pmap.c revision 240241
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 240241 2012-09-08 17:43:20Z alc $");
70
71#include "opt_ddb.h"
72#include "opt_pmap.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/lock.h>
77#include <sys/mman.h>
78#include <sys/msgbuf.h>
79#include <sys/mutex.h>
80#include <sys/pcpu.h>
81#include <sys/proc.h>
82#include <sys/rwlock.h>
83#include <sys/sched.h>
84#ifdef SMP
85#include <sys/smp.h>
86#else
87#include <sys/cpuset.h>
88#endif
89#include <sys/sysctl.h>
90#include <sys/vmmeter.h>
91
92#ifdef DDB
93#include <ddb/ddb.h>
94#endif
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_kern.h>
99#include <vm/vm_page.h>
100#include <vm/vm_map.h>
101#include <vm/vm_object.h>
102#include <vm/vm_extern.h>
103#include <vm/vm_pageout.h>
104#include <vm/vm_pager.h>
105#include <vm/uma.h>
106
107#include <machine/cache.h>
108#include <machine/md_var.h>
109#include <machine/tlb.h>
110
111#undef PMAP_DEBUG
112
113#if !defined(DIAGNOSTIC)
114#define	PMAP_INLINE __inline
115#else
116#define	PMAP_INLINE
117#endif
118
119#ifdef PV_STATS
120#define PV_STAT(x)	do { x ; } while (0)
121#else
122#define PV_STAT(x)	do { } while (0)
123#endif
124
125/*
126 * Get PDEs and PTEs for user/kernel address space
127 */
128#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
129#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
130#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
131#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
132
133#ifdef __mips_n64
134#define	NUPDE			(NPDEPG * NPDEPG)
135#define	NUSERPGTBLS		(NUPDE + NPDEPG)
136#else
137#define	NUPDE			(NPDEPG)
138#define	NUSERPGTBLS		(NUPDE)
139#endif
140
141#define	is_kernel_pmap(x)	((x) == kernel_pmap)
142
143struct pmap kernel_pmap_store;
144pd_entry_t *kernel_segmap;
145
146vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
147vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
148
149static int nkpt;
150unsigned pmap_max_asid;		/* max ASID supported by the system */
151
152#define	PMAP_ASID_RESERVED	0
153
154vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
155
156static void pmap_asid_alloc(pmap_t pmap);
157
158/*
159 * Isolate the global pv list lock from data and other locks to prevent false
160 * sharing within the cache.
161 */
162static struct {
163	struct rwlock	lock;
164	char		padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
165} pvh_global __aligned(CACHE_LINE_SIZE);
166
167#define	pvh_global_lock	pvh_global.lock
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
173static int pv_entry_count;
174
175static void free_pv_chunk(struct pv_chunk *pc);
176static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
177static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
178static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
179static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
180static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
181    vm_offset_t va);
182static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
183    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
184static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
185    pd_entry_t pde);
186static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
187static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
188static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
189    vm_offset_t va, vm_page_t m);
190static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
191static void pmap_invalidate_all(pmap_t pmap);
192static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
193static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
194
195static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
196static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
197static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
198static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
199
200#ifdef SMP
201static void pmap_invalidate_page_action(void *arg);
202static void pmap_update_page_action(void *arg);
203#endif
204
205#ifndef __mips_n64
206/*
207 * This structure is for high memory (memory above 512Meg in 32 bit) support.
208 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
209 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
210 *
211 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
212 * access a highmem physical address on a CPU, we map the physical address to
213 * the reserved virtual address for the CPU in the kernel pagetable.  This is
214 * done with interrupts disabled(although a spinlock and sched_pin would be
215 * sufficient).
216 */
217struct local_sysmaps {
218	vm_offset_t	base;
219	uint32_t	saved_intr;
220	uint16_t	valid1, valid2;
221};
222static struct local_sysmaps sysmap_lmem[MAXCPU];
223
224static __inline void
225pmap_alloc_lmem_map(void)
226{
227	int i;
228
229	for (i = 0; i < MAXCPU; i++) {
230		sysmap_lmem[i].base = virtual_avail;
231		virtual_avail += PAGE_SIZE * 2;
232		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
233	}
234}
235
236static __inline vm_offset_t
237pmap_lmem_map1(vm_paddr_t phys)
238{
239	struct local_sysmaps *sysm;
240	pt_entry_t *pte, npte;
241	vm_offset_t va;
242	uint32_t intr;
243	int cpu;
244
245	intr = intr_disable();
246	cpu = PCPU_GET(cpuid);
247	sysm = &sysmap_lmem[cpu];
248	sysm->saved_intr = intr;
249	va = sysm->base;
250	npte = TLBLO_PA_TO_PFN(phys) |
251	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
252	pte = pmap_pte(kernel_pmap, va);
253	*pte = npte;
254	sysm->valid1 = 1;
255	return (va);
256}
257
258static __inline vm_offset_t
259pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
260{
261	struct local_sysmaps *sysm;
262	pt_entry_t *pte, npte;
263	vm_offset_t va1, va2;
264	uint32_t intr;
265	int cpu;
266
267	intr = intr_disable();
268	cpu = PCPU_GET(cpuid);
269	sysm = &sysmap_lmem[cpu];
270	sysm->saved_intr = intr;
271	va1 = sysm->base;
272	va2 = sysm->base + PAGE_SIZE;
273	npte = TLBLO_PA_TO_PFN(phys1) |
274	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
275	pte = pmap_pte(kernel_pmap, va1);
276	*pte = npte;
277	npte =  TLBLO_PA_TO_PFN(phys2) |
278	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
279	pte = pmap_pte(kernel_pmap, va2);
280	*pte = npte;
281	sysm->valid1 = 1;
282	sysm->valid2 = 1;
283	return (va1);
284}
285
286static __inline void
287pmap_lmem_unmap(void)
288{
289	struct local_sysmaps *sysm;
290	pt_entry_t *pte;
291	int cpu;
292
293	cpu = PCPU_GET(cpuid);
294	sysm = &sysmap_lmem[cpu];
295	pte = pmap_pte(kernel_pmap, sysm->base);
296	*pte = PTE_G;
297	tlb_invalidate_address(kernel_pmap, sysm->base);
298	sysm->valid1 = 0;
299	if (sysm->valid2) {
300		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
301		*pte = PTE_G;
302		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
303		sysm->valid2 = 0;
304	}
305	intr_restore(sysm->saved_intr);
306}
307#else  /* __mips_n64 */
308
309static __inline void
310pmap_alloc_lmem_map(void)
311{
312}
313
314static __inline vm_offset_t
315pmap_lmem_map1(vm_paddr_t phys)
316{
317
318	return (0);
319}
320
321static __inline vm_offset_t
322pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
323{
324
325	return (0);
326}
327
328static __inline vm_offset_t
329pmap_lmem_unmap(void)
330{
331
332	return (0);
333}
334#endif /* !__mips_n64 */
335
336/*
337 * Page table entry lookup routines.
338 */
339static __inline pd_entry_t *
340pmap_segmap(pmap_t pmap, vm_offset_t va)
341{
342
343	return (&pmap->pm_segtab[pmap_seg_index(va)]);
344}
345
346#ifdef __mips_n64
347static __inline pd_entry_t *
348pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
349{
350	pd_entry_t *pde;
351
352	pde = (pd_entry_t *)*pdpe;
353	return (&pde[pmap_pde_index(va)]);
354}
355
356static __inline pd_entry_t *
357pmap_pde(pmap_t pmap, vm_offset_t va)
358{
359	pd_entry_t *pdpe;
360
361	pdpe = pmap_segmap(pmap, va);
362	if (*pdpe == NULL)
363		return (NULL);
364
365	return (pmap_pdpe_to_pde(pdpe, va));
366}
367#else
368static __inline pd_entry_t *
369pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
370{
371
372	return (pdpe);
373}
374
375static __inline
376pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
377{
378
379	return (pmap_segmap(pmap, va));
380}
381#endif
382
383static __inline pt_entry_t *
384pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
385{
386	pt_entry_t *pte;
387
388	pte = (pt_entry_t *)*pde;
389	return (&pte[pmap_pte_index(va)]);
390}
391
392pt_entry_t *
393pmap_pte(pmap_t pmap, vm_offset_t va)
394{
395	pd_entry_t *pde;
396
397	pde = pmap_pde(pmap, va);
398	if (pde == NULL || *pde == NULL)
399		return (NULL);
400
401	return (pmap_pde_to_pte(pde, va));
402}
403
404vm_offset_t
405pmap_steal_memory(vm_size_t size)
406{
407	vm_paddr_t bank_size, pa;
408	vm_offset_t va;
409
410	size = round_page(size);
411	bank_size = phys_avail[1] - phys_avail[0];
412	while (size > bank_size) {
413		int i;
414
415		for (i = 0; phys_avail[i + 2]; i += 2) {
416			phys_avail[i] = phys_avail[i + 2];
417			phys_avail[i + 1] = phys_avail[i + 3];
418		}
419		phys_avail[i] = 0;
420		phys_avail[i + 1] = 0;
421		if (!phys_avail[0])
422			panic("pmap_steal_memory: out of memory");
423		bank_size = phys_avail[1] - phys_avail[0];
424	}
425
426	pa = phys_avail[0];
427	phys_avail[0] += size;
428	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
429		panic("Out of memory below 512Meg?");
430	va = MIPS_PHYS_TO_DIRECT(pa);
431	bzero((caddr_t)va, size);
432	return (va);
433}
434
435/*
436 * Bootstrap the system enough to run with virtual memory.  This
437 * assumes that the phys_avail array has been initialized.
438 */
439static void
440pmap_create_kernel_pagetable(void)
441{
442	int i, j;
443	vm_offset_t ptaddr;
444	pt_entry_t *pte;
445#ifdef __mips_n64
446	pd_entry_t *pde;
447	vm_offset_t pdaddr;
448	int npt, npde;
449#endif
450
451	/*
452	 * Allocate segment table for the kernel
453	 */
454	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
455
456	/*
457	 * Allocate second level page tables for the kernel
458	 */
459#ifdef __mips_n64
460	npde = howmany(NKPT, NPDEPG);
461	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
462#endif
463	nkpt = NKPT;
464	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
465
466	/*
467	 * The R[4-7]?00 stores only one copy of the Global bit in the
468	 * translation lookaside buffer for each 2 page entry. Thus invalid
469	 * entrys must have the Global bit set so when Entry LO and Entry HI
470	 * G bits are anded together they will produce a global bit to store
471	 * in the tlb.
472	 */
473	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
474		*pte = PTE_G;
475
476#ifdef __mips_n64
477	for (i = 0,  npt = nkpt; npt > 0; i++) {
478		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
479		pde = (pd_entry_t *)kernel_segmap[i];
480
481		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
482			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
483	}
484#else
485	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
486		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
487#endif
488
489	PMAP_LOCK_INIT(kernel_pmap);
490	kernel_pmap->pm_segtab = kernel_segmap;
491	CPU_FILL(&kernel_pmap->pm_active);
492	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
493	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
494	kernel_pmap->pm_asid[0].gen = 0;
495	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
496}
497
498void
499pmap_bootstrap(void)
500{
501	int i;
502	int need_local_mappings = 0;
503
504	/* Sort. */
505again:
506	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
507		/*
508		 * Keep the memory aligned on page boundary.
509		 */
510		phys_avail[i] = round_page(phys_avail[i]);
511		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
512
513		if (i < 2)
514			continue;
515		if (phys_avail[i - 2] > phys_avail[i]) {
516			vm_paddr_t ptemp[2];
517
518			ptemp[0] = phys_avail[i + 0];
519			ptemp[1] = phys_avail[i + 1];
520
521			phys_avail[i + 0] = phys_avail[i - 2];
522			phys_avail[i + 1] = phys_avail[i - 1];
523
524			phys_avail[i - 2] = ptemp[0];
525			phys_avail[i - 1] = ptemp[1];
526			goto again;
527		}
528	}
529
530       	/*
531	 * In 32 bit, we may have memory which cannot be mapped directly.
532	 * This memory will need temporary mapping before it can be
533	 * accessed.
