1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	Since the information managed by this module is
46 *	also stored by the logical address mapping module,
47 *	this module may throw away valid virtual-to-physical
48 *	mappings at almost any time.  However, invalidations
49 *	of virtual-to-physical mappings must be done as
50 *	requested.
51 *
52 *	In order to cope with hardware architectures which
53 *	make virtual-to-physical map invalidates expensive,
54 *	this module may delay invalidate or reduced protection
55 *	operations until such time as they are actually
56 *	necessary.  This module is given full information as
57 *	to which processors are currently using which maps,
58 *	and to when physical maps must be made correct.
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD$");
63
64#include "opt_ddb.h"
65#include "opt_pmap.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mman.h>
71#include <sys/msgbuf.h>
72#include <sys/mutex.h>
73#include <sys/pcpu.h>
74#include <sys/proc.h>
75#include <sys/rwlock.h>
76#include <sys/sched.h>
77#ifdef SMP
78#include <sys/smp.h>
79#else
80#include <sys/cpuset.h>
81#endif
82#include <sys/sysctl.h>
83#include <sys/vmmeter.h>
84
85#ifdef DDB
86#include <ddb/ddb.h>
87#endif
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cache.h>
101#include <machine/md_var.h>
102#include <machine/tlb.h>
103
104#undef PMAP_DEBUG
105
106#if !defined(DIAGNOSTIC)
107#define	PMAP_INLINE __inline
108#else
109#define	PMAP_INLINE
110#endif
111
112#ifdef PV_STATS
113#define PV_STAT(x)	do { x ; } while (0)
114#else
115#define PV_STAT(x)	do { } while (0)
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
122#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
123#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
124#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
125
126#ifdef __mips_n64
127#define	NUPDE			(NPDEPG * NPDEPG)
128#define	NUSERPGTBLS		(NUPDE + NPDEPG)
129#else
130#define	NUPDE			(NPDEPG)
131#define	NUSERPGTBLS		(NUPDE)
132#endif
133
134#define	is_kernel_pmap(x)	((x) == kernel_pmap)
135
136struct pmap kernel_pmap_store;
137pd_entry_t *kernel_segmap;
138
139vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
140vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
141
142static int nkpt;
143unsigned pmap_max_asid;		/* max ASID supported by the system */
144
145#define	PMAP_ASID_RESERVED	0
146
147vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
148
149static void pmap_asid_alloc(pmap_t pmap);
150
151static struct rwlock_padalign pvh_global_lock;
152
153/*
154 * Data for the pv entry allocation mechanism
155 */
156static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
157static int pv_entry_count;
158
159static void free_pv_chunk(struct pv_chunk *pc);
160static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
161static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
162static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
163static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
164static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
165    vm_offset_t va);
166static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
167static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
168    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
169static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
170    pd_entry_t pde);
171static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
172static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
173static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
174    vm_offset_t va, vm_page_t m);
175static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
176static void pmap_invalidate_all(pmap_t pmap);
177static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
178static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
179
180static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
181static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
182static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
183static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
184
185static void pmap_invalidate_page_action(void *arg);
186static void pmap_invalidate_range_action(void *arg);
187static void pmap_update_page_action(void *arg);
188
189#ifndef __mips_n64
190/*
191 * This structure is for high memory (memory above 512Meg in 32 bit) support.
192 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
193 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
194 *
195 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
196 * access a highmem physical address on a CPU, we map the physical address to
197 * the reserved virtual address for the CPU in the kernel pagetable.  This is
198 * done with interrupts disabled(although a spinlock and sched_pin would be
199 * sufficient).
