audit_worker.c revision 159264
1/*
2 * Copyright (c) 1999-2005 Apple Computer, Inc.
3 * Copyright (c) 2006 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/security/audit/audit_worker.c 159264 2006-06-05 13:50:02Z rwatson $
31 */
32
33#include <sys/param.h>
34#include <sys/condvar.h>
35#include <sys/conf.h>
36#include <sys/file.h>
37#include <sys/filedesc.h>
38#include <sys/fcntl.h>
39#include <sys/ipc.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/malloc.h>
43#include <sys/mount.h>
44#include <sys/namei.h>
45#include <sys/proc.h>
46#include <sys/queue.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/protosw.h>
50#include <sys/domain.h>
51#include <sys/sysproto.h>
52#include <sys/sysent.h>
53#include <sys/systm.h>
54#include <sys/ucred.h>
55#include <sys/uio.h>
56#include <sys/un.h>
57#include <sys/unistd.h>
58#include <sys/vnode.h>
59
60#include <bsm/audit.h>
61#include <bsm/audit_internal.h>
62#include <bsm/audit_kevents.h>
63
64#include <netinet/in.h>
65#include <netinet/in_pcb.h>
66
67#include <security/audit/audit.h>
68#include <security/audit/audit_private.h>
69
70#include <vm/uma.h>
71
72/*
73 * Worker thread that will schedule disk I/O, etc.
74 */
75static struct proc		*audit_thread;
76
77/*
78 * When an audit log is rotated, the actual rotation must be performed by the
79 * audit worker thread, as it may have outstanding writes on the current
80 * audit log.  audit_replacement_vp holds the vnode replacing the current
81 * vnode.  We can't let more than one replacement occur at a time, so if more
82 * than one thread requests a replacement, only one can have the replacement
83 * "in progress" at any given moment.  If a thread tries to replace the audit
84 * vnode and discovers a replacement is already in progress (i.e.,
85 * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
86 * waiting its turn to perform a replacement.  When a replacement is
87 * completed, this cv is signalled by the worker thread so a waiting thread
88 * can start another replacement.  We also store a credential to perform
89 * audit log write operations with.
90 *
91 * The current credential and vnode are thread-local to audit_worker.
92 */
93static struct cv		audit_replacement_cv;
94
95static int			audit_replacement_flag;
96static struct vnode		*audit_replacement_vp;
97static struct ucred		*audit_replacement_cred;
98
99/*
100 * Flags related to Kernel->user-space communication.
101 */
102static int			audit_file_rotate_wait;
103
104/*
105 * XXXAUDIT: Should adjust comments below to make it clear that we get to
106 * this point only if we believe we have storage, so not having space here is
107 * a violation of invariants derived from administrative procedures. I.e.,
108 * someone else has written to the audit partition, leaving less space than
109 * we accounted for.
110 */
111static int
112audit_record_write(struct vnode *vp, struct ucred *cred, struct thread *td,
113    void *data, size_t len)
114{
115	int ret;
116	long temp;
117	struct vattr vattr;
118	struct statfs *mnt_stat = &vp->v_mount->mnt_stat;
119	int vfslocked;
120
121	if (vp == NULL)
122		return (0);
123
124	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
125
126	/*
127	 * First, gather statistics on the audit log file and file system so
128	 * that we know how we're doing on space.  In both cases, if we're
129	 * unable to perform the operation, we drop the record and return.
130	 * However, this is arguably an assertion failure.
131	 * XXX Need a FreeBSD equivalent.
132	 */
133	ret = VFS_STATFS(vp->v_mount, mnt_stat, td);
134	if (ret)
135		goto out;
136
137	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
138	ret = VOP_GETATTR(vp, &vattr, cred, td);
139	VOP_UNLOCK(vp, 0, td);
140	if (ret)
141		goto out;
142
143	/* update the global stats struct */
144	audit_fstat.af_currsz = vattr.va_size;
145
146	/*
147	 * XXX Need to decide what to do if the trigger to the audit daemon
148	 * fails.
149	 */
150
151	/*
152	 * If we fall below minimum free blocks (hard limit), tell the audit
153	 * daemon to force a rotation off of the file system. We also stop
154	 * writing, which means this audit record is probably lost.  If we
155	 * fall below the minimum percent free blocks (soft limit), then
156	 * kindly suggest to the audit daemon to do something.
