audit_worker.c revision 162599
1/*
2 * Copyright (c) 1999-2005 Apple Computer, Inc.
3 * Copyright (c) 2006 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/security/audit/audit_worker.c 162599 2006-09-24 13:35:58Z rwatson $
31 */
32
33#include <sys/param.h>
34#include <sys/condvar.h>
35#include <sys/conf.h>
36#include <sys/file.h>
37#include <sys/filedesc.h>
38#include <sys/fcntl.h>
39#include <sys/ipc.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/malloc.h>
43#include <sys/mount.h>
44#include <sys/namei.h>
45#include <sys/proc.h>
46#include <sys/queue.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/protosw.h>
50#include <sys/domain.h>
51#include <sys/sysproto.h>
52#include <sys/sysent.h>
53#include <sys/systm.h>
54#include <sys/ucred.h>
55#include <sys/uio.h>
56#include <sys/un.h>
57#include <sys/unistd.h>
58#include <sys/vnode.h>
59
60#include <bsm/audit.h>
61#include <bsm/audit_internal.h>
62#include <bsm/audit_kevents.h>
63
64#include <netinet/in.h>
65#include <netinet/in_pcb.h>
66
67#include <security/audit/audit.h>
68#include <security/audit/audit_private.h>
69
70#include <vm/uma.h>
71
72/*
73 * Worker thread that will schedule disk I/O, etc.
74 */
75static struct proc		*audit_thread;
76
77/*
78 * When an audit log is rotated, the actual rotation must be performed by the
79 * audit worker thread, as it may have outstanding writes on the current
80 * audit log.  audit_replacement_vp holds the vnode replacing the current
81 * vnode.  We can't let more than one replacement occur at a time, so if more
82 * than one thread requests a replacement, only one can have the replacement
83 * "in progress" at any given moment.  If a thread tries to replace the audit
84 * vnode and discovers a replacement is already in progress (i.e.,
85 * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
86 * waiting its turn to perform a replacement.  When a replacement is
87 * completed, this cv is signalled by the worker thread so a waiting thread
88 * can start another replacement.  We also store a credential to perform
89 * audit log write operations with.
90 *
91 * The current credential and vnode are thread-local to audit_worker.
92 */
93static struct cv		audit_replacement_cv;
94
95static int			audit_replacement_flag;
96static struct vnode		*audit_replacement_vp;
97static struct ucred		*audit_replacement_cred;
98
99/*
100 * Flags related to Kernel->user-space communication.
101 */
102static int			audit_file_rotate_wait;
103
104/*
105 * Write an audit record to a file, performed as the last stage after both
106 * preselection and BSM conversion.  Both space management and write failures
107 * are handled in this function.
108 *
109 * No attempt is made to deal with possible failure to deliver a trigger to
110 * the audit daemon, since the message is asynchronous anyway.
111 */
112static void
113audit_record_write(struct vnode *vp, struct ucred *cred, struct thread *td,
114    void *data, size_t len)
115{
116	static struct timeval last_lowspace_trigger;
117	static struct timeval last_fail;
118	static int cur_lowspace_trigger;
119	struct statfs *mnt_stat;
120	int error, vfslocked;
121	static int cur_fail;
122	struct vattr vattr;
123	long temp;
124
125	if (vp == NULL)
126		return;
127
128 	mnt_stat = &vp->v_mount->mnt_stat;
129	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
130
131	/*
132	 * First, gather statistics on the audit log file and file system so
133	 * that we know how we're doing on space.  Consider failure of these
134	 * operations to indicate a future inability to write to the file.
135	 */
136	error = VFS_STATFS(vp->v_mount, mnt_stat, td);
137	if (error)
138		goto fail;
139	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
140	error = VOP_GETATTR(vp, &vattr, cred, td);
141	VOP_UNLOCK(vp, 0, td);
142	if (error)
143		goto fail;
144	audit_fstat.af_currsz = vattr.va_size;
145
146	/*
147	 * We handle four different space-related limits:
148	 *
149	 * - A fixed (hard) limit on the minimum free blocks we require on
150	 *   the file system, and results in record loss, a trigger, and
151	 *   possible fail stop due to violating invariants.