200 */
201struct local_sysmaps {
202	vm_offset_t	base;
203	uint32_t	saved_intr;
204	uint16_t	valid1, valid2;
205};
206static struct local_sysmaps sysmap_lmem[MAXCPU];
207
208static __inline void
209pmap_alloc_lmem_map(void)
210{
211	int i;
212
213	for (i = 0; i < MAXCPU; i++) {
214		sysmap_lmem[i].base = virtual_avail;
215		virtual_avail += PAGE_SIZE * 2;
216		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
217	}
218}
219
220static __inline vm_offset_t
221pmap_lmem_map1(vm_paddr_t phys)
222{
223	struct local_sysmaps *sysm;
224	pt_entry_t *pte, npte;
225	vm_offset_t va;
226	uint32_t intr;
227	int cpu;
228
229	intr = intr_disable();
230	cpu = PCPU_GET(cpuid);
231	sysm = &sysmap_lmem[cpu];
232	sysm->saved_intr = intr;
233	va = sysm->base;
234	npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
235	pte = pmap_pte(kernel_pmap, va);
236	*pte = npte;
237	sysm->valid1 = 1;
238	return (va);
239}
240
241static __inline vm_offset_t
242pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
243{
244	struct local_sysmaps *sysm;
245	pt_entry_t *pte, npte;
246	vm_offset_t va1, va2;
247	uint32_t intr;
248	int cpu;
249
250	intr = intr_disable();
251	cpu = PCPU_GET(cpuid);
252	sysm = &sysmap_lmem[cpu];
253	sysm->saved_intr = intr;
254	va1 = sysm->base;
255	va2 = sysm->base + PAGE_SIZE;
256	npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
257	pte = pmap_pte(kernel_pmap, va1);
258	*pte = npte;
259	npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
260	pte = pmap_pte(kernel_pmap, va2);
261	*pte = npte;
262	sysm->valid1 = 1;
263	sysm->valid2 = 1;
264	return (va1);
265}
266
267static __inline void
268pmap_lmem_unmap(void)
269{
270	struct local_sysmaps *sysm;
271	pt_entry_t *pte;
272	int cpu;
273
274	cpu = PCPU_GET(cpuid);
275	sysm = &sysmap_lmem[cpu];
276	pte = pmap_pte(kernel_pmap, sysm->base);
277	*pte = PTE_G;
278	tlb_invalidate_address(kernel_pmap, sysm->base);
279	sysm->valid1 = 0;
280	if (sysm->valid2) {
281		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
282		*pte = PTE_G;
283		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
284		sysm->valid2 = 0;
285	}
286	intr_restore(sysm->saved_intr);
287}
288#else  /* __mips_n64 */
289
290static __inline void
291pmap_alloc_lmem_map(void)
292{
293}
294
295static __inline vm_offset_t
296pmap_lmem_map1(vm_paddr_t phys)
297{
298
299	return (0);
300}
301
302static __inline vm_offset_t
303pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
304{
305
306	return (0);
307}
308
309static __inline vm_offset_t
310pmap_lmem_unmap(void)
311{
312
313	return (0);
314}
315#endif /* !__mips_n64 */
316
317/*
318 * Page table entry lookup routines.
319 */
320static __inline pd_entry_t *
321pmap_segmap(pmap_t pmap, vm_offset_t va)
322{
323
324	return (&pmap->pm_segtab[pmap_seg_index(va)]);
325}
326
327#ifdef __mips_n64
328static __inline pd_entry_t *
329pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
330{
331	pd_entry_t *pde;
332
333	pde = (pd_entry_t *)*pdpe;
334	return (&pde[pmap_pde_index(va)]);
335}
336
337static __inline pd_entry_t *
338pmap_pde(pmap_t pmap, vm_offset_t va)
339{
340	pd_entry_t *pdpe;
341
342	pdpe = pmap_segmap(pmap, va);
343	if (*pdpe == NULL)
344		return (NULL);
345
346	return (pmap_pdpe_to_pde(pdpe, va));
347}
348#else
349static __inline pd_entry_t *
350pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
351{
352
353	return (pdpe);
354}
355
356static __inline
357pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
358{
359
360	return (pmap_segmap(pmap, va));
361}
362#endif
363
364static __inline pt_entry_t *
365pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
366{
367	pt_entry_t *pte;
368
369	pte = (pt_entry_t *)*pde;
370	return (&pte[pmap_pte_index(va)]);
371}
372
373pt_entry_t *
