1/*-
2 * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
3 * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * MemGuard is a simple replacement allocator for debugging only
33 * which provides ElectricFence-style memory barrier protection on
34 * objects being allocated, and is used to detect tampering-after-free
35 * scenarios.
36 *
37 * See the memguard(9) man page for more information on using MemGuard.
38 */
39
40#include "opt_vm.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/types.h>
46#include <sys/queue.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/malloc.h>
50#include <sys/sysctl.h>
51#include <sys/vmem.h>
52
53#include <vm/vm.h>
54#include <vm/uma.h>
55#include <vm/vm_param.h>
56#include <vm/vm_page.h>
57#include <vm/vm_map.h>
58#include <vm/vm_object.h>
59#include <vm/vm_kern.h>
60#include <vm/vm_extern.h>
61#include <vm/uma_int.h>
62#include <vm/memguard.h>
63
64static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
65/*
66 * The vm_memguard_divisor variable controls how much of kmem_map should be
67 * reserved for MemGuard.
68 */
69static u_int vm_memguard_divisor;
70SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN,
71    &vm_memguard_divisor,
72    0, "(kmem_size/memguard_divisor) == memguard submap size");
73
74/*
75 * Short description (ks_shortdesc) of memory type to monitor.
76 */
77static char vm_memguard_desc[128] = "";
78static struct malloc_type *vm_memguard_mtype = NULL;
79TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
80static int
81memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
82{
83	char desc[sizeof(vm_memguard_desc)];
84	int error;
85
86	strlcpy(desc, vm_memguard_desc, sizeof(desc));
87	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
88	if (error != 0 || req->newptr == NULL)
89		return (error);
90
91	mtx_lock(&malloc_mtx);
92	/*
93	 * If mtp is NULL, it will be initialized in memguard_cmp().
94	 */
95	vm_memguard_mtype = malloc_desc2type(desc);
96	strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
97	mtx_unlock(&malloc_mtx);
98	return (error);
99}
100SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
101    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
102    memguard_sysctl_desc, "A", "Short description of memory type to monitor");
103
104static vm_offset_t memguard_cursor;
105static vm_offset_t memguard_base;
106static vm_size_t memguard_mapsize;
107static vm_size_t memguard_physlimit;
108static u_long memguard_wasted;
109static u_long memguard_wrap;
110static u_long memguard_succ;
111static u_long memguard_fail_kva;
112static u_long memguard_fail_pgs;
113
114SYSCTL_ULONG(_vm_memguard, OID_AUTO, cursor, CTLFLAG_RD,
115    &memguard_cursor, 0, "MemGuard cursor");
116SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
117    &memguard_mapsize, 0, "MemGuard private arena size");
118SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
119    &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
120SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
121    &memguard_wasted, 0, "Excess memory used through page promotion");
122SYSCTL_ULONG(_vm_memguard, OID_AUTO, wrapcnt, CTLFLAG_RD,
123    &memguard_wrap, 0, "MemGuard cursor wrap count");
124SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
125    &memguard_succ, 0, "Count of successful MemGuard allocations");
126SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
127    &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
128SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
129    &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
130
131#define MG_GUARD_AROUND		0x001
132#define MG_GUARD_ALLLARGE	0x002
133#define MG_GUARD_NOFREE		0x004
134static int memguard_options = MG_GUARD_AROUND;
135TUNABLE_INT("vm.memguard.options", &memguard_options);
136SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RW,
137    &memguard_options, 0,
138    "MemGuard options:\n"
139    "\t0x001 - add guard pages around each allocation\n"
140    "\t0x002 - always use MemGuard for allocations over a page\n"
141    "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
142
143static u_int memguard_minsize;
144static u_long memguard_minsize_reject;
145SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
146    &memguard_minsize, 0, "Minimum size for page promotion");
147SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
148    &memguard_minsize_reject, 0, "# times rejected for size");
149
150static u_int memguard_frequency;
151static u_long memguard_frequency_hits;
152TUNABLE_INT("vm.memguard.frequency", &memguard_frequency);
153SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RW,
154    &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
155SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
156    &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
157
158
159/*
160 * Return a fudged value to be used for vm_kmem_size for allocating
161 * the kmem_map.  The memguard memory will be a submap.
162 */
163unsigned long
164memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
165{
166	u_long mem_pgs, parent_size;
167
168	vm_memguard_divisor = 10;
169	TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
170
171	parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
172	    PAGE_SIZE;
173	/* Pick a conservative value if provided value sucks. */
174	if ((vm_memguard_divisor <= 0) ||
175	    ((parent_size / vm_memguard_divisor) == 0))
176		vm_memguard_divisor = 10;
177	/*
178	 * Limit consumption of physical pages to
179	 * 1/vm_memguard_divisor of system memory.  If the KVA is
180	 * smaller than this then the KVA limit comes into play first.
181	 * This prevents memguard's page promotions from completely
182	 * using up memory, since most malloc(9) calls are sub-page.
