1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30/*
31 * IEEE 802.11 protocol support.
32 */
33
34#include "opt_inet.h"
35#include "opt_wlan.h"
36
37#include <sys/param.h>
38#include <sys/kernel.h>
39#include <sys/systm.h>
40
41#include <sys/socket.h>
42#include <sys/sockio.h>
43
44#include <net/if.h>
45#include <net/if_media.h>
46#include <net/ethernet.h>		/* XXX for ether_sprintf */
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_adhoc.h>
50#include <net80211/ieee80211_sta.h>
51#include <net80211/ieee80211_hostap.h>
52#include <net80211/ieee80211_wds.h>
53#ifdef IEEE80211_SUPPORT_MESH
54#include <net80211/ieee80211_mesh.h>
55#endif
56#include <net80211/ieee80211_monitor.h>
57#include <net80211/ieee80211_input.h>
58
59/* XXX tunables */
60#define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61#define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62
63const char *ieee80211_mgt_subtype_name[] = {
64	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66	"beacon",	"atim",		"disassoc",	"auth",
67	"deauth",	"action",	"action_noack",	"reserved#15"
68};
69const char *ieee80211_ctl_subtype_name[] = {
70	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73	"cts",		"ack",		"cf_end",	"cf_end_ack"
74};
75const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76	"IBSS",		/* IEEE80211_M_IBSS */
77	"STA",		/* IEEE80211_M_STA */
78	"WDS",		/* IEEE80211_M_WDS */
79	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81	"MONITOR",	/* IEEE80211_M_MONITOR */
82	"MBSS"		/* IEEE80211_M_MBSS */
83};
84const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85	"INIT",		/* IEEE80211_S_INIT */
86	"SCAN",		/* IEEE80211_S_SCAN */
87	"AUTH",		/* IEEE80211_S_AUTH */
88	"ASSOC",	/* IEEE80211_S_ASSOC */
89	"CAC",		/* IEEE80211_S_CAC */
90	"RUN",		/* IEEE80211_S_RUN */
91	"CSA",		/* IEEE80211_S_CSA */
92	"SLEEP",	/* IEEE80211_S_SLEEP */
93};
94const char *ieee80211_wme_acnames[] = {
95	"WME_AC_BE",
96	"WME_AC_BK",
97	"WME_AC_VI",
98	"WME_AC_VO",
99	"WME_UPSD",
100};
101
102static void beacon_miss(void *, int);
103static void beacon_swmiss(void *, int);
104static void parent_updown(void *, int);
105static void update_mcast(void *, int);
106static void update_promisc(void *, int);
107static void update_channel(void *, int);
108static void update_chw(void *, int);
109static void ieee80211_newstate_cb(void *, int);
110
111static int
112null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
113	const struct ieee80211_bpf_params *params)
114{
115	struct ifnet *ifp = ni->ni_ic->ic_ifp;
116
117	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
118	m_freem(m);
119	return ENETDOWN;
120}
121
122void
123ieee80211_proto_attach(struct ieee80211com *ic)
124{
125	struct ifnet *ifp = ic->ic_ifp;
126
127	/* override the 802.3 setting */
128	ifp->if_hdrlen = ic->ic_headroom
129		+ sizeof(struct ieee80211_qosframe_addr4)
130		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
131		+ IEEE80211_WEP_EXTIVLEN;
132	/* XXX no way to recalculate on ifdetach */
133	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
134		/* XXX sanity check... */
135		max_linkhdr = ALIGN(ifp->if_hdrlen);
136		max_hdr = max_linkhdr + max_protohdr;
137		max_datalen = MHLEN - max_hdr;
138	}
139	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
140
141	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
142	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
143	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
144	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
145	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
146	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
147
148	ic->ic_wme.wme_hipri_switch_hysteresis =
149		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150
151	/* initialize management frame handlers */
152	ic->ic_send_mgmt = ieee80211_send_mgmt;
153	ic->ic_raw_xmit = null_raw_xmit;
154
155	ieee80211_adhoc_attach(ic);
156	ieee80211_sta_attach(ic);
157	ieee80211_wds_attach(ic);
158	ieee80211_hostap_attach(ic);
159#ifdef IEEE80211_SUPPORT_MESH
160	ieee80211_mesh_attach(ic);
161#endif
162	ieee80211_monitor_attach(ic);
163}
164
165void
166ieee80211_proto_detach(struct ieee80211com *ic)
167{
168	ieee80211_monitor_detach(ic);
169#ifdef IEEE80211_SUPPORT_MESH
170	ieee80211_mesh_detach(ic);
171#endif
172	ieee80211_hostap_detach(ic);
173	ieee80211_wds_detach(ic);
174	ieee80211_adhoc_detach(ic);
175	ieee80211_sta_detach(ic);
176}
177
178static void
179null_update_beacon(struct ieee80211vap *vap, int item)
180{
181}
182
183void
184ieee80211_proto_vattach(struct ieee80211vap *vap)
185{
186	struct ieee80211com *ic = vap->iv_ic;
187	struct ifnet *ifp = vap->iv_ifp;
188	int i;
189
190	/* override the 802.3 setting */
191	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192
193	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
197	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
198	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
199	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
200	/*
201	 * Install default tx rate handling: no fixed rate, lowest
202	 * supported rate for mgmt and multicast frames.  Default
203	 * max retry count.  These settings can be changed by the
204	 * driver and/or user applications.
205	 */
206	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208
209		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210
211		/*
212		 * Setting the management rate to MCS 0 assumes that the
213		 * BSS Basic rate set is empty and the BSS Basic MCS set
214		 * is not.
215		 *
216		 * Since we're not checking this, default to the lowest
217		 * defined rate for this mode.
218		 *
219		 * At least one 11n AP (DLINK DIR-825) is reported to drop
220		 * some MCS management traffic (eg BA response frames.)
221		 *
222		 * See also: 9.6.0 of the 802.11n-2009 specification.
223		 */
224#ifdef	NOTYET
225		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
226			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
227			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
228		} else {
229			vap->iv_txparms[i].mgmtrate =
230			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
231			vap->iv_txparms[i].mcastrate =
232			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
233		}
234#endif
235		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
236		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
237		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
238	}
239	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
240
241	vap->iv_update_beacon = null_update_beacon;
242	vap->iv_deliver_data = ieee80211_deliver_data;
243
244	/* attach support for operating mode */
245	ic->ic_vattach[vap->iv_opmode](vap);
246}
247
248void
249ieee80211_proto_vdetach(struct ieee80211vap *vap)
250{
251#define	FREEAPPIE(ie) do { \
252	if (ie != NULL) \
253		free(ie, M_80211_NODE_IE); \
254} while (0)
255	/*
256	 * Detach operating mode module.
257	 */
258	if (vap->iv_opdetach != NULL)
259		vap->iv_opdetach(vap);
260	/*
261	 * This should not be needed as we detach when reseting
262	 * the state but be conservative here since the
263	 * authenticator may do things like spawn kernel threads.
264	 */
265	if (vap->iv_auth->ia_detach != NULL)
266		vap->iv_auth->ia_detach(vap);
267	/*
268	 * Detach any ACL'ator.