374pmap_pte(pmap_t pmap, vm_offset_t va)
375{
376	pd_entry_t *pde;
377
378	pde = pmap_pde(pmap, va);
379	if (pde == NULL || *pde == NULL)
380		return (NULL);
381
382	return (pmap_pde_to_pte(pde, va));
383}
384
385vm_offset_t
386pmap_steal_memory(vm_size_t size)
387{
388	vm_paddr_t bank_size, pa;
389	vm_offset_t va;
390
391	size = round_page(size);
392	bank_size = phys_avail[1] - phys_avail[0];
393	while (size > bank_size) {
394		int i;
395
396		for (i = 0; phys_avail[i + 2]; i += 2) {
397			phys_avail[i] = phys_avail[i + 2];
398			phys_avail[i + 1] = phys_avail[i + 3];
399		}
400		phys_avail[i] = 0;
401		phys_avail[i + 1] = 0;
402		if (!phys_avail[0])
403			panic("pmap_steal_memory: out of memory");
404		bank_size = phys_avail[1] - phys_avail[0];
405	}
406
407	pa = phys_avail[0];
408	phys_avail[0] += size;
409	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
410		panic("Out of memory below 512Meg?");
411	va = MIPS_PHYS_TO_DIRECT(pa);
412	bzero((caddr_t)va, size);
413	return (va);
414}
415
416/*
417 * Bootstrap the system enough to run with virtual memory.  This
418 * assumes that the phys_avail array has been initialized.
419 */
420static void
421pmap_create_kernel_pagetable(void)
422{
423	int i, j;
424	vm_offset_t ptaddr;
425	pt_entry_t *pte;
426#ifdef __mips_n64
427	pd_entry_t *pde;
428	vm_offset_t pdaddr;
429	int npt, npde;
430#endif
431
432	/*
433	 * Allocate segment table for the kernel
434	 */
435	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
436
437	/*
438	 * Allocate second level page tables for the kernel
439	 */
440#ifdef __mips_n64
441	npde = howmany(NKPT, NPDEPG);
442	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
443#endif
444	nkpt = NKPT;
445	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
446
447	/*
448	 * The R[4-7]?00 stores only one copy of the Global bit in the
449	 * translation lookaside buffer for each 2 page entry. Thus invalid
450	 * entrys must have the Global bit set so when Entry LO and Entry HI
451	 * G bits are anded together they will produce a global bit to store
452	 * in the tlb.
453	 */
454	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
455		*pte = PTE_G;
456
457#ifdef __mips_n64
458	for (i = 0,  npt = nkpt; npt > 0; i++) {
459		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
460		pde = (pd_entry_t *)kernel_segmap[i];
461
462		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
463			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
464	}
465#else
466	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
467		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
468#endif
469
470	PMAP_LOCK_INIT(kernel_pmap);
471	kernel_pmap->pm_segtab = kernel_segmap;
472	CPU_FILL(&kernel_pmap->pm_active);
473	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
474	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
475	kernel_pmap->pm_asid[0].gen = 0;
476	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
477}
478
479void
480pmap_bootstrap(void)
481{
482	int i;
483	int need_local_mappings = 0;
484
485	/* Sort. */
486again:
487	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
488		/*
489		 * Keep the memory aligned on page boundary.
490		 */
491		phys_avail[i] = round_page(phys_avail[i]);
492		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
493
494		if (i < 2)
495			continue;
496		if (phys_avail[i - 2] > phys_avail[i]) {
497			vm_paddr_t ptemp[2];
498
499			ptemp[0] = phys_avail[i + 0];
500			ptemp[1] = phys_avail[i + 1];
501
502			phys_avail[i + 0] = phys_avail[i - 2];
503			phys_avail[i + 1] = phys_avail[i - 1];
504
505			phys_avail[i - 2] = ptemp[0];
506			phys_avail[i - 1] = ptemp[1];
507			goto again;
508		}
509	}
510
511       	/*
512	 * In 32 bit, we may have memory which cannot be mapped directly.