534	 */
535	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
536		need_local_mappings = 1;
537
538	/*
539	 * Copy the phys_avail[] array before we start stealing memory from it.
540	 */
541	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
542		physmem_desc[i] = phys_avail[i];
543		physmem_desc[i + 1] = phys_avail[i + 1];
544	}
545
546	Maxmem = atop(phys_avail[i - 1]);
547
548	if (bootverbose) {
549		printf("Physical memory chunk(s):\n");
550		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
551			vm_paddr_t size;
552
553			size = phys_avail[i + 1] - phys_avail[i];
554			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
555			    (uintmax_t) phys_avail[i],
556			    (uintmax_t) phys_avail[i + 1] - 1,
557			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
558		}
559		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
560	}
561	/*
562	 * Steal the message buffer from the beginning of memory.
563	 */
564	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
565	msgbufinit(msgbufp, msgbufsize);
566
567	/*
568	 * Steal thread0 kstack.
569	 */
570	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
571
572	virtual_avail = VM_MIN_KERNEL_ADDRESS;
573	virtual_end = VM_MAX_KERNEL_ADDRESS;
574
575#ifdef SMP
576	/*
577	 * Steal some virtual address space to map the pcpu area.
578	 */
579	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
580	pcpup = (struct pcpu *)virtual_avail;
581	virtual_avail += PAGE_SIZE * 2;
582
583	/*
584	 * Initialize the wired TLB entry mapping the pcpu region for
585	 * the BSP at 'pcpup'. Up until this point we were operating
586	 * with the 'pcpup' for the BSP pointing to a virtual address
587	 * in KSEG0 so there was no need for a TLB mapping.
588	 */
589	mips_pcpu_tlb_init(PCPU_ADDR(0));
590
591	if (bootverbose)
592		printf("pcpu is available at virtual address %p.\n", pcpup);
593#endif
594
595	if (need_local_mappings)
596		pmap_alloc_lmem_map();
597	pmap_create_kernel_pagetable();
598	pmap_max_asid = VMNUM_PIDS;
599	mips_wr_entryhi(0);
600	mips_wr_pagemask(0);
601
602 	/*
603	 * Initialize the global pv list lock.
604	 */
605	rw_init(&pvh_global_lock, "pmap pv global");
606}
607
608/*
609 * Initialize a vm_page's machine-dependent fields.
610 */
611void
612pmap_page_init(vm_page_t m)
613{
614
615	TAILQ_INIT(&m->md.pv_list);
616	m->md.pv_flags = 0;
617}
618
619/*
620 *	Initialize the pmap module.
621 *	Called by vm_init, to initialize any structures that the pmap
622 *	system needs to map virtual memory.
623 */
624void
625pmap_init(void)
626{
627}
628
629/***************************************************
630 * Low level helper routines.....
631 ***************************************************/
632
633#ifdef	SMP
634static __inline void
635pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
636{
637	int	cpuid, cpu, self;
638	cpuset_t active_cpus;
639
640	sched_pin();
641	if (is_kernel_pmap(pmap)) {
642		smp_rendezvous(NULL, fn, NULL, arg);
643		goto out;
644	}
645	/* Force ASID update on inactive CPUs */
646	CPU_FOREACH(cpu) {
647		if (!CPU_ISSET(cpu, &pmap->pm_active))
648			pmap->pm_asid[cpu].gen = 0;
649	}
650	cpuid = PCPU_GET(cpuid);
651	/*
652	 * XXX: barrier/locking for active?
653	 *
654	 * Take a snapshot of active here, any further changes are ignored.
655	 * tlb update/invalidate should be harmless on inactive CPUs
656	 */
657	active_cpus = pmap->pm_active;
658	self = CPU_ISSET(cpuid, &active_cpus);
659	CPU_CLR(cpuid, &active_cpus);
660	/* Optimize for the case where this cpu is the only active one */
661	if (CPU_EMPTY(&active_cpus)) {
662		if (self)
663			fn(arg);
664	} else {
665		if (self)
666			CPU_SET(cpuid, &active_cpus);
667		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
668	}
669out:
670	sched_unpin();
671}
672#else /* !SMP */
673static __inline void
674pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
675{
676	int	cpuid;
677
678	if (is_kernel_pmap(pmap)) {
679		fn(arg);
680		return;
681	}
682	cpuid = PCPU_GET(cpuid);
683	if (!CPU_ISSET(cpuid, &pmap->pm_active))
684		pmap->pm_asid[cpuid].gen = 0;
685	else
686		fn(arg);
687}
688#endif /* SMP */
689
690static void
691pmap_invalidate_all(pmap_t pmap)
692{
693
694	pmap_call_on_active_cpus(pmap,
695	    (void (*)(void *))tlb_invalidate_all_user, pmap);
696}
697
698struct pmap_invalidate_page_arg {
699	pmap_t pmap;
700	vm_offset_t va;
701};
702
703static void
704pmap_invalidate_page_action(void *arg)
705{
706	struct pmap_invalidate_page_arg *p = arg;
707
708	tlb_invalidate_address(p->pmap, p->va);
709}
710
711static void
712pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
713{
714	struct pmap_invalidate_page_arg arg;
715
716	arg.pmap = pmap;
717	arg.va = va;
718	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
719}
720
721struct pmap_update_page_arg {
722	pmap_t pmap;
723	vm_offset_t va;
724	pt_entry_t pte;
725};
726
727static void
728pmap_update_page_action(void *arg)
729{
730	struct pmap_update_page_arg *p = arg;
731
732	tlb_update(p->pmap, p->va, p->pte);
733}
734
735static void
736pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
737{
738	struct pmap_update_page_arg arg;
739
740	arg.pmap = pmap;
741	arg.va = va;
742	arg.pte = pte;
743	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
744}
745
746/*
747 *	Routine:	pmap_extract
748 *	Function:
749 *		Extract the physical page address associated
750 *		with the given map/virtual_address pair.
751 */
752vm_paddr_t
753pmap_extract(pmap_t pmap, vm_offset_t va)
754{
755	pt_entry_t *pte;
756	vm_offset_t retval = 0;
757
758	PMAP_LOCK(pmap);
759	pte = pmap_pte(pmap, va);
760	if (pte) {
761		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
762	}
763	PMAP_UNLOCK(pmap);
764	return (retval);
765}
766
767/*
768 *	Routine:	pmap_extract_and_hold
769 *	Function:
770 *		Atomically extract and hold the physical page
771 *		with the given pmap and virtual address pair
772 *		if that mapping permits the given protection.
773 */
774vm_page_t
775pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
776{
777	pt_entry_t *ptep;
778	pt_entry_t pte;
779	vm_page_t m;
780	vm_paddr_t pa;
781
782	m = NULL;
783	pa = 0;
784	PMAP_LOCK(pmap);
785retry:
786	ptep = pmap_pte(pmap, va);
787	if ((ptep != NULL)  && ((pte = *ptep) != 0) &&
788	    pte_test(&pte, PTE_V) &&
789	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
790		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
791			goto retry;
792
793		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
794		vm_page_hold(m);
795	}
796	PA_UNLOCK_COND(pa);
797	PMAP_UNLOCK(pmap);
798	return (m);
799}
800
801/***************************************************
802 * Low level mapping routines.....
803 ***************************************************/
804
805/*
806 * add a wired page to the kva
807 */
808void
809pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
810{
811	pt_entry_t *pte;
812	pt_entry_t opte, npte;
813
814#ifdef PMAP_DEBUG
815	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
816#endif
817	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
818
819	pte = pmap_pte(kernel_pmap, va);
820	opte = *pte;
821	*pte = npte;
822	if (pte_test(&opte, PTE_V) && opte != npte)
823		pmap_update_page(kernel_pmap, va, npte);
824}
825
826void
827pmap_kenter(vm_offset_t va, vm_paddr_t pa)
828{
829
830	KASSERT(is_cacheable_mem(pa),
831		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
832
833	pmap_kenter_attr(va, pa, PTE_C_CACHE);
834}
835
836/*
837 * remove a page from the kernel pagetables
838 */
839 /* PMAP_INLINE */ void
840pmap_kremove(vm_offset_t va)
841{
842	pt_entry_t *pte;
843
844	/*
845	 * Write back all caches from the page being destroyed
846	 */
847	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
848
849	pte = pmap_pte(kernel_pmap, va);
850	*pte = PTE_G;
851	pmap_invalidate_page(kernel_pmap, va);
852}
853
854/*
855 *	Used to map a range of physical addresses into kernel
856 *	virtual address space.
857 *
858 *	The value passed in '*virt' is a suggested virtual address for
859 *	the mapping. Architectures which can support a direct-mapped
860 *	physical to virtual region can return the appropriate address
861 *	within that region, leaving '*virt' unchanged. Other
862 *	architectures should map the pages starting at '*virt' and
863 *	update '*virt' with the first usable address after the mapped
864 *	region.
865 *
866 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
867 */
868vm_offset_t
869pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
870{
871	vm_offset_t va, sva;
872
873	if (MIPS_DIRECT_MAPPABLE(end - 1))
874		return (MIPS_PHYS_TO_DIRECT(start));
875
876	va = sva = *virt;
877	while (start < end) {
878		pmap_kenter(va, start);
879		va += PAGE_SIZE;
880		start += PAGE_SIZE;
881	}
882	*virt = va;
883	return (sva);
884}
885
886/*
887 * Add a list of wired pages to the kva
888 * this routine is only used for temporary
889 * kernel mappings that do not need to have
890 * page modification or references recorded.
891 * Note that old mappings are simply written
892 * over.  The page *must* be wired.
893 */
894void
895pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
896{
897	int i;
898	vm_offset_t origva = va;
899
900	for (i = 0; i < count; i++) {
901		pmap_flush_pvcache(m[i]);
902		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
903		va += PAGE_SIZE;
904	}
905
906	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
907}
908
909/*
910 * this routine jerks page mappings from the
911 * kernel -- it is meant only for temporary mappings.
912 */
913void
914pmap_qremove(vm_offset_t va, int count)
915{
916	/*
917	 * No need to wb/inv caches here,
918	 *   pmap_kremove will do it for us
919	 */
920
921	while (count-- > 0) {
922		pmap_kremove(va);
923		va += PAGE_SIZE;
924	}
925}
926
927/***************************************************
928 * Page table page management routines.....
929 ***************************************************/
930
931/*
932 * Decrements a page table page's wire count, which is used to record the
933 * number of valid page table entries within the page.  If the wire count
934 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
935 * page table page was unmapped and FALSE otherwise.
936 */
937static PMAP_INLINE boolean_t
938pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
939{
940
941	--m->wire_count;
942	if (m->wire_count == 0) {
943		_pmap_unwire_ptp(pmap, va, m);
944		return (TRUE);
945	} else
946		return (FALSE);
947}
948
949static void
950_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
951{
952	pd_entry_t *pde;
953
954	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
955	/*
956	 * unmap the page table page
957	 */
958#ifdef __mips_n64
959	if (m->pindex < NUPDE)
960		pde = pmap_pde(pmap, va);
961	else
962		pde = pmap_segmap(pmap, va);
963#else
964	pde = pmap_pde(pmap, va);
965#endif
966	*pde = 0;
967	pmap->pm_stats.resident_count--;
968
969#ifdef __mips_n64
970	if (m->pindex < NUPDE) {
971		pd_entry_t *pdp;
972		vm_page_t pdpg;
973
974		/*
975		 * Recursively decrement next level pagetable refcount
976		 */
977		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
978		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
979		pmap_unwire_ptp(pmap, va, pdpg);
980	}
981#endif
982
983	/*
984	 * If the page is finally unwired, simply free it.
985	 */
986	vm_page_free_zero(m);
987	atomic_subtract_int(&cnt.v_wire_count, 1);
988}
989
990/*
991 * After removing a page table entry, this routine is used to
992 * conditionally free the page, and manage the hold/wire counts.
