1//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the newly proposed standard C++ interfaces for hashing
11// arbitrary data and building hash functions for user-defined types. This
12// interface was originally proposed in N3333[1] and is currently under review
13// for inclusion in a future TR and/or standard.
14//
15// The primary interfaces provide are comprised of one type and three functions:
16//
17//  -- 'hash_code' class is an opaque type representing the hash code for some
18//     data. It is the intended product of hashing, and can be used to implement
19//     hash tables, checksumming, and other common uses of hashes. It is not an
20//     integer type (although it can be converted to one) because it is risky
21//     to assume much about the internals of a hash_code. In particular, each
22//     execution of the program has a high probability of producing a different
23//     hash_code for a given input. Thus their values are not stable to save or
24//     persist, and should only be used during the execution for the
25//     construction of hashing datastructures.
26//
27//  -- 'hash_value' is a function designed to be overloaded for each
28//     user-defined type which wishes to be used within a hashing context. It
29//     should be overloaded within the user-defined type's namespace and found
30//     via ADL. Overloads for primitive types are provided by this library.
31//
32//  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
33//      programmers in easily and intuitively combining a set of data into
34//      a single hash_code for their object. They should only logically be used
35//      within the implementation of a 'hash_value' routine or similar context.
36//
37// Note that 'hash_combine_range' contains very special logic for hashing
38// a contiguous array of integers or pointers. This logic is *extremely* fast,
39// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
40// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
41// under 32-bytes.
42//
43//===----------------------------------------------------------------------===//
44
45#ifndef LLVM_ADT_HASHING_H
46#define LLVM_ADT_HASHING_H
47
48#include "llvm/ADT/STLExtras.h"
49#include "llvm/Support/DataTypes.h"
50#include "llvm/Support/Host.h"
51#include "llvm/Support/SwapByteOrder.h"
52#include "llvm/Support/type_traits.h"
53#include <algorithm>
54#include <cassert>
55#include <cstring>
56#include <iterator>
57#include <utility>
58
59// Allow detecting C++11 feature availability when building with Clang without
60// breaking other compilers.
61#ifndef __has_feature
62# define __has_feature(x) 0
63#endif
64
65namespace llvm {
66
67/// \brief An opaque object representing a hash code.
68///
69/// This object represents the result of hashing some entity. It is intended to
70/// be used to implement hashtables or other hashing-based data structures.
71/// While it wraps and exposes a numeric value, this value should not be
72/// trusted to be stable or predictable across processes or executions.
73///
74/// In order to obtain the hash_code for an object 'x':
75/// \code
76///   using llvm::hash_value;
77///   llvm::hash_code code = hash_value(x);
78/// \endcode
79class hash_code {
80  size_t value;
81
82public:
83  /// \brief Default construct a hash_code.
84  /// Note that this leaves the value uninitialized.
85  hash_code() {}
86
87  /// \brief Form a hash code directly from a numerical value.
88  hash_code(size_t value) : value(value) {}
89
90  /// \brief Convert the hash code to its numerical value for use.
91  /*explicit*/ operator size_t() const { return value; }
92
93  friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
94    return lhs.value == rhs.value;
95  }
96  friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
97    return lhs.value != rhs.value;
98  }
99
100  /// \brief Allow a hash_code to be directly run through hash_value.
101  friend size_t hash_value(const hash_code &code) { return code.value; }
102};
103
104/// \brief Compute a hash_code for any integer value.
105///
106/// Note that this function is intended to compute the same hash_code for
107/// a particular value without regard to the pre-promotion type. This is in
108/// contrast to hash_combine which may produce different hash_codes for
109/// differing argument types even if they would implicit promote to a common
110/// type without changing the value.
111template <typename T>
112typename enable_if<is_integral_or_enum<T>, hash_code>::type hash_value(T value);
113
114/// \brief Compute a hash_code for a pointer's address.
115///
116/// N.B.: This hashes the *address*. Not the value and not the type.
117template <typename T> hash_code hash_value(const T *ptr);
118
119/// \brief Compute a hash_code for a pair of objects.
120template <typename T, typename U>
121hash_code hash_value(const std::pair<T, U> &arg);
122
123/// \brief Compute a hash_code for a standard string.
124template <typename T>
125hash_code hash_value(const std::basic_string<T> &arg);
126
127
128/// \brief Override the execution seed with a fixed value.
129///
130/// This hashing library uses a per-execution seed designed to change on each
131/// run with high probability in order to ensure that the hash codes are not
132/// attackable and to ensure that output which is intended to be stable does
133/// not rely on the particulars of the hash codes produced.