513	 * This memory will need temporary mapping before it can be
514	 * accessed.
515	 */
516	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
517		need_local_mappings = 1;
518
519	/*
520	 * Copy the phys_avail[] array before we start stealing memory from it.
521	 */
522	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
523		physmem_desc[i] = phys_avail[i];
524		physmem_desc[i + 1] = phys_avail[i + 1];
525	}
526
527	Maxmem = atop(phys_avail[i - 1]);
528
529	if (bootverbose) {
530		printf("Physical memory chunk(s):\n");
531		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
532			vm_paddr_t size;
533
534			size = phys_avail[i + 1] - phys_avail[i];
535			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
536			    (uintmax_t) phys_avail[i],
537			    (uintmax_t) phys_avail[i + 1] - 1,
538			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
539		}
540		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
541	}
542	/*
543	 * Steal the message buffer from the beginning of memory.
544	 */
545	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
546	msgbufinit(msgbufp, msgbufsize);
547
548	/*
549	 * Steal thread0 kstack.
550	 */
551	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
552
553	virtual_avail = VM_MIN_KERNEL_ADDRESS;
554	virtual_end = VM_MAX_KERNEL_ADDRESS;
555
556#ifdef SMP
557	/*
558	 * Steal some virtual address space to map the pcpu area.
559	 */
560	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
561	pcpup = (struct pcpu *)virtual_avail;
562	virtual_avail += PAGE_SIZE * 2;
563
564	/*
565	 * Initialize the wired TLB entry mapping the pcpu region for
566	 * the BSP at 'pcpup'. Up until this point we were operating
567	 * with the 'pcpup' for the BSP pointing to a virtual address
568	 * in KSEG0 so there was no need for a TLB mapping.
569	 */
570	mips_pcpu_tlb_init(PCPU_ADDR(0));
571
572	if (bootverbose)
573		printf("pcpu is available at virtual address %p.\n", pcpup);
574#endif
575
576	if (need_local_mappings)
577		pmap_alloc_lmem_map();
578	pmap_create_kernel_pagetable();
579	pmap_max_asid = VMNUM_PIDS;
580	mips_wr_entryhi(0);
581	mips_wr_pagemask(0);
582
583 	/*
584	 * Initialize the global pv list lock.
585	 */
586	rw_init(&pvh_global_lock, "pmap pv global");
587}
588
589/*
590 * Initialize a vm_page's machine-dependent fields.
591 */
592void
593pmap_page_init(vm_page_t m)
594{
595
596	TAILQ_INIT(&m->md.pv_list);
597	m->md.pv_flags = 0;
598}
599
600/*
601 *	Initialize the pmap module.
602 *	Called by vm_init, to initialize any structures that the pmap
603 *	system needs to map virtual memory.
604 */
605void
606pmap_init(void)
607{
608}
609
610/***************************************************
611 * Low level helper routines.....
612 ***************************************************/
613
614#ifdef	SMP
615static __inline void
616pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
617{
618	int	cpuid, cpu, self;
619	cpuset_t active_cpus;
620
621	sched_pin();
622	if (is_kernel_pmap(pmap)) {
623		smp_rendezvous(NULL, fn, NULL, arg);
624		goto out;
625	}
626	/* Force ASID update on inactive CPUs */
627	CPU_FOREACH(cpu) {
628		if (!CPU_ISSET(cpu, &pmap->pm_active))
629			pmap->pm_asid[cpu].gen = 0;
630	}
631	cpuid = PCPU_GET(cpuid);
632	/*
633	 * XXX: barrier/locking for active?
634	 *
635	 * Take a snapshot of active here, any further changes are ignored.