993 */
994static int
995pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
996{
997	vm_page_t mpte;
998
999	if (va >= VM_MAXUSER_ADDRESS)
1000		return (0);
1001	KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
1002	mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
1003	return (pmap_unwire_ptp(pmap, va, mpte));
1004}
1005
1006void
1007pmap_pinit0(pmap_t pmap)
1008{
1009	int i;
1010
1011	PMAP_LOCK_INIT(pmap);
1012	pmap->pm_segtab = kernel_segmap;
1013	CPU_ZERO(&pmap->pm_active);
1014	for (i = 0; i < MAXCPU; i++) {
1015		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1016		pmap->pm_asid[i].gen = 0;
1017	}
1018	PCPU_SET(curpmap, pmap);
1019	TAILQ_INIT(&pmap->pm_pvchunk);
1020	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1021}
1022
1023void
1024pmap_grow_direct_page_cache()
1025{
1026
1027#ifdef __mips_n64
1028	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1029#else
1030	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1031#endif
1032}
1033
1034vm_page_t
1035pmap_alloc_direct_page(unsigned int index, int req)
1036{
1037	vm_page_t m;
1038
1039	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1040	    VM_ALLOC_ZERO);
1041	if (m == NULL)
1042		return (NULL);
1043
1044	if ((m->flags & PG_ZERO) == 0)
1045		pmap_zero_page(m);
1046
1047	m->pindex = index;
1048	return (m);
1049}
1050
1051/*
1052 * Initialize a preallocated and zeroed pmap structure,
1053 * such as one in a vmspace structure.
1054 */
1055int
1056pmap_pinit(pmap_t pmap)
1057{
1058	vm_offset_t ptdva;
1059	vm_page_t ptdpg;
1060	int i;
1061
1062	PMAP_LOCK_INIT(pmap);
1063
1064	/*
1065	 * allocate the page directory page
1066	 */
1067	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1068	       pmap_grow_direct_page_cache();
1069
1070	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1071	pmap->pm_segtab = (pd_entry_t *)ptdva;
1072	CPU_ZERO(&pmap->pm_active);
1073	for (i = 0; i < MAXCPU; i++) {
1074		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1075		pmap->pm_asid[i].gen = 0;
1076	}
1077	TAILQ_INIT(&pmap->pm_pvchunk);
1078	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1079
1080	return (1);
1081}
1082
1083/*
1084 * this routine is called if the page table page is not
1085 * mapped correctly.
1086 */
1087static vm_page_t
1088_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1089{
1090	vm_offset_t pageva;
1091	vm_page_t m;
1092
1093	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1094	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1095	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1096
1097	/*
1098	 * Find or fabricate a new pagetable page
1099	 */
1100	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1101		if (flags & M_WAITOK) {
1102			PMAP_UNLOCK(pmap);
1103			rw_wunlock(&pvh_global_lock);
1104			pmap_grow_direct_page_cache();
1105			rw_wlock(&pvh_global_lock);
1106			PMAP_LOCK(pmap);
1107		}
1108
1109		/*
1110		 * Indicate the need to retry.	While waiting, the page
1111		 * table page may have been allocated.
1112		 */
1113		return (NULL);
1114	}
1115
1116	/*
1117	 * Map the pagetable page into the process address space, if it
1118	 * isn't already there.
1119	 */
1120	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1121
1122#ifdef __mips_n64
1123	if (ptepindex >= NUPDE) {
1124		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1125	} else {
1126		pd_entry_t *pdep, *pde;
1127		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1128		int pdeindex = ptepindex & (NPDEPG - 1);
1129		vm_page_t pg;
1130
1131		pdep = &pmap->pm_segtab[segindex];
1132		if (*pdep == NULL) {
1133			/* recurse for allocating page dir */
1134			if (_pmap_allocpte(pmap, NUPDE + segindex,
1135			    flags) == NULL) {
1136				/* alloc failed, release current */
1137				--m->wire_count;
1138				atomic_subtract_int(&cnt.v_wire_count, 1);
1139				vm_page_free_zero(m);
1140				return (NULL);
1141			}
1142		} else {
1143			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1144			pg->wire_count++;
1145		}
1146		/* Next level entry */
1147		pde = (pd_entry_t *)*pdep;
1148		pde[pdeindex] = (pd_entry_t)pageva;
1149	}
1150#else
1151	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1152#endif
1153	pmap->pm_stats.resident_count++;
1154	return (m);
1155}
1156
1157static vm_page_t
1158pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1159{
1160	unsigned ptepindex;
1161	pd_entry_t *pde;
1162	vm_page_t m;
1163
1164	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1165	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1166	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1167
1168	/*
1169	 * Calculate pagetable page index
1170	 */
1171	ptepindex = pmap_pde_pindex(va);
1172retry:
1173	/*
1174	 * Get the page directory entry
1175	 */
1176	pde = pmap_pde(pmap, va);
1177
1178	/*
1179	 * If the page table page is mapped, we just increment the hold
1180	 * count, and activate it.
1181	 */
1182	if (pde != NULL && *pde != NULL) {
1183		m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1184		m->wire_count++;
1185	} else {
1186		/*
1187		 * Here if the pte page isn't mapped, or if it has been
1188		 * deallocated.
1189		 */
1190		m = _pmap_allocpte(pmap, ptepindex, flags);
1191		if (m == NULL && (flags & M_WAITOK))
1192			goto retry;
1193	}
1194	return (m);
1195}
1196
1197
1198/***************************************************
1199 * Pmap allocation/deallocation routines.
1200 ***************************************************/
1201
1202/*
1203 * Release any resources held by the given physical map.
1204 * Called when a pmap initialized by pmap_pinit is being released.
1205 * Should only be called if the map contains no valid mappings.
1206 */
1207void
1208pmap_release(pmap_t pmap)
1209{
1210	vm_offset_t ptdva;
1211	vm_page_t ptdpg;
1212
1213	KASSERT(pmap->pm_stats.resident_count == 0,
1214	    ("pmap_release: pmap resident count %ld != 0",
1215	    pmap->pm_stats.resident_count));
1216
1217	ptdva = (vm_offset_t)pmap->pm_segtab;
1218	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1219
1220	ptdpg->wire_count--;
1221	atomic_subtract_int(&cnt.v_wire_count, 1);
1222	vm_page_free_zero(ptdpg);
1223	PMAP_LOCK_DESTROY(pmap);
1224}
1225
1226/*
1227 * grow the number of kernel page table entries, if needed
1228 */
1229void
1230pmap_growkernel(vm_offset_t addr)
1231{
1232	vm_page_t nkpg;
1233	pd_entry_t *pde, *pdpe;
1234	pt_entry_t *pte;
1235	int i;
1236
1237	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1238	addr = roundup2(addr, NBSEG);
1239	if (addr - 1 >= kernel_map->max_offset)
1240		addr = kernel_map->max_offset;
1241	while (kernel_vm_end < addr) {
1242		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1243#ifdef __mips_n64
1244		if (*pdpe == 0) {
1245			/* new intermediate page table entry */
1246			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1247			if (nkpg == NULL)
1248				panic("pmap_growkernel: no memory to grow kernel");
1249			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1250			continue; /* try again */
1251		}
1252#endif
1253		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1254		if (*pde != 0) {
1255			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1256			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1257				kernel_vm_end = kernel_map->max_offset;
1258				break;
1259			}
1260			continue;
1261		}
1262
1263		/*
1264		 * This index is bogus, but out of the way
1265		 */
1266		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1267		if (!nkpg)
1268			panic("pmap_growkernel: no memory to grow kernel");
1269		nkpt++;
1270		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1271
1272		/*
1273		 * The R[4-7]?00 stores only one copy of the Global bit in
1274		 * the translation lookaside buffer for each 2 page entry.
1275		 * Thus invalid entrys must have the Global bit set so when
1276		 * Entry LO and Entry HI G bits are anded together they will
1277		 * produce a global bit to store in the tlb.
1278		 */
1279		pte = (pt_entry_t *)*pde;
1280		for (i = 0; i < NPTEPG; i++)
1281			pte[i] = PTE_G;
1282
1283		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1284		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1285			kernel_vm_end = kernel_map->max_offset;
1286			break;
1287		}
1288	}
1289}
1290
1291/***************************************************
1292 * page management routines.
1293 ***************************************************/
1294
1295CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1296#ifdef __mips_n64
1297CTASSERT(_NPCM == 3);
1298CTASSERT(_NPCPV == 168);
1299#else
1300CTASSERT(_NPCM == 11);
1301CTASSERT(_NPCPV == 336);
1302#endif
1303
1304static __inline struct pv_chunk *
1305pv_to_chunk(pv_entry_t pv)
1306{
1307
1308	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1309}
1310
1311#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1312
1313#ifdef __mips_n64
1314#define	PC_FREE0_1	0xfffffffffffffffful
1315#define	PC_FREE2	0x000000fffffffffful
1316#else
1317#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1318#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1319#endif
1320
1321static const u_long pc_freemask[_NPCM] = {
1322#ifdef __mips_n64
1323	PC_FREE0_1, PC_FREE0_1, PC_FREE2
1324#else
1325	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1326	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1327	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1328	PC_FREE0_9, PC_FREE10
1329#endif
1330};
1331
1332static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1333
1334SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1335    "Current number of pv entries");
1336
1337#ifdef PV_STATS
1338static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1339
1340SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1341    "Current number of pv entry chunks");
1342SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1343    "Current number of pv entry chunks allocated");
1344SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1345    "Current number of pv entry chunks frees");
1346SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1347    "Number of times tried to get a chunk page but failed.");
1348
1349static long pv_entry_frees, pv_entry_allocs;
1350static int pv_entry_spare;
1351
1352SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1353    "Current number of pv entry frees");
1354SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1355    "Current number of pv entry allocs");
1356SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1357    "Current number of spare pv entries");
1358#endif
1359
1360/*
1361 * We are in a serious low memory condition.  Resort to
1362 * drastic measures to free some pages so we can allocate
1363 * another pv entry chunk.
1364 */
1365static vm_page_t
1366pmap_pv_reclaim(pmap_t locked_pmap)
1367{
1368	struct pch newtail;
1369	struct pv_chunk *pc;
1370	pd_entry_t *pde;
1371	pmap_t pmap;
1372	pt_entry_t *pte, oldpte;
1373	pv_entry_t pv;
1374	vm_offset_t va;
1375	vm_page_t m, m_pc;
1376	u_long inuse;
1377	int bit, field, freed, idx;
1378
1379	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1380	pmap = NULL;
1381	m_pc = NULL;
1382	TAILQ_INIT(&newtail);
1383	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
1384		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1385		if (pmap != pc->pc_pmap) {
1386			if (pmap != NULL) {
1387				pmap_invalidate_all(pmap);
1388				if (pmap != locked_pmap)
1389					PMAP_UNLOCK(pmap);
1390			}
1391			pmap = pc->pc_pmap;
1392			/* Avoid deadlock and lock recursion. */
1393			if (pmap > locked_pmap)
1394				PMAP_LOCK(pmap);
1395			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1396				pmap = NULL;
1397				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1398				continue;
1399			}
1400		}
1401
1402		/*
1403		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1404		 */
1405		freed = 0;
1406		for (field = 0; field < _NPCM; field++) {
1407			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1408			    inuse != 0; inuse &= ~(1UL << bit)) {
1409				bit = ffsl(inuse) - 1;
1410				idx = field * sizeof(inuse) * NBBY + bit;
1411				pv = &pc->pc_pventry[idx];
1412				va = pv->pv_va;
1413				pde = pmap_pde(pmap, va);
1414				KASSERT(pde != NULL && *pde != 0,
1415				    ("pmap_pv_reclaim: pde"));
1416				pte = pmap_pde_to_pte(pde, va);
1417				oldpte = *pte;
1418				KASSERT(!pte_test(&oldpte, PTE_W),
1419				    ("wired pte for unwired page"));
1420				if (is_kernel_pmap(pmap))
1421					*pte = PTE_G;
1422				else
1423					*pte = 0;
1424				pmap_invalidate_page(pmap, va);
1425				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
1426				if (pte_test(&oldpte, PTE_D))
1427					vm_page_dirty(m);
1428				if (m->md.pv_flags & PV_TABLE_REF)
1429					vm_page_aflag_set(m, PGA_REFERENCED);
1430				m->md.pv_flags &= ~PV_TABLE_REF;
1431				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1432				if (TAILQ_EMPTY(&m->md.pv_list))
1433					vm_page_aflag_clear(m, PGA_WRITEABLE);
1434				pc->pc_map[field] |= 1UL << bit;
1435				pmap_unuse_pt(pmap, va, *pde);
1436				freed++;
1437			}
1438		}
1439		if (freed == 0) {
1440			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1441			continue;
1442		}
1443		/* Every freed mapping is for a 4 KB page. */
1444		pmap->pm_stats.resident_count -= freed;
1445		PV_STAT(pv_entry_frees += freed);
1446		PV_STAT(pv_entry_spare += freed);
1447		pv_entry_count -= freed;
1448		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1449		for (field = 0; field < _NPCM; field++)
1450			if (pc->pc_map[field] != pc_freemask[field]) {
1451				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1452				    pc_list);
1453				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1454
1455				/*
1456				 * One freed pv entry in locked_pmap is
1457				 * sufficient.