269	 */
270	if (vap->iv_acl != NULL)
271		vap->iv_acl->iac_detach(vap);
272
273	FREEAPPIE(vap->iv_appie_beacon);
274	FREEAPPIE(vap->iv_appie_probereq);
275	FREEAPPIE(vap->iv_appie_proberesp);
276	FREEAPPIE(vap->iv_appie_assocreq);
277	FREEAPPIE(vap->iv_appie_assocresp);
278	FREEAPPIE(vap->iv_appie_wpa);
279#undef FREEAPPIE
280}
281
282/*
283 * Simple-minded authenticator module support.
284 */
285
286#define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
287/* XXX well-known names */
288static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
289	"wlan_internal",	/* IEEE80211_AUTH_NONE */
290	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
291	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
292	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
293	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
294	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
295};
296static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
297
298static const struct ieee80211_authenticator auth_internal = {
299	.ia_name		= "wlan_internal",
300	.ia_attach		= NULL,
301	.ia_detach		= NULL,
302	.ia_node_join		= NULL,
303	.ia_node_leave		= NULL,
304};
305
306/*
307 * Setup internal authenticators once; they are never unregistered.
308 */
309static void
310ieee80211_auth_setup(void)
311{
312	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
313	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
314	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
315}
316SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
317
318const struct ieee80211_authenticator *
319ieee80211_authenticator_get(int auth)
320{
321	if (auth >= IEEE80211_AUTH_MAX)
322		return NULL;
323	if (authenticators[auth] == NULL)
324		ieee80211_load_module(auth_modnames[auth]);
325	return authenticators[auth];
326}
327
328void
329ieee80211_authenticator_register(int type,
330	const struct ieee80211_authenticator *auth)
331{
332	if (type >= IEEE80211_AUTH_MAX)
333		return;
334	authenticators[type] = auth;
335}
336
337void
338ieee80211_authenticator_unregister(int type)
339{
340
341	if (type >= IEEE80211_AUTH_MAX)
342		return;
343	authenticators[type] = NULL;
344}
345
346/*
347 * Very simple-minded ACL module support.
348 */
349/* XXX just one for now */
350static	const struct ieee80211_aclator *acl = NULL;
351
352void
353ieee80211_aclator_register(const struct ieee80211_aclator *iac)
354{
355	printf("wlan: %s acl policy registered\n", iac->iac_name);
356	acl = iac;
357}
358
359void
360ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
361{
362	if (acl == iac)
363		acl = NULL;
364	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
365}
366
367const struct ieee80211_aclator *
368ieee80211_aclator_get(const char *name)
369{
370	if (acl == NULL)
371		ieee80211_load_module("wlan_acl");
372	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
373}
374
375void
376ieee80211_print_essid(const uint8_t *essid, int len)
377{
378	const uint8_t *p;
379	int i;
380
381	if (len > IEEE80211_NWID_LEN)
382		len = IEEE80211_NWID_LEN;
383	/* determine printable or not */
384	for (i = 0, p = essid; i < len; i++, p++) {
385		if (*p < ' ' || *p > 0x7e)
386			break;
387	}
388	if (i == len) {
389		printf("\"");
390		for (i = 0, p = essid; i < len; i++, p++)
391			printf("%c", *p);
392		printf("\"");
393	} else {
394		printf("0x");
395		for (i = 0, p = essid; i < len; i++, p++)
396			printf("%02x", *p);
397	}
398}
399
400void
401ieee80211_dump_pkt(struct ieee80211com *ic,
402	const uint8_t *buf, int len, int rate, int rssi)
403{
404	const struct ieee80211_frame *wh;
405	int i;
406
407	wh = (const struct ieee80211_frame *)buf;
408	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
409	case IEEE80211_FC1_DIR_NODS:
410		printf("NODS %s", ether_sprintf(wh->i_addr2));
411		printf("->%s", ether_sprintf(wh->i_addr1));
412		printf("(%s)", ether_sprintf(wh->i_addr3));
413		break;
414	case IEEE80211_FC1_DIR_TODS:
415		printf("TODS %s", ether_sprintf(wh->i_addr2));
416		printf("->%s", ether_sprintf(wh->i_addr3));
417		printf("(%s)", ether_sprintf(wh->i_addr1));
418		break;
419	case IEEE80211_FC1_DIR_FROMDS:
420		printf("FRDS %s", ether_sprintf(wh->i_addr3));
421		printf("->%s", ether_sprintf(wh->i_addr1));
422		printf("(%s)", ether_sprintf(wh->i_addr2));
423		break;
424	case IEEE80211_FC1_DIR_DSTODS:
425		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
426		printf("->%s", ether_sprintf(wh->i_addr3));
427		printf("(%s", ether_sprintf(wh->i_addr2));
428		printf("->%s)", ether_sprintf(wh->i_addr1));
429		break;
430	}
431	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
432	case IEEE80211_FC0_TYPE_DATA:
433		printf(" data");
434		break;
435	case IEEE80211_FC0_TYPE_MGT:
436		printf(" %s", ieee80211_mgt_subtype_name[
437		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
438		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
439		break;
440	default:
441		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
442		break;
443	}
444	if (IEEE80211_QOS_HAS_SEQ(wh)) {
445		const struct ieee80211_qosframe *qwh =
446			(const struct ieee80211_qosframe *)buf;
447		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
448			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
449	}
450	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
451		int off;
452
453		off = ieee80211_anyhdrspace(ic, wh);
454		printf(" WEP [IV %.02x %.02x %.02x",
455			buf[off+0], buf[off+1], buf[off+2]);
456		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
457			printf(" %.02x %.02x %.02x",
458				buf[off+4], buf[off+5], buf[off+6]);
459		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
460	}
461	if (rate >= 0)
462		printf(" %dM", rate / 2);
463	if (rssi >= 0)
464		printf(" +%d", rssi);
465	printf("\n");
466	if (len > 0) {
467		for (i = 0; i < len; i++) {
468			if ((i & 1) == 0)
469				printf(" ");
470			printf("%02x", buf[i]);
471		}
472		printf("\n");
473	}
474}
475
476static __inline int
477findrix(const struct ieee80211_rateset *rs, int r)
478{
479	int i;
480
481	for (i = 0; i < rs->rs_nrates; i++)
482		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
483			return i;
484	return -1;
485}
486
487int
488ieee80211_fix_rate(struct ieee80211_node *ni,
489	struct ieee80211_rateset *nrs, int flags)
490{
491#define	RV(v)	((v) & IEEE80211_RATE_VAL)
492	struct ieee80211vap *vap = ni->ni_vap;
493	struct ieee80211com *ic = ni->ni_ic;
494	int i, j, rix, error;
495	int okrate, badrate, fixedrate, ucastrate;
496	const struct ieee80211_rateset *srs;
497	uint8_t r;
498
499	error = 0;
500	okrate = badrate = 0;
501	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
502	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
503		/*
504		 * Workaround awkwardness with fixed rate.  We are called
505		 * to check both the legacy rate set and the HT rate set
506		 * but we must apply any legacy fixed rate check only to the
507		 * legacy rate set and vice versa.  We cannot tell what type
508		 * of rate set we've been given (legacy or HT) but we can
509		 * distinguish the fixed rate type (MCS have 0x80 set).
510		 * So to deal with this the caller communicates whether to
511		 * check MCS or legacy rate using the flags and we use the
512		 * type of any fixed rate to avoid applying an MCS to a
513		 * legacy rate and vice versa.