134///
135/// That said, there are use cases where it is important to be able to
136/// reproduce *exactly* a specific behavior. To that end, we provide a function
137/// which will forcibly set the seed to a fixed value. This must be done at the
138/// start of the program, before any hashes are computed. Also, it cannot be
139/// undone. This makes it thread-hostile and very hard to use outside of
140/// immediately on start of a simple program designed for reproducible
141/// behavior.
142void set_fixed_execution_hash_seed(size_t fixed_value);
143
144
145// All of the implementation details of actually computing the various hash
146// code values are held within this namespace. These routines are included in
147// the header file mainly to allow inlining and constant propagation.
148namespace hashing {
149namespace detail {
150
151inline uint64_t fetch64(const char *p) {
152  uint64_t result;
153  memcpy(&result, p, sizeof(result));
154  if (sys::IsBigEndianHost)
155    return sys::SwapByteOrder(result);
156  return result;
157}
158
159inline uint32_t fetch32(const char *p) {
160  uint32_t result;
161  memcpy(&result, p, sizeof(result));
162  if (sys::IsBigEndianHost)
163    return sys::SwapByteOrder(result);
164  return result;
165}
166
167/// Some primes between 2^63 and 2^64 for various uses.
168static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
169static const uint64_t k1 = 0xb492b66fbe98f273ULL;
170static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
171static const uint64_t k3 = 0xc949d7c7509e6557ULL;
172
173/// \brief Bitwise right rotate.
174/// Normally this will compile to a single instruction, especially if the
175/// shift is a manifest constant.
176inline uint64_t rotate(uint64_t val, size_t shift) {
177  // Avoid shifting by 64: doing so yields an undefined result.
178  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
179}
180
181inline uint64_t shift_mix(uint64_t val) {
182  return val ^ (val >> 47);
183}
184
185inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
186  // Murmur-inspired hashing.
187  const uint64_t kMul = 0x9ddfea08eb382d69ULL;
188  uint64_t a = (low ^ high) * kMul;
189  a ^= (a >> 47);
190  uint64_t b = (high ^ a) * kMul;
191  b ^= (b >> 47);
192  b *= kMul;
193  return b;
194}
195
196inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
197  uint8_t a = s[0];
198  uint8_t b = s[len >> 1];
199  uint8_t c = s[len - 1];
200  uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
201  uint32_t z = len + (static_cast<uint32_t>(c) << 2);
202  return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
203}
204
205inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
206  uint64_t a = fetch32(s);
207  return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
208}
209
210inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
211  uint64_t a = fetch64(s);
212  uint64_t b = fetch64(s + len - 8);
213  return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
214}
215
216inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
217  uint64_t a = fetch64(s) * k1;
218  uint64_t b = fetch64(s + 8);
219  uint64_t c = fetch64(s + len - 8) * k2;
220  uint64_t d = fetch64(s + len - 16) * k0;
221  return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
222                       a + rotate(b ^ k3, 20) - c + len + seed);
223}
224
225inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
226  uint64_t z = fetch64(s + 24);
227  uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
228  uint64_t b = rotate(a + z, 52);
229  uint64_t c = rotate(a, 37);
230  a += fetch64(s + 8);
231  c += rotate(a, 7);
232  a += fetch64(s + 16);
233  uint64_t vf = a + z;
234  uint64_t vs = b + rotate(a, 31) + c;
235  a = fetch64(s + 16) + fetch64(s + len - 32);
236  z = fetch64(s + len - 8);
237  b = rotate(a + z, 52);
238  c = rotate(a, 37);
239  a += fetch64(s + len - 24);
240  c += rotate(a, 7);
241  a += fetch64(s + len - 16);
242  uint64_t wf = a + z;
243  uint64_t ws = b + rotate(a, 31) + c;
244  uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
245  return shift_mix((seed ^ (r * k0)) + vs) * k2;
246}
247
248inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
249  if (length >= 4 && length <= 8)
250    return hash_4to8_bytes(s, length, seed);
251  if (length > 8 && length <= 16)
252    return hash_9to16_bytes(s, length, seed);
253  if (length > 16 && length <= 32)
254    return hash_17to32_bytes(s, length, seed);
255  if (length > 32)
256    return hash_33to64_bytes(s, length, seed);
257  if (length != 0)
258    return hash_1to3_bytes(s, length, seed);
259
260  return k2 ^ seed;
261}
262
263/// \brief The intermediate state used during hashing.
