1/*
2 * Copyright (c) 2013 EMC Corp.
3 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30/*
31 * Path-compressed radix trie implementation.
32 * The following code is not generalized into a general purpose library
33 * because there are way too many parameters embedded that should really
34 * be decided by the library consumers.  At the same time, consumers
35 * of this code must achieve highest possible performance.
36 *
37 * The implementation takes into account the following rationale:
38 * - Size of the nodes should be as small as possible but still big enough
39 *   to avoid a large maximum depth for the trie.  This is a balance
40 *   between the necessity to not wire too much physical memory for the nodes
41 *   and the necessity to avoid too much cache pollution during the trie
42 *   operations.
43 * - There is not a huge bias toward the number of lookup operations over
44 *   the number of insert and remove operations.  This basically implies
45 *   that optimizations supposedly helping one operation but hurting the
46 *   other might be carefully evaluated.
47 * - On average not many nodes are expected to be fully populated, hence
48 *   level compression may just complicate things.
49 */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD$");
53
54#include "opt_ddb.h"
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/kernel.h>
59#include <sys/vmmeter.h>
60
61#include <vm/uma.h>
62#include <vm/vm.h>
63#include <vm/vm_param.h>
64#include <vm/vm_page.h>
65#include <vm/vm_radix.h>
66
67#ifdef DDB
68#include <ddb/ddb.h>
69#endif
70
71/*
72 * These widths should allow the pointers to a node's children to fit within
73 * a single cache line.  The extra levels from a narrow width should not be
74 * a problem thanks to path compression.
75 */
76#ifdef __LP64__
77#define	VM_RADIX_WIDTH	4
78#else
79#define	VM_RADIX_WIDTH	3
80#endif
81
82#define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
83#define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
84#define	VM_RADIX_LIMIT							\
85	(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86
87/* Flag bits stored in node pointers. */
88#define	VM_RADIX_ISLEAF	0x1
89#define	VM_RADIX_FLAGS	0x1
90#define	VM_RADIX_PAD	VM_RADIX_FLAGS
91
92/* Returns one unit associated with specified level. */
93#define	VM_RADIX_UNITLEVEL(lev)						\
94	((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95
96struct vm_radix_node {
97	vm_pindex_t	 rn_owner;			/* Owner of record. */
98	uint16_t	 rn_count;			/* Valid children. */
99	uint16_t	 rn_clev;			/* Current level. */
100	void		*rn_child[VM_RADIX_COUNT];	/* Child nodes. */
101};
102
103static uma_zone_t vm_radix_node_zone;
104
105/*
106 * Allocate a radix node.
107 */
108static __inline struct vm_radix_node *
109vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
110{
111	struct vm_radix_node *rnode;
112
113	rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
114	if (rnode == NULL)
115		return (NULL);
116	rnode->rn_owner = owner;
117	rnode->rn_count = count;
118	rnode->rn_clev = clevel;
119	return (rnode);
120}
121
122/*
123 * Free radix node.
124 */
125static __inline void
126vm_radix_node_put(struct vm_radix_node *rnode)
127{
128
129	uma_zfree(vm_radix_node_zone, rnode);
130}
131
132/*
133 * Return the position in the array for a given level.
134 */
135static __inline int
136vm_radix_slot(vm_pindex_t index, uint16_t level)
137{
138
139	return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
140}
141
142/* Trims the key after the specified level. */
143static __inline vm_pindex_t
144vm_radix_trimkey(vm_pindex_t index, uint16_t level)
145{
146	vm_pindex_t ret;
147
148	ret = index;
149	if (level > 0) {
150		ret >>= level * VM_RADIX_WIDTH;
151		ret <<= level * VM_RADIX_WIDTH;
152	}
153	return (ret);
154}
155
156/*
157 * Get the root node for a radix tree.
158 */
159static __inline struct vm_radix_node *
160vm_radix_getroot(struct vm_radix *rtree)
161{
162
163	return ((struct vm_radix_node *)rtree->rt_root);
164}
165
166/*
167 * Set the root node for a radix tree.
168 */
169static __inline void
170vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
171{
172
173	rtree->rt_root = (uintptr_t)rnode;
174}
175
176/*
177 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
178 */
179static __inline boolean_t
180vm_radix_isleaf(struct vm_radix_node *rnode)
181{
182
183	return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
184}
185
186/*
187 * Returns the associated page extracted from rnode.