152	 *
153	 * - An administrative (soft) limit, which when fallen below, results
154	 *   in the kernel notifying the audit daemon of low space.
155	 *
156	 * - An audit trail size limit, which when gone above, results in the
157	 *   kernel notifying the audit daemon that rotation is desired.
158	 *
159	 * - The total depth of the kernel audit record exceeding free space,
160	 *   which can lead to possible fail stop (with drain), in order to
161	 *   prevent violating invariants.  Failure here doesn't halt
162	 *   immediately, but prevents new records from being generated.
163	 *
164	 * Possibly, the last of these should be handled differently, always
165	 * allowing a full queue to be lost, rather than trying to prevent
166	 * loss.
167	 *
168	 * First, handle the hard limit, which generates a trigger and may
169	 * fail stop.  This is handled in the same manner as ENOSPC from
170	 * VOP_WRITE, and results in record loss.
171	 */
172	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
173		error = ENOSPC;
174		goto fail_enospc;
175	}
176
177	/*
178	 * Second, handle falling below the soft limit, if defined; we send
179	 * the daemon a trigger and continue processing the record.  Triggers
180	 * are limited to 1/sec.
181	 */
182	if (audit_qctrl.aq_minfree != 0) {
183		/*
184		 * XXXAUDIT: Check math and block size calculations here.
185		 */
186		temp = mnt_stat->f_blocks / (100 / audit_qctrl.aq_minfree);
187		if (mnt_stat->f_bfree < temp) {
188			if (ppsratecheck(&last_lowspace_trigger,
189			    &cur_lowspace_trigger, 1)) {
190				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
191				printf("Warning: audit space low\n");
192			}
193		}
194	}
195
196	/*
197	 * If the current file is getting full, generate a rotation trigger
198	 * to the daemon.  This is only approximate, which is fine as more
199	 * records may be generated before the daemon rotates the file.
200	 */
201	if ((audit_fstat.af_filesz != 0) && (audit_file_rotate_wait == 0) &&
202	    (vattr.va_size >= audit_fstat.af_filesz)) {
203		audit_file_rotate_wait = 1;
204		(void)send_trigger(AUDIT_TRIGGER_ROTATE_KERNEL);
205	}
206
207	/*
208	 * If the estimated amount of audit data in the audit event queue
209	 * (plus records allocated but not yet queued) has reached the amount
210	 * of free space on the disk, then we need to go into an audit fail
211	 * stop state, in which we do not permit the allocation/committing of
212	 * any new audit records.  We continue to process records but don't
213	 * allow any activities that might generate new records.  In the
214	 * future, we might want to detect when space is available again and
215	 * allow operation to continue, but this behavior is sufficient to
216	 * meet fail stop requirements in CAPP.
217	 */
218	if (audit_fail_stop) {
219		if ((unsigned long)((audit_q_len + audit_pre_q_len + 1) *
220		    MAX_AUDIT_RECORD_SIZE) / mnt_stat->f_bsize >=
221		    (unsigned long)(mnt_stat->f_bfree)) {
222			if (ppsratecheck(&last_fail, &cur_fail, 1))
223				printf("audit_record_write: free space "
224				    "below size of audit queue, failing "
225				    "stop\n");
226			audit_in_failure = 1;
227		} else if (audit_in_failure) {
228			/*
229			 * XXXRW: If we want to handle recovery, this is the
230			 * spot to do it: unset audit_in_failure, and issue a
231			 * wakeup on the cv.