514		 */
515		if (ucastrate & 0x80) {
516			if (flags & IEEE80211_F_DOFRATE)
517				flags &= ~IEEE80211_F_DOFRATE;
518		} else if ((ucastrate & 0x80) == 0) {
519			if (flags & IEEE80211_F_DOFMCS)
520				flags &= ~IEEE80211_F_DOFMCS;
521		}
522		/* NB: required to make MCS match below work */
523		ucastrate &= IEEE80211_RATE_VAL;
524	}
525	fixedrate = IEEE80211_FIXED_RATE_NONE;
526	/*
527	 * XXX we are called to process both MCS and legacy rates;
528	 * we must use the appropriate basic rate set or chaos will
529	 * ensue; for now callers that want MCS must supply
530	 * IEEE80211_F_DOBRS; at some point we'll need to split this
531	 * function so there are two variants, one for MCS and one
532	 * for legacy rates.
533	 */
534	if (flags & IEEE80211_F_DOBRS)
535		srs = (const struct ieee80211_rateset *)
536		    ieee80211_get_suphtrates(ic, ni->ni_chan);
537	else
538		srs = ieee80211_get_suprates(ic, ni->ni_chan);
539	for (i = 0; i < nrs->rs_nrates; ) {
540		if (flags & IEEE80211_F_DOSORT) {
541			/*
542			 * Sort rates.
543			 */
544			for (j = i + 1; j < nrs->rs_nrates; j++) {
545				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
546					r = nrs->rs_rates[i];
547					nrs->rs_rates[i] = nrs->rs_rates[j];
548					nrs->rs_rates[j] = r;
549				}
550			}
551		}
552		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
553		badrate = r;
554		/*
555		 * Check for fixed rate.
556		 */
557		if (r == ucastrate)
558			fixedrate = r;
559		/*
560		 * Check against supported rates.
561		 */
562		rix = findrix(srs, r);
563		if (flags & IEEE80211_F_DONEGO) {
564			if (rix < 0) {
565				/*
566				 * A rate in the node's rate set is not
567				 * supported.  If this is a basic rate and we
568				 * are operating as a STA then this is an error.
569				 * Otherwise we just discard/ignore the rate.
570				 */
571				if ((flags & IEEE80211_F_JOIN) &&
572				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
573					error++;
574			} else if ((flags & IEEE80211_F_JOIN) == 0) {
575				/*
576				 * Overwrite with the supported rate
577				 * value so any basic rate bit is set.
578				 */
579				nrs->rs_rates[i] = srs->rs_rates[rix];
580			}
581		}
582		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
583			/*
584			 * Delete unacceptable rates.
585			 */
586			nrs->rs_nrates--;
587			for (j = i; j < nrs->rs_nrates; j++)
588				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
589			nrs->rs_rates[j] = 0;
590			continue;
591		}
592		if (rix >= 0)
593			okrate = nrs->rs_rates[i];
594		i++;
595	}
596	if (okrate == 0 || error != 0 ||
597	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
598	     fixedrate != ucastrate)) {
599		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
600		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
601		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
602		return badrate | IEEE80211_RATE_BASIC;
603	} else
604		return RV(okrate);
605#undef RV
606}
607
608/*
609 * Reset 11g-related state.
610 */
611void
612ieee80211_reset_erp(struct ieee80211com *ic)
613{
614	ic->ic_flags &= ~IEEE80211_F_USEPROT;
615	ic->ic_nonerpsta = 0;
616	ic->ic_longslotsta = 0;
617	/*
618	 * Short slot time is enabled only when operating in 11g
619	 * and not in an IBSS.  We must also honor whether or not
620	 * the driver is capable of doing it.
621	 */
622	ieee80211_set_shortslottime(ic,
623		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
624		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
625		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
626		ic->ic_opmode == IEEE80211_M_HOSTAP &&
627		(ic->ic_caps & IEEE80211_C_SHSLOT)));
628	/*
629	 * Set short preamble and ERP barker-preamble flags.
630	 */
631	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
632	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
633		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
634		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
635	} else {
636		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
637		ic->ic_flags |= IEEE80211_F_USEBARKER;
638	}
639}
640
641/*
642 * Set the short slot time state and notify the driver.
643 */
644void
645ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
646{
647	if (onoff)
648		ic->ic_flags |= IEEE80211_F_SHSLOT;
649	else
650		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
651	/* notify driver */
652	if (ic->ic_updateslot != NULL)
653		ic->ic_updateslot(ic->ic_ifp);
654}
655
656/*
657 * Check if the specified rate set supports ERP.
658 * NB: the rate set is assumed to be sorted.
659 */
660int
661ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
662{
663	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
664	int i, j;
665
666	if (rs->rs_nrates < nitems(rates))
667		return 0;
668	for (i = 0; i < nitems(rates); i++) {
669		for (j = 0; j < rs->rs_nrates; j++) {
670			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
671			if (rates[i] == r)
672				goto next;
673			if (r > rates[i])
674				return 0;
675		}
676		return 0;
677	next:
678		;
679	}
680	return 1;
681}
682
683/*
684 * Mark the basic rates for the rate table based on the
685 * operating mode.  For real 11g we mark all the 11b rates
686 * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
687 * 11b rates.  There's also a pseudo 11a-mode used to mark only
688 * the basic OFDM rates.
689 */
690static void
691setbasicrates(struct ieee80211_rateset *rs,
692    enum ieee80211_phymode mode, int add)
693{
694	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
695	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
696	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
697					    /* NB: mixed b/g */
698	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
699	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
700	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
701	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
702	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
703	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
704	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
705					    /* NB: mixed b/g */
706	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
707	};
708	int i, j;
709
710	for (i = 0; i < rs->rs_nrates; i++) {
711		if (!add)
712			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
713		for (j = 0; j < basic[mode].rs_nrates; j++)
714			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
715				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
716				break;
717			}
718	}
719}
720
721/*
722 * Set the basic rates in a rate set.
723 */
724void
725ieee80211_setbasicrates(struct ieee80211_rateset *rs,
726    enum ieee80211_phymode mode)
727{
728	setbasicrates(rs, mode, 0);
729}
730
731/*
732 * Add basic rates to a rate set.
733 */
734void
735ieee80211_addbasicrates(struct ieee80211_rateset *rs,
736    enum ieee80211_phymode mode)
737{
738	setbasicrates(rs, mode, 1);
739}
740
741/*
742 * WME protocol support.
743 *
744 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
745 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
746 * Draft 2.0 Test Plan (Appendix D).
747 *
748 * Static/Dynamic Turbo mode settings come from Atheros.
