1/*-
2 * Copyright (c) 1999-2008 Apple Inc.
3 * Copyright (c) 2006-2008 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD$");
33
34#include <sys/param.h>
35#include <sys/condvar.h>
36#include <sys/conf.h>
37#include <sys/file.h>
38#include <sys/filedesc.h>
39#include <sys/fcntl.h>
40#include <sys/ipc.h>
41#include <sys/kernel.h>
42#include <sys/kthread.h>
43#include <sys/malloc.h>
44#include <sys/mount.h>
45#include <sys/namei.h>
46#include <sys/proc.h>
47#include <sys/queue.h>
48#include <sys/socket.h>
49#include <sys/socketvar.h>
50#include <sys/protosw.h>
51#include <sys/domain.h>
52#include <sys/sx.h>
53#include <sys/sysproto.h>
54#include <sys/sysent.h>
55#include <sys/systm.h>
56#include <sys/ucred.h>
57#include <sys/uio.h>
58#include <sys/un.h>
59#include <sys/unistd.h>
60#include <sys/vnode.h>
61
62#include <bsm/audit.h>
63#include <bsm/audit_internal.h>
64#include <bsm/audit_kevents.h>
65
66#include <netinet/in.h>
67#include <netinet/in_pcb.h>
68
69#include <security/audit/audit.h>
70#include <security/audit/audit_private.h>
71
72#include <vm/uma.h>
73
74/*
75 * Worker thread that will schedule disk I/O, etc.
76 */
77static struct proc		*audit_thread;
78
79/*
80 * audit_cred and audit_vp are the stored credential and vnode to use for
81 * active audit trail.  They are protected by the audit worker lock, which
82 * will be held across all I/O and all rotation to prevent them from being
83 * replaced (rotated) while in use.  The audit_file_rotate_wait flag is set
84 * when the kernel has delivered a trigger to auditd to rotate the trail, and
85 * is cleared when the next rotation takes place.  It is also protected by
86 * the audit worker lock.
87 */
88static int		 audit_file_rotate_wait;
89static struct ucred	*audit_cred;
90static struct vnode	*audit_vp;
91static off_t		 audit_size;
92static struct sx	 audit_worker_lock;
93
94#define	AUDIT_WORKER_LOCK_INIT()	sx_init(&audit_worker_lock, \
95					    "audit_worker_lock");
96#define	AUDIT_WORKER_LOCK_ASSERT()	sx_assert(&audit_worker_lock, \
97					    SA_XLOCKED)
98#define	AUDIT_WORKER_LOCK()		sx_xlock(&audit_worker_lock)
99#define	AUDIT_WORKER_UNLOCK()		sx_xunlock(&audit_worker_lock)
100
101/*
102 * Write an audit record to a file, performed as the last stage after both
103 * preselection and BSM conversion.  Both space management and write failures
104 * are handled in this function.
105 *
106 * No attempt is made to deal with possible failure to deliver a trigger to
107 * the audit daemon, since the message is asynchronous anyway.
108 */
109static void
110audit_record_write(struct vnode *vp, struct ucred *cred, void *data,
111    size_t len)
112{
113	static struct timeval last_lowspace_trigger;
114	static struct timeval last_fail;
115	static int cur_lowspace_trigger;
116	struct statfs *mnt_stat;
117	int error;
118	static int cur_fail;
119	long temp;
120
121	AUDIT_WORKER_LOCK_ASSERT();
122
123	if (vp == NULL)
124		return;
125
126	mnt_stat = &vp->v_mount->mnt_stat;
127
128	/*
129	 * First, gather statistics on the audit log file and file system so
130	 * that we know how we're doing on space.  Consider failure of these
131	 * operations to indicate a future inability to write to the file.
132	 */
133	error = VFS_STATFS(vp->v_mount, mnt_stat);
134	if (error)
135		goto fail;
136
137	/*
138	 * We handle four different space-related limits:
139	 *
140	 * - A fixed (hard) limit on the minimum free blocks we require on
141	 *   the file system, and results in record loss, a trigger, and
142	 *   possible fail stop due to violating invariants.