232			 */
233		}
234	}
235
236	error = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
237	    IO_APPEND|IO_UNIT, cred, NULL, NULL, td);
238	if (error == ENOSPC)
239		goto fail_enospc;
240	else if (error)
241		goto fail;
242
243	/*
244	 * Catch completion of a queue drain here; if we're draining and the
245	 * queue is now empty, fail stop.  That audit_fail_stop is implicitly
246	 * true, since audit_in_failure can only be set of audit_fail_stop is
247	 * set.
248	 *
249	 * XXXRW: If we handle recovery from audit_in_failure, then we need
250	 * to make panic here conditional.
251	 */
252	if (audit_in_failure) {
253		if (audit_q_len == 0 && audit_pre_q_len == 0) {
254			VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
255			(void)VOP_FSYNC(vp, MNT_WAIT, td);
256			VOP_UNLOCK(vp, 0, td);
257			panic("Audit store overflow; record queue drained.");
258		}
259	}
260
261	VFS_UNLOCK_GIANT(vfslocked);
262	return;
263
264fail_enospc:
265	/*
266	 * ENOSPC is considered a special case with respect to failures, as
267	 * this can reflect either our preemptive detection of insufficient
268	 * space, or ENOSPC returned by the vnode write call.
269	 */
270	if (audit_fail_stop) {
271		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
272		(void)VOP_FSYNC(vp, MNT_WAIT, td);
273		VOP_UNLOCK(vp, 0, td);
274		panic("Audit log space exhausted and fail-stop set.");
275	}
276	(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
277	audit_suspended = 1;
278
279	/* FALLTHROUGH */
280fail:
281	/*
282	 * We have failed to write to the file, so the current record is
283	 * lost, which may require an immediate system halt.
284	 */
285	if (audit_panic_on_write_fail) {
286		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
287		(void)VOP_FSYNC(vp, MNT_WAIT, td);
288		VOP_UNLOCK(vp, 0, td);
289		panic("audit_worker: write error %d\n", error);
290	} else if (ppsratecheck(&last_fail, &cur_fail, 1))
291		printf("audit_worker: write error %d\n", error);
292	VFS_UNLOCK_GIANT(vfslocked);
293}
294
295/*
296 * If an appropriate signal has been received rotate the audit log based on
297 * the global replacement variables.  Signal consumers as needed that the
298 * rotation has taken place.
299 *
300 * XXXRW: The global variables and CVs used to signal the audit_worker to
301 * perform a rotation are essentially a message queue of depth 1.  It would
302 * be much nicer to actually use a message queue.
303 */
304static void
305audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
306    struct thread *audit_td)
307{
308	int do_replacement_signal, vfslocked;
309	struct ucred *old_cred;
310	struct vnode *old_vp;
311
312	mtx_assert(&audit_mtx, MA_OWNED);
313
314	do_replacement_signal = 0;
315	while (audit_replacement_flag != 0) {
316		old_cred = *audit_credp;
317		old_vp = *audit_vpp;
318		*audit_credp = audit_replacement_cred;
319		*audit_vpp = audit_replacement_vp;
320		audit_replacement_cred = NULL;
321		audit_replacement_vp = NULL;
322		audit_replacement_flag = 0;
323
324		audit_enabled = (*audit_vpp != NULL);
325
326		/*
327		 * XXX: What to do about write failures here?
328		 */
329		if (old_vp != NULL) {
330			AUDIT_PRINTF(("Closing old audit file\n"));
331			mtx_unlock(&audit_mtx);
332			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
333			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
334			    audit_td);
335			VFS_UNLOCK_GIANT(vfslocked);
336			crfree(old_cred);
337			mtx_lock(&audit_mtx);
338			old_cred = NULL;
339			old_vp = NULL;
340			AUDIT_PRINTF(("Audit file closed\n"));
341		}
342		if (*audit_vpp != NULL) {
343			AUDIT_PRINTF(("Opening new audit file\n"));
344		}
345		do_replacement_signal = 1;
346	}
347
348	/*
349	 * Signal that replacement have occurred to wake up and
350	 * start any other replacements started in parallel.  We can
351	 * continue about our business in the mean time.  We
352	 * broadcast so that both new replacements can be inserted,
353	 * but also so that the source(s) of replacement can return
354	 * successfully.
