audit_worker.c revision 179178
1/*
2 * Copyright (c) 1999-2005 Apple Computer, Inc.
3 * Copyright (c) 2006-2008 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/security/audit/audit_worker.c 179178 2008-05-21 13:59:05Z rwatson $");
33
34#include <sys/param.h>
35#include <sys/condvar.h>
36#include <sys/conf.h>
37#include <sys/file.h>
38#include <sys/filedesc.h>
39#include <sys/fcntl.h>
40#include <sys/ipc.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/malloc.h>
44#include <sys/mount.h>
45#include <sys/namei.h>
46#include <sys/proc.h>
47#include <sys/queue.h>
48#include <sys/socket.h>
49#include <sys/socketvar.h>
50#include <sys/protosw.h>
51#include <sys/domain.h>
52#include <sys/sx.h>
53#include <sys/sysproto.h>
54#include <sys/sysent.h>
55#include <sys/systm.h>
56#include <sys/ucred.h>
57#include <sys/uio.h>
58#include <sys/un.h>
59#include <sys/unistd.h>
60#include <sys/vnode.h>
61
62#include <bsm/audit.h>
63#include <bsm/audit_internal.h>
64#include <bsm/audit_kevents.h>
65
66#include <netinet/in.h>
67#include <netinet/in_pcb.h>
68
69#include <security/audit/audit.h>
70#include <security/audit/audit_private.h>
71
72#include <vm/uma.h>
73
74/*
75 * Worker thread that will schedule disk I/O, etc.
76 */
77static struct proc		*audit_thread;
78
79/*
80 * audit_cred and audit_vp are the stored credential and vnode to use for
81 * active audit trail.  They are protected by audit_worker_sx, which will be
82 * held across all I/O and all rotation to prevent them from being replaced
83 * (rotated) while in use.  The audit_file_rotate_wait flag is set when the
84 * kernel has delivered a trigger to auditd to rotate the trail, and is
85 * cleared when the next rotation takes place.  It is also protected by
86 * audit_worker_sx.
87 */
88static int		 audit_file_rotate_wait;
89static struct sx	 audit_worker_sx;
90static struct ucred	*audit_cred;
91static struct vnode	*audit_vp;
92
93/*
94 * Write an audit record to a file, performed as the last stage after both
95 * preselection and BSM conversion.  Both space management and write failures
96 * are handled in this function.
97 *
98 * No attempt is made to deal with possible failure to deliver a trigger to
99 * the audit daemon, since the message is asynchronous anyway.
100 */
101static void
102audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
103    size_t len)
104{
105	static struct timeval last_lowspace_trigger;
106	static struct timeval last_fail;
107	static int cur_lowspace_trigger;
108	struct statfs *mnt_stat;
109	int error, vfslocked;
110	static int cur_fail;
111	struct vattr vattr;
112	long temp;
113
114	sx_assert(&audit_worker_sx, SA_LOCKED);	/* audit_file_rotate_wait. */
115
116	if (vp == NULL)
117		return;
118
119 	mnt_stat = &vp->v_mount->mnt_stat;
120	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
121
122	/*
123	 * First, gather statistics on the audit log file and file system so
124	 * that we know how we're doing on space.  Consider failure of these
125	 * operations to indicate a future inability to write to the file.
126	 */
127	error = VFS_STATFS(vp->v_mount, mnt_stat, curthread);
128	if (error)
129		goto fail;
130	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
131	error = VOP_GETATTR(vp, &vattr, cred, curthread);
132	VOP_UNLOCK(vp, 0);
133	if (error)
134		goto fail;
135	audit_fstat.af_currsz = vattr.va_size;
136
137	/*
138	 * We handle four different space-related limits:
139	 *
140	 * - A fixed (hard) limit on the minimum free blocks we require on
141	 *   the file system, and results in record loss, a trigger, and
142	 *   possible fail stop due to violating invariants.
143	 *
144	 * - An administrative (soft) limit, which when fallen below, results
145	 *   in the kernel notifying the audit daemon of low space.
146	 *
147	 * - An audit trail size limit, which when gone above, results in the
148	 *   kernel notifying the audit daemon that rotation is desired.
149	 *
150	 * - The total depth of the kernel audit record exceeding free space,
151	 *   which can lead to possible fail stop (with drain), in order to
152	 *   prevent violating invariants.  Failure here doesn't halt
153	 *   immediately, but prevents new records from being generated.
154	 *
155	 * Possibly, the last of these should be handled differently, always
156	 * allowing a full queue to be lost, rather than trying to prevent
157	 * loss.
158	 *
159	 * First, handle the hard limit, which generates a trigger and may
160	 * fail stop.  This is handled in the same manner as ENOSPC from
161	 * VOP_WRITE, and results in record loss.
162	 */
163	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
164		error = ENOSPC;
165		goto fail_enospc;
166	}
167
168	/*
169	 * Second, handle falling below the soft limit, if defined; we send
170	 * the daemon a trigger and continue processing the record.  Triggers
171	 * are limited to 1/sec.