1458				 */
1459				if (pmap == locked_pmap)
1460					goto out;
1461				break;
1462			}
1463		if (field == _NPCM) {
1464			PV_STAT(pv_entry_spare -= _NPCPV);
1465			PV_STAT(pc_chunk_count--);
1466			PV_STAT(pc_chunk_frees++);
1467			/* Entire chunk is free; return it. */
1468			m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
1469			    (vm_offset_t)pc));
1470			break;
1471		}
1472	}
1473out:
1474	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
1475	if (pmap != NULL) {
1476		pmap_invalidate_all(pmap);
1477		if (pmap != locked_pmap)
1478			PMAP_UNLOCK(pmap);
1479	}
1480	return (m_pc);
1481}
1482
1483/*
1484 * free the pv_entry back to the free list
1485 */
1486static void
1487free_pv_entry(pmap_t pmap, pv_entry_t pv)
1488{
1489	struct pv_chunk *pc;
1490	int bit, field, idx;
1491
1492	rw_assert(&pvh_global_lock, RA_WLOCKED);
1493	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1494	PV_STAT(pv_entry_frees++);
1495	PV_STAT(pv_entry_spare++);
1496	pv_entry_count--;
1497	pc = pv_to_chunk(pv);
1498	idx = pv - &pc->pc_pventry[0];
1499	field = idx / (sizeof(u_long) * NBBY);
1500	bit = idx % (sizeof(u_long) * NBBY);
1501	pc->pc_map[field] |= 1ul << bit;
1502	for (idx = 0; idx < _NPCM; idx++)
1503		if (pc->pc_map[idx] != pc_freemask[idx]) {
1504			/*
1505			 * 98% of the time, pc is already at the head of the
1506			 * list.  If it isn't already, move it to the head.
1507			 */
1508			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
1509			    pc)) {
1510				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1511				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1512				    pc_list);
1513			}
1514			return;
1515		}
1516	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1517	free_pv_chunk(pc);
1518}
1519
1520static void
1521free_pv_chunk(struct pv_chunk *pc)
1522{
1523	vm_page_t m;
1524
1525 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1526	PV_STAT(pv_entry_spare -= _NPCPV);
1527	PV_STAT(pc_chunk_count--);
1528	PV_STAT(pc_chunk_frees++);
1529	/* entire chunk is free, return it */
1530	m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
1531	vm_page_unwire(m, 0);
1532	vm_page_free(m);
1533}
1534
1535/*
1536 * get a new pv_entry, allocating a block from the system
1537 * when needed.
1538 */
1539static pv_entry_t
1540get_pv_entry(pmap_t pmap, boolean_t try)
1541{
1542	struct pv_chunk *pc;
1543	pv_entry_t pv;
1544	vm_page_t m;
1545	int bit, field, idx;
1546
1547	rw_assert(&pvh_global_lock, RA_WLOCKED);
1548	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1549	PV_STAT(pv_entry_allocs++);
1550	pv_entry_count++;
1551retry:
1552	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1553	if (pc != NULL) {
1554		for (field = 0; field < _NPCM; field++) {
1555			if (pc->pc_map[field]) {
1556				bit = ffsl(pc->pc_map[field]) - 1;
1557				break;
1558			}
1559		}
1560		if (field < _NPCM) {
1561			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
1562			pv = &pc->pc_pventry[idx];
1563			pc->pc_map[field] &= ~(1ul << bit);
1564			/* If this was the last item, move it to tail */
1565			for (field = 0; field < _NPCM; field++)
1566				if (pc->pc_map[field] != 0) {
1567					PV_STAT(pv_entry_spare--);
1568					return (pv);	/* not full, return */
1569				}
1570			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1571			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1572			PV_STAT(pv_entry_spare--);
1573			return (pv);
1574		}
1575	}
1576	/* No free items, allocate another chunk */
1577	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
1578	    VM_ALLOC_WIRED);
1579	if (m == NULL) {
1580		if (try) {
1581			pv_entry_count--;
1582			PV_STAT(pc_chunk_tryfail++);
1583			return (NULL);
1584		}
1585		m = pmap_pv_reclaim(pmap);
1586		if (m == NULL)
1587			goto retry;
1588	}
1589	PV_STAT(pc_chunk_count++);
1590	PV_STAT(pc_chunk_allocs++);
1591	pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1592	pc->pc_pmap = pmap;
1593	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1594	for (field = 1; field < _NPCM; field++)
1595		pc->pc_map[field] = pc_freemask[field];
1596	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1597	pv = &pc->pc_pventry[0];
1598	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1599	PV_STAT(pv_entry_spare += _NPCPV - 1);
1600	return (pv);
1601}
1602
1603/*
1604 * If it is the first entry on the list, it is actually
1605 * in the header and we must copy the following entry up
1606 * to the header.  Otherwise we must search the list for
1607 * the entry.  In either case we free the now unused entry.
1608 */
1609
1610static pv_entry_t
1611pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1612{
1613	pv_entry_t pv;
1614
1615	rw_assert(&pvh_global_lock, RA_WLOCKED);
1616	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1617		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1618			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1619			break;
1620		}
1621	}
1622	return (pv);
1623}
1624
1625static void
1626pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1627{
1628	pv_entry_t pv;
1629
1630	pv = pmap_pvh_remove(pvh, pmap, va);
1631	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1632	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1633	     (u_long)va));
1634	free_pv_entry(pmap, pv);
1635}
1636
1637static void
1638pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1639{
1640
1641	rw_assert(&pvh_global_lock, RA_WLOCKED);
1642	pmap_pvh_free(&m->md, pmap, va);
1643	if (TAILQ_EMPTY(&m->md.pv_list))
1644		vm_page_aflag_clear(m, PGA_WRITEABLE);
1645}
1646
1647/*
1648 * Conditionally create a pv entry.
1649 */
1650static boolean_t
1651pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1652    vm_page_t m)
1653{
1654	pv_entry_t pv;
1655
1656	rw_assert(&pvh_global_lock, RA_WLOCKED);
1657	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1658	if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
1659		pv->pv_va = va;
1660		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1661		return (TRUE);
1662	} else
1663		return (FALSE);
1664}
1665
1666/*
1667 * pmap_remove_pte: do the things to unmap a page in a process
1668 */
1669static int
1670pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1671    pd_entry_t pde)
1672{
1673	pt_entry_t oldpte;
1674	vm_page_t m;
1675	vm_paddr_t pa;
1676
1677	rw_assert(&pvh_global_lock, RA_WLOCKED);
1678	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1679
1680	/*
1681	 * Write back all cache lines from the page being unmapped.
1682	 */
1683	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1684
1685	oldpte = *ptq;
1686	if (is_kernel_pmap(pmap))
1687		*ptq = PTE_G;
1688	else
1689		*ptq = 0;
1690
1691	if (pte_test(&oldpte, PTE_W))
1692		pmap->pm_stats.wired_count -= 1;
1693
1694	pmap->pm_stats.resident_count -= 1;
1695
1696	if (pte_test(&oldpte, PTE_MANAGED)) {
1697		pa = TLBLO_PTE_TO_PA(oldpte);
1698		m = PHYS_TO_VM_PAGE(pa);
1699		if (pte_test(&oldpte, PTE_D)) {
1700			KASSERT(!pte_test(&oldpte, PTE_RO),
1701			    ("%s: modified page not writable: va: %p, pte: %#jx",
1702			    __func__, (void *)va, (uintmax_t)oldpte));
1703			vm_page_dirty(m);
1704		}
1705		if (m->md.pv_flags & PV_TABLE_REF)
1706			vm_page_aflag_set(m, PGA_REFERENCED);
1707		m->md.pv_flags &= ~PV_TABLE_REF;
1708
1709		pmap_remove_entry(pmap, m, va);
1710	}
1711	return (pmap_unuse_pt(pmap, va, pde));
1712}
1713
1714/*
1715 * Remove a single page from a process address space
1716 */
1717static void
1718pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1719{
1720	pd_entry_t *pde;
1721	pt_entry_t *ptq;
1722
1723	rw_assert(&pvh_global_lock, RA_WLOCKED);
1724	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1725	pde = pmap_pde(pmap, va);
1726	if (pde == NULL || *pde == 0)
1727		return;
1728	ptq = pmap_pde_to_pte(pde, va);
1729
1730	/*
1731	 * If there is no pte for this address, just skip it!
1732	 */
1733	if (!pte_test(ptq, PTE_V))
1734		return;
1735
1736	(void)pmap_remove_pte(pmap, ptq, va, *pde);
1737	pmap_invalidate_page(pmap, va);
1738}
1739
1740/*
1741 *	Remove the given range of addresses from the specified map.
1742 *
1743 *	It is assumed that the start and end are properly
1744 *	rounded to the page size.
1745 */
1746void
1747pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1748{
1749	vm_offset_t va_next;
1750	pd_entry_t *pde, *pdpe;
1751	pt_entry_t *pte;
1752
1753	if (pmap->pm_stats.resident_count == 0)
1754		return;
1755
1756	rw_wlock(&pvh_global_lock);
1757	PMAP_LOCK(pmap);
1758
1759	/*
1760	 * special handling of removing one page.  a very common operation
1761	 * and easy to short circuit some code.
1762	 */
1763	if ((sva + PAGE_SIZE) == eva) {
1764		pmap_remove_page(pmap, sva);
1765		goto out;
1766	}
1767	for (; sva < eva; sva = va_next) {
1768		pdpe = pmap_segmap(pmap, sva);
1769#ifdef __mips_n64
1770		if (*pdpe == 0) {
1771			va_next = (sva + NBSEG) & ~SEGMASK;
1772			if (va_next < sva)
1773				va_next = eva;
1774			continue;
1775		}
1776#endif
1777		va_next = (sva + NBPDR) & ~PDRMASK;
1778		if (va_next < sva)
1779			va_next = eva;
1780
1781		pde = pmap_pdpe_to_pde(pdpe, sva);
1782		if (*pde == 0)
1783			continue;
1784		if (va_next > eva)
1785			va_next = eva;
1786		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1787		    sva += PAGE_SIZE) {
1788			if (!pte_test(pte, PTE_V))
1789				continue;
1790			pmap_remove_pte(pmap, pte, sva, *pde);
1791			pmap_invalidate_page(pmap, sva);
1792		}
1793	}
1794out:
1795	rw_wunlock(&pvh_global_lock);
1796	PMAP_UNLOCK(pmap);
1797}
1798
1799/*
1800 *	Routine:	pmap_remove_all
1801 *	Function:
1802 *		Removes this physical page from
1803 *		all physical maps in which it resides.
1804 *		Reflects back modify bits to the pager.
1805 *
1806 *	Notes:
1807 *		Original versions of this routine were very
1808 *		inefficient because they iteratively called
1809 *		pmap_remove (slow...)