749 */
750typedef struct phyParamType {
751	uint8_t		aifsn;
752	uint8_t		logcwmin;
753	uint8_t		logcwmax;
754	uint16_t	txopLimit;
755	uint8_t 	acm;
756} paramType;
757
758static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
759	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
760	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
761	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
762	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
763	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
764	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
765	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
766	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
767	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
768	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
769	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
770	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
771};
772static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
773	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
774	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
775	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
776	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
777	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
778	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
779	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
780	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
781	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
782	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
783	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
784	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
785};
786static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
787	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
788	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
789	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
790	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
791	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
792	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
793	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
794	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
795	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
796	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
797	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
798	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
799};
800static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
801	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
802	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
803	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
804	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
805	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
806	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
807	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
808	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
809	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
810	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
811	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
812	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
813};
814
815static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
816	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
817	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
818	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
819	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
820	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
821	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
822	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
823	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
824	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
825	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
826	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
827	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
828};
829static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
830	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
831	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
832	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
833	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
834	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
835	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
836	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
837	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
838	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
839	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
840	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
841	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
842};
843static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
844	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
845	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
846	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
847	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
848	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
849	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
850	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
851	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
852	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
853	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
854	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
855	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
856};
857
858static void
859_setifsparams(struct wmeParams *wmep, const paramType *phy)
860{
861	wmep->wmep_aifsn = phy->aifsn;
862	wmep->wmep_logcwmin = phy->logcwmin;
863	wmep->wmep_logcwmax = phy->logcwmax;
864	wmep->wmep_txopLimit = phy->txopLimit;
865}
866
867static void
868setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
869	struct wmeParams *wmep, const paramType *phy)
870{
871	wmep->wmep_acm = phy->acm;
872	_setifsparams(wmep, phy);
873
874	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
875	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
876	    ieee80211_wme_acnames[ac], type,
877	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
878	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
879}
880
881static void
882ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
883{
884	struct ieee80211com *ic = vap->iv_ic;
885	struct ieee80211_wme_state *wme = &ic->ic_wme;
886	const paramType *pPhyParam, *pBssPhyParam;
887	struct wmeParams *wmep;
888	enum ieee80211_phymode mode;
889	int i;
890
891	IEEE80211_LOCK_ASSERT(ic);
892
893	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
894		return;
895
896	/*
897	 * Clear the wme cap_info field so a qoscount from a previous
898	 * vap doesn't confuse later code which only parses the beacon
899	 * field and updates hardware when said field changes.
900	 * Otherwise the hardware is programmed with defaults, not what
901	 * the beacon actually announces.
902	 */
903	wme->wme_wmeChanParams.cap_info = 0;
904
905	/*
906	 * Select mode; we can be called early in which case we
907	 * always use auto mode.  We know we'll be called when
908	 * entering the RUN state with bsschan setup properly
909	 * so state will eventually get set correctly
910	 */
911	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
912		mode = ieee80211_chan2mode(ic->ic_bsschan);
913	else
914		mode = IEEE80211_MODE_AUTO;
915	for (i = 0; i < WME_NUM_AC; i++) {
916		switch (i) {
917		case WME_AC_BK:
918			pPhyParam = &phyParamForAC_BK[mode];
919			pBssPhyParam = &phyParamForAC_BK[mode];
920			break;
921		case WME_AC_VI:
922			pPhyParam = &phyParamForAC_VI[mode];
923			pBssPhyParam = &bssPhyParamForAC_VI[mode];
924			break;
925		case WME_AC_VO:
926			pPhyParam = &phyParamForAC_VO[mode];
927			pBssPhyParam = &bssPhyParamForAC_VO[mode];
928			break;
929		case WME_AC_BE:
930		default:
931			pPhyParam = &phyParamForAC_BE[mode];
932			pBssPhyParam = &bssPhyParamForAC_BE[mode];
933			break;
934		}
935		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
936		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
937			setwmeparams(vap, "chan", i, wmep, pPhyParam);
938		} else {
939			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
940		}
941		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
942		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
943	}
944	/* NB: check ic_bss to avoid NULL deref on initial attach */
945	if (vap->iv_bss != NULL) {
946		/*
947		 * Calculate agressive mode switching threshold based
948		 * on beacon interval.  This doesn't need locking since
949		 * we're only called before entering the RUN state at
950		 * which point we start sending beacon frames.
951		 */
952		wme->wme_hipri_switch_thresh =
953			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
954		wme->wme_flags &= ~WME_F_AGGRMODE;
955		ieee80211_wme_updateparams(vap);
956	}
957}
958
959void
960ieee80211_wme_initparams(struct ieee80211vap *vap)
961{
962	struct ieee80211com *ic = vap->iv_ic;
963
964	IEEE80211_LOCK(ic);
965	ieee80211_wme_initparams_locked(vap);
966	IEEE80211_UNLOCK(ic);
967}
968
969/*
970 * Update WME parameters for ourself and the BSS.
971 */
972void
973ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
974{
975	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
976	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
977	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
978	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
979	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
980	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
981	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
982	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
983	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
984	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
985	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
986	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
987	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
988	};
989	struct ieee80211com *ic = vap->iv_ic;
990	struct ieee80211_wme_state *wme = &ic->ic_wme;
991	const struct wmeParams *wmep;
992	struct wmeParams *chanp, *bssp;
993	enum ieee80211_phymode mode;
994	int i;
995	int do_aggrmode = 0;
996
997       	/*
998	 * Set up the channel access parameters for the physical
999	 * device.  First populate the configured settings.
1000	 */
1001	for (i = 0; i < WME_NUM_AC; i++) {
1002		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1003		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1004		chanp->wmep_aifsn = wmep->wmep_aifsn;
1005		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1006		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1007		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1008
1009		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1010		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1011		chanp->wmep_aifsn = wmep->wmep_aifsn;
1012		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1013		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1014		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1015	}
1016
1017	/*
1018	 * Select mode; we can be called early in which case we
1019	 * always use auto mode.  We know we'll be called when
1020	 * entering the RUN state with bsschan setup properly
1021	 * so state will eventually get set correctly
1022	 */
1023	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1024		mode = ieee80211_chan2mode(ic->ic_bsschan);
1025	else
1026		mode = IEEE80211_MODE_AUTO;
1027
1028	/*
1029	 * This implements agressive mode as found in certain
1030	 * vendors' AP's.  When there is significant high
1031	 * priority (VI/VO) traffic in the BSS throttle back BE
1032	 * traffic by using conservative parameters.  Otherwise
1033	 * BE uses agressive params to optimize performance of
1034	 * legacy/non-QoS traffic.
1035	 */
1036
1037	/* Hostap? Only if aggressive mode is enabled */
1038        if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1039	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1040		do_aggrmode = 1;
1041
1042	/*
1043	 * Station? Only if we're in a non-QoS BSS.
1044	 */
1045	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1046	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1047		do_aggrmode = 1;
1048
1049	/*
1050	 * IBSS? Only if we we have WME enabled.
1051	 */
1052	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1053	    (vap->iv_flags & IEEE80211_F_WME))
1054		do_aggrmode = 1;
1055
1056	/*
1057	 * If WME is disabled on this VAP, default to aggressive mode
1058	 * regardless of the configuration.
1059	 */
1060	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1061		do_aggrmode = 1;
1062
1063	/* XXX WDS? */
1064
1065	/* XXX MBSS? */
1066
1067	if (do_aggrmode) {
1068		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1069		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1070
1071		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1072		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1073		    aggrParam[mode].logcwmin;
1074		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1075		    aggrParam[mode].logcwmax;
1076		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1077		    (vap->iv_flags & IEEE80211_F_BURST) ?
1078			aggrParam[mode].txopLimit : 0;
1079		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1080		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1081		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1082		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1083		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1084	}
1085
1086
1087	/*
1088	 * Change the contention window based on the number of associated
1089	 * stations.  If the number of associated stations is 1 and
1090	 * aggressive mode is enabled, lower the contention window even
1091	 * further.