264/// Currently, the algorithm for computing hash codes is based on CityHash and
265/// keeps 56 bytes of arbitrary state.
266struct hash_state {
267  uint64_t h0, h1, h2, h3, h4, h5, h6;
268  uint64_t seed;
269
270  /// \brief Create a new hash_state structure and initialize it based on the
271  /// seed and the first 64-byte chunk.
272  /// This effectively performs the initial mix.
273  static hash_state create(const char *s, uint64_t seed) {
274    hash_state state = {
275      0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
276      seed * k1, shift_mix(seed), 0, seed };
277    state.h6 = hash_16_bytes(state.h4, state.h5);
278    state.mix(s);
279    return state;
280  }
281
282  /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
283  /// and 'b', including whatever is already in 'a' and 'b'.
284  static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
285    a += fetch64(s);
286    uint64_t c = fetch64(s + 24);
287    b = rotate(b + a + c, 21);
288    uint64_t d = a;
289    a += fetch64(s + 8) + fetch64(s + 16);
290    b += rotate(a, 44) + d;
291    a += c;
292  }
293
294  /// \brief Mix in a 64-byte buffer of data.
295  /// We mix all 64 bytes even when the chunk length is smaller, but we
296  /// record the actual length.
297  void mix(const char *s) {
298    h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
299    h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
300    h0 ^= h6;
301    h1 += h3 + fetch64(s + 40);
302    h2 = rotate(h2 + h5, 33) * k1;
303    h3 = h4 * k1;
304    h4 = h0 + h5;
305    mix_32_bytes(s, h3, h4);
306    h5 = h2 + h6;
307    h6 = h1 + fetch64(s + 16);
308    mix_32_bytes(s + 32, h5, h6);
309    std::swap(h2, h0);
310  }
311
312  /// \brief Compute the final 64-bit hash code value based on the current
313  /// state and the length of bytes hashed.
314  uint64_t finalize(size_t length) {
315    return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
316                         hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
317  }
318};
319
320
321/// \brief A global, fixed seed-override variable.
322///
323/// This variable can be set using the \see llvm::set_fixed_execution_seed
324/// function. See that function for details. Do not, under any circumstances,
325/// set or read this variable.
326extern size_t fixed_seed_override;
327
328inline size_t get_execution_seed() {
329  // FIXME: This needs to be a per-execution seed. This is just a placeholder
330  // implementation. Switching to a per-execution seed is likely to flush out
331  // instability bugs and so will happen as its own commit.
332  //
333  // However, if there is a fixed seed override set the first time this is
334  // called, return that instead of the per-execution seed.
335  const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
336  static size_t seed = fixed_seed_override ? fixed_seed_override
337                                           : (size_t)seed_prime;
338  return seed;
339}
340
341
342/// \brief Trait to indicate whether a type's bits can be hashed directly.
343///
344/// A type trait which is true if we want to combine values for hashing by
345/// reading the underlying data. It is false if values of this type must
346/// first be passed to hash_value, and the resulting hash_codes combined.
347//
348// FIXME: We want to replace is_integral_or_enum and is_pointer here with
349// a predicate which asserts that comparing the underlying storage of two
350// values of the type for equality is equivalent to comparing the two values
351// for equality. For all the platforms we care about, this holds for integers
352// and pointers, but there are platforms where it doesn't and we would like to
353// support user-defined types which happen to satisfy this property.
354template <typename T> struct is_hashable_data
355  : integral_constant<bool, ((is_integral_or_enum<T>::value ||
356                              is_pointer<T>::value) &&
357                             64 % sizeof(T) == 0)> {};
358
359// Special case std::pair to detect when both types are viable and when there
360// is no alignment-derived padding in the pair. This is a bit of a lie because
361// std::pair isn't truly POD, but it's close enough in all reasonable
362// implementations for our use case of hashing the underlying data.
363template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
364  : integral_constant<bool, (is_hashable_data<T>::value &&
365                             is_hashable_data<U>::value &&
366                             (sizeof(T) + sizeof(U)) ==
367                              sizeof(std::pair<T, U>))> {};
368
369/// \brief Helper to get the hashable data representation for a type.
370/// This variant is enabled when the type itself can be used.
371template <typename T>
372typename enable_if<is_hashable_data<T>, T>::type
373get_hashable_data(const T &value) {
374  return value;
375}
376/// \brief Helper to get the hashable data representation for a type.
377/// This variant is enabled when we must first call hash_value and use the
378/// result as our data.