188 */
189static __inline vm_page_t
190vm_radix_topage(struct vm_radix_node *rnode)
191{
192
193	return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
194}
195
196/*
197 * Adds the page as a child of the provided node.
198 */
199static __inline void
200vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
201    vm_page_t page)
202{
203	int slot;
204
205	slot = vm_radix_slot(index, clev);
206	rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
207}
208
209/*
210 * Returns the slot where two keys differ.
211 * It cannot accept 2 equal keys.
212 */
213static __inline uint16_t
214vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
215{
216	uint16_t clev;
217
218	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
219	    __func__, (uintmax_t)index1));
220
221	index1 ^= index2;
222	for (clev = VM_RADIX_LIMIT;; clev--)
223		if (vm_radix_slot(index1, clev) != 0)
224			return (clev);
225}
226
227/*
228 * Returns TRUE if it can be determined that key does not belong to the
229 * specified rnode.  Otherwise, returns FALSE.
230 */
231static __inline boolean_t
232vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
233{
234
235	if (rnode->rn_clev < VM_RADIX_LIMIT) {
236		idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
237		return (idx != rnode->rn_owner);
238	}
239	return (FALSE);
240}
241
242/*
243 * Internal helper for vm_radix_reclaim_allnodes().
244 * This function is recursive.
245 */
246static void
247vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
248{
249	int slot;
250
251	KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
252	    ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
253	for (slot = 0; rnode->rn_count != 0; slot++) {
254		if (rnode->rn_child[slot] == NULL)
255			continue;
256		if (!vm_radix_isleaf(rnode->rn_child[slot]))
257			vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
258		rnode->rn_child[slot] = NULL;
259		rnode->rn_count--;
260	}
261	vm_radix_node_put(rnode);
262}
263
264#ifdef INVARIANTS
265/*
266 * Radix node zone destructor.
267 */
268static void
269vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
270{
271	struct vm_radix_node *rnode;
272	int slot;
273
274	rnode = mem;
275	KASSERT(rnode->rn_count == 0,
276	    ("vm_radix_node_put: rnode %p has %d children", rnode,
277	    rnode->rn_count));
278	for (slot = 0; slot < VM_RADIX_COUNT; slot++)
279		KASSERT(rnode->rn_child[slot] == NULL,
280		    ("vm_radix_node_put: rnode %p has a child", rnode));
281}
282#endif
283
284#ifndef UMA_MD_SMALL_ALLOC
285/*
286 * Reserve the KVA necessary to satisfy the node allocation.
287 * This is mandatory in architectures not supporting direct
288 * mapping as they will need otherwise to carve into the kernel maps for
289 * every node allocation, resulting into deadlocks for consumers already
290 * working with kernel maps.
291 */
292static void
293vm_radix_reserve_kva(void *arg __unused)
294{
295
296	/*
297	 * Calculate the number of reserved nodes, discounting the pages that
298	 * are needed to store them.
299	 */
300	if (!uma_zone_reserve_kva(vm_radix_node_zone,
301	    ((vm_paddr_t)cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
302	    sizeof(struct vm_radix_node))))
303		panic("%s: unable to reserve KVA", __func__);
304}
305SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_SECOND,
306    vm_radix_reserve_kva, NULL);
307#endif
308
309/*
310 * Initialize the UMA slab zone.
311 * Until vm_radix_prealloc() is called, the zone will be served by the
312 * UMA boot-time pre-allocated pool of pages.
313 */
314void
315vm_radix_init(void)
316{
317
318	vm_radix_node_zone = uma_zcreate("RADIX NODE",
319	    sizeof(struct vm_radix_node), NULL,
320#ifdef INVARIANTS
321	    vm_radix_node_zone_dtor,
322#else
323	    NULL,
324#endif
325	    NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
326}
327
328/*
329 * Inserts the key-value pair into the trie.
330 * Panics if the key already exists.
331 */
332int
333vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
334{
335	vm_pindex_t index, newind;
336	void **parentp;
337	struct vm_radix_node *rnode, *tmp;
338	vm_page_t m;
339	int slot;
340	uint16_t clev;
341
342	index = page->pindex;
343
344restart:
345
346	/*
347	 * The owner of record for root is not really important because it
348	 * will never be used.