1092	 */
1093	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1094	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1095		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1096		    [IEEE80211_MODE_AUTO]	= 3,
1097		    [IEEE80211_MODE_11A]	= 3,
1098		    [IEEE80211_MODE_11B]	= 4,
1099		    [IEEE80211_MODE_11G]	= 3,
1100		    [IEEE80211_MODE_FH]		= 4,
1101		    [IEEE80211_MODE_TURBO_A]	= 3,
1102		    [IEEE80211_MODE_TURBO_G]	= 3,
1103		    [IEEE80211_MODE_STURBO_A]	= 3,
1104		    [IEEE80211_MODE_HALF]	= 3,
1105		    [IEEE80211_MODE_QUARTER]	= 3,
1106		    [IEEE80211_MODE_11NA]	= 3,
1107		    [IEEE80211_MODE_11NG]	= 3,
1108		};
1109		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1110		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1111
1112		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1113		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1114		    "update %s (chan+bss) logcwmin %u\n",
1115		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1116	}
1117
1118	/*
1119	 * Arrange for the beacon update.
1120	 *
1121	 * XXX what about MBSS, WDS?
1122	 */
1123	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1124	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1125		/*
1126		 * Arrange for a beacon update and bump the parameter
1127		 * set number so associated stations load the new values.
1128		 */
1129		wme->wme_bssChanParams.cap_info =
1130			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1131		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1132	}
1133
1134	wme->wme_update(ic);
1135
1136	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1137	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1138	    vap->iv_opmode == IEEE80211_M_STA ?
1139		wme->wme_wmeChanParams.cap_info :
1140		wme->wme_bssChanParams.cap_info);
1141}
1142
1143void
1144ieee80211_wme_updateparams(struct ieee80211vap *vap)
1145{
1146	struct ieee80211com *ic = vap->iv_ic;
1147
1148	if (ic->ic_caps & IEEE80211_C_WME) {
1149		IEEE80211_LOCK(ic);
1150		ieee80211_wme_updateparams_locked(vap);
1151		IEEE80211_UNLOCK(ic);
1152	}
1153}
1154
1155static void
1156parent_updown(void *arg, int npending)
1157{
1158	struct ifnet *parent = arg;
1159
1160	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1161}
1162
1163static void
1164update_mcast(void *arg, int npending)
1165{
1166	struct ieee80211com *ic = arg;
1167	struct ifnet *parent = ic->ic_ifp;
1168
1169	ic->ic_update_mcast(parent);
1170}
1171
1172static void
1173update_promisc(void *arg, int npending)
1174{
1175	struct ieee80211com *ic = arg;
1176	struct ifnet *parent = ic->ic_ifp;
1177
1178	ic->ic_update_promisc(parent);
1179}
1180
1181static void
1182update_channel(void *arg, int npending)
1183{
1184	struct ieee80211com *ic = arg;
1185
1186	ic->ic_set_channel(ic);
1187	ieee80211_radiotap_chan_change(ic);
1188}
1189
1190static void
1191update_chw(void *arg, int npending)
1192{
1193	struct ieee80211com *ic = arg;
1194
1195	/*
1196	 * XXX should we defer the channel width _config_ update until now?
1197	 */
1198	ic->ic_update_chw(ic);
1199}
1200
1201/*
1202 * Block until the parent is in a known state.  This is
1203 * used after any operations that dispatch a task (e.g.
1204 * to auto-configure the parent device up/down).
1205 */
1206void
1207ieee80211_waitfor_parent(struct ieee80211com *ic)
1208{
1209	taskqueue_block(ic->ic_tq);
1210	ieee80211_draintask(ic, &ic->ic_parent_task);
1211	ieee80211_draintask(ic, &ic->ic_mcast_task);
1212	ieee80211_draintask(ic, &ic->ic_promisc_task);
1213	ieee80211_draintask(ic, &ic->ic_chan_task);
1214	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1215	ieee80211_draintask(ic, &ic->ic_chw_task);
1216	taskqueue_unblock(ic->ic_tq);
1217}
1218
1219/*
1220 * Start a vap running.  If this is the first vap to be
1221 * set running on the underlying device then we
1222 * automatically bring the device up.
1223 */
1224void
1225ieee80211_start_locked(struct ieee80211vap *vap)
1226{
1227	struct ifnet *ifp = vap->iv_ifp;
1228	struct ieee80211com *ic = vap->iv_ic;
1229	struct ifnet *parent = ic->ic_ifp;
1230
1231	IEEE80211_LOCK_ASSERT(ic);
1232
1233	IEEE80211_DPRINTF(vap,
1234		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1235		"start running, %d vaps running\n", ic->ic_nrunning);
1236
1237	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1238		/*
1239		 * Mark us running.  Note that it's ok to do this first;
1240		 * if we need to bring the parent device up we defer that
1241		 * to avoid dropping the com lock.  We expect the device
1242		 * to respond to being marked up by calling back into us
1243		 * through ieee80211_start_all at which point we'll come
1244		 * back in here and complete the work.
1245		 */
1246		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1247		/*
1248		 * We are not running; if this we are the first vap
1249		 * to be brought up auto-up the parent if necessary.
1250		 */
1251		if (ic->ic_nrunning++ == 0 &&
1252		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1253			IEEE80211_DPRINTF(vap,
1254			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1255			    "%s: up parent %s\n", __func__, parent->if_xname);
1256			parent->if_flags |= IFF_UP;
1257			ieee80211_runtask(ic, &ic->ic_parent_task);
1258			return;
1259		}
1260	}
1261	/*
1262	 * If the parent is up and running, then kick the
1263	 * 802.11 state machine as appropriate.
1264	 */
1265	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1266	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1267		if (vap->iv_opmode == IEEE80211_M_STA) {
1268#if 0
1269			/* XXX bypasses scan too easily; disable for now */
1270			/*
1271			 * Try to be intelligent about clocking the state
1272			 * machine.  If we're currently in RUN state then
1273			 * we should be able to apply any new state/parameters
1274			 * simply by re-associating.  Otherwise we need to
1275			 * re-scan to select an appropriate ap.
1276			 */
1277			if (vap->iv_state >= IEEE80211_S_RUN)
1278				ieee80211_new_state_locked(vap,
1279				    IEEE80211_S_ASSOC, 1);
1280			else
1281#endif
1282				ieee80211_new_state_locked(vap,
1283				    IEEE80211_S_SCAN, 0);
1284		} else {
1285			/*
1286			 * For monitor+wds mode there's nothing to do but
1287			 * start running.  Otherwise if this is the first
1288			 * vap to be brought up, start a scan which may be
1289			 * preempted if the station is locked to a particular
1290			 * channel.
1291			 */
1292			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1293			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1294			    vap->iv_opmode == IEEE80211_M_WDS)
1295				ieee80211_new_state_locked(vap,
1296				    IEEE80211_S_RUN, -1);
1297			else
1298				ieee80211_new_state_locked(vap,
1299				    IEEE80211_S_SCAN, 0);
1300		}
1301	}
1302}
1303
1304/*
1305 * Start a single vap.
1306 */
1307void
1308ieee80211_init(void *arg)
1309{
1310	struct ieee80211vap *vap = arg;
1311
1312	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1313	    "%s\n", __func__);
1314
1315	IEEE80211_LOCK(vap->iv_ic);
1316	ieee80211_start_locked(vap);
1317	IEEE80211_UNLOCK(vap->iv_ic);
1318}
1319
1320/*
1321 * Start all runnable vap's on a device.