355	 */
356	if (do_replacement_signal)
357		cv_broadcast(&audit_replacement_cv);
358}
359
360/*
361 * Given a kernel audit record, process as required.  Kernel audit records
362 * are converted to one, or possibly two, BSM records, depending on whether
363 * there is a user audit record present also.  Kernel records need be
364 * converted to BSM before they can be written out.  Both types will be
365 * written to disk, and audit pipes.
366 */
367static void
368audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
369    struct thread *audit_td, struct kaudit_record *ar)
370{
371	struct au_record *bsm;
372	au_class_t class;
373	au_event_t event;
374	au_id_t auid;
375	int error, sorf;
376
377	/*
378	 * First, handle the user record, if any: commit to the system trail
379	 * and audit pipes as selected.
380	 */
381	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
382	    (ar->k_ar_commit & AR_PRESELECT_USER_TRAIL))
383		audit_record_write(audit_vp, audit_cred, audit_td,
384		    ar->k_udata, ar->k_ulen);
385
386	if ((ar->k_ar_commit & AR_COMMIT_USER) &&
387	    (ar->k_ar_commit & AR_PRESELECT_USER_PIPE))
388		audit_pipe_submit_user(ar->k_udata, ar->k_ulen);
389
390	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL) ||
391	    ((ar->k_ar_commit & AR_PRESELECT_PIPE) == 0 &&
392	    (ar->k_ar_commit & AR_PRESELECT_TRAIL) == 0))
393		return;
394
395	auid = ar->k_ar.ar_subj_auid;
396	event = ar->k_ar.ar_event;
397	class = au_event_class(event);
398	if (ar->k_ar.ar_errno == 0)
399		sorf = AU_PRS_SUCCESS;
400	else
401		sorf = AU_PRS_FAILURE;
402
403	error = kaudit_to_bsm(ar, &bsm);
404	switch (error) {
405	case BSM_NOAUDIT:
406		return;
407
408	case BSM_FAILURE:
409		printf("audit_worker_process_record: BSM_FAILURE\n");
410		return;
411
412	case BSM_SUCCESS:
413		break;
414
415	default:
416		panic("kaudit_to_bsm returned %d", error);
417	}
418
419	if (ar->k_ar_commit & AR_PRESELECT_TRAIL)
420		audit_record_write(audit_vp, audit_cred, audit_td, bsm->data,
421		    bsm->len);
422
423	if (ar->k_ar_commit & AR_PRESELECT_PIPE)
424		audit_pipe_submit(auid, event, class, sorf,
425		    ar->k_ar_commit & AR_PRESELECT_TRAIL, bsm->data,
426		    bsm->len);
427
428	kau_free(bsm);
429}
430
431/*
432 * The audit_worker thread is responsible for watching the event queue,
433 * dequeueing records, converting them to BSM format, and committing them to
434 * disk.  In order to minimize lock thrashing, records are dequeued in sets
435 * to a thread-local work queue.  In addition, the audit_work performs the
436 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
437 * variable.
438 */
439static void
440audit_worker(void *arg)
441{
442	struct kaudit_queue ar_worklist;
443	struct kaudit_record *ar;
444	struct ucred *audit_cred;
445	struct thread *audit_td;
446	struct vnode *audit_vp;
447	int lowater_signal;
448
449	AUDIT_PRINTF(("audit_worker starting\n"));
450
451	/*
452	 * These are thread-local variables requiring no synchronization.
453	 */
454	TAILQ_INIT(&ar_worklist);
455	audit_cred = NULL;
456	audit_td = curthread;
457	audit_vp = NULL;
458
459	mtx_lock(&audit_mtx);
460	while (1) {
461		mtx_assert(&audit_mtx, MA_OWNED);
462
463		/*
464		 * Wait for record or rotation events.