172	 */
173	if (audit_qctrl.aq_minfree != 0) {
174		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
175		if (mnt_stat->f_bfree < temp) {
176			if (ppsratecheck(&last_lowspace_trigger,
177			    &cur_lowspace_trigger, 1)) {
178				(void)audit_send_trigger(
179				    AUDIT_TRIGGER_LOW_SPACE);
180				printf("Warning: audit space low\n");
181			}
182		}
183	}
184
185	/*
186	 * If the current file is getting full, generate a rotation trigger
187	 * to the daemon.  This is only approximate, which is fine as more
188	 * records may be generated before the daemon rotates the file.
189	 */
190	if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
191	    (vattr.va_size >= audit_fstat.af_filesz)) {
192		sx_assert(&audit_worker_sx, SA_XLOCKED);
193
194		audit_file_rotate_wait = 1;
195		(void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
196	}
197
198	/*
199	 * If the estimated amount of audit data in the audit event queue
200	 * (plus records allocated but not yet queued) has reached the amount
201	 * of free space on the disk, then we need to go into an audit fail
202	 * stop state, in which we do not permit the allocation/committing of
203	 * any new audit records.  We continue to process records but don't
204	 * allow any activities that might generate new records.  In the
205	 * future, we might want to detect when space is available again and
206	 * allow operation to continue, but this behavior is sufficient to
207	 * meet fail stop requirements in CAPP.
208	 */
209	if (audit_fail_stop) {
210		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
211		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
212		    (unsigned long)(mnt_stat->f_bfree)) {
213			if (ppsratecheck(&last_fail, &cur_fail, 1))
214				printf("audit_record_write: free space "
215				    "below size of audit queue, failing "
216				    "stop\n");
217			audit_in_failure = 1;
218		} else if (audit_in_failure) {
219			/*
220			 * Note: if we want to handle recovery, this is the
221			 * spot to do it: unset audit_in_failure, and issue a
222			 * wakeup on the cv.
223			 */
224		}
225	}
226
227	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
228	    IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
229	if (error == ENOSPC)
230		goto fail_enospc;
231	else if (error)
232		goto fail;
233
234	/*
235	 * Catch completion of a queue drain here; if we're draining and the
236	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
237	 * true, since audit_in_failure can only be set of audit_fail_stop is
238	 * set.
239	 *
240	 * Note: if we handle recovery from audit_in_failure, then we need to
241	 * make panic here conditional.
242	 */
243	if (audit_in_failure) {
244		if (audit_q_len == 0 && audit_pre_q_len == 0) {
245			VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
246			(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
247			VOP_UNLOCK(vp, 0);
248			panic("Audit store overflow; record queue drained.");
249		}
250	}
251
252	VFS_UNLOCK_GIANT(vfslocked);
253	return;
254
255fail_enospc:
256	/*
257	 * ENOSPC is considered a special case with respect to failures, as
258	 * this can reflect either our preemptive detection of insufficient
259	 * space, or ENOSPC returned by the vnode write call.
260	 */
261	if (audit_fail_stop) {
262		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
263		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
264		VOP_UNLOCK(vp, 0);
265		panic("Audit log space exhausted and fail-stop set.");
266	}
267	(void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
268	audit_suspended = 1;
269
270	/* FALLTHROUGH */
271fail:
272	/*
273	 * We have failed to write to the file, so the current record is
274	 * lost, which may require an immediate system halt.
275	 */
276	if (audit_panic_on_write_fail) {
277		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
278		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
279		VOP_UNLOCK(vp, 0);
280		panic("audit_worker: write error %d\n", error);
281	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
282		printf("audit_worker: write error %d\n", error);
283	VFS_UNLOCK_GIANT(vfslocked);
284}
285
286/*
287 * Given a kernel audit record, process as required.  Kernel audit records
288 * are converted to one, or possibly two, BSM records, depending on whether
289 * there is a user audit record present also.  Kernel records need be
290 * converted to BSM before they can be written out.  Both types will be
291 * written to disk, and audit pipes.
292 */
293static void
294audit_worker_process_record(struct kaudit_record *ar)
295{
296	struct au_record *bsm;
297	au_class_t class;
298	au_event_t event;
299	au_id_t auid;
300	int error, sorf;
301	int trail_locked;
302
303	/*
304	 * We hold the audit_worker_sx lock over both writes, if there are
305	 * two, so that the two records won't be split across a rotation and
306	 * end up in two different trail files.
307	 */
308	if (((ar->k_ar_commit & AR_COMMIT_USER) &&
309	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
310	    (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
311		sx_xlock(&audit_worker_sx);
312		trail_locked = 1;
313	} else
314		trail_locked = 0;
315
316	/*
317	 * First, handle the user record, if any: commit to the system trail
318	 * and audit pipes as selected.