157	 */
158	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
159		(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
160		/*
161		 * Hopefully userspace did something about all the previous
162		 * triggers that were sent prior to this critical condition.
163		 * If fail-stop is set, then we're done; goodnight Gracie.
164		 */
165		if (audit_fail_stop)
166			panic("Audit log space exhausted and fail-stop set.");
167		else {
168			audit_suspended = 1;
169			ret = ENOSPC;
170			goto out;
171		}
172	} else
173		/*
174		 * Send a message to the audit daemon that disk space is
175		 * getting low.
176		 *
177		 * XXXAUDIT: Check math and block size calculation here.
178		 */
179		if (audit_qctrl.aq_minfree != 0) {
180			temp = mnt_stat->f_blocks / (100 /
181			    audit_qctrl.aq_minfree);
182			if (mnt_stat->f_bfree < temp)
183				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
184		}
185
186	/*
187	 * Check if the current log file is full; if so, call for a log
188	 * rotate. This is not an exact comparison; we may write some records
189	 * over the limit. If that's not acceptable, then add a fudge factor
190	 * here.
191	 */
192	if ((audit_fstat.af_filesz != 0) &&
193	    (audit_file_rotate_wait == 0) &&
194	    (vattr.va_size >= audit_fstat.af_filesz)) {
195		audit_file_rotate_wait = 1;
196		(void)send_trigger(AUDIT_TRIGGER_OPEN_NEW);
197	}
198
199	/*
200	 * If the estimated amount of audit data in the audit event queue
201	 * (plus records allocated but not yet queued) has reached the amount
202	 * of free space on the disk, then we need to go into an audit fail
203	 * stop state, in which we do not permit the allocation/committing of
204	 * any new audit records.  We continue to process packets but don't
205	 * allow any activities that might generate new records.  In the
206	 * future, we might want to detect when space is available again and
207	 * allow operation to continue, but this behavior is sufficient to
208	 * meet fail stop requirements in CAPP.
209	 */
210	if (audit_fail_stop &&
211	    (unsigned long)
212	    ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) /
213	    mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) {
214		printf("audit_record_write: free space below size of audit "
215		    "queue, failing stop\n");
216		audit_in_failure = 1;
217	}
218
219	ret = vn_rdwr(UIO_WRITE, vp, data, len, (off_t)0, UIO_SYSSPACE,
220	    IO_APPEND|IO_UNIT, cred, NULL, NULL, td);
221
222out:
223	/*
224	 * When we're done processing the current record, we have to check to
225	 * see if we're in a failure mode, and if so, whether this was the
226	 * last record left to be drained.  If we're done draining, then we
227	 * fsync the vnode and panic.
228	 */
229	if (audit_in_failure && audit_q_len == 0 && audit_pre_q_len == 0) {
230		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
231		(void)VOP_FSYNC(vp, MNT_WAIT, td);
232		VOP_UNLOCK(vp, 0, td);
233		panic("Audit store overflow; record queue drained.");
234	}
235
236	VFS_UNLOCK_GIANT(vfslocked);
237
238	return (ret);
239}
240
241/*
242 * If an appropriate signal has been received rotate the audit log based on
243 * the global replacement variables.  Signal consumers as needed that the
244 * rotation has taken place.
245 *
246 * XXXRW: The global variables and CVs used to signal the audit_worker to
247 * perform a rotation are essentially a message queue of depth 1.  It would
248 * be much nicer to actually use a message queue.
249 */
250static void
251audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
252    struct thread *audit_td)
253{
254	int do_replacement_signal, vfslocked;
255	struct ucred *old_cred;
256	struct vnode *old_vp;
257
258	mtx_assert(&audit_mtx, MA_OWNED);
259
260	do_replacement_signal = 0;
261	while (audit_replacement_flag != 0) {
262		old_cred = *audit_credp;
263		old_vp = *audit_vpp;
264		*audit_credp = audit_replacement_cred;
265		*audit_vpp = audit_replacement_vp;
266		audit_replacement_cred = NULL;
267		audit_replacement_vp = NULL;
268		audit_replacement_flag = 0;
269
270		audit_enabled = (*audit_vpp != NULL);
271
272		/*
273		 * XXX: What to do about write failures here?