636	 * tlb update/invalidate should be harmless on inactive CPUs
637	 */
638	active_cpus = pmap->pm_active;
639	self = CPU_ISSET(cpuid, &active_cpus);
640	CPU_CLR(cpuid, &active_cpus);
641	/* Optimize for the case where this cpu is the only active one */
642	if (CPU_EMPTY(&active_cpus)) {
643		if (self)
644			fn(arg);
645	} else {
646		if (self)
647			CPU_SET(cpuid, &active_cpus);
648		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
649	}
650out:
651	sched_unpin();
652}
653#else /* !SMP */
654static __inline void
655pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
656{
657	int	cpuid;
658
659	if (is_kernel_pmap(pmap)) {
660		fn(arg);
661		return;
662	}
663	cpuid = PCPU_GET(cpuid);
664	if (!CPU_ISSET(cpuid, &pmap->pm_active))
665		pmap->pm_asid[cpuid].gen = 0;
666	else
667		fn(arg);
668}
669#endif /* SMP */
670
671static void
672pmap_invalidate_all(pmap_t pmap)
673{
674
675	pmap_call_on_active_cpus(pmap,
676	    (void (*)(void *))tlb_invalidate_all_user, pmap);
677}
678
679struct pmap_invalidate_page_arg {
680	pmap_t pmap;
681	vm_offset_t va;
682};
683
684static void
685pmap_invalidate_page_action(void *arg)
686{
687	struct pmap_invalidate_page_arg *p = arg;
688
689	tlb_invalidate_address(p->pmap, p->va);
690}
691
692static void
693pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
694{
695	struct pmap_invalidate_page_arg arg;
696
697	arg.pmap = pmap;
698	arg.va = va;
699	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
700}
701
702struct pmap_invalidate_range_arg {
703	pmap_t pmap;
704	vm_offset_t sva;
705	vm_offset_t eva;
706};
707
708static void
709pmap_invalidate_range_action(void *arg)
710{
711	struct pmap_invalidate_range_arg *p = arg;
712
713	tlb_invalidate_range(p->pmap, p->sva, p->eva);
714}
715
716static void
717pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
718{
719	struct pmap_invalidate_range_arg arg;
720
721	arg.pmap = pmap;
722	arg.sva = sva;
723	arg.eva = eva;
724	pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
725}
726
727struct pmap_update_page_arg {
728	pmap_t pmap;
729	vm_offset_t va;
730	pt_entry_t pte;
731};
732
733static void
734pmap_update_page_action(void *arg)
735{
736	struct pmap_update_page_arg *p = arg;
737
738	tlb_update(p->pmap, p->va, p->pte);
739}
740
741static void
742pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
743{
744	struct pmap_update_page_arg arg;
745
746	arg.pmap = pmap;
747	arg.va = va;
748	arg.pte = pte;
749	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
750}
751
752/*
753 *	Routine:	pmap_extract
754 *	Function:
755 *		Extract the physical page address associated
756 *		with the given map/virtual_address pair.
757 */
758vm_paddr_t
759pmap_extract(pmap_t pmap, vm_offset_t va)
760{
761	pt_entry_t *pte;
762	vm_offset_t retval = 0;
763
764	PMAP_LOCK(pmap);
765	pte = pmap_pte(pmap, va);
766	if (pte) {
767		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
768	}
769	PMAP_UNLOCK(pmap);
770	return (retval);
771}
772
773/*
774 *	Routine:	pmap_extract_and_hold
775 *	Function:
776 *		Atomically extract and hold the physical page
777 *		with the given pmap and virtual address pair
778 *		if that mapping permits the given protection.
779 */
780vm_page_t
781pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
782{
783	pt_entry_t pte, *ptep;
784	vm_paddr_t pa, pte_pa;
785	vm_page_t m;
786
787	m = NULL;
788	pa = 0;
789	PMAP_LOCK(pmap);
790retry:
791	ptep = pmap_pte(pmap, va);
792	if (ptep != NULL) {
793		pte = *ptep;
794		if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
795		    (prot & VM_PROT_WRITE) == 0)) {
796			pte_pa = TLBLO_PTE_TO_PA(pte);
797			if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
798				goto retry;
799			m = PHYS_TO_VM_PAGE(pte_pa);
800			vm_page_hold(m);
801		}
802	}
803	PA_UNLOCK_COND(pa);
804	PMAP_UNLOCK(pmap);
805	return (m);
806}
807
808/***************************************************
809 * Low level mapping routines.....