1810 */
1811
1812void
1813pmap_remove_all(vm_page_t m)
1814{
1815	pv_entry_t pv;
1816	pmap_t pmap;
1817	pd_entry_t *pde;
1818	pt_entry_t *pte, tpte;
1819
1820	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1821	    ("pmap_remove_all: page %p is not managed", m));
1822	rw_wlock(&pvh_global_lock);
1823
1824	if (m->md.pv_flags & PV_TABLE_REF)
1825		vm_page_aflag_set(m, PGA_REFERENCED);
1826
1827	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1828		pmap = PV_PMAP(pv);
1829		PMAP_LOCK(pmap);
1830
1831		/*
1832		 * If it's last mapping writeback all caches from
1833		 * the page being destroyed
1834	 	 */
1835		if (TAILQ_NEXT(pv, pv_list) == NULL)
1836			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1837
1838		pmap->pm_stats.resident_count--;
1839
1840		pde = pmap_pde(pmap, pv->pv_va);
1841		KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
1842		pte = pmap_pde_to_pte(pde, pv->pv_va);
1843
1844		tpte = *pte;
1845		if (is_kernel_pmap(pmap))
1846			*pte = PTE_G;
1847		else
1848			*pte = 0;
1849
1850		if (pte_test(&tpte, PTE_W))
1851			pmap->pm_stats.wired_count--;
1852
1853		/*
1854		 * Update the vm_page_t clean and reference bits.
1855		 */
1856		if (pte_test(&tpte, PTE_D)) {
1857			KASSERT(!pte_test(&tpte, PTE_RO),
1858			    ("%s: modified page not writable: va: %p, pte: %#jx",
1859			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1860			vm_page_dirty(m);
1861		}
1862		pmap_invalidate_page(pmap, pv->pv_va);
1863
1864		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1865		pmap_unuse_pt(pmap, pv->pv_va, *pde);
1866		free_pv_entry(pmap, pv);
1867		PMAP_UNLOCK(pmap);
1868	}
1869
1870	vm_page_aflag_clear(m, PGA_WRITEABLE);
1871	m->md.pv_flags &= ~PV_TABLE_REF;
1872	rw_wunlock(&pvh_global_lock);
1873}
1874
1875/*
1876 *	Set the physical protection on the
1877 *	specified range of this map as requested.
1878 */
1879void
1880pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1881{
1882	pt_entry_t *pte;
1883	pd_entry_t *pde, *pdpe;
1884	vm_offset_t va_next;
1885
1886	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1887		pmap_remove(pmap, sva, eva);
1888		return;
1889	}
1890	if (prot & VM_PROT_WRITE)
1891		return;
1892
1893	rw_wlock(&pvh_global_lock);
1894	PMAP_LOCK(pmap);
1895	for (; sva < eva; sva = va_next) {
1896		pt_entry_t pbits;
1897		vm_page_t m;
1898		vm_paddr_t pa;
1899
1900		pdpe = pmap_segmap(pmap, sva);
1901#ifdef __mips_n64
1902		if (*pdpe == 0) {
1903			va_next = (sva + NBSEG) & ~SEGMASK;
1904			if (va_next < sva)
1905				va_next = eva;
1906			continue;
1907		}
1908#endif
1909		va_next = (sva + NBPDR) & ~PDRMASK;
1910		if (va_next < sva)
1911			va_next = eva;
1912
1913		pde = pmap_pdpe_to_pde(pdpe, sva);
1914		if (*pde == NULL)
1915			continue;
1916		if (va_next > eva)
1917			va_next = eva;
1918
1919		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1920		     sva += PAGE_SIZE) {
1921
1922			/* Skip invalid PTEs */
1923			if (!pte_test(pte, PTE_V))
1924				continue;
1925			pbits = *pte;
1926			if (pte_test(&pbits, PTE_MANAGED | PTE_D)) {
1927				pa = TLBLO_PTE_TO_PA(pbits);
1928				m = PHYS_TO_VM_PAGE(pa);
1929				vm_page_dirty(m);
1930			}
1931			pte_clear(&pbits, PTE_D);
1932			pte_set(&pbits, PTE_RO);
1933
1934			if (pbits != *pte) {
1935				*pte = pbits;
1936				pmap_update_page(pmap, sva, pbits);
1937			}
1938		}
1939	}
1940	rw_wunlock(&pvh_global_lock);
1941	PMAP_UNLOCK(pmap);
1942}
1943
1944/*
1945 *	Insert the given physical page (p) at
1946 *	the specified virtual address (v) in the
1947 *	target physical map with the protection requested.
1948 *
1949 *	If specified, the page will be wired down, meaning
1950 *	that the related pte can not be reclaimed.
1951 *
1952 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1953 *	or lose information.  That is, this routine must actually
1954 *	insert this page into the given map NOW.
1955 */
1956void
1957pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1958    vm_prot_t prot, boolean_t wired)
1959{
1960	vm_paddr_t pa, opa;
1961	pt_entry_t *pte;
1962	pt_entry_t origpte, newpte;
1963	pv_entry_t pv;
1964	vm_page_t mpte, om;
1965
1966	va &= ~PAGE_MASK;
1967 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1968	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
1969	    va >= kmi.clean_eva,
1970	    ("pmap_enter: managed mapping within the clean submap"));
1971	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
1972	    ("pmap_enter: page %p is not busy", m));
1973	pa = VM_PAGE_TO_PHYS(m);
1974	newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, access, prot);
1975	if (wired)
1976		newpte |= PTE_W;
1977	if (is_kernel_pmap(pmap))
1978		newpte |= PTE_G;
1979	if (is_cacheable_mem(pa))
1980		newpte |= PTE_C_CACHE;
1981	else
1982		newpte |= PTE_C_UNCACHED;
1983
1984	mpte = NULL;
1985
1986	rw_wlock(&pvh_global_lock);
1987	PMAP_LOCK(pmap);
1988
1989	/*
1990	 * In the case that a page table page is not resident, we are
1991	 * creating it here.
1992	 */
1993	if (va < VM_MAXUSER_ADDRESS) {
1994		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1995	}
1996	pte = pmap_pte(pmap, va);
1997
1998	/*
1999	 * Page Directory table entry not valid, we need a new PT page
2000	 */
2001	if (pte == NULL) {
2002		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
2003		    (void *)pmap->pm_segtab, (void *)va);
2004	}
2005	om = NULL;
2006	origpte = *pte;
2007	opa = TLBLO_PTE_TO_PA(origpte);
2008
2009	/*
2010	 * Mapping has not changed, must be protection or wiring change.
2011	 */
2012	if (pte_test(&origpte, PTE_V) && opa == pa) {
2013		/*
2014		 * Wiring change, just update stats. We don't worry about
2015		 * wiring PT pages as they remain resident as long as there
2016		 * are valid mappings in them. Hence, if a user page is
2017		 * wired, the PT page will be also.
2018		 */
2019		if (wired && !pte_test(&origpte, PTE_W))
2020			pmap->pm_stats.wired_count++;
2021		else if (!wired && pte_test(&origpte, PTE_W))
2022			pmap->pm_stats.wired_count--;
2023
2024		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
2025		    ("%s: modified page not writable: va: %p, pte: %#jx",
2026		    __func__, (void *)va, (uintmax_t)origpte));
2027
2028		/*
2029		 * Remove extra pte reference
2030		 */
2031		if (mpte)
2032			mpte->wire_count--;
2033
2034		if (pte_test(&origpte, PTE_MANAGED)) {
2035			m->md.pv_flags |= PV_TABLE_REF;
2036			om = m;
2037			newpte |= PTE_MANAGED;
2038			if (!pte_test(&newpte, PTE_RO))
2039				vm_page_aflag_set(m, PGA_WRITEABLE);
2040		}
2041		goto validate;
2042	}
2043
2044	pv = NULL;
2045
2046	/*
2047	 * Mapping has changed, invalidate old range and fall through to
2048	 * handle validating new mapping.
2049	 */
2050	if (opa) {
2051		if (pte_test(&origpte, PTE_W))
2052			pmap->pm_stats.wired_count--;
2053
2054		if (pte_test(&origpte, PTE_MANAGED)) {
2055			om = PHYS_TO_VM_PAGE(opa);
2056			pv = pmap_pvh_remove(&om->md, pmap, va);
2057		}
2058		if (mpte != NULL) {
2059			mpte->wire_count--;
2060			KASSERT(mpte->wire_count > 0,
2061			    ("pmap_enter: missing reference to page table page,"
2062			    " va: %p", (void *)va));
2063		}
2064	} else
2065		pmap->pm_stats.resident_count++;
2066
2067	/*
2068	 * Enter on the PV list if part of our managed memory.
2069	 */
2070	if ((m->oflags & VPO_UNMANAGED) == 0) {
2071		m->md.pv_flags |= PV_TABLE_REF;
2072		if (pv == NULL)
2073			pv = get_pv_entry(pmap, FALSE);
2074		pv->pv_va = va;
2075		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2076		newpte |= PTE_MANAGED;
2077		if (!pte_test(&newpte, PTE_RO))
2078			vm_page_aflag_set(m, PGA_WRITEABLE);
2079	} else if (pv != NULL)
2080		free_pv_entry(pmap, pv);
2081
2082	/*
2083	 * Increment counters
2084	 */
2085	if (wired)
2086		pmap->pm_stats.wired_count++;
2087
2088validate:
2089
2090#ifdef PMAP_DEBUG
2091	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
2092#endif
2093
2094	/*
2095	 * if the mapping or permission bits are different, we need to
2096	 * update the pte.
2097	 */
2098	if (origpte != newpte) {
2099		*pte = newpte;
2100		if (pte_test(&origpte, PTE_V)) {
2101			if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
2102				if (om->md.pv_flags & PV_TABLE_REF)
2103					vm_page_aflag_set(om, PGA_REFERENCED);
2104				om->md.pv_flags &= ~PV_TABLE_REF;
2105			}
2106			if (pte_test(&origpte, PTE_D)) {
2107				KASSERT(!pte_test(&origpte, PTE_RO),
2108				    ("pmap_enter: modified page not writable:"
2109				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
2110				if (pte_test(&origpte, PTE_MANAGED))
2111					vm_page_dirty(om);
2112			}
2113			if (pte_test(&origpte, PTE_MANAGED) &&
2114			    TAILQ_EMPTY(&om->md.pv_list))
2115				vm_page_aflag_clear(om, PGA_WRITEABLE);
2116			pmap_update_page(pmap, va, newpte);
2117		}
2118	}
2119
2120	/*
2121	 * Sync I & D caches for executable pages.  Do this only if the
2122	 * target pmap belongs to the current process.  Otherwise, an
2123	 * unresolvable TLB miss may occur.
2124	 */
2125	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2126	    (prot & VM_PROT_EXECUTE)) {
2127		mips_icache_sync_range(va, PAGE_SIZE);
2128		mips_dcache_wbinv_range(va, PAGE_SIZE);
2129	}
2130	rw_wunlock(&pvh_global_lock);
2131	PMAP_UNLOCK(pmap);
2132}
2133
2134/*
2135 * this code makes some *MAJOR* assumptions:
2136 * 1. Current pmap & pmap exists.
2137 * 2. Not wired.
2138 * 3. Read access.
2139 * 4. No page table pages.
2140 * but is *MUCH* faster than pmap_enter...
2141 */
2142
2143void
2144pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2145{
2146
2147	rw_wlock(&pvh_global_lock);
2148	PMAP_LOCK(pmap);
2149	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2150	rw_wunlock(&pvh_global_lock);
2151	PMAP_UNLOCK(pmap);
2152}
2153
2154static vm_page_t
2155pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2156    vm_prot_t prot, vm_page_t mpte)
2157{
2158	pt_entry_t *pte;
2159	vm_paddr_t pa;
2160
2161	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2162	    (m->oflags & VPO_UNMANAGED) != 0,
2163	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2164	rw_assert(&pvh_global_lock, RA_WLOCKED);
2165	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2166
2167	/*
2168	 * In the case that a page table page is not resident, we are
2169	 * creating it here.
2170	 */
2171	if (va < VM_MAXUSER_ADDRESS) {
2172		pd_entry_t *pde;
2173		unsigned ptepindex;
2174
2175		/*
2176		 * Calculate pagetable page index
2177		 */
2178		ptepindex = pmap_pde_pindex(va);
2179		if (mpte && (mpte->pindex == ptepindex)) {
2180			mpte->wire_count++;
2181		} else {
2182			/*
2183			 * Get the page directory entry
2184			 */
2185			pde = pmap_pde(pmap, va);
2186
2187			/*
2188			 * If the page table page is mapped, we just
2189			 * increment the hold count, and activate it.