349	 */
350	rnode = vm_radix_getroot(rtree);
351	if (rnode == NULL) {
352		rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
353		return (0);
354	}
355	parentp = (void **)&rtree->rt_root;
356	for (;;) {
357		if (vm_radix_isleaf(rnode)) {
358			m = vm_radix_topage(rnode);
359			if (m->pindex == index)
360				panic("%s: key %jx is already present",
361				    __func__, (uintmax_t)index);
362			clev = vm_radix_keydiff(m->pindex, index);
363
364			/*
365			 * During node allocation the trie that is being
366			 * walked can be modified because of recursing radix
367			 * trie operations.
368			 * If this is the case, the recursing functions signal
369			 * such situation and the insert operation must
370			 * start from scratch again.
371			 * The freed radix node will then be in the UMA
372			 * caches very likely to avoid the same situation
373			 * to happen.
374			 */
375			rtree->rt_flags |= RT_INSERT_INPROG;
376			tmp = vm_radix_node_get(vm_radix_trimkey(index,
377			    clev + 1), 2, clev);
378			rtree->rt_flags &= ~RT_INSERT_INPROG;
379			if (tmp == NULL) {
380				rtree->rt_flags &= ~RT_TRIE_MODIFIED;
381				return (ENOMEM);
382			}
383			if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
384				rtree->rt_flags &= ~RT_TRIE_MODIFIED;
385				tmp->rn_count = 0;
386				vm_radix_node_put(tmp);
387				goto restart;
388			}
389			*parentp = tmp;
390			vm_radix_addpage(tmp, index, clev, page);
391			vm_radix_addpage(tmp, m->pindex, clev, m);
392			return (0);
393		} else if (vm_radix_keybarr(rnode, index))
394			break;
395		slot = vm_radix_slot(index, rnode->rn_clev);
396		if (rnode->rn_child[slot] == NULL) {
397			rnode->rn_count++;
398			vm_radix_addpage(rnode, index, rnode->rn_clev, page);
399			return (0);
400		}
401		parentp = &rnode->rn_child[slot];
402		rnode = rnode->rn_child[slot];
403	}
404
405	/*
406	 * A new node is needed because the right insertion level is reached.
407	 * Setup the new intermediate node and add the 2 children: the
408	 * new object and the older edge.
409	 */
410	newind = rnode->rn_owner;
411	clev = vm_radix_keydiff(newind, index);
412
413	/* See the comments above. */
414	rtree->rt_flags |= RT_INSERT_INPROG;
415	tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
416	rtree->rt_flags &= ~RT_INSERT_INPROG;
417	if (tmp == NULL) {
418		rtree->rt_flags &= ~RT_TRIE_MODIFIED;
419		return (ENOMEM);
420	}
421	if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
422		rtree->rt_flags &= ~RT_TRIE_MODIFIED;
423		tmp->rn_count = 0;
424		vm_radix_node_put(tmp);
425		goto restart;
426	}
427	*parentp = tmp;
428	vm_radix_addpage(tmp, index, clev, page);
429	slot = vm_radix_slot(newind, clev);
430	tmp->rn_child[slot] = rnode;
431	return (0);
432}
433
434/*
435 * Returns TRUE if the specified radix tree contains a single leaf and FALSE
436 * otherwise.
437 */
438boolean_t
439vm_radix_is_singleton(struct vm_radix *rtree)
440{
441	struct vm_radix_node *rnode;
442
443	rnode = vm_radix_getroot(rtree);
444	if (rnode == NULL)
445		return (FALSE);
446	return (vm_radix_isleaf(rnode));
447}
448
449/*
450 * Returns the value stored at the index.  If the index is not present,
451 * NULL is returned.
452 */
453vm_page_t
454vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
455{
456	struct vm_radix_node *rnode;
457	vm_page_t m;
458	int slot;
459
460	rnode = vm_radix_getroot(rtree);
461	while (rnode != NULL) {
462		if (vm_radix_isleaf(rnode)) {
463			m = vm_radix_topage(rnode);
464			if (m->pindex == index)
465				return (m);
466			else
467				break;
468		} else if (vm_radix_keybarr(rnode, index))
469			break;
470		slot = vm_radix_slot(index, rnode->rn_clev);
471		rnode = rnode->rn_child[slot];
472	}
473	return (NULL);
474}
475
476/*
477 * Look up the nearest entry at a position bigger than or equal to index.