810 ***************************************************/
811
812/*
813 * add a wired page to the kva
814 */
815void
816pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
817{
818	pt_entry_t *pte;
819	pt_entry_t opte, npte;
820
821#ifdef PMAP_DEBUG
822	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
823#endif
824
825	pte = pmap_pte(kernel_pmap, va);
826	opte = *pte;
827	npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
828	*pte = npte;
829	if (pte_test(&opte, PTE_V) && opte != npte)
830		pmap_update_page(kernel_pmap, va, npte);
831}
832
833void
834pmap_kenter(vm_offset_t va, vm_paddr_t pa)
835{
836
837	KASSERT(is_cacheable_mem(pa),
838		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
839
840	pmap_kenter_attr(va, pa, PTE_C_CACHE);
841}
842
843/*
844 * remove a page from the kernel pagetables
845 */
846 /* PMAP_INLINE */ void
847pmap_kremove(vm_offset_t va)
848{
849	pt_entry_t *pte;
850
851	/*
852	 * Write back all caches from the page being destroyed
853	 */
854	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
855
856	pte = pmap_pte(kernel_pmap, va);
857	*pte = PTE_G;
858	pmap_invalidate_page(kernel_pmap, va);
859}
860
861/*
862 *	Used to map a range of physical addresses into kernel
863 *	virtual address space.
864 *
865 *	The value passed in '*virt' is a suggested virtual address for
866 *	the mapping. Architectures which can support a direct-mapped
867 *	physical to virtual region can return the appropriate address
868 *	within that region, leaving '*virt' unchanged. Other
869 *	architectures should map the pages starting at '*virt' and
870 *	update '*virt' with the first usable address after the mapped
871 *	region.
872 *
873 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
874 */
875vm_offset_t
876pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
877{
878	vm_offset_t va, sva;
879
880	if (MIPS_DIRECT_MAPPABLE(end - 1))
881		return (MIPS_PHYS_TO_DIRECT(start));
882
883	va = sva = *virt;
884	while (start < end) {
885		pmap_kenter(va, start);
886		va += PAGE_SIZE;
887		start += PAGE_SIZE;
888	}
889	*virt = va;
890	return (sva);
891}
892
893/*
894 * Add a list of wired pages to the kva
895 * this routine is only used for temporary
896 * kernel mappings that do not need to have
897 * page modification or references recorded.
898 * Note that old mappings are simply written
899 * over.  The page *must* be wired.
900 */
901void
902pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
903{
904	int i;
905	vm_offset_t origva = va;
906
907	for (i = 0; i < count; i++) {
908		pmap_flush_pvcache(m[i]);
909		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
910		va += PAGE_SIZE;
911	}
912
913	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
914}
915
916/*
917 * this routine jerks page mappings from the
918 * kernel -- it is meant only for temporary mappings.
919 */
920void
921pmap_qremove(vm_offset_t va, int count)
922{
923	pt_entry_t *pte;
924	vm_offset_t origva;
925
926	if (count < 1)
927		return;
928	mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
929	origva = va;
930	do {
931		pte = pmap_pte(kernel_pmap, va);
932		*pte = PTE_G;
933		va += PAGE_SIZE;
934	} while (--count > 0);
935	pmap_invalidate_range(kernel_pmap, origva, va);
936}
937
938/***************************************************
939 * Page table page management routines.....
940 ***************************************************/
941
942/*
943 * Decrements a page table page's wire count, which is used to record the
944 * number of valid page table entries within the page.  If the wire count
945 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
946 * page table page was unmapped and FALSE otherwise.