274		 */
275		if (old_vp != NULL) {
276			AUDIT_PRINTF(("Closing old audit file\n"));
277			mtx_unlock(&audit_mtx);
278			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
279			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
280			    audit_td);
281			VFS_UNLOCK_GIANT(vfslocked);
282			crfree(old_cred);
283			mtx_lock(&audit_mtx);
284			old_cred = NULL;
285			old_vp = NULL;
286			AUDIT_PRINTF(("Audit file closed\n"));
287		}
288		if (*audit_vpp != NULL) {
289			AUDIT_PRINTF(("Opening new audit file\n"));
290		}
291		do_replacement_signal = 1;
292	}
293
294	/*
295	 * Signal that replacement have occurred to wake up and
296	 * start any other replacements started in parallel.  We can
297	 * continue about our business in the mean time.  We
298	 * broadcast so that both new replacements can be inserted,
299	 * but also so that the source(s) of replacement can return
300	 * successfully.
301	 */
302	if (do_replacement_signal)
303		cv_broadcast(&audit_replacement_cv);
304}
305
306/*
307 * Drain the audit commit queue and free the records.  Used if there are
308 * records present, but no audit log target.
309 */
310static void
311audit_worker_drain(void)
312{
313	struct kaudit_record *ar;
314
315	mtx_assert(&audit_mtx, MA_OWNED);
316
317	while ((ar = TAILQ_FIRST(&audit_q))) {
318		TAILQ_REMOVE(&audit_q, ar, k_q);
319		audit_free(ar);
320		audit_q_len--;
321	}
322}
323
324/*
325 * Given a kernel audit record, process as required.  Kernel audit records
326 * are converted to one, or possibly two, BSM records, depending on whether
327 * there is a user audit record present also.  Kernel records need be
328 * converted to BSM before they can be written out.  Both types will be
329 * written to disk, and audit pipes.
330 */
331static void
332audit_worker_process_record(struct vnode *audit_vp, struct ucred *audit_cred,
333    struct thread *audit_td, struct kaudit_record *ar)
334{
335	struct au_record *bsm;
336	int error, ret;
337
338	if (ar->k_ar_commit & AR_COMMIT_USER) {
339		error = audit_record_write(audit_vp, audit_cred, audit_td,
340		    ar->k_udata, ar->k_ulen);
341		if (error && audit_panic_on_write_fail)
342			panic("audit_worker: write error %d\n", error);
343		else if (error)
344			printf("audit_worker: write error %d\n", error);
345		audit_pipe_submit(ar->k_udata, ar->k_ulen);
346	}
347
348	if (ar->k_ar_commit & AR_COMMIT_KERNEL) {
349		ret = kaudit_to_bsm(ar, &bsm);
350		switch (ret) {
351		case BSM_NOAUDIT:
352			break;
353
354		case BSM_FAILURE:
355			printf("audit_worker_process_record: BSM_FAILURE\n");
356			break;
357
358		case BSM_SUCCESS:
359			error = audit_record_write(audit_vp, audit_cred,
360			    audit_td, bsm->data, bsm->len);
361			if (error && audit_panic_on_write_fail)
362				panic("audit_worker: write error %d\n",
363				    error);
364			else if (error)
365				printf("audit_worker: write error %d\n",
366				    error);
367			audit_pipe_submit(bsm->data, bsm->len);
368			kau_free(bsm);
369			break;
370
371		default:
372			panic("kaudit_to_bsm returned %d", ret);
373		}
374	}
375}
376
377/*
378 * The audit_worker thread is responsible for watching the event queue,
379 * dequeueing records, converting them to BSM format, and committing them to
380 * disk.  In order to minimize lock thrashing, records are dequeued in sets
381 * to a thread-local work queue.  In addition, the audit_work performs the
382 * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
383 * variable.
384 */
385static void
386audit_worker(void *arg)
387{
388	struct kaudit_queue ar_worklist;
389	struct kaudit_record *ar;
390	struct ucred *audit_cred;
391	struct thread *audit_td;
392	struct vnode *audit_vp;
393	int lowater_signal;
394
395	AUDIT_PRINTF(("audit_worker starting\n"));
396
397	/*
398	 * These are thread-local variables requiring no synchronization.
399	 */
400	TAILQ_INIT(&ar_worklist);
401	audit_cred = NULL;
402	audit_td = curthread;
403	audit_vp = NULL;
404
405	mtx_lock(&audit_mtx);
406	while (1) {
407		mtx_assert(&audit_mtx, MA_OWNED);
408
409		/*
410		 * Wait for record or rotation events.