379template <typename T>
380typename enable_if_c<!is_hashable_data<T>::value, size_t>::type
381get_hashable_data(const T &value) {
382  using ::llvm::hash_value;
383  return hash_value(value);
384}
385
386/// \brief Helper to store data from a value into a buffer and advance the
387/// pointer into that buffer.
388///
389/// This routine first checks whether there is enough space in the provided
390/// buffer, and if not immediately returns false. If there is space, it
391/// copies the underlying bytes of value into the buffer, advances the
392/// buffer_ptr past the copied bytes, and returns true.
393template <typename T>
394bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
395                       size_t offset = 0) {
396  size_t store_size = sizeof(value) - offset;
397  if (buffer_ptr + store_size > buffer_end)
398    return false;
399  const char *value_data = reinterpret_cast<const char *>(&value);
400  memcpy(buffer_ptr, value_data + offset, store_size);
401  buffer_ptr += store_size;
402  return true;
403}
404
405/// \brief Implement the combining of integral values into a hash_code.
406///
407/// This overload is selected when the value type of the iterator is
408/// integral. Rather than computing a hash_code for each object and then
409/// combining them, this (as an optimization) directly combines the integers.
410template <typename InputIteratorT>
411hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
412  const size_t seed = get_execution_seed();
413  char buffer[64], *buffer_ptr = buffer;
414  char *const buffer_end = buffer_ptr + array_lengthof(buffer);
415  while (first != last && store_and_advance(buffer_ptr, buffer_end,
416                                            get_hashable_data(*first)))
417    ++first;
418  if (first == last)
419    return hash_short(buffer, buffer_ptr - buffer, seed);
420  assert(buffer_ptr == buffer_end);
421
422  hash_state state = state.create(buffer, seed);
423  size_t length = 64;
424  while (first != last) {
425    // Fill up the buffer. We don't clear it, which re-mixes the last round
426    // when only a partial 64-byte chunk is left.
427    buffer_ptr = buffer;
428    while (first != last && store_and_advance(buffer_ptr, buffer_end,
429                                              get_hashable_data(*first)))
430      ++first;
431
432    // Rotate the buffer if we did a partial fill in order to simulate doing
433    // a mix of the last 64-bytes. That is how the algorithm works when we
434    // have a contiguous byte sequence, and we want to emulate that here.
435    std::rotate(buffer, buffer_ptr, buffer_end);
436
437    // Mix this chunk into the current state.
438    state.mix(buffer);
439    length += buffer_ptr - buffer;
440  };
441
442  return state.finalize(length);
443}
444
445/// \brief Implement the combining of integral values into a hash_code.
446///
447/// This overload is selected when the value type of the iterator is integral
448/// and when the input iterator is actually a pointer. Rather than computing
449/// a hash_code for each object and then combining them, this (as an
450/// optimization) directly combines the integers. Also, because the integers
451/// are stored in contiguous memory, this routine avoids copying each value
452/// and directly reads from the underlying memory.
453template <typename ValueT>
454typename enable_if<is_hashable_data<ValueT>, hash_code>::type
455hash_combine_range_impl(ValueT *first, ValueT *last) {
456  const size_t seed = get_execution_seed();
457  const char *s_begin = reinterpret_cast<const char *>(first);
458  const char *s_end = reinterpret_cast<const char *>(last);
459  const size_t length = std::distance(s_begin, s_end);
460  if (length <= 64)
461    return hash_short(s_begin, length, seed);
462
463  const char *s_aligned_end = s_begin + (length & ~63);
464  hash_state state = state.create(s_begin, seed);
465  s_begin += 64;
466  while (s_begin != s_aligned_end) {
467    state.mix(s_begin);
468    s_begin += 64;
469  }
470  if (length & 63)
471    state.mix(s_end - 64);
472
473  return state.finalize(length);
474}
475
476} // namespace detail
477} // namespace hashing
478
479
480/// \brief Compute a hash_code for a sequence of values.
481///
482/// This hashes a sequence of values. It produces the same hash_code as
483/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
484/// and is significantly faster given pointers and types which can be hashed as
485/// a sequence of bytes.
486template <typename InputIteratorT>
487hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
488  return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
489}
490
491
492// Implementation details for hash_combine.
493namespace hashing {
494namespace detail {
495
496/// \brief Helper class to manage the recursive combining of hash_combine
497/// arguments.
498///
499/// This class exists to manage the state and various calls involved in the
500/// recursive combining of arguments used in hash_combine. It is particularly
501/// useful at minimizing the code in the recursive calls to ease the pain
502/// caused by a lack of variadic functions.