319	 */
320	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
321	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
322		sx_assert(&audit_worker_sx, SA_XLOCKED);
323		audit_record_write(audit_vp, audit_cred, ar->k_udata,
324		    ar->k_ulen);
325	}
326
327	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
328	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
329		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
330
331	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
332	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
333	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
334		goto out;
335
336	auid = ar->k_ar.ar_subj_auid;
337	event = ar->k_ar.ar_event;
338	class = au_event_class(event);
339	if (ar->k_ar.ar_errno == 0)
340		sorf = AU_PRS_SUCCESS;
341	else
342		sorf = AU_PRS_FAILURE;
343
344	error = kaudit_to_bsm(ar, &bsm);
345	switch (error) {
346	case BSM_NOAUDIT:
347		goto out;
348
349	case BSM_FAILURE:
350		printf("audit_worker_process_record: BSM_FAILURE\n");
351		goto out;
352
353	case BSM_SUCCESS:
354		break;
355
356	default:
357		panic("kaudit_to_bsm returned %d", error);
358	}
359
360	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
361		sx_assert(&audit_worker_sx, SA_XLOCKED);
362		audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
363	}
364
365	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
366		audit_pipe_submit(auid, event, class, sorf,
367		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
368		    bsm->len);
369
370	kau_free(bsm);
371out:
372	if (trail_locked)
373		sx_xunlock(&audit_worker_sx);
374}
375
376/*
377 * The audit_worker thread is responsible for watching the event queue,
378 * dequeueing records, converting them to BSM format, and committing them to
379 * disk.  In order to minimize lock thrashing, records are dequeued in sets
380 * to a thread-local work queue.
381 *
382 * Note: this means that the effect bound on the size of the pending record
383 * queue is 2x the length of the global queue.
384 */
385static void
386audit_worker(void *arg)
387{
388	struct kaudit_queue ar_worklist;
389	struct kaudit_record *ar;
390	int lowater_signal;
391
392	TAILQ_INIT(&ar_worklist);
393	mtx_lock(&audit_mtx);
394	while (1) {
395		mtx_assert(&audit_mtx, MA_OWNED);
396
397		/*
398		 * Wait for a record.
399		 */
400		while (TAILQ_EMPTY(&audit_q))
401			cv_wait(&audit_worker_cv, &audit_mtx);
402
403		/*
404		 * If there are records in the global audit record queue,
405		 * transfer them to a thread-local queue and process them
406		 * one by one.  If we cross the low watermark threshold,
407		 * signal any waiting processes that they may wake up and
408		 * continue generating records.
409		 */
410		lowater_signal = 0;
411		while ((ar = TAILQ_FIRST(&audit_q))) {
412			TAILQ_REMOVE(&audit_q, ar, k_q);
413			audit_q_len--;
414			if (audit_q_len == audit_qctrl.aq_lowater)
415				lowater_signal++;
416			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
417		}
418		if (lowater_signal)
419			cv_broadcast(&audit_watermark_cv);
420
421		mtx_unlock(&audit_mtx);
422		while ((ar = TAILQ_FIRST(&ar_worklist))) {
423			TAILQ_REMOVE(&ar_worklist, ar, k_q);
424			audit_worker_process_record(ar);
425			audit_free(ar);
426		}
427		mtx_lock(&audit_mtx);
428	}
429}
430
431/*
432 * audit_rotate_vnode() is called by a user or kernel thread to configure or
433 * de-configure auditing on a vnode.  The arguments are the replacement
434 * credential (referenced) and vnode (referenced and opened) to substitute
435 * for the current credential and vnode, if any.  If either is set to NULL,
436 * both should be NULL, and this is used to indicate that audit is being
437 * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
438 * generating rotation requests to auditd.
439 */
440void
441audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
442{
443	struct ucred *old_audit_cred;
444	struct vnode *old_audit_vp;
445	int vfslocked;
446
447	KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
448	    ("audit_rotate_vnode: cred %p vp %p", cred, vp));
449
450	/*
451	 * Rotate the vnode/cred, and clear the rotate flag so that we will
452	 * send a rotate trigger if the new file fills.
453	 */
454	sx_xlock(&audit_worker_sx);
455	old_audit_cred = audit_cred;
456	old_audit_vp = audit_vp;
457	audit_cred = cred;
458	audit_vp = vp;
459	audit_file_rotate_wait = 0;
460	audit_enabled = (audit_vp != NULL);
461	sx_xunlock(&audit_worker_sx);
462
463	/*
464	 * If there was an old vnode/credential, close and free.
465	 */
466	if (old_audit_vp != NULL) {
467		vfslocked = VFS_LOCK_GIANT(old_audit_vp->v_mount);
468		vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
469		    curthread);
470		VFS_UNLOCK_GIANT(vfslocked);
471		crfree(old_audit_cred);
472	}
473}
474
475void
476audit_worker_init(void)
477{
478	int error;
479
480	sx_init(&audit_worker_sx, "audit_worker_sx");
481	error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
482	    0, "audit");
483	if (error)
484		panic("audit_worker_init: kproc_create returned %d", error);
485}
486