947 */
948static PMAP_INLINE boolean_t
949pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
950{
951
952	--m->wire_count;
953	if (m->wire_count == 0) {
954		_pmap_unwire_ptp(pmap, va, m);
955		return (TRUE);
956	} else
957		return (FALSE);
958}
959
960static void
961_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
962{
963	pd_entry_t *pde;
964
965	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
966	/*
967	 * unmap the page table page
968	 */
969#ifdef __mips_n64
970	if (m->pindex < NUPDE)
971		pde = pmap_pde(pmap, va);
972	else
973		pde = pmap_segmap(pmap, va);
974#else
975	pde = pmap_pde(pmap, va);
976#endif
977	*pde = 0;
978	pmap->pm_stats.resident_count--;
979
980#ifdef __mips_n64
981	if (m->pindex < NUPDE) {
982		pd_entry_t *pdp;
983		vm_page_t pdpg;
984
985		/*
986		 * Recursively decrement next level pagetable refcount
987		 */
988		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
989		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
990		pmap_unwire_ptp(pmap, va, pdpg);
991	}
992#endif
993
994	/*
995	 * If the page is finally unwired, simply free it.
996	 */
997	vm_page_free_zero(m);
998	atomic_subtract_int(&cnt.v_wire_count, 1);
999}
1000
1001/*
1002 * After removing a page table entry, this routine is used to
1003 * conditionally free the page, and manage the hold/wire counts.
1004 */
1005static int
1006pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1007{
1008	vm_page_t mpte;
1009
1010	if (va >= VM_MAXUSER_ADDRESS)
1011		return (0);
1012	KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
1013	mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
1014	return (pmap_unwire_ptp(pmap, va, mpte));
1015}
1016
1017void
1018pmap_pinit0(pmap_t pmap)
1019{
1020	int i;
1021
1022	PMAP_LOCK_INIT(pmap);
1023	pmap->pm_segtab = kernel_segmap;
1024	CPU_ZERO(&pmap->pm_active);
1025	for (i = 0; i < MAXCPU; i++) {
1026		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1027		pmap->pm_asid[i].gen = 0;
1028	}
1029	PCPU_SET(curpmap, pmap);
1030	TAILQ_INIT(&pmap->pm_pvchunk);
1031	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1032}
1033
1034void
1035pmap_grow_direct_page_cache()
1036{
1037
1038#ifdef __mips_n64
1039	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1040#else
1041	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1042#endif
1043}
1044
1045static vm_page_t
1046pmap_alloc_direct_page(unsigned int index, int req)
1047{
1048	vm_page_t m;
1049
1050	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1051	    VM_ALLOC_ZERO);
1052	if (m == NULL)
1053		return (NULL);
1054
1055	if ((m->flags & PG_ZERO) == 0)
1056		pmap_zero_page(m);
1057
1058	m->pindex = index;
1059	return (m);
1060}
1061
1062/*
1063 * Initialize a preallocated and zeroed pmap structure,
1064 * such as one in a vmspace structure.
1065 */
1066int
1067pmap_pinit(pmap_t pmap)
1068{
1069	vm_offset_t ptdva;
1070	vm_page_t ptdpg;
1071	int i;
1072
1073	/*
1074	 * allocate the page directory page
1075	 */
1076	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1077	       pmap_grow_direct_page_cache();
1078
1079	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1080	pmap->pm_segtab = (pd_entry_t *)ptdva;
1081	CPU_ZERO(&pmap->pm_active);
1082	for (i = 0; i < MAXCPU; i++) {
1083		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1084		pmap->pm_asid[i].gen = 0;
1085	}
1086	TAILQ_INIT(&pmap->pm_pvchunk);
1087	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1088
1089	return (1);
1090}
1091
1092/*
1093 * this routine is called if the page table page is not
1094 * mapped correctly.
1095 */
1096static vm_page_t
1097_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1098{
1099	vm_offset_t pageva;
1100	vm_page_t m;
1101
1102	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1103	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1104	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1105
1106	/*
1107	 * Find or fabricate a new pagetable page
1108	 */
1109	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1110		if (flags & M_WAITOK) {
1111			PMAP_UNLOCK(pmap);
1112			rw_wunlock(&pvh_global_lock);
1113			pmap_grow_direct_page_cache();
1114			rw_wlock(&pvh_global_lock);
1115			PMAP_LOCK(pmap);
1116		}
1117
1118		/*
1119		 * Indicate the need to retry.	While waiting, the page
1120		 * table page may have been allocated.