2190			 */
2191			if (pde && *pde != 0) {
2192				mpte = PHYS_TO_VM_PAGE(
2193				    MIPS_DIRECT_TO_PHYS(*pde));
2194				mpte->wire_count++;
2195			} else {
2196				mpte = _pmap_allocpte(pmap, ptepindex,
2197				    M_NOWAIT);
2198				if (mpte == NULL)
2199					return (mpte);
2200			}
2201		}
2202	} else {
2203		mpte = NULL;
2204	}
2205
2206	pte = pmap_pte(pmap, va);
2207	if (pte_test(pte, PTE_V)) {
2208		if (mpte != NULL) {
2209			mpte->wire_count--;
2210			mpte = NULL;
2211		}
2212		return (mpte);
2213	}
2214
2215	/*
2216	 * Enter on the PV list if part of our managed memory.
2217	 */
2218	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2219	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2220		if (mpte != NULL) {
2221			pmap_unwire_ptp(pmap, va, mpte);
2222			mpte = NULL;
2223		}
2224		return (mpte);
2225	}
2226
2227	/*
2228	 * Increment counters
2229	 */
2230	pmap->pm_stats.resident_count++;
2231
2232	pa = VM_PAGE_TO_PHYS(m);
2233
2234	/*
2235	 * Now validate mapping with RO protection
2236	 */
2237	*pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
2238	if ((m->oflags & VPO_UNMANAGED) == 0)
2239		*pte |= PTE_MANAGED;
2240
2241	if (is_cacheable_mem(pa))
2242		*pte |= PTE_C_CACHE;
2243	else
2244		*pte |= PTE_C_UNCACHED;
2245
2246	if (is_kernel_pmap(pmap))
2247		*pte |= PTE_G;
2248	else {
2249		/*
2250		 * Sync I & D caches.  Do this only if the target pmap
2251		 * belongs to the current process.  Otherwise, an
2252		 * unresolvable TLB miss may occur. */
2253		if (pmap == &curproc->p_vmspace->vm_pmap) {
2254			va &= ~PAGE_MASK;
2255			mips_icache_sync_range(va, PAGE_SIZE);
2256			mips_dcache_wbinv_range(va, PAGE_SIZE);
2257		}
2258	}
2259	return (mpte);
2260}
2261
2262/*
2263 * Make a temporary mapping for a physical address.  This is only intended
2264 * to be used for panic dumps.
2265 *
2266 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2267 */
2268void *
2269pmap_kenter_temporary(vm_paddr_t pa, int i)
2270{
2271	vm_offset_t va;
2272
2273	if (i != 0)
2274		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2275		    __func__);
2276
2277	if (MIPS_DIRECT_MAPPABLE(pa)) {
2278		va = MIPS_PHYS_TO_DIRECT(pa);
2279	} else {
2280#ifndef __mips_n64    /* XXX : to be converted to new style */
2281		int cpu;
2282		register_t intr;
2283		struct local_sysmaps *sysm;
2284		pt_entry_t *pte, npte;
2285
2286		/* If this is used other than for dumps, we may need to leave
2287		 * interrupts disasbled on return. If crash dumps don't work when
2288		 * we get to this point, we might want to consider this (leaving things
2289		 * disabled as a starting point ;-)
2290	 	 */
2291		intr = intr_disable();
2292		cpu = PCPU_GET(cpuid);
2293		sysm = &sysmap_lmem[cpu];
2294		/* Since this is for the debugger, no locks or any other fun */
2295		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2296		pte = pmap_pte(kernel_pmap, sysm->base);
2297		*pte = npte;
2298		sysm->valid1 = 1;
2299		pmap_update_page(kernel_pmap, sysm->base, npte);
2300		va = sysm->base;
2301		intr_restore(intr);
2302#endif
2303	}
2304	return ((void *)va);
2305}
2306
2307void
2308pmap_kenter_temporary_free(vm_paddr_t pa)
2309{
2310#ifndef __mips_n64    /* XXX : to be converted to new style */
2311	int cpu;
2312	register_t intr;
2313	struct local_sysmaps *sysm;
2314#endif
2315
2316	if (MIPS_DIRECT_MAPPABLE(pa)) {
2317		/* nothing to do for this case */
2318		return;
2319	}
2320#ifndef __mips_n64    /* XXX : to be converted to new style */
2321	cpu = PCPU_GET(cpuid);
2322	sysm = &sysmap_lmem[cpu];
2323	if (sysm->valid1) {
2324		pt_entry_t *pte;
2325
2326		intr = intr_disable();
2327		pte = pmap_pte(kernel_pmap, sysm->base);
2328		*pte = PTE_G;
2329		pmap_invalidate_page(kernel_pmap, sysm->base);
2330		intr_restore(intr);
2331		sysm->valid1 = 0;
2332	}
2333#endif
2334}
2335
2336/*
2337 * Maps a sequence of resident pages belonging to the same object.
2338 * The sequence begins with the given page m_start.  This page is
2339 * mapped at the given virtual address start.  Each subsequent page is
2340 * mapped at a virtual address that is offset from start by the same
2341 * amount as the page is offset from m_start within the object.  The
2342 * last page in the sequence is the page with the largest offset from
2343 * m_start that can be mapped at a virtual address less than the given
2344 * virtual address end.  Not every virtual page between start and end
2345 * is mapped; only those for which a resident page exists with the
2346 * corresponding offset from m_start are mapped.
2347 */
2348void
2349pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2350    vm_page_t m_start, vm_prot_t prot)
2351{
2352	vm_page_t m, mpte;
2353	vm_pindex_t diff, psize;
2354
2355	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2356	psize = atop(end - start);
2357	mpte = NULL;
2358	m = m_start;
2359	rw_wlock(&pvh_global_lock);
2360	PMAP_LOCK(pmap);
2361	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2362		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2363		    prot, mpte);
2364		m = TAILQ_NEXT(m, listq);
2365	}
2366	rw_wunlock(&pvh_global_lock);
2367 	PMAP_UNLOCK(pmap);
2368}
2369
2370/*
2371 * pmap_object_init_pt preloads the ptes for a given object
2372 * into the specified pmap.  This eliminates the blast of soft
2373 * faults on process startup and immediately after an mmap.
2374 */
2375void
2376pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2377    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2378{
2379	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2380	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2381	    ("pmap_object_init_pt: non-device object"));
2382}
2383
2384/*
2385 *	Routine:	pmap_change_wiring
2386 *	Function:	Change the wiring attribute for a map/virtual-address
2387 *			pair.
2388 *	In/out conditions:
2389 *			The mapping must already exist in the pmap.
2390 */
2391void
2392pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2393{
2394	pt_entry_t *pte;
2395
2396	PMAP_LOCK(pmap);
2397	pte = pmap_pte(pmap, va);
2398
2399	if (wired && !pte_test(pte, PTE_W))
2400		pmap->pm_stats.wired_count++;
2401	else if (!wired && pte_test(pte, PTE_W))
2402		pmap->pm_stats.wired_count--;
2403
2404	/*
2405	 * Wiring is not a hardware characteristic so there is no need to
2406	 * invalidate TLB.
2407	 */
2408	if (wired)
2409		pte_set(pte, PTE_W);
2410	else
2411		pte_clear(pte, PTE_W);
2412	PMAP_UNLOCK(pmap);
2413}
2414
2415/*
2416 *	Copy the range specified by src_addr/len
2417 *	from the source map to the range dst_addr/len
2418 *	in the destination map.
2419 *
2420 *	This routine is only advisory and need not do anything.
2421 */
2422
2423void
2424pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2425    vm_size_t len, vm_offset_t src_addr)
2426{
2427}
2428
2429/*
2430 *	pmap_zero_page zeros the specified hardware page by mapping
2431 *	the page into KVM and using bzero to clear its contents.
2432 *
2433 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2434 */
2435void
2436pmap_zero_page(vm_page_t m)
2437{
2438	vm_offset_t va;
2439	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2440
2441	if (MIPS_DIRECT_MAPPABLE(phys)) {
2442		va = MIPS_PHYS_TO_DIRECT(phys);
2443		bzero((caddr_t)va, PAGE_SIZE);
2444		mips_dcache_wbinv_range(va, PAGE_SIZE);
2445	} else {
2446		va = pmap_lmem_map1(phys);
2447		bzero((caddr_t)va, PAGE_SIZE);
2448		mips_dcache_wbinv_range(va, PAGE_SIZE);
2449		pmap_lmem_unmap();
2450	}
2451}
2452
2453/*
2454 *	pmap_zero_page_area zeros the specified hardware page by mapping
2455 *	the page into KVM and using bzero to clear its contents.
2456 *
2457 *	off and size may not cover an area beyond a single hardware page.
2458 */
2459void
2460pmap_zero_page_area(vm_page_t m, int off, int size)
2461{
2462	vm_offset_t va;
2463	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2464
2465	if (MIPS_DIRECT_MAPPABLE(phys)) {
2466		va = MIPS_PHYS_TO_DIRECT(phys);
2467		bzero((char *)(caddr_t)va + off, size);
2468		mips_dcache_wbinv_range(va + off, size);
2469	} else {
2470		va = pmap_lmem_map1(phys);
2471		bzero((char *)va + off, size);
2472		mips_dcache_wbinv_range(va + off, size);
2473		pmap_lmem_unmap();
2474	}
2475}
2476
2477void
2478pmap_zero_page_idle(vm_page_t m)
2479{
2480	vm_offset_t va;
2481	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2482
2483	if (MIPS_DIRECT_MAPPABLE(phys)) {
2484		va = MIPS_PHYS_TO_DIRECT(phys);
2485		bzero((caddr_t)va, PAGE_SIZE);
2486		mips_dcache_wbinv_range(va, PAGE_SIZE);
2487	} else {
2488		va = pmap_lmem_map1(phys);
2489		bzero((caddr_t)va, PAGE_SIZE);
2490		mips_dcache_wbinv_range(va, PAGE_SIZE);
2491		pmap_lmem_unmap();
2492	}
2493}
2494
2495/*
2496 *	pmap_copy_page copies the specified (machine independent)
2497 *	page by mapping the page into virtual memory and using
2498 *	bcopy to copy the page, one machine dependent page at a
2499 *	time.
2500 *
2501 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2502 */
2503void
2504pmap_copy_page(vm_page_t src, vm_page_t dst)
2505{
2506	vm_offset_t va_src, va_dst;
2507	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2508	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2509
2510	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2511		/* easy case, all can be accessed via KSEG0 */
2512		/*
2513		 * Flush all caches for VA that are mapped to this page
2514		 * to make sure that data in SDRAM is up to date
2515		 */
2516		pmap_flush_pvcache(src);
2517		mips_dcache_wbinv_range_index(
2518		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2519		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2520		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2521		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2522		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2523	} else {
2524		va_src = pmap_lmem_map2(phys_src, phys_dst);
2525		va_dst = va_src + PAGE_SIZE;
2526		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2527		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2528		pmap_lmem_unmap();
2529	}
2530}
2531
2532/*
2533 * Returns true if the pmap's pv is one of the first
2534 * 16 pvs linked to from this page.  This count may
2535 * be changed upwards or downwards in the future; it
2536 * is only necessary that true be returned for a small
2537 * subset of pmaps for proper page aging.
2538 */
2539boolean_t
2540pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2541{
2542	pv_entry_t pv;
2543	int loops = 0;
2544	boolean_t rv;
2545
2546	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2547	    ("pmap_page_exists_quick: page %p is not managed", m));
2548	rv = FALSE;
2549	rw_wlock(&pvh_global_lock);
2550	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2551		if (PV_PMAP(pv) == pmap) {
2552			rv = TRUE;
2553			break;
2554		}
2555		loops++;
2556		if (loops >= 16)
2557			break;
2558	}
2559	rw_wunlock(&pvh_global_lock);
2560	return (rv);
2561}
2562
2563/*
2564 * Remove all pages from specified address space
2565 * this aids process exit speeds.  Also, this code
2566 * is special cased for current process only, but
2567 * can have the more generic (and slightly slower)
2568 * mode enabled.  This is much faster than pmap_remove
2569 * in the case of running down an entire address space.