1322 */
1323void
1324ieee80211_start_all(struct ieee80211com *ic)
1325{
1326	struct ieee80211vap *vap;
1327
1328	IEEE80211_LOCK(ic);
1329	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1330		struct ifnet *ifp = vap->iv_ifp;
1331		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1332			ieee80211_start_locked(vap);
1333	}
1334	IEEE80211_UNLOCK(ic);
1335}
1336
1337/*
1338 * Stop a vap.  We force it down using the state machine
1339 * then mark it's ifnet not running.  If this is the last
1340 * vap running on the underlying device then we close it
1341 * too to insure it will be properly initialized when the
1342 * next vap is brought up.
1343 */
1344void
1345ieee80211_stop_locked(struct ieee80211vap *vap)
1346{
1347	struct ieee80211com *ic = vap->iv_ic;
1348	struct ifnet *ifp = vap->iv_ifp;
1349	struct ifnet *parent = ic->ic_ifp;
1350
1351	IEEE80211_LOCK_ASSERT(ic);
1352
1353	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1354	    "stop running, %d vaps running\n", ic->ic_nrunning);
1355
1356	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1357	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1358		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1359		if (--ic->ic_nrunning == 0 &&
1360		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1361			IEEE80211_DPRINTF(vap,
1362			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1363			    "down parent %s\n", parent->if_xname);
1364			parent->if_flags &= ~IFF_UP;
1365			ieee80211_runtask(ic, &ic->ic_parent_task);
1366		}
1367	}
1368}
1369
1370void
1371ieee80211_stop(struct ieee80211vap *vap)
1372{
1373	struct ieee80211com *ic = vap->iv_ic;
1374
1375	IEEE80211_LOCK(ic);
1376	ieee80211_stop_locked(vap);
1377	IEEE80211_UNLOCK(ic);
1378}
1379
1380/*
1381 * Stop all vap's running on a device.
1382 */
1383void
1384ieee80211_stop_all(struct ieee80211com *ic)
1385{
1386	struct ieee80211vap *vap;
1387
1388	IEEE80211_LOCK(ic);
1389	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1390		struct ifnet *ifp = vap->iv_ifp;
1391		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1392			ieee80211_stop_locked(vap);
1393	}
1394	IEEE80211_UNLOCK(ic);
1395
1396	ieee80211_waitfor_parent(ic);
1397}
1398
1399/*
1400 * Stop all vap's running on a device and arrange
1401 * for those that were running to be resumed.
1402 */
1403void
1404ieee80211_suspend_all(struct ieee80211com *ic)
1405{
1406	struct ieee80211vap *vap;
1407
1408	IEEE80211_LOCK(ic);
1409	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1410		struct ifnet *ifp = vap->iv_ifp;
1411		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1412			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1413			ieee80211_stop_locked(vap);
1414		}
1415	}
1416	IEEE80211_UNLOCK(ic);
1417
1418	ieee80211_waitfor_parent(ic);
1419}
1420
1421/*
1422 * Start all vap's marked for resume.
1423 */
1424void
1425ieee80211_resume_all(struct ieee80211com *ic)
1426{
1427	struct ieee80211vap *vap;
1428
1429	IEEE80211_LOCK(ic);
1430	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1431		struct ifnet *ifp = vap->iv_ifp;
1432		if (!IFNET_IS_UP_RUNNING(ifp) &&
1433		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1434			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1435			ieee80211_start_locked(vap);
1436		}
1437	}
1438	IEEE80211_UNLOCK(ic);
1439}
1440
1441void
1442ieee80211_beacon_miss(struct ieee80211com *ic)
1443{
1444	IEEE80211_LOCK(ic);
1445	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1446		/* Process in a taskq, the handler may reenter the driver */
1447		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1448	}
1449	IEEE80211_UNLOCK(ic);
1450}
1451
1452static void
1453beacon_miss(void *arg, int npending)
1454{
1455	struct ieee80211com *ic = arg;
1456	struct ieee80211vap *vap;
1457
1458	IEEE80211_LOCK(ic);
1459	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1460		/*
1461		 * We only pass events through for sta vap's in RUN state;
1462		 * may be too restrictive but for now this saves all the
1463		 * handlers duplicating these checks.
1464		 */
1465		if (vap->iv_opmode == IEEE80211_M_STA &&
1466		    vap->iv_state >= IEEE80211_S_RUN &&
1467		    vap->iv_bmiss != NULL)
1468			vap->iv_bmiss(vap);
1469	}
1470	IEEE80211_UNLOCK(ic);
1471}
1472
1473static void
1474beacon_swmiss(void *arg, int npending)
1475{
1476	struct ieee80211vap *vap = arg;
1477	struct ieee80211com *ic = vap->iv_ic;
1478
1479	IEEE80211_LOCK(ic);
1480	if (vap->iv_state == IEEE80211_S_RUN) {
1481		/* XXX Call multiple times if npending > zero? */
1482		vap->iv_bmiss(vap);
1483	}
1484	IEEE80211_UNLOCK(ic);
1485}
1486
1487/*
1488 * Software beacon miss handling.  Check if any beacons
1489 * were received in the last period.  If not post a
1490 * beacon miss; otherwise reset the counter.
1491 */
1492void
1493ieee80211_swbmiss(void *arg)
1494{
1495	struct ieee80211vap *vap = arg;
1496	struct ieee80211com *ic = vap->iv_ic;
1497
1498	IEEE80211_LOCK_ASSERT(ic);
1499
1500	/* XXX sleep state? */
1501	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1502	    ("wrong state %d", vap->iv_state));
1503
1504	if (ic->ic_flags & IEEE80211_F_SCAN) {
1505		/*
1506		 * If scanning just ignore and reset state.  If we get a
1507		 * bmiss after coming out of scan because we haven't had
1508		 * time to receive a beacon then we should probe the AP
1509		 * before posting a real bmiss (unless iv_bmiss_max has
1510		 * been artifiically lowered).  A cleaner solution might
1511		 * be to disable the timer on scan start/end but to handle
1512		 * case of multiple sta vap's we'd need to disable the
1513		 * timers of all affected vap's.
1514		 */
1515		vap->iv_swbmiss_count = 0;
1516	} else if (vap->iv_swbmiss_count == 0) {
1517		if (vap->iv_bmiss != NULL)
1518			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1519	} else
1520		vap->iv_swbmiss_count = 0;
1521	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1522		ieee80211_swbmiss, vap);
1523}
1524
1525/*
1526 * Start an 802.11h channel switch.  We record the parameters,
1527 * mark the operation pending, notify each vap through the
1528 * beacon update mechanism so it can update the beacon frame
1529 * contents, and then switch vap's to CSA state to block outbound
1530 * traffic.  Devices that handle CSA directly can use the state
1531 * switch to do the right thing so long as they call
1532 * ieee80211_csa_completeswitch when it's time to complete the
1533 * channel change.  Devices that depend on the net80211 layer can
1534 * use ieee80211_beacon_update to handle the countdown and the
1535 * channel switch.
1536 */
1537void
1538ieee80211_csa_startswitch(struct ieee80211com *ic,
1539	struct ieee80211_channel *c, int mode, int count)
1540{
1541	struct ieee80211vap *vap;
1542
1543	IEEE80211_LOCK_ASSERT(ic);
1544
1545	ic->ic_csa_newchan = c;
1546	ic->ic_csa_mode = mode;
1547	ic->ic_csa_count = count;
1548	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1549	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1550		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1551		    vap->iv_opmode == IEEE80211_M_IBSS ||
1552		    vap->iv_opmode == IEEE80211_M_MBSS)
1553			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1554		/* switch to CSA state to block outbound traffic */
1555		if (vap->iv_state == IEEE80211_S_RUN)
1556			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1557	}
1558	ieee80211_notify_csa(ic, c, mode, count);
1559}
1560
1561/*
1562 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1563 * This is called by both the completion and cancellation functions
1564 * so each VAP is placed back in the RUN state and can thus transmit.