143	 *
144	 * - An administrative (soft) limit, which when fallen below, results
145	 *   in the kernel notifying the audit daemon of low space.
146	 *
147	 * - An audit trail size limit, which when gone above, results in the
148	 *   kernel notifying the audit daemon that rotation is desired.
149	 *
150	 * - The total depth of the kernel audit record exceeding free space,
151	 *   which can lead to possible fail stop (with drain), in order to
152	 *   prevent violating invariants.  Failure here doesn't halt
153	 *   immediately, but prevents new records from being generated.
154	 *
155	 * Possibly, the last of these should be handled differently, always
156	 * allowing a full queue to be lost, rather than trying to prevent
157	 * loss.
158	 *
159	 * First, handle the hard limit, which generates a trigger and may
160	 * fail stop.  This is handled in the same manner as ENOSPC from
161	 * VOP_WRITE, and results in record loss.
162	 */
163	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
164		error = ENOSPC;
165		goto fail_enospc;
166	}
167
168	/*
169	 * Second, handle falling below the soft limit, if defined; we send
170	 * the daemon a trigger and continue processing the record.  Triggers
171	 * are limited to 1/sec.
172	 */
173	if (audit_qctrl.aq_minfree != 0) {
174		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
175		if (mnt_stat->f_bfree < temp) {
176			if (ppsratecheck(&last_lowspace_trigger,
177			    &cur_lowspace_trigger, 1)) {
178				(void)audit_send_trigger(
179				    AUDIT_TRIGGER_LOW_SPACE);
180				printf("Warning: disk space low (< %d%% free) "
181				    "on audit log file-system\n",
182				    audit_qctrl.aq_minfree);
183			}
184		}
185	}
186
187	/*
188	 * If the current file is getting full, generate a rotation trigger
189	 * to the daemon.  This is only approximate, which is fine as more
190	 * records may be generated before the daemon rotates the file.
191	 */
192	if (audit_fstat.af_filesz != 0 &&
193	    audit_size >= audit_fstat.af_filesz * (audit_file_rotate_wait + 1)) {
194		AUDIT_WORKER_LOCK_ASSERT();
195
196		audit_file_rotate_wait++;
197		(void)audit_send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
198	}
199
200	/*
201	 * If the estimated amount of audit data in the audit event queue
202	 * (plus records allocated but not yet queued) has reached the amount
203	 * of free space on the disk, then we need to go into an audit fail
204	 * stop state, in which we do not permit the allocation/committing of
205	 * any new audit records.  We continue to process records but don't
206	 * allow any activities that might generate new records.  In the
207	 * future, we might want to detect when space is available again and
208	 * allow operation to continue, but this behavior is sufficient to
209	 * meet fail stop requirements in CAPP.
210	 */
211	if (audit_fail_stop) {
212		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
213		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
214		    (unsigned long)(mnt_stat->f_bfree)) {
215			if (ppsratecheck(&last_fail, &cur_fail, 1))
216				printf("audit_record_write: free space "
217				    "below size of audit queue, failing "
218				    "stop\n");
219			audit_in_failure = 1;
220		} else if (audit_in_failure) {
221			/*
222			 * Note: if we want to handle recovery, this is the
223			 * spot to do it: unset audit_in_failure, and issue a
224			 * wakeup on the cv.
225			 */
226		}
227	}
228
229	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
230	    IO_APPEND|IO_UNIT, cred, NULL, NULL, curthread);
231	if (error == ENOSPC)
232		goto fail_enospc;
233	else if (error)
234		goto fail;
235	AUDIT_WORKER_LOCK_ASSERT();
236	audit_size += len;
237
238	/*
239	 * Catch completion of a queue drain here; if we're draining and the
240	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
241	 * true, since audit_in_failure can only be set of audit_fail_stop is
242	 * set.
243	 *
244	 * Note: if we handle recovery from audit_in_failure, then we need to
245	 * make panic here conditional.