478 */
479vm_page_t
480vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
481{
482	struct vm_radix_node *stack[VM_RADIX_LIMIT];
483	vm_pindex_t inc;
484	vm_page_t m;
485	struct vm_radix_node *child, *rnode;
486#ifdef INVARIANTS
487	int loops = 0;
488#endif
489	int slot, tos;
490
491	rnode = vm_radix_getroot(rtree);
492	if (rnode == NULL)
493		return (NULL);
494	else if (vm_radix_isleaf(rnode)) {
495		m = vm_radix_topage(rnode);
496		if (m->pindex >= index)
497			return (m);
498		else
499			return (NULL);
500	}
501	tos = 0;
502	for (;;) {
503		/*
504		 * If the keys differ before the current bisection node,
505		 * then the search key might rollback to the earliest
506		 * available bisection node or to the smallest key
507		 * in the current node (if the owner is bigger than the
508		 * search key).
509		 */
510		if (vm_radix_keybarr(rnode, index)) {
511			if (index > rnode->rn_owner) {
512ascend:
513				KASSERT(++loops < 1000,
514				    ("vm_radix_lookup_ge: too many loops"));
515
516				/*
517				 * Pop nodes from the stack until either the
518				 * stack is empty or a node that could have a
519				 * matching descendant is found.
520				 */
521				do {
522					if (tos == 0)
523						return (NULL);
524					rnode = stack[--tos];
525				} while (vm_radix_slot(index,
526				    rnode->rn_clev) == (VM_RADIX_COUNT - 1));
527
528				/*
529				 * The following computation cannot overflow
530				 * because index's slot at the current level
531				 * is less than VM_RADIX_COUNT - 1.
532				 */
533				index = vm_radix_trimkey(index,
534				    rnode->rn_clev);
535				index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
536			} else
537				index = rnode->rn_owner;
538			KASSERT(!vm_radix_keybarr(rnode, index),
539			    ("vm_radix_lookup_ge: keybarr failed"));
540		}
541		slot = vm_radix_slot(index, rnode->rn_clev);
542		child = rnode->rn_child[slot];
543		if (vm_radix_isleaf(child)) {
544			m = vm_radix_topage(child);
545			if (m->pindex >= index)
546				return (m);
547		} else if (child != NULL)
548			goto descend;
549
550		/*
551		 * Look for an available edge or page within the current
552		 * bisection node.
553		 */
554                if (slot < (VM_RADIX_COUNT - 1)) {
555			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
556			index = vm_radix_trimkey(index, rnode->rn_clev);
557			do {
558				index += inc;
559				slot++;
560				child = rnode->rn_child[slot];
561				if (vm_radix_isleaf(child)) {
562					m = vm_radix_topage(child);
563					if (m->pindex >= index)
564						return (m);
565				} else if (child != NULL)
566					goto descend;
567			} while (slot < (VM_RADIX_COUNT - 1));
568		}
569		KASSERT(child == NULL || vm_radix_isleaf(child),
570		    ("vm_radix_lookup_ge: child is radix node"));
571
572		/*
573		 * If a page or edge bigger than the search slot is not found
574		 * in the current node, ascend to the next higher-level node.
575		 */
576		goto ascend;
577descend:
578		KASSERT(rnode->rn_clev > 0,
579		    ("vm_radix_lookup_ge: pushing leaf's parent"));
580		KASSERT(tos < VM_RADIX_LIMIT,
581		    ("vm_radix_lookup_ge: stack overflow"));
582		stack[tos++] = rnode;
583		rnode = child;
584	}
585}
586
587/*
588 * Look up the nearest entry at a position less than or equal to index.
589 */
590vm_page_t
591vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
592{
593	struct vm_radix_node *stack[VM_RADIX_LIMIT];
594	vm_pindex_t inc;
595	vm_page_t m;
596	struct vm_radix_node *child, *rnode;
597#ifdef INVARIANTS
598	int loops = 0;
599#endif
600	int slot, tos;
601
602	rnode = vm_radix_getroot(rtree);
603	if (rnode == NULL)
604		return (NULL);
605	else if (vm_radix_isleaf(rnode)) {
606		m = vm_radix_topage(rnode);
607		if (m->pindex <= index)
608			return (m);
609		else
610			return (NULL);
611	}
612	tos = 0;
613	for (;;) {
614		/*
615		 * If the keys differ before the current bisection node,
616		 * then the search key might rollback to the earliest
617		 * available bisection node or to the largest key
618		 * in the current node (if the owner is smaller than the
619		 * search key).
