data (in bits): */
914	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
915	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
916
917	/* Final transform: */
918	SHA512_Transform(context, (sha2_word64*)context->buffer);
919}
920
921void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
922	sha2_word64	*d = (sha2_word64*)digest;
923
924	/* Sanity check: */
925	assert(context != (SHA512_CTX*)0);
926
927	/* If no digest buffer is passed, we don't bother doing this: */
928	if (digest != (sha2_byte*)0) {
929		SHA512_Last(context);
930
931		/* Save the hash data for output: */
932#if BYTE_ORDER == LITTLE_ENDIAN
933		{
934			/* Convert TO host byte order */
935			int	j;
936			for (j = 0; j < 8; j++) {
937				REVERSE64(context->state[j],context->state[j]);
938				*d++ = context->state[j];
939			}
940		}
941#else
942		bcopy(context->state, d, SHA512_DIGEST_LENGTH);
943#endif
944	}
945
946	/* Zero out state data */
947	bzero(context, sizeof(*context));
948}
949
950char *SHA512_End(SHA512_CTX* context, char buffer[]) {
951	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
952	int		i;
953
954	/* Sanity check: */
955	assert(context != (SHA512_CTX*)0);
956
957	if (buffer != (char*)0) {
958		SHA512_Final(digest, context);
959
960		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
961			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
962			*buffer++ = sha2_hex_digits[*d & 0x0f];
963			d++;
964		}
965		*buffer = (char)0;
966	} else {
967		bzero(context, sizeof(*context));
968	}
969	bzero(digest, SHA512_DIGEST_LENGTH);
970	return buffer;
971}
972
973char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
974	SHA512_CTX	context;
975
976	SHA512_Init(&context);
977	SHA512_Update(&context, data, len);
978	return SHA512_End(&context, digest);
979}
980
981
982/*** SHA-384: *********************************************************/
983void SHA384_Init(SHA384_CTX* context) {
984	if (context == (SHA384_CTX*)0) {
985		return;
986	}
987	bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
988	bzero(context->buffer, SHA384_BLOCK_LENGTH);
989	context->bitcount[0] = context->bitcount[1] = 0;
990}
991
992void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
993	SHA512_Update((SHA512_CTX*)context, data, len);
994}
995
996void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
997	sha2_word64	*d = (sha2_word64*)digest;
998
999	/* Sanity check: */
1000	assert(context != (SHA384_CTX*)0);
1001
1002	/* If no digest buffer is passed, we don't bother doing this: */
1003	if (digest != (sha2_byte*)0) {
1004		SHA512_Last((SHA512_CTX*)context);
1005
1006		/* Save the hash data for output: */
1007#if BYTE_ORDER == LITTLE_ENDIAN
1008		{
1009			/* Convert TO host byte order */
1010			int	j;
1011			for (j = 0; j < 6; j++) {
1012				REVERSE64(context->state[j],context->state[j]);
1013				*d++ = context->state[j];
1014			}
1015		}
1016#else
1017		bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1018#endif
1019	}
1020
1021	/* Zero out state data */
1022	bzero(context, sizeof(*context));
1023}
1024
1025char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1026	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1027	int		i;
1028
1029	/* Sanity check: */
1030	assert(context != (SHA384_CTX*)0);
1031
1032	if (buffer != (char*)0) {
1033		SHA384_Final(digest, context);
1034
1035		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1036			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1037			*buffer++ = sha2_hex_digits[*d & 0x0f];
1038			d++;
1039		}
1040		*buffer = (char)0;
1041	} else {
1042		bzero(context, sizeof(*context));
1043	}
1044	bzero(digest, SHA384_DIGEST_LENGTH);
1045	return buffer;
1046}
1047
1048char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1049	SHA384_CTX	context;
1050
1051	SHA384_Init(&context);
1052	SHA384_Update(&context, data, len);
1053	return SHA384_End(&context, digest);
1054}
1055