1565 */
1566static void
1567csa_completeswitch(struct ieee80211com *ic)
1568{
1569	struct ieee80211vap *vap;
1570
1571	ic->ic_csa_newchan = NULL;
1572	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1573
1574	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1575		if (vap->iv_state == IEEE80211_S_CSA)
1576			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1577}
1578
1579/*
1580 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1581 * We clear state and move all vap's in CSA state to RUN state
1582 * so they can again transmit.
1583 *
1584 * Although this may not be completely correct, update the BSS channel
1585 * for each VAP to the newly configured channel. The setcurchan sets
1586 * the current operating channel for the interface (so the radio does
1587 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1588 * reported information via ioctl.
1589 */
1590void
1591ieee80211_csa_completeswitch(struct ieee80211com *ic)
1592{
1593	struct ieee80211vap *vap;
1594
1595	IEEE80211_LOCK_ASSERT(ic);
1596
1597	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1598
1599	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1600	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1601		if (vap->iv_state == IEEE80211_S_CSA)
1602			vap->iv_bss->ni_chan = ic->ic_curchan;
1603
1604	csa_completeswitch(ic);
1605}
1606
1607/*
1608 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1609 * We clear state and move all vap's in CSA state to RUN state
1610 * so they can again transmit.
1611 */
1612void
1613ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1614{
1615	IEEE80211_LOCK_ASSERT(ic);
1616
1617	csa_completeswitch(ic);
1618}
1619
1620/*
1621 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1622 * We clear state and move all vap's in CAC state to RUN state.
1623 */
1624void
1625ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1626{
1627	struct ieee80211com *ic = vap0->iv_ic;
1628	struct ieee80211vap *vap;
1629
1630	IEEE80211_LOCK(ic);
1631	/*
1632	 * Complete CAC state change for lead vap first; then
1633	 * clock all the other vap's waiting.
1634	 */
1635	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1636	    ("wrong state %d", vap0->iv_state));
1637	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1638
1639	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1640		if (vap->iv_state == IEEE80211_S_CAC)
1641			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1642	IEEE80211_UNLOCK(ic);
1643}
1644
1645/*
1646 * Force all vap's other than the specified vap to the INIT state
1647 * and mark them as waiting for a scan to complete.  These vaps
1648 * will be brought up when the scan completes and the scanning vap
1649 * reaches RUN state by wakeupwaiting.
1650 */
1651static void
1652markwaiting(struct ieee80211vap *vap0)
1653{
1654	struct ieee80211com *ic = vap0->iv_ic;
1655	struct ieee80211vap *vap;
1656
1657	IEEE80211_LOCK_ASSERT(ic);
1658
1659	/*
1660	 * A vap list entry can not disappear since we are running on the
1661	 * taskqueue and a vap destroy will queue and drain another state
1662	 * change task.
1663	 */
1664	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1665		if (vap == vap0)
1666			continue;
1667		if (vap->iv_state != IEEE80211_S_INIT) {
1668			/* NB: iv_newstate may drop the lock */
1669			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1670			IEEE80211_LOCK_ASSERT(ic);
1671			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1672		}
1673	}
1674}
1675
1676/*
1677 * Wakeup all vap's waiting for a scan to complete.  This is the
1678 * companion to markwaiting (above) and is used to coordinate
1679 * multiple vaps scanning.
1680 * This is called from the state taskqueue.
1681 */
1682static void
1683wakeupwaiting(struct ieee80211vap *vap0)
1684{
1685	struct ieee80211com *ic = vap0->iv_ic;
1686	struct ieee80211vap *vap;
1687
1688	IEEE80211_LOCK_ASSERT(ic);
1689
1690	/*
1691	 * A vap list entry can not disappear since we are running on the
1692	 * taskqueue and a vap destroy will queue and drain another state
1693	 * change task.
1694	 */
1695	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1696		if (vap == vap0)
1697			continue;
1698		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1699			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1700			/* NB: sta's cannot go INIT->RUN */
1701			/* NB: iv_newstate may drop the lock */
1702			vap->iv_newstate(vap,
1703			    vap->iv_opmode == IEEE80211_M_STA ?
1704			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1705			IEEE80211_LOCK_ASSERT(ic);
1706		}
1707	}
1708}
1709
1710/*
1711 * Handle post state change work common to all operating modes.
1712 */
1713static void
1714ieee80211_newstate_cb(void *xvap, int npending)
1715{
1716	struct ieee80211vap *vap = xvap;
1717	struct ieee80211com *ic = vap->iv_ic;
1718	enum ieee80211_state nstate, ostate;
1719	int arg, rc;
1720
1721	IEEE80211_LOCK(ic);
1722	nstate = vap->iv_nstate;
1723	arg = vap->iv_nstate_arg;
1724
1725	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1726		/*
1727		 * We have been requested to drop back to the INIT before
1728		 * proceeding to the new state.
1729		 */
1730		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1731		    "%s: %s -> %s arg %d\n", __func__,
1732		    ieee80211_state_name[vap->iv_state],
1733		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1734		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1735		IEEE80211_LOCK_ASSERT(ic);
1736		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1737	}
1738
1739	ostate = vap->iv_state;
1740	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1741		/*
1742		 * SCAN was forced; e.g. on beacon miss.  Force other running
1743		 * vap's to INIT state and mark them as waiting for the scan to
1744		 * complete.  This insures they don't interfere with our
1745		 * scanning.  Since we are single threaded the vaps can not
1746		 * transition again while we are executing.
1747		 *
1748		 * XXX not always right, assumes ap follows sta
1749		 */
1750		markwaiting(vap);
1751	}
1752	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1753	    "%s: %s -> %s arg %d\n", __func__,
1754	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1755
1756	rc = vap->iv_newstate(vap, nstate, arg);
1757	IEEE80211_LOCK_ASSERT(ic);
1758	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1759	if (rc != 0) {
1760		/* State transition failed */
1761		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1762		KASSERT(nstate != IEEE80211_S_INIT,
1763		    ("INIT state change failed"));
1764		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1765		    "%s: %s returned error %d\n", __func__,
1766		    ieee80211_state_name[nstate], rc);
1767		goto done;
1768	}
1769
1770	/* No actual transition, skip post processing */
1771	if (ostate == nstate)
1772		goto done;
1773
1774	if (nstate == IEEE80211_S_RUN) {
1775		/*
1776		 * OACTIVE may be set on the vap if the upper layer
1777		 * tried to transmit (e.g. IPv6 NDP) before we reach
1778		 * RUN state.  Clear it and restart xmit.
1779		 *
1780		 * Note this can also happen as a result of SLEEP->RUN
1781		 * (i.e. coming out of power save mode).
1782		 */
1783		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1784
1785		/*
1786		 * XXX TODO Kick-start a VAP queue - this should be a method!
1787		 */
1788
1789		/* bring up any vaps waiting on us */
1790		wakeupwaiting(vap);
1791	} else if (nstate == IEEE80211_S_INIT) {
1792		/*
1793		 * Flush the scan cache if we did the last scan (XXX?)