2570 */
2571void
2572pmap_remove_pages(pmap_t pmap)
2573{
2574	pd_entry_t *pde;
2575	pt_entry_t *pte, tpte;
2576	pv_entry_t pv;
2577	vm_page_t m;
2578	struct pv_chunk *pc, *npc;
2579	u_long inuse, bitmask;
2580	int allfree, bit, field, idx;
2581
2582	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2583		printf("warning: pmap_remove_pages called with non-current pmap\n");
2584		return;
2585	}
2586	rw_wlock(&pvh_global_lock);
2587	PMAP_LOCK(pmap);
2588	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2589		allfree = 1;
2590		for (field = 0; field < _NPCM; field++) {
2591			inuse = ~pc->pc_map[field] & pc_freemask[field];
2592			while (inuse != 0) {
2593				bit = ffsl(inuse) - 1;
2594				bitmask = 1UL << bit;
2595				idx = field * sizeof(inuse) * NBBY + bit;
2596				pv = &pc->pc_pventry[idx];
2597				inuse &= ~bitmask;
2598
2599				pde = pmap_pde(pmap, pv->pv_va);
2600				KASSERT(pde != NULL && *pde != 0,
2601				    ("pmap_remove_pages: pde"));
2602				pte = pmap_pde_to_pte(pde, pv->pv_va);
2603				if (!pte_test(pte, PTE_V))
2604					panic("pmap_remove_pages: bad pte");
2605				tpte = *pte;
2606
2607/*
2608 * We cannot remove wired pages from a process' mapping at this time
2609 */
2610				if (pte_test(&tpte, PTE_W)) {
2611					allfree = 0;
2612					continue;
2613				}
2614				*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2615
2616				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2617				KASSERT(m != NULL,
2618				    ("pmap_remove_pages: bad tpte %#jx",
2619				    (uintmax_t)tpte));
2620
2621				/*
2622				 * Update the vm_page_t clean and reference bits.
2623				 */
2624				if (pte_test(&tpte, PTE_D))
2625					vm_page_dirty(m);
2626
2627				/* Mark free */
2628				PV_STAT(pv_entry_frees++);
2629				PV_STAT(pv_entry_spare++);
2630				pv_entry_count--;
2631				pc->pc_map[field] |= bitmask;
2632				pmap->pm_stats.resident_count--;
2633				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2634				if (TAILQ_EMPTY(&m->md.pv_list))
2635					vm_page_aflag_clear(m, PGA_WRITEABLE);
2636				pmap_unuse_pt(pmap, pv->pv_va, *pde);
2637			}
2638		}
2639		if (allfree) {
2640			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2641			free_pv_chunk(pc);
2642		}
2643	}
2644	pmap_invalidate_all(pmap);
2645	PMAP_UNLOCK(pmap);
2646	rw_wunlock(&pvh_global_lock);
2647}
2648
2649/*
2650 * pmap_testbit tests bits in pte's
2651 */
2652static boolean_t
2653pmap_testbit(vm_page_t m, int bit)
2654{
2655	pv_entry_t pv;
2656	pmap_t pmap;
2657	pt_entry_t *pte;
2658	boolean_t rv = FALSE;
2659
2660	if (m->oflags & VPO_UNMANAGED)
2661		return (rv);
2662
2663	rw_assert(&pvh_global_lock, RA_WLOCKED);
2664	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2665		pmap = PV_PMAP(pv);
2666		PMAP_LOCK(pmap);
2667		pte = pmap_pte(pmap, pv->pv_va);
2668		rv = pte_test(pte, bit);
2669		PMAP_UNLOCK(pmap);
2670		if (rv)
2671			break;
2672	}
2673	return (rv);
2674}
2675
2676/*
2677 *	pmap_page_wired_mappings:
2678 *
2679 *	Return the number of managed mappings to the given physical page
2680 *	that are wired.
2681 */
2682int
2683pmap_page_wired_mappings(vm_page_t m)
2684{
2685	pv_entry_t pv;
2686	pmap_t pmap;
2687	pt_entry_t *pte;
2688	int count;
2689
2690	count = 0;
2691	if ((m->oflags & VPO_UNMANAGED) != 0)
2692		return (count);
2693	rw_wlock(&pvh_global_lock);
2694	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2695		pmap = PV_PMAP(pv);
2696		PMAP_LOCK(pmap);
2697		pte = pmap_pte(pmap, pv->pv_va);
2698		if (pte_test(pte, PTE_W))
2699			count++;
2700		PMAP_UNLOCK(pmap);
2701	}
2702	rw_wunlock(&pvh_global_lock);
2703	return (count);
2704}
2705
2706/*
2707 * Clear the write and modified bits in each of the given page's mappings.
2708 */
2709void
2710pmap_remove_write(vm_page_t m)
2711{
2712	pmap_t pmap;
2713	pt_entry_t pbits, *pte;
2714	pv_entry_t pv;
2715
2716	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2717	    ("pmap_remove_write: page %p is not managed", m));
2718
2719	/*
2720	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
2721	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
2722	 * is clear, no page table entries need updating.
2723	 */
2724	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2725	if ((m->oflags & VPO_BUSY) == 0 &&
2726	    (m->aflags & PGA_WRITEABLE) == 0)
2727		return;
2728	rw_wlock(&pvh_global_lock);
2729	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2730		pmap = PV_PMAP(pv);
2731		PMAP_LOCK(pmap);
2732		pte = pmap_pte(pmap, pv->pv_va);
2733		KASSERT(pte != NULL && pte_test(pte, PTE_V),
2734		    ("page on pv_list has no pte"));
2735		pbits = *pte;
2736		if (pte_test(&pbits, PTE_D)) {
2737			pte_clear(&pbits, PTE_D);
2738			vm_page_dirty(m);
2739		}
2740		pte_set(&pbits, PTE_RO);
2741		if (pbits != *pte) {
2742			*pte = pbits;
2743			pmap_update_page(pmap, pv->pv_va, pbits);
2744		}
2745		PMAP_UNLOCK(pmap);
2746	}
2747	vm_page_aflag_clear(m, PGA_WRITEABLE);
2748	rw_wunlock(&pvh_global_lock);
2749}
2750
2751/*
2752 *	pmap_ts_referenced:
2753 *
2754 *	Return the count of reference bits for a page, clearing all of them.
2755 */
2756int
2757pmap_ts_referenced(vm_page_t m)
2758{
2759
2760	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2761	    ("pmap_ts_referenced: page %p is not managed", m));
2762	if (m->md.pv_flags & PV_TABLE_REF) {
2763		rw_wlock(&pvh_global_lock);
2764		m->md.pv_flags &= ~PV_TABLE_REF;
2765		rw_wunlock(&pvh_global_lock);
2766		return (1);
2767	}
2768	return (0);
2769}
2770
2771/*
2772 *	pmap_is_modified:
2773 *
2774 *	Return whether or not the specified physical page was modified
2775 *	in any physical maps.
2776 */
2777boolean_t
2778pmap_is_modified(vm_page_t m)
2779{
2780	boolean_t rv;
2781
2782	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2783	    ("pmap_is_modified: page %p is not managed", m));
2784
2785	/*
2786	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2787	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2788	 * is clear, no PTEs can have PTE_D set.
2789	 */
2790	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2791	if ((m->oflags & VPO_BUSY) == 0 &&
2792	    (m->aflags & PGA_WRITEABLE) == 0)
2793		return (FALSE);
2794	rw_wlock(&pvh_global_lock);
2795	rv = pmap_testbit(m, PTE_D);
2796	rw_wunlock(&pvh_global_lock);
2797	return (rv);
2798}
2799
2800/* N/C */
2801
2802/*
2803 *	pmap_is_prefaultable:
2804 *
2805 *	Return whether or not the specified virtual address is elgible
2806 *	for prefault.
2807 */
2808boolean_t
2809pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2810{
2811	pd_entry_t *pde;
2812	pt_entry_t *pte;
2813	boolean_t rv;
2814
2815	rv = FALSE;
2816	PMAP_LOCK(pmap);
2817	pde = pmap_pde(pmap, addr);
2818	if (pde != NULL && *pde != 0) {
2819		pte = pmap_pde_to_pte(pde, addr);
2820		rv = (*pte == 0);
2821	}
2822	PMAP_UNLOCK(pmap);
2823	return (rv);
2824}
2825
2826/*
2827 *	Clear the modify bits on the specified physical page.
2828 */
2829void
2830pmap_clear_modify(vm_page_t m)
2831{
2832	pmap_t pmap;
2833	pt_entry_t *pte;
2834	pv_entry_t pv;
2835
2836	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2837	    ("pmap_clear_modify: page %p is not managed", m));
2838	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2839	KASSERT((m->oflags & VPO_BUSY) == 0,
2840	    ("pmap_clear_modify: page %p is busy", m));
2841
2842	/*
2843	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
2844	 * If the object containing the page is locked and the page is not
2845	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
2846	 */
2847	if ((m->aflags & PGA_WRITEABLE) == 0)
2848		return;
2849	rw_wlock(&pvh_global_lock);
2850	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2851		pmap = PV_PMAP(pv);
2852		PMAP_LOCK(pmap);
2853		pte = pmap_pte(pmap, pv->pv_va);
2854		if (pte_test(pte, PTE_D)) {
2855			pte_clear(pte, PTE_D);
2856			pmap_update_page(pmap, pv->pv_va, *pte);
2857		}
2858		PMAP_UNLOCK(pmap);
2859	}
2860	rw_wunlock(&pvh_global_lock);
2861}
2862
2863/*
2864 *	pmap_is_referenced:
2865 *
2866 *	Return whether or not the specified physical page was referenced
2867 *	in any physical maps.
2868 */
2869boolean_t
2870pmap_is_referenced(vm_page_t m)
2871{
2872
2873	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2874	    ("pmap_is_referenced: page %p is not managed", m));
2875	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2876}
2877
2878/*
2879 *	pmap_clear_reference:
2880 *
2881 *	Clear the reference bit on the specified physical page.
2882 */
2883void
2884pmap_clear_reference(vm_page_t m)
2885{
2886
2887	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2888	    ("pmap_clear_reference: page %p is not managed", m));
2889	rw_wlock(&pvh_global_lock);
2890	if (m->md.pv_flags & PV_TABLE_REF) {
2891		m->md.pv_flags &= ~PV_TABLE_REF;
2892	}
2893	rw_wunlock(&pvh_global_lock);
2894}
2895
2896/*
2897 * Miscellaneous support routines follow
2898 */
2899
2900/*
2901 * Map a set of physical memory pages into the kernel virtual
2902 * address space. Return a pointer to where it is mapped. This
2903 * routine is intended to be used for mapping device memory,
2904 * NOT real memory.
2905 */
2906
2907/*
2908 * Map a set of physical memory pages into the kernel virtual
2909 * address space. Return a pointer to where it is mapped. This
2910 * routine is intended to be used for mapping device memory,
2911 * NOT real memory.