503struct hash_combine_recursive_helper {
504  char buffer[64];
505  hash_state state;
506  const size_t seed;
507
508public:
509  /// \brief Construct a recursive hash combining helper.
510  ///
511  /// This sets up the state for a recursive hash combine, including getting
512  /// the seed and buffer setup.
513  hash_combine_recursive_helper()
514    : seed(get_execution_seed()) {}
515
516  /// \brief Combine one chunk of data into the current in-flight hash.
517  ///
518  /// This merges one chunk of data into the hash. First it tries to buffer
519  /// the data. If the buffer is full, it hashes the buffer into its
520  /// hash_state, empties it, and then merges the new chunk in. This also
521  /// handles cases where the data straddles the end of the buffer.
522  template <typename T>
523  char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
524    if (!store_and_advance(buffer_ptr, buffer_end, data)) {
525      // Check for skew which prevents the buffer from being packed, and do
526      // a partial store into the buffer to fill it. This is only a concern
527      // with the variadic combine because that formation can have varying
528      // argument types.
529      size_t partial_store_size = buffer_end - buffer_ptr;
530      memcpy(buffer_ptr, &data, partial_store_size);
531
532      // If the store fails, our buffer is full and ready to hash. We have to
533      // either initialize the hash state (on the first full buffer) or mix
534      // this buffer into the existing hash state. Length tracks the *hashed*
535      // length, not the buffered length.
536      if (length == 0) {
537        state = state.create(buffer, seed);
538        length = 64;
539      } else {
540        // Mix this chunk into the current state and bump length up by 64.
541        state.mix(buffer);
542        length += 64;
543      }
544      // Reset the buffer_ptr to the head of the buffer for the next chunk of
545      // data.
546      buffer_ptr = buffer;
547
548      // Try again to store into the buffer -- this cannot fail as we only
549      // store types smaller than the buffer.
550      if (!store_and_advance(buffer_ptr, buffer_end, data,
551                             partial_store_size))
552        abort();
553    }
554    return buffer_ptr;
555  }
556
557#if defined(__has_feature) && __has_feature(__cxx_variadic_templates__)
558
559  /// \brief Recursive, variadic combining method.
560  ///
561  /// This function recurses through each argument, combining that argument
562  /// into a single hash.
563  template <typename T, typename ...Ts>
564  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
565                    const T &arg, const Ts &...args) {
566    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
567
568    // Recurse to the next argument.
569    return combine(length, buffer_ptr, buffer_end, args...);
570  }
571
572#else
573  // Manually expanded recursive combining methods. See variadic above for
574  // documentation.
575
576  template <typename T1, typename T2, typename T3, typename T4, typename T5,
577            typename T6>
578  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
579                    const T1 &arg1, const T2 &arg2, const T3 &arg3,
580                    const T4 &arg4, const T5 &arg5, const T6 &arg6) {
581    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
582    return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5, arg6);
583  }
584  template <typename T1, typename T2, typename T3, typename T4, typename T5>
585  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
586                    const T1 &arg1, const T2 &arg2, const T3 &arg3,
587                    const T4 &arg4, const T5 &arg5) {
588    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
589    return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5);
590  }
591  template <typename T1, typename T2, typename T3, typename T4>
592  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
593                    const T1 &arg1, const T2 &arg2, const T3 &arg3,
594                    const T4 &arg4) {
595    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
596    return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4);
597  }
598  template <typename T1, typename T2, typename T3>
599  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
600                    const T1 &arg1, const T2 &arg2, const T3 &arg3) {
601    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
602    return combine(length, buffer_ptr, buffer_end, arg2, arg3);
603  }
604  template <typename T1, typename T2>
605  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
606                    const T1 &arg1, const T2 &arg2) {
607    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
608    return combine(length, buffer_ptr, buffer_end, arg2);
609  }
610  template <typename T1>
611  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
612                    const T1 &arg1) {
613    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
614    return combine(length, buffer_ptr, buffer_end);
615  }
616
617#endif
618
619  /// \brief Base case for recursive, variadic combining.
620  ///
621  /// The base case when combining arguments recursively is reached when all
622  /// arguments have been handled. It flushes the remaining buffer and
623  /// constructs a hash_code.
624  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
625    // Check whether the entire set of values fit in the buffer. If so, we'll
626    // use the optimized short hashing routine and skip state entirely.