620		 */
621		if (vm_radix_keybarr(rnode, index)) {
622			if (index > rnode->rn_owner) {
623				index = rnode->rn_owner + VM_RADIX_COUNT *
624				    VM_RADIX_UNITLEVEL(rnode->rn_clev);
625			} else {
626ascend:
627				KASSERT(++loops < 1000,
628				    ("vm_radix_lookup_le: too many loops"));
629
630				/*
631				 * Pop nodes from the stack until either the
632				 * stack is empty or a node that could have a
633				 * matching descendant is found.
634				 */
635				do {
636					if (tos == 0)
637						return (NULL);
638					rnode = stack[--tos];
639				} while (vm_radix_slot(index,
640				    rnode->rn_clev) == 0);
641
642				/*
643				 * The following computation cannot overflow
644				 * because index's slot at the current level
645				 * is greater than 0.
646				 */
647				index = vm_radix_trimkey(index,
648				    rnode->rn_clev);
649			}
650			index--;
651			KASSERT(!vm_radix_keybarr(rnode, index),
652			    ("vm_radix_lookup_le: keybarr failed"));
653		}
654		slot = vm_radix_slot(index, rnode->rn_clev);
655		child = rnode->rn_child[slot];
656		if (vm_radix_isleaf(child)) {
657			m = vm_radix_topage(child);
658			if (m->pindex <= index)
659				return (m);
660		} else if (child != NULL)
661			goto descend;
662
663		/*
664		 * Look for an available edge or page within the current
665		 * bisection node.
666		 */
667		if (slot > 0) {
668			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
669			index |= inc - 1;
670			do {
671				index -= inc;
672				slot--;
673				child = rnode->rn_child[slot];
674				if (vm_radix_isleaf(child)) {
675					m = vm_radix_topage(child);
676					if (m->pindex <= index)
677						return (m);
678				} else if (child != NULL)
679					goto descend;
680			} while (slot > 0);
681		}
682		KASSERT(child == NULL || vm_radix_isleaf(child),
683		    ("vm_radix_lookup_le: child is radix node"));
684
685		/*
686		 * If a page or edge smaller than the search slot is not found
687		 * in the current node, ascend to the next higher-level node.
688		 */
689		goto ascend;
690descend:
691		KASSERT(rnode->rn_clev > 0,
692		    ("vm_radix_lookup_le: pushing leaf's parent"));
693		KASSERT(tos < VM_RADIX_LIMIT,
694		    ("vm_radix_lookup_le: stack overflow"));
695		stack[tos++] = rnode;
696		rnode = child;
697	}
698}
699
700/*
701 * Remove the specified index from the tree.
702 * Panics if the key is not present.
703 */
704void
705vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
706{
707	struct vm_radix_node *rnode, *parent;
708	vm_page_t m;
709	int i, slot;
710
711	/*
712	 * Detect if a page is going to be removed from a trie which is
713	 * already undergoing another trie operation.
714	 * Right now this is only possible for vm_radix_remove() recursing
715	 * into vm_radix_insert().
716	 * If this is the case, the caller must be notified about this
717	 * situation.  It will also takecare to update the RT_TRIE_MODIFIED
718	 * accordingly.
719	 * The RT_TRIE_MODIFIED bit is set here because the remove operation
720	 * will always succeed.