2912 *
2913 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2914 */
2915void *
2916pmap_mapdev(vm_paddr_t pa, vm_size_t size)
2917{
2918        vm_offset_t va, tmpva, offset;
2919
2920	/*
2921	 * KSEG1 maps only first 512M of phys address space. For
2922	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2923	 */
2924	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2925		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2926	else {
2927		offset = pa & PAGE_MASK;
2928		size = roundup(size + offset, PAGE_SIZE);
2929
2930		va = kmem_alloc_nofault(kernel_map, size);
2931		if (!va)
2932			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2933		pa = trunc_page(pa);
2934		for (tmpva = va; size > 0;) {
2935			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2936			size -= PAGE_SIZE;
2937			tmpva += PAGE_SIZE;
2938			pa += PAGE_SIZE;
2939		}
2940	}
2941
2942	return ((void *)(va + offset));
2943}
2944
2945void
2946pmap_unmapdev(vm_offset_t va, vm_size_t size)
2947{
2948#ifndef __mips_n64
2949	vm_offset_t base, offset, tmpva;
2950
2951	/* If the address is within KSEG1 then there is nothing to do */
2952	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2953		return;
2954
2955	base = trunc_page(va);
2956	offset = va & PAGE_MASK;
2957	size = roundup(size + offset, PAGE_SIZE);
2958	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2959		pmap_kremove(tmpva);
2960	kmem_free(kernel_map, base, size);
2961#endif
2962}
2963
2964/*
2965 * perform the pmap work for mincore
2966 */
2967int
2968pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2969{
2970	pt_entry_t *ptep, pte;
2971	vm_paddr_t pa;
2972	vm_page_t m;
2973	int val;
2974
2975	PMAP_LOCK(pmap);
2976retry:
2977	ptep = pmap_pte(pmap, addr);
2978	pte = (ptep != NULL) ? *ptep : 0;
2979	if (!pte_test(&pte, PTE_V)) {
2980		val = 0;
2981		goto out;
2982	}
2983	val = MINCORE_INCORE;
2984	if (pte_test(&pte, PTE_D))
2985		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2986	pa = TLBLO_PTE_TO_PA(pte);
2987	if (pte_test(&pte, PTE_MANAGED)) {
2988		/*
2989		 * This may falsely report the given address as
2990		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2991		 * per-PTE reference information, it is impossible to
2992		 * determine if the address is MINCORE_REFERENCED.
2993		 */
2994		m = PHYS_TO_VM_PAGE(pa);
2995		if ((m->aflags & PGA_REFERENCED) != 0)
2996			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2997	}
2998	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2999	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
3000	    pte_test(&pte, PTE_MANAGED)) {
3001		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3002		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3003			goto retry;
3004	} else
3005out:
3006		PA_UNLOCK_COND(*locked_pa);
3007	PMAP_UNLOCK(pmap);
3008	return (val);
3009}
3010
3011void
3012pmap_activate(struct thread *td)
3013{
3014	pmap_t pmap, oldpmap;
3015	struct proc *p = td->td_proc;
3016	u_int cpuid;
3017
3018	critical_enter();
3019
3020	pmap = vmspace_pmap(p->p_vmspace);
3021	oldpmap = PCPU_GET(curpmap);
3022	cpuid = PCPU_GET(cpuid);
3023
3024	if (oldpmap)
3025		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
3026	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
3027	pmap_asid_alloc(pmap);
3028	if (td == curthread) {
3029		PCPU_SET(segbase, pmap->pm_segtab);
3030		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
3031	}
3032
3033	PCPU_SET(curpmap, pmap);
3034	critical_exit();
3035}
3036
3037void
3038pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3039{
3040}
3041
3042/*
3043 *	Increase the starting virtual address of the given mapping if a
3044 *	different alignment might result in more superpage mappings.
3045 */
3046void
3047pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3048    vm_offset_t *addr, vm_size_t size)
3049{
3050	vm_offset_t superpage_offset;
3051
3052	if (size < NBSEG)
3053		return;
3054	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3055		offset += ptoa(object->pg_color);
3056	superpage_offset = offset & SEGMASK;
3057	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
3058	    (*addr & SEGMASK) == superpage_offset)
3059		return;
3060	if ((*addr & SEGMASK) < superpage_offset)
3061		*addr = (*addr & ~SEGMASK) + superpage_offset;
3062	else
3063		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
3064}
3065
3066/*
3067 * 	Increase the starting virtual address of the given mapping so
3068 * 	that it is aligned to not be the second page in a TLB entry.
3069 * 	This routine assumes that the length is appropriately-sized so
3070 * 	that the allocation does not share a TLB entry at all if required.
3071 */
3072void
3073pmap_align_tlb(vm_offset_t *addr)
3074{
3075	if ((*addr & PAGE_SIZE) == 0)
3076		return;
3077	*addr += PAGE_SIZE;
3078	return;
3079}
3080
3081#ifdef DDB
3082DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3083{
3084	pmap_t pmap;
3085	struct thread *td = NULL;
3086	struct proc *p;
3087	int i, j, k;
3088	vm_paddr_t pa;
3089	vm_offset_t va;
3090
3091	if (have_addr) {
3092		td = db_lookup_thread(addr, TRUE);
3093		if (td == NULL) {
3094			db_printf("Invalid pid or tid");
3095			return;
3096		}
3097		p = td->td_proc;
3098		if (p->p_vmspace == NULL) {
3099			db_printf("No vmspace for process");
3100			return;
3101		}
3102			pmap = vmspace_pmap(p->p_vmspace);
3103	} else
3104		pmap = kernel_pmap;
3105
3106	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3107	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3108	    pmap->pm_asid[0].gen);
3109	for (i = 0; i < NPDEPG; i++) {
3110		pd_entry_t *pdpe;
3111		pt_entry_t *pde;
3112		pt_entry_t pte;
3113
3114		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3115		if (pdpe == NULL)
3116			continue;
3117		db_printf("[%4d] %p\n", i, pdpe);
3118#ifdef __mips_n64
3119		for (j = 0; j < NPDEPG; j++) {
3120			pde = (pt_entry_t *)pdpe[j];
3121			if (pde == NULL)
3122				continue;
3123			db_printf("\t[%4d] %p\n", j, pde);
3124#else
3125		{
3126			j = 0;
3127			pde =  (pt_entry_t *)pdpe;
3128#endif
3129			for (k = 0; k < NPTEPG; k++) {
3130				pte = pde[k];
3131				if (pte == 0 || !pte_test(&pte, PTE_V))
3132					continue;
3133				pa = TLBLO_PTE_TO_PA(pte);
3134				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3135				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3136				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3137			}
3138		}
3139	}
3140}
3141#endif
3142
3143#if defined(DEBUG)
3144
3145static void pads(pmap_t pm);
3146void pmap_pvdump(vm_offset_t pa);
3147
3148/* print address space of pmap*/
3149static void
3150pads(pmap_t pm)
3151{
3152	unsigned va, i, j;
3153	pt_entry_t *ptep;
3154
3155	if (pm == kernel_pmap)
3156		return;
3157	for (i = 0; i < NPTEPG; i++)
3158		if (pm->pm_segtab[i])
3159			for (j = 0; j < NPTEPG; j++) {
3160				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3161				if (pm == kernel_pmap && va < KERNBASE)
3162					continue;
3163				if (pm != kernel_pmap &&
3164				    va >= VM_MAXUSER_ADDRESS)
3165					continue;
3166				ptep = pmap_pte(pm, va);
3167				if (pte_test(ptep, PTE_V))
3168					printf("%x:%x ", va, *(int *)ptep);
3169			}
3170
3171}
3172
3173void
3174pmap_pvdump(vm_offset_t pa)
3175{
3176	register pv_entry_t pv;
3177	vm_page_t m;
3178
3179	printf("pa %x", pa);
3180	m = PHYS_TO_VM_PAGE(pa);
3181	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3182	    pv = TAILQ_NEXT(pv, pv_list)) {
3183		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3184		pads(pv->pv_pmap);
3185	}
3186	printf(" ");
3187}
3188
3189/* N/C */
3190#endif
3191
3192
3193/*
3194 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3195 * It takes almost as much or more time to search the TLB for a
3196 * specific ASID and flush those entries as it does to flush the entire TLB.
3197 * Therefore, when we allocate a new ASID, we just take the next number. When
3198 * we run out of numbers, we flush the TLB, increment the generation count
3199 * and start over. ASID zero is reserved for kernel use.
3200 */
3201static void
3202pmap_asid_alloc(pmap)
3203	pmap_t pmap;
3204{
3205	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3206	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3207	else {
3208		if (PCPU_GET(next_asid) == pmap_max_asid) {
3209			tlb_invalidate_all_user(NULL);
3210			PCPU_SET(asid_generation,
3211			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3212			if (PCPU_GET(asid_generation) == 0) {
3213				PCPU_SET(asid_generation, 1);
3214			}
3215			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3216		}
3217		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3218		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3219		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3220	}
3221}
3222
3223static pt_entry_t
3224init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
3225{
3226	pt_entry_t rw;
3227
3228	if (!(prot & VM_PROT_WRITE))
3229		rw = PTE_V | PTE_RO;
3230	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3231		if ((access & VM_PROT_WRITE) != 0)
3232			rw = PTE_V | PTE_D;
3233		else
3234			rw = PTE_V;
3235	} else
3236		/* Needn't emulate a modified bit for unmanaged pages. */
3237		rw = PTE_V | PTE_D;
3238	return (rw);
3239}
3240
3241/*
3242 * pmap_emulate_modified : do dirty bit emulation
3243 *
3244 * On SMP, update just the local TLB, other CPUs will update their
3245 * TLBs from PTE lazily, if they get the exception.
3246 * Returns 0 in case of sucess, 1 if the page is read only and we
3247 * need to fault.
3248 */
3249int
3250pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3251{
3252	pt_entry_t *pte;
3253
3254	PMAP_LOCK(pmap);
3255	pte = pmap_pte(pmap, va);
3256	if (pte == NULL)
3257		panic("pmap_emulate_modified: can't find PTE");
3258#ifdef SMP
3259	/* It is possible that some other CPU changed m-bit */
3260	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3261		tlb_update(pmap, va, *pte);
3262		PMAP_UNLOCK(pmap);
3263		return (0);
3264	}
3265#else
3266	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3267		panic("pmap_emulate_modified: invalid pte");
3268#endif
3269	if (pte_test(pte, PTE_RO)) {
3270		PMAP_UNLOCK(pmap);
3271		return (1);
3272	}
3273	pte_set(pte, PTE_D);
3274	tlb_update(pmap, va, *pte);
3275	if (!pte_test(pte, PTE_MANAGED))
3276		panic("pmap_emulate_modified: unmanaged page");
3277	PMAP_UNLOCK(pmap);
3278	return (0);
3279}
3280
3281/*
3282 *	Routine:	pmap_kextract
3283 *	Function:
3284 *		Extract the physical page address associated
3285 *		virtual address.
3286 */
3287vm_paddr_t
3288pmap_kextract(vm_offset_t va)
3289{
3290	int mapped;
3291
3292	/*
3293	 * First, the direct-mapped regions.
3294	 */
3295#if defined(__mips_n64)
3296	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3297		return (MIPS_XKPHYS_TO_PHYS(va));
3298#endif
3299	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3300		return (MIPS_KSEG0_TO_PHYS(va));
3301
3302	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3303		return (MIPS_KSEG1_TO_PHYS(va));
3304
3305	/*
3306	 * User virtual addresses.
3307	 */
3308	if (va < VM_MAXUSER_ADDRESS) {
3309		pt_entry_t *ptep;
3310
3311		if (curproc && curproc->p_vmspace) {
3312			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3313			if (ptep) {
3314				return (TLBLO_PTE_TO_PA(*ptep) |
3315				    (va & PAGE_MASK));
3316			}
3317			return (0);
3318		}
3319	}
3320
3321	/*
3322	 * Should be kernel virtual here, otherwise fail
3323	 */
3324	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3325#if defined(__mips_n64)
3326	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3327#endif
3328	/*
3329	 * Kernel virtual.
3330	 */
3331
3332	if (mapped) {
3333		pt_entry_t *ptep;
3334
3335		/* Is the kernel pmap initialized? */
3336		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3337			/* It's inside the virtual address range */
3338			ptep = pmap_pte(kernel_pmap, va);
3339			if (ptep) {
3340				return (TLBLO_PTE_TO_PA(*ptep) |
3341				    (va & PAGE_MASK));
3342			}
3343		}
3344		return (0);
3345	}
3346
3347	panic("%s for unknown address space %p.", __func__, (void *)va);
3348}
3349
3350
3351void
3352pmap_flush_pvcache(vm_page_t m)
3353{
3354	pv_entry_t pv;
3355
3356	if (m != NULL) {
3357		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3358		    pv = TAILQ_NEXT(pv, pv_list)) {
3359			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3360		}
3361	}
3362}
3363