627    if (length == 0)
628      return hash_short(buffer, buffer_ptr - buffer, seed);
629
630    // Mix the final buffer, rotating it if we did a partial fill in order to
631    // simulate doing a mix of the last 64-bytes. That is how the algorithm
632    // works when we have a contiguous byte sequence, and we want to emulate
633    // that here.
634    std::rotate(buffer, buffer_ptr, buffer_end);
635
636    // Mix this chunk into the current state.
637    state.mix(buffer);
638    length += buffer_ptr - buffer;
639
640    return state.finalize(length);
641  }
642};
643
644} // namespace detail
645} // namespace hashing
646
647
648#if __has_feature(__cxx_variadic_templates__)
649
650/// \brief Combine values into a single hash_code.
651///
652/// This routine accepts a varying number of arguments of any type. It will
653/// attempt to combine them into a single hash_code. For user-defined types it
654/// attempts to call a \see hash_value overload (via ADL) for the type. For
655/// integer and pointer types it directly combines their data into the
656/// resulting hash_code.
657///
658/// The result is suitable for returning from a user's hash_value
659/// *implementation* for their user-defined type. Consumers of a type should
660/// *not* call this routine, they should instead call 'hash_value'.
661template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
662  // Recursively hash each argument using a helper class.
663  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
664  return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
665}
666
667#else
668
669// What follows are manually exploded overloads for each argument width. See
670// the above variadic definition for documentation and specification.
671
672template <typename T1, typename T2, typename T3, typename T4, typename T5,
673          typename T6>
674hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
675                       const T4 &arg4, const T5 &arg5, const T6 &arg6) {
676  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
677  return helper.combine(0, helper.buffer, helper.buffer + 64,
678                        arg1, arg2, arg3, arg4, arg5, arg6);
679}
680template <typename T1, typename T2, typename T3, typename T4, typename T5>
681hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
682                       const T4 &arg4, const T5 &arg5) {
683  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
684  return helper.combine(0, helper.buffer, helper.buffer + 64,
685                        arg1, arg2, arg3, arg4, arg5);
686}
687template <typename T1, typename T2, typename T3, typename T4>
688hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
689                       const T4 &arg4) {
690  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
691  return helper.combine(0, helper.buffer, helper.buffer + 64,
692                        arg1, arg2, arg3, arg4);
693}
694template <typename T1, typename T2, typename T3>
695hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
696  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
697  return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2, arg3);
698}
699template <typename T1, typename T2>
700hash_code hash_combine(const T1 &arg1, const T2 &arg2) {
701  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
702  return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2);
703}
704template <typename T1>
705hash_code hash_combine(const T1 &arg1) {
706  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
707  return helper.combine(0, helper.buffer, helper.buffer + 64, arg1);
708}
709
710#endif
711
712
713// Implementation details for implementations of hash_value overloads provided
714// here.
715namespace hashing {
716namespace detail {
717
718/// \brief Helper to hash the value of a single integer.
719///
720/// Overloads for smaller integer types are not provided to ensure consistent
721/// behavior in the presence of integral promotions. Essentially,
722/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
723inline hash_code hash_integer_value(uint64_t value) {
724  // Similar to hash_4to8_bytes but using a seed instead of length.
725  const uint64_t seed = get_execution_seed();
726  const char *s = reinterpret_cast<const char *>(&value);
727  const uint64_t a = fetch32(s);
728  return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
729}
730
731} // namespace detail
732} // namespace hashing
733
734// Declared and documented above, but defined here so that any of the hashing
735// infrastructure is available.
736template <typename T>
737typename enable_if<is_integral_or_enum<T>, hash_code>::type
738hash_value(T value) {
739  return ::llvm::hashing::detail::hash_integer_value(value);
740}
741
742// Declared and documented above, but defined here so that any of the hashing
743// infrastructure is available.
744template <typename T> hash_code hash_value(const T *ptr) {
745  return ::llvm::hashing::detail::hash_integer_value(
746    reinterpret_cast<uintptr_t>(ptr));
747}
748
749// Declared and documented above, but defined here so that any of the hashing
750// infrastructure is available.
751template <typename T, typename U>
752hash_code hash_value(const std::pair<T, U> &arg) {
753  return hash_combine(arg.first, arg.second);
754}
755
756// Declared and documented above, but defined here so that any of the hashing
757// infrastructure is available.
758template <typename T>
759hash_code hash_value(const std::basic_string<T> &arg) {
760  return hash_combine_range(arg.begin(), arg.end());
761}
762
763} // namespace llvm
764
765#endif
766