183	 */
184	mem_pgs = cnt.v_page_count;
185	memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
186	/*
187	 * We want as much KVA as we can take safely.  Use at most our
188	 * allotted fraction of the parent map's size.  Limit this to
189	 * twice the physical memory to avoid using too much memory as
190	 * pagetable pages (size must be multiple of PAGE_SIZE).
191	 */
192	memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
193	if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
194		memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
195	if (km_size + memguard_mapsize > parent_size)
196		memguard_mapsize = 0;
197	return (km_size + memguard_mapsize);
198}
199
200/*
201 * Initialize the MemGuard mock allocator.  All objects from MemGuard come
202 * out of a single VM map (contiguous chunk of address space).
203 */
204void
205memguard_init(vmem_t *parent)
206{
207	vm_offset_t base;
208
209	vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
210	vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
211	    PAGE_SIZE, 0, M_WAITOK);
212	memguard_cursor = base;
213	memguard_base = base;
214
215	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
216	printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
217	printf("\tMEMGUARD map size: %jd KBytes\n",
218	    (uintmax_t)memguard_mapsize >> 10);
219}
220
221/*
222 * Run things that can't be done as early as memguard_init().
223 */
224static void
225memguard_sysinit(void)
226{
227	struct sysctl_oid_list *parent;
228
229	parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
230
231	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapstart", CTLFLAG_RD,
232	    &memguard_base, "MemGuard KVA base");
233	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "maplimit", CTLFLAG_RD,
234	    &memguard_mapsize, "MemGuard KVA size");
235#if 0
236	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapused", CTLFLAG_RD,
237	    &memguard_map->size, "MemGuard KVA used");
238#endif
239}
240SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
241
242/*
243 * v2sizep() converts a virtual address of the first page allocated for
244 * an item to a pointer to u_long recording the size of the original
245 * allocation request.
246 *
247 * This routine is very similar to those defined by UMA in uma_int.h.
248 * The difference is that this routine stores the originally allocated
249 * size in one of the page's fields that is unused when the page is
250 * wired rather than the object field, which is used.
251 */
252static u_long *
253v2sizep(vm_offset_t va)
254{
255	vm_paddr_t pa;
256	struct vm_page *p;
257
258	pa = pmap_kextract(va);
259	if (pa == 0)
260		panic("MemGuard detected double-free of %p", (void *)va);
261	p = PHYS_TO_VM_PAGE(pa);
262	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
263	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
264	return (&p->plinks.memguard.p);
265}
266
267static u_long *
268v2sizev(vm_offset_t va)
269{
270	vm_paddr_t pa;
271	struct vm_page *p;
272
273	pa = pmap_kextract(va);
274	if (pa == 0)
275		panic("MemGuard detected double-free of %p", (void *)va);
276	p = PHYS_TO_VM_PAGE(pa);
277	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
278	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
279	return (&p->plinks.memguard.v);
280}
281
282/*
283 * Allocate a single object of specified size with specified flags
284 * (either M_WAITOK or M_NOWAIT).
285 */
286void *
287memguard_alloc(unsigned long req_size, int flags)
288{
289	vm_offset_t addr;
290	u_long size_p, size_v;
291	int do_guard, rv;
292
293	size_p = round_page(req_size);
294	if (size_p == 0)
295		return (NULL);
296	/*
297	 * To ensure there are holes on both sides of the allocation,
298	 * request 2 extra pages of KVA.  We will only actually add a
299	 * vm_map_entry and get pages for the original request.  Save
300	 * the value of memguard_options so we have a consistent
301	 * value.
302	 */
303	size_v = size_p;
304	do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
305	if (do_guard)
306		size_v += 2 * PAGE_SIZE;
307
308	/*
309	 * When we pass our memory limit, reject sub-page allocations.
310	 * Page-size and larger allocations will use the same amount
311	 * of physical memory whether we allocate or hand off to
312	 * uma_large_alloc(), so keep those.
313	 */
314	if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
315	    req_size < PAGE_SIZE) {
316		addr = (vm_offset_t)NULL;
317		memguard_fail_pgs++;
318		goto out;
319	}
320	/*
321	 * Keep a moving cursor so we don't recycle KVA as long as
322	 * possible.  It's not perfect, since we don't know in what
323	 * order previous allocations will be free'd, but it's simple
324	 * and fast, and requires O(1) additional storage if guard
325	 * pages are not used.
326	 *
327	 * XXX This scheme will lead to greater fragmentation of the
328	 * map, unless vm_map_findspace() is tweaked.
329	 */
330	for (;;) {
331		if (vmem_xalloc(memguard_arena, size_v, 0, 0, 0,
332		    memguard_cursor, VMEM_ADDR_MAX,
333		    M_BESTFIT | M_NOWAIT, &addr) == 0)
334			break;
335		/*
336		 * The map has no space.  This may be due to
337		 * fragmentation, or because the cursor is near the
338		 * end of the map.