411		 */
412		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
413			AUDIT_PRINTF(("audit_worker waiting\n"));
414			cv_wait(&audit_worker_cv, &audit_mtx);
415			AUDIT_PRINTF(("audit_worker woken up\n"));
416			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
417			    "flag %d\n", audit_replacement_vp,
418			    audit_replacement_flag));
419		}
420
421		/*
422		 * First priority: replace the audit log target if requested.
423		 */
424		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);
425
426		/*
427		 * If we have records, but there's no active vnode to write
428		 * to, drain the record queue.  Generally, we prevent the
429		 * unnecessary allocation of records elsewhere, but we need
430		 * to allow for races between conditional allocation and
431		 * queueing.  Go back to waiting when we're done.
432		 */
433		if (audit_vp == NULL) {
434			audit_worker_drain();
435			continue;
436		}
437
438		/*
439		 * We have both records to write and an active vnode to write
440		 * to.  Dequeue a record, and start the write.  Eventually,
441		 * it might make sense to dequeue several records and perform
442		 * our own clustering, if the lower layers aren't doing it
443		 * automatically enough.
444		 */
445		lowater_signal = 0;
446		while ((ar = TAILQ_FIRST(&audit_q))) {
447			TAILQ_REMOVE(&audit_q, ar, k_q);
448			audit_q_len--;
449			if (audit_q_len == audit_qctrl.aq_lowater)
450				lowater_signal++;
451			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
452		}
453		if (lowater_signal)
454			cv_broadcast(&audit_watermark_cv);
455
456		mtx_unlock(&audit_mtx);
457		while ((ar = TAILQ_FIRST(&ar_worklist))) {
458			TAILQ_REMOVE(&ar_worklist, ar, k_q);
459			audit_worker_process_record(audit_vp, audit_cred,
460			    audit_td, ar);
461			audit_free(ar);
462		}
463		mtx_lock(&audit_mtx);
464	}
465}
466
467/*
468 * audit_rotate_vnode() is called by a user or kernel thread to configure or
469 * de-configure auditing on a vnode.  The arguments are the replacement
470 * credential and vnode to substitute for the current credential and vnode,
471 * if any.  If either is set to NULL, both should be NULL, and this is used
472 * to indicate that audit is being disabled.  The real work is done in the
473 * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
474 * to complete.
475 *
476 * The vnode should be referenced and opened by the caller.  The credential
477 * should be referenced.  audit_rotate_vnode() will own both references as of
478 * this call, so the caller should not release either.
479 *
480 * XXXAUDIT: Review synchronize communication logic.  Really, this is a
481 * message queue of depth 1.
482 *
483 * XXXAUDIT: Enhance the comments below to indicate that we are basically
484 * acquiring ownership of the communications queue, inserting our message,
485 * and waiting for an acknowledgement.
486 */
487void
488audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
489{
490
491	/*
492	 * If other parallel log replacements have been requested, we wait
493	 * until they've finished before continuing.
494	 */
495	mtx_lock(&audit_mtx);
496	while (audit_replacement_flag != 0) {
497		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
498		    "flag\n"));
499		cv_wait(&audit_replacement_cv, &audit_mtx);
500		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
501		    audit_replacement_flag));
502	}
503	audit_replacement_cred = cred;
504	audit_replacement_flag = 1;
505	audit_replacement_vp = vp;
506
507	/*
508	 * Wake up the audit worker to perform the exchange once we
509	 * release the mutex.
510	 */
511	cv_signal(&audit_worker_cv);
512
513	/*
514	 * Wait for the audit_worker to broadcast that a replacement has
515	 * taken place; we know that once this has happened, our vnode
516	 * has been replaced in, so we can return successfully.
517	 */
518	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
519	    "replacement\n"));
520	cv_wait(&audit_replacement_cv, &audit_mtx);
521	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
522	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
523	mtx_unlock(&audit_mtx);
524
525	audit_file_rotate_wait = 0; /* We can now request another rotation */
526}
527
528void
529audit_worker_init(void)
530{
531	int error;
532
533	cv_init(&audit_replacement_cv, "audit_replacement_cv");
534	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
535	    0, "audit_worker");
536	if (error)
537		panic("audit_worker_init: kthread_create returned %d", error);
538}
539