246	 */
247	if (audit_in_failure) {
248		if (audit_q_len == 0 && audit_pre_q_len == 0) {
249			VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
250			(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
251			VOP_UNLOCK(vp, 0);
252			panic("Audit store overflow; record queue drained.");
253		}
254	}
255
256	return;
257
258fail_enospc:
259	/*
260	 * ENOSPC is considered a special case with respect to failures, as
261	 * this can reflect either our preemptive detection of insufficient
262	 * space, or ENOSPC returned by the vnode write call.
263	 */
264	if (audit_fail_stop) {
265		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
266		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
267		VOP_UNLOCK(vp, 0);
268		panic("Audit log space exhausted and fail-stop set.");
269	}
270	(void)audit_send_trigger(AUDIT_TRIGGER_NO_SPACE);
271	audit_suspended = 1;
272
273	/* FALLTHROUGH */
274fail:
275	/*
276	 * We have failed to write to the file, so the current record is
277	 * lost, which may require an immediate system halt.
278	 */
279	if (audit_panic_on_write_fail) {
280		VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
281		(void)VOP_FSYNC(vp, MNT_WAIT, curthread);
282		VOP_UNLOCK(vp, 0);
283		panic("audit_worker: write error %d\n", error);
284	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
285		printf("audit_worker: write error %d\n", error);
286}
287
288/*
289 * Given a kernel audit record, process as required.  Kernel audit records
290 * are converted to one, or possibly two, BSM records, depending on whether
291 * there is a user audit record present also.  Kernel records need be
292 * converted to BSM before they can be written out.  Both types will be
293 * written to disk, and audit pipes.
294 */
295static void
296audit_worker_process_record(struct kaudit_record *ar)
297{
298	struct au_record *bsm;
299	au_class_t class;
300	au_event_t event;
301	au_id_t auid;
302	int error, sorf;
303	int locked;
304
305	/*
306	 * We hold the audit worker lock over both writes, if there are two,
307	 * so that the two records won't be split across a rotation and end
308	 * up in two different trail files.
309	 */
310	if (((ar->k_ar_commit & AR_COMMIT_USER) &&
311	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) ||
312	    (ar->k_ar_commit & AR_PRESELECT_TRAIL)) {
313		AUDIT_WORKER_LOCK();
314		locked = 1;
315	} else
316		locked = 0;
317
318	/*
319	 * First, handle the user record, if any: commit to the system trail
320	 * and audit pipes as selected.
321	 */
322	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
323	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL)) {
324		AUDIT_WORKER_LOCK_ASSERT();
325		audit_record_write(audit_vp, audit_cred, ar->k_udata,
326		    ar->k_ulen);
327	}
328
329	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
330	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
331		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
332
333	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
334	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
335	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
336		goto out;
337
338	auid = ar->k_ar.ar_subj_auid;
339	event = ar->k_ar.ar_event;
340	class = au_event_class(event);
341	if (ar->k_ar.ar_errno == 0)
342		sorf = AU_PRS_SUCCESS;
343	else
344		sorf = AU_PRS_FAILURE;
345
346	error = kaudit_to_bsm(ar, &bsm);
347	switch (error) {
348	case BSM_NOAUDIT:
349		goto out;
350
351	case BSM_FAILURE:
352		printf("audit_worker_process_record: BSM_FAILURE\n");
353		goto out;
354
355	case BSM_SUCCESS:
356		break;
357
358	default:
359		panic("kaudit_to_bsm returned %d", error);
360	}
361
362	if (ar->k_ar_commit & AR_PRESELECT_TRAIL) {
363		AUDIT_WORKER_LOCK_ASSERT();
364		audit_record_write(audit_vp, audit_cred, bsm->data, bsm->len);
365	}
366
367	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
368		audit_pipe_submit(auid, event, class, sorf,
369		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
370		    bsm->len);
371
372	kau_free(bsm);
373out:
374	if (locked)
375		AUDIT_WORKER_UNLOCK();
376}
377
378/*
379 * The audit_worker thread is responsible for watching the event queue,
380 * dequeueing records, converting them to BSM format, and committing them to
381 * disk.  In order to minimize lock thrashing, records are dequeued in sets
382 * to a thread-local work queue.