339		 */
340		if (memguard_cursor == memguard_base) {
341			memguard_fail_kva++;
342			addr = (vm_offset_t)NULL;
343			goto out;
344		}
345		memguard_wrap++;
346		memguard_cursor = memguard_base;
347	}
348	if (do_guard)
349		addr += PAGE_SIZE;
350	rv = kmem_back(kmem_object, addr, size_p, flags);
351	if (rv != KERN_SUCCESS) {
352		vmem_xfree(memguard_arena, addr, size_v);
353		memguard_fail_pgs++;
354		addr = (vm_offset_t)NULL;
355		goto out;
356	}
357	memguard_cursor = addr + size_v;
358	*v2sizep(trunc_page(addr)) = req_size;
359	*v2sizev(trunc_page(addr)) = size_v;
360	memguard_succ++;
361	if (req_size < PAGE_SIZE) {
362		memguard_wasted += (PAGE_SIZE - req_size);
363		if (do_guard) {
364			/*
365			 * Align the request to 16 bytes, and return
366			 * an address near the end of the page, to
367			 * better detect array overrun.
368			 */
369			req_size = roundup2(req_size, 16);
370			addr += (PAGE_SIZE - req_size);
371		}
372	}
373out:
374	return ((void *)addr);
375}
376
377int
378is_memguard_addr(void *addr)
379{
380	vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
381
382	return (a >= memguard_base && a < memguard_base + memguard_mapsize);
383}
384
385/*
386 * Free specified single object.
387 */
388void
389memguard_free(void *ptr)
390{
391	vm_offset_t addr;
392	u_long req_size, size, sizev;
393	char *temp;
394	int i;
395
396	addr = trunc_page((uintptr_t)ptr);
397	req_size = *v2sizep(addr);
398	sizev = *v2sizev(addr);
399	size = round_page(req_size);
400
401	/*
402	 * Page should not be guarded right now, so force a write.
403	 * The purpose of this is to increase the likelihood of
404	 * catching a double-free, but not necessarily a
405	 * tamper-after-free (the second thread freeing might not
406	 * write before freeing, so this forces it to and,
407	 * subsequently, trigger a fault).
408	 */
409	temp = ptr;
410	for (i = 0; i < size; i += PAGE_SIZE)
411		temp[i] = 'M';
412
413	/*
414	 * This requires carnal knowledge of the implementation of
415	 * kmem_free(), but since we've already replaced kmem_malloc()
416	 * above, it's not really any worse.  We want to use the
417	 * vm_map lock to serialize updates to memguard_wasted, since
418	 * we had the lock at increment.
419	 */
420	kmem_unback(kmem_object, addr, size);
421	if (sizev > size)
422		addr -= PAGE_SIZE;
423	vmem_xfree(memguard_arena, addr, sizev);
424	if (req_size < PAGE_SIZE)
425		memguard_wasted -= (PAGE_SIZE - req_size);
426}
427
428/*
429 * Re-allocate an allocation that was originally guarded.
430 */
431void *
432memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
433    int flags)
434{
435	void *newaddr;
436	u_long old_size;
437
438	/*
439	 * Allocate the new block.  Force the allocation to be guarded
440	 * as the original may have been guarded through random
441	 * chance, and that should be preserved.
442	 */
443	if ((newaddr = memguard_alloc(size, flags)) == NULL)
444		return (NULL);
445
446	/* Copy over original contents. */
447	old_size = *v2sizep(trunc_page((uintptr_t)addr));
448	bcopy(addr, newaddr, min(size, old_size));
449	memguard_free(addr);
450	return (newaddr);
451}
452
453static int
454memguard_cmp(unsigned long size)
455{
456
457	if (size < memguard_minsize) {
458		memguard_minsize_reject++;
459		return (0);
460	}
461	if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
462		return (1);
463	if (memguard_frequency > 0 &&
464	    (random() % 100000) < memguard_frequency) {
465		memguard_frequency_hits++;
466		return (1);
467	}
468
469	return (0);
470}
471
472int
473memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
474{
475
476	if (memguard_cmp(size))
477		return(1);
478
479#if 1
480	/*
481	 * The safest way of comparsion is to always compare short description
482	 * string of memory type, but it is also the slowest way.
483	 */
484	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
485#else
486	/*
487	 * If we compare pointers, there are two possible problems:
488	 * 1. Memory type was unloaded and new memory type was allocated at the
489	 *    same address.
490	 * 2. Memory type was unloaded and loaded again, but allocated at a
491	 *    different address.
492	 */
493	if (vm_memguard_mtype != NULL)
494		return (mtp == vm_memguard_mtype);
495	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
496		vm_memguard_mtype = mtp;
497		return (1);
498	}
499	return (0);
500#endif
501}
502
503int
504memguard_cmp_zone(uma_zone_t zone)
505{
506
507	 if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
508	    zone->uz_flags & UMA_ZONE_NOFREE)
509		return (0);
510
511	if (memguard_cmp(zone->uz_size))
512		return (1);
513
514	/*
515	 * The safest way of comparsion is to always compare zone name,
516	 * but it is also the slowest way.
517	 */
518	return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
519}
520