465		 */
466		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
467			AUDIT_PRINTF(("audit_worker waiting\n"));
468			cv_wait(&audit_worker_cv, &audit_mtx);
469			AUDIT_PRINTF(("audit_worker woken up\n"));
470			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
471			    "flag %d\n", audit_replacement_vp,
472			    audit_replacement_flag));
473		}
474
475		/*
476		 * First priority: replace the audit log target if requested.
477		 */
478		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);
479
480		/*
481		 * If there are records in the global audit record queue,
482		 * transfer them to a thread-local queue and process them
483		 * one by one.  If we cross the low watermark threshold,
484		 * signal any waiting processes that they may wake up and
485		 * continue generating records.
486		 */
487		lowater_signal = 0;
488		while ((ar = TAILQ_FIRST(&audit_q))) {
489			TAILQ_REMOVE(&audit_q, ar, k_q);
490			audit_q_len--;
491			if (audit_q_len == audit_qctrl.aq_lowater)
492				lowater_signal++;
493			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
494		}
495		if (lowater_signal)
496			cv_broadcast(&audit_watermark_cv);
497
498		mtx_unlock(&audit_mtx);
499		while ((ar = TAILQ_FIRST(&ar_worklist))) {
500			TAILQ_REMOVE(&ar_worklist, ar, k_q);
501			audit_worker_process_record(audit_vp, audit_cred,
502			    audit_td, ar);
503			audit_free(ar);
504		}
505		mtx_lock(&audit_mtx);
506	}
507}
508
509/*
510 * audit_rotate_vnode() is called by a user or kernel thread to configure or
511 * de-configure auditing on a vnode.  The arguments are the replacement
512 * credential and vnode to substitute for the current credential and vnode,
513 * if any.  If either is set to NULL, both should be NULL, and this is used
514 * to indicate that audit is being disabled.  The real work is done in the
515 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
516 * to complete.
517 *
518 * The vnode should be referenced and opened by the caller.  The credential
519 * should be referenced.  audit_rotate_vnode() will own both references as of
520 * this call, so the caller should not release either.
521 *
522 * XXXAUDIT: Review synchronize communication logic.  Really, this is a
523 * message queue of depth 1.
524 *
525 * XXXAUDIT: Enhance the comments below to indicate that we are basically
526 * acquiring ownership of the communications queue, inserting our message,
527 * and waiting for an acknowledgement.
528 */
529void
530audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
531{
532
533	/*
534	 * If other parallel log replacements have been requested, we wait
535	 * until they've finished before continuing.
536	 */
537	mtx_lock(&audit_mtx);
538	while (audit_replacement_flag != 0) {
539		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
540		    "flag\n"));
541		cv_wait(&audit_replacement_cv, &audit_mtx);
542		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
543		    audit_replacement_flag));
544	}
545	audit_replacement_cred = cred;
546	audit_replacement_flag = 1;
547	audit_replacement_vp = vp;
548
549	/*
550	 * Wake up the audit worker to perform the exchange once we
551	 * release the mutex.
552	 */
553	cv_signal(&audit_worker_cv);
554
555	/*
556	 * Wait for the audit_worker to broadcast that a replacement has
557	 * taken place; we know that once this has happened, our vnode
558	 * has been replaced in, so we can return successfully.
559	 */
560	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
561	    "replacement\n"));
562	cv_wait(&audit_replacement_cv, &audit_mtx);
563	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
564	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
565	mtx_unlock(&audit_mtx);
566
567	audit_file_rotate_wait = 0; /* We can now request another rotation */
568}
569
570void
571audit_worker_init(void)
572{
573	int error;
574
575	cv_init(&audit_replacement_cv, "audit_replacement_cv");
576	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
577	    0, "audit_worker");
578	if (error)
579		panic("audit_worker_init: kthread_create returned %d", error);
580}
581