383 *
384 * Note: this means that the effect bound on the size of the pending record
385 * queue is 2x the length of the global queue.
386 */
387static void
388audit_worker(void *arg)
389{
390	struct kaudit_queue ar_worklist;
391	struct kaudit_record *ar;
392	int lowater_signal;
393
394	TAILQ_INIT(&ar_worklist);
395	mtx_lock(&audit_mtx);
396	while (1) {
397		mtx_assert(&audit_mtx, MA_OWNED);
398
399		/*
400		 * Wait for a record.
401		 */
402		while (TAILQ_EMPTY(&audit_q))
403			cv_wait(&audit_worker_cv, &audit_mtx);
404
405		/*
406		 * If there are records in the global audit record queue,
407		 * transfer them to a thread-local queue and process them
408		 * one by one.  If we cross the low watermark threshold,
409		 * signal any waiting processes that they may wake up and
410		 * continue generating records.
411		 */
412		lowater_signal = 0;
413		while ((ar = TAILQ_FIRST(&audit_q))) {
414			TAILQ_REMOVE(&audit_q, ar, k_q);
415			audit_q_len--;
416			if (audit_q_len == audit_qctrl.aq_lowater)
417				lowater_signal++;
418			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
419		}
420		if (lowater_signal)
421			cv_broadcast(&audit_watermark_cv);
422
423		mtx_unlock(&audit_mtx);
424		while ((ar = TAILQ_FIRST(&ar_worklist))) {
425			TAILQ_REMOVE(&ar_worklist, ar, k_q);
426			audit_worker_process_record(ar);
427			audit_free(ar);
428		}
429		mtx_lock(&audit_mtx);
430	}
431}
432
433/*
434 * audit_rotate_vnode() is called by a user or kernel thread to configure or
435 * de-configure auditing on a vnode.  The arguments are the replacement
436 * credential (referenced) and vnode (referenced and opened) to substitute
437 * for the current credential and vnode, if any.  If either is set to NULL,
438 * both should be NULL, and this is used to indicate that audit is being
439 * disabled.  Any previous cred/vnode will be closed and freed.  We re-enable
440 * generating rotation requests to auditd.
441 */
442void
443audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
444{
445	struct ucred *old_audit_cred;
446	struct vnode *old_audit_vp;
447	struct vattr vattr;
448
449	KASSERT((cred != NULL && vp != NULL) || (cred == NULL && vp == NULL),
450	    ("audit_rotate_vnode: cred %p vp %p", cred, vp));
451
452	if (vp != NULL) {
453		vn_lock(vp, LK_SHARED | LK_RETRY);
454		if (VOP_GETATTR(vp, &vattr, cred) != 0)
455			vattr.va_size = 0;
456		VOP_UNLOCK(vp, 0);
457	} else {
458		vattr.va_size = 0;
459	}
460
461	/*
462	 * Rotate the vnode/cred, and clear the rotate flag so that we will
463	 * send a rotate trigger if the new file fills.
464	 */
465	AUDIT_WORKER_LOCK();
466	old_audit_cred = audit_cred;
467	old_audit_vp = audit_vp;
468	audit_cred = cred;
469	audit_vp = vp;
470	audit_size = vattr.va_size;
471	audit_file_rotate_wait = 0;
472	audit_enabled = (audit_vp != NULL);
473	AUDIT_WORKER_UNLOCK();
474
475	/*
476	 * If there was an old vnode/credential, close and free.
477	 */
478	if (old_audit_vp != NULL) {
479		vn_close(old_audit_vp, AUDIT_CLOSE_FLAGS, old_audit_cred,
480		    curthread);
481		crfree(old_audit_cred);
482	}
483}
484
485void
486audit_worker_init(void)
487{
488	int error;
489
490	AUDIT_WORKER_LOCK_INIT();
491	error = kproc_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
492	    0, "audit");
493	if (error)
494		panic("audit_worker_init: kproc_create returned %d", error);
495}
496