1121		 */
1122		return (NULL);
1123	}
1124
1125	/*
1126	 * Map the pagetable page into the process address space, if it
1127	 * isn't already there.
1128	 */
1129	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1130
1131#ifdef __mips_n64
1132	if (ptepindex >= NUPDE) {
1133		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1134	} else {
1135		pd_entry_t *pdep, *pde;
1136		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1137		int pdeindex = ptepindex & (NPDEPG - 1);
1138		vm_page_t pg;
1139
1140		pdep = &pmap->pm_segtab[segindex];
1141		if (*pdep == NULL) {
1142			/* recurse for allocating page dir */
1143			if (_pmap_allocpte(pmap, NUPDE + segindex,
1144			    flags) == NULL) {
1145				/* alloc failed, release current */
1146				--m->wire_count;
1147				atomic_subtract_int(&cnt.v_wire_count, 1);
1148				vm_page_free_zero(m);
1149				return (NULL);
1150			}
1151		} else {
1152			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1153			pg->wire_count++;
1154		}
1155		/* Next level entry */
1156		pde = (pd_entry_t *)*pdep;
1157		pde[pdeindex] = (pd_entry_t)pageva;
1158	}
1159#else
1160	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1161#endif
1162	pmap->pm_stats.resident_count++;
1163	return (m);
1164}
1165
1166static vm_page_t
1167pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1168{
1169	unsigned ptepindex;
1170	pd_entry_t *pde;
1171	vm_page_t m;
1172
1173	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1174	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1175	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1176
1177	/*
1178	 * Calculate pagetable page index
1179	 */
1180	ptepindex = pmap_pde_pindex(va);
1181retry:
1182	/*
1183	 * Get the page directory entry
1184	 */
1185	pde = pmap_pde(pmap, va);
1186
1187	/*
1188	 * If the page table page is mapped, we just increment the hold
1189	 * count, and activate it.
1190	 */
1191	if (pde != NULL && *pde != NULL) {
1192		m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1193		m->wire_count++;
1194	} else {
1195		/*
1196		 * Here if the pte page isn't mapped, or if it has been
1197		 * deallocated.
1198		 */
1199		m = _pmap_allocpte(pmap, ptepindex, flags);
1200		if (m == NULL && (flags & M_WAITOK))
1201			goto retry;
1202	}
1203	return (m);
1204}
1205
1206
1207/***************************************************
1208 * Pmap allocation/deallocation routines.
1209 ***************************************************/
1210
1211/*
1212 * Release any resources held by the given physical map.
1213 * Called when a pmap initialized by pmap_pinit is being released.
1214 * Should only be called if the map contains no valid mappings.
1215 */
1216void
1217pmap_release(pmap_t pmap)
1218{
1219	vm_offset_t ptdva;
1220	vm_page_t ptdpg;
1221
1222	KASSERT(pmap->pm_stats.resident_count == 0,
1223	    ("pmap_release: pmap resident count %ld != 0",
1224	    pmap->pm_stats.resident_count));
1225
1226	ptdva = (vm_offset_t)pmap->pm_segtab;
1227	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1228
1229	ptdpg->wire_count--;
1230	atomic_subtract_int(&cnt.v_wire_count, 1);
1231	vm_page_free_zero(ptdpg);
1232}
1233
1234/*
1235 * grow the number of kernel page table entries, if needed
1236 */
1237void
1238pmap_growkernel(vm_offset_t addr)
1239{
1240	vm_page_t nkpg;
1241	pd_entry_t *pde, *pdpe;
1242	pt_entry_t *pte;
1243	int i;
1244
1245	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1246	addr = roundup2(addr, NBSEG);
1247	if (addr - 1 >= kernel_map->max_offset)
1248		addr = kernel_map->max_offset