721	 */
722	if ((rtree->rt_flags & RT_INSERT_INPROG) != 0)
723		rtree->rt_flags |= RT_TRIE_MODIFIED;
724
725	rnode = vm_radix_getroot(rtree);
726	if (vm_radix_isleaf(rnode)) {
727		m = vm_radix_topage(rnode);
728		if (m->pindex != index)
729			panic("%s: invalid key found", __func__);
730		vm_radix_setroot(rtree, NULL);
731		return;
732	}
733	parent = NULL;
734	for (;;) {
735		if (rnode == NULL)
736			panic("vm_radix_remove: impossible to locate the key");
737		slot = vm_radix_slot(index, rnode->rn_clev);
738		if (vm_radix_isleaf(rnode->rn_child[slot])) {
739			m = vm_radix_topage(rnode->rn_child[slot]);
740			if (m->pindex != index)
741				panic("%s: invalid key found", __func__);
742			rnode->rn_child[slot] = NULL;
743			rnode->rn_count--;
744			if (rnode->rn_count > 1)
745				break;
746			for (i = 0; i < VM_RADIX_COUNT; i++)
747				if (rnode->rn_child[i] != NULL)
748					break;
749			KASSERT(i != VM_RADIX_COUNT,
750			    ("%s: invalid node configuration", __func__));
751			if (parent == NULL)
752				vm_radix_setroot(rtree, rnode->rn_child[i]);
753			else {
754				slot = vm_radix_slot(index, parent->rn_clev);
755				KASSERT(parent->rn_child[slot] == rnode,
756				    ("%s: invalid child value", __func__));
757				parent->rn_child[slot] = rnode->rn_child[i];
758			}
759			rnode->rn_count--;
760			rnode->rn_child[i] = NULL;
761			vm_radix_node_put(rnode);
762			break;
763		}
764		parent = rnode;
765		rnode = rnode->rn_child[slot];
766	}
767}
768
769/*
770 * Remove and free all the nodes from the radix tree.
771 * This function is recursive but there is a tight control on it as the
772 * maximum depth of the tree is fixed.
773 */
774void
775vm_radix_reclaim_allnodes(struct vm_radix *rtree)
776{
777	struct vm_radix_node *root;
778
779	KASSERT((rtree->rt_flags & RT_INSERT_INPROG) == 0,
780	    ("vm_radix_reclaim_allnodes: unexpected trie recursion"));
781
782	root = vm_radix_getroot(rtree);
783	if (root == NULL)
784		return;
785	vm_radix_setroot(rtree, NULL);
786	if (!vm_radix_isleaf(root))
787		vm_radix_reclaim_allnodes_int(root);
788}
789
790/*
791 * Replace an existing page into the trie with another one.
792 * Panics if the replacing page is not present or if the new page has an
793 * invalid key.
794 */
795vm_page_t
796vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage, vm_pindex_t index)
797{
798	struct vm_radix_node *rnode;
799	vm_page_t m;
800	int slot;
801
802	KASSERT(newpage->pindex == index, ("%s: newpage index invalid",
803	    __func__));
804
805	rnode = vm_radix_getroot(rtree);
806	if (rnode == NULL)
807		panic("%s: replacing page on an empty trie", __func__);
808	if (vm_radix_isleaf(rnode)) {
809		m = vm_radix_topage(rnode);
810		if (m->pindex != index)
811			panic("%s: original replacing root key not found",
812			    __func__);
813		rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
814		return (m);
815	}
816	for (;;) {
817		slot = vm_radix_slot(index, rnode->rn_clev);
818		if (vm_radix_isleaf(rnode->rn_child[slot])) {
819			m = vm_radix_topage(rnode->rn_child[slot]);
820			if (m->pindex == index) {
821				rnode->rn_child[slot] =
822				    (void *)((uintptr_t)newpage |
823				    VM_RADIX_ISLEAF);
824				return (m);
825			} else
826				break;
827		} else if (rnode->rn_child[slot] == NULL ||
828		    vm_radix_keybarr(rnode->rn_child[slot], index))
829			break;
830		rnode = rnode->rn_child[slot];
831	}
832	panic("%s: original replacing page not found", __func__);
833}
834
835#ifdef DDB
836/*
837 * Show details about the given radix node.
838 */
839DB_SHOW_COMMAND(radixnode, db_show_radixnode)
840{
841	struct vm_radix_node *rnode;
842	int i;
843
844        if (!have_addr)
845                return;
846	rnode = (struct vm_radix_node *)addr;
847	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
848	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
849	    rnode->rn_clev);
850	for (i = 0; i < VM_RADIX_COUNT; i++)
851		if (rnode->rn_child[i] != NULL)
852			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
853			    i, (void *)rnode->rn_child[i],
854			    vm_radix_isleaf(rnode->rn_child[i]) ?
855			    vm_radix_topage(rnode->rn_child[i]) : NULL,
856			    rnode->rn_clev);
857}
858#endif /* DDB */
859