1794		 * and flush any frames on send queues from this vap.
1795		 * Note the mgt q is used only for legacy drivers and
1796		 * will go away shortly.
1797		 */
1798		ieee80211_scan_flush(vap);
1799
1800		/*
1801		 * XXX TODO: ic/vap queue flush
1802		 */
1803	}
1804done:
1805	IEEE80211_UNLOCK(ic);
1806}
1807
1808/*
1809 * Public interface for initiating a state machine change.
1810 * This routine single-threads the request and coordinates
1811 * the scheduling of multiple vaps for the purpose of selecting
1812 * an operating channel.  Specifically the following scenarios
1813 * are handled:
1814 * o only one vap can be selecting a channel so on transition to
1815 *   SCAN state if another vap is already scanning then
1816 *   mark the caller for later processing and return without
1817 *   doing anything (XXX? expectations by caller of synchronous operation)
1818 * o only one vap can be doing CAC of a channel so on transition to
1819 *   CAC state if another vap is already scanning for radar then
1820 *   mark the caller for later processing and return without
1821 *   doing anything (XXX? expectations by caller of synchronous operation)
1822 * o if another vap is already running when a request is made
1823 *   to SCAN then an operating channel has been chosen; bypass
1824 *   the scan and just join the channel
1825 *
1826 * Note that the state change call is done through the iv_newstate
1827 * method pointer so any driver routine gets invoked.  The driver
1828 * will normally call back into operating mode-specific
1829 * ieee80211_newstate routines (below) unless it needs to completely
1830 * bypass the state machine (e.g. because the firmware has it's
1831 * own idea how things should work).  Bypassing the net80211 layer
1832 * is usually a mistake and indicates lack of proper integration
1833 * with the net80211 layer.
1834 */
1835int
1836ieee80211_new_state_locked(struct ieee80211vap *vap,
1837	enum ieee80211_state nstate, int arg)
1838{
1839	struct ieee80211com *ic = vap->iv_ic;
1840	struct ieee80211vap *vp;
1841	enum ieee80211_state ostate;
1842	int nrunning, nscanning;
1843
1844	IEEE80211_LOCK_ASSERT(ic);
1845
1846	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1847		if (vap->iv_nstate == IEEE80211_S_INIT) {
1848			/*
1849			 * XXX The vap is being stopped, do no allow any other
1850			 * state changes until this is completed.
1851			 */
1852			return -1;
1853		} else if (vap->iv_state != vap->iv_nstate) {
1854#if 0
1855			/* Warn if the previous state hasn't completed. */
1856			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1857			    "%s: pending %s -> %s transition lost\n", __func__,
1858			    ieee80211_state_name[vap->iv_state],
1859			    ieee80211_state_name[vap->iv_nstate]);
1860#else
1861			/* XXX temporarily enable to identify issues */
1862			if_printf(vap->iv_ifp,
1863			    "%s: pending %s -> %s transition lost\n",
1864			    __func__, ieee80211_state_name[vap->iv_state],
1865			    ieee80211_state_name[vap->iv_nstate]);
1866#endif
1867		}
1868	}
1869
1870	nrunning = nscanning = 0;
1871	/* XXX can track this state instead of calculating */
1872	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1873		if (vp != vap) {
1874			if (vp->iv_state >= IEEE80211_S_RUN)
1875				nrunning++;
1876			/* XXX doesn't handle bg scan */
1877			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1878			else if (vp->iv_state > IEEE80211_S_INIT)
1879				nscanning++;
1880		}
1881	}
1882	ostate = vap->iv_state;
1883	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1884	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1885	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1886	    nrunning, nscanning);
1887	switch (nstate) {
1888	case IEEE80211_S_SCAN:
1889		if (ostate == IEEE80211_S_INIT) {
1890			/*
1891			 * INIT -> SCAN happens on initial bringup.
1892			 */
1893			KASSERT(!(nscanning && nrunning),
1894			    ("%d scanning and %d running", nscanning, nrunning));
1895			if (nscanning) {
1896				/*
1897				 * Someone is scanning, defer our state
1898				 * change until the work has completed.
1899				 */
1900				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1901				    "%s: defer %s -> %s\n",
1902				    __func__, ieee80211_state_name[ostate],
1903				    ieee80211_state_name[nstate]);
1904				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1905				return 0;
1906			}
1907			if (nrunning) {
1908				/*
1909				 * Someone is operating; just join the channel
1910				 * they have chosen.
1911				 */
1912				/* XXX kill arg? */
1913				/* XXX check each opmode, adhoc? */
1914				if (vap->iv_opmode == IEEE80211_M_STA)
1915					nstate = IEEE80211_S_SCAN;
1916				else
1917					nstate = IEEE80211_S_RUN;
1918#ifdef IEEE80211_DEBUG
1919				if (nstate != IEEE80211_S_SCAN) {
1920					IEEE80211_DPRINTF(vap,
1921					    IEEE80211_MSG_STATE,
1922					    "%s: override, now %s -> %s\n",
1923					    __func__,
1924					    ieee80211_state_name[ostate],
1925					    ieee80211_state_name[nstate]);
1926				}
1927#endif
1928			}
1929		}
1930		break;
1931	case IEEE80211_S_RUN:
1932		if (vap->iv_opmode == IEEE80211_M_WDS &&
1933		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1934		    nscanning) {
1935			/*
1936			 * Legacy WDS with someone else scanning; don't
1937			 * go online until that completes as we should
1938			 * follow the other vap to the channel they choose.
1939			 */
1940			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1941			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1942			     ieee80211_state_name[ostate],
1943			     ieee80211_state_name[nstate]);
1944			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1945			return 0;
1946		}
1947		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1948		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1949		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1950		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1951			/*
1952			 * This is a DFS channel, transition to CAC state
1953			 * instead of RUN.  This allows us to initiate
1954			 * Channel Availability Check (CAC) as specified
1955			 * by 11h/DFS.
1956			 */
1957			nstate = IEEE80211_S_CAC;
1958			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1959			     "%s: override %s -> %s (DFS)\n", __func__,
1960			     ieee80211_state_name[ostate],
1961			     ieee80211_state_name[nstate]);
1962		}
1963		break;
1964	case IEEE80211_S_INIT:
1965		/* cancel any scan in progress */
1966		ieee80211_cancel_scan(vap);
1967		if (ostate == IEEE80211_S_INIT ) {
1968			/* XXX don't believe this */
1969			/* INIT -> INIT. nothing to do */
1970			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1971		}
1972		/* fall thru... */
1973	default:
1974		break;
1975	}
1976	/* defer the state change to a thread */
1977	vap->iv_nstate = nstate;
1978	vap->iv_nstate_arg = arg;
1979	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1980	ieee80211_runtask(ic, &vap->iv_nstate_task);
1981	return EINPROGRESS;
1982}
1983
1984int
1985ieee80211_new_state(struct ieee80211vap *vap,
1986	enum ieee80211_state nstate, int arg)
1987{
1988	struct ieee80211com *ic = vap->iv_ic;
1989	int rc;
1990
1991	IEEE80211_LOCK(ic);
1992	rc = ieee80211_new_state_locked(vap, nstate, arg);
1993	IEEE80211_UNLOCK(ic);
1994	return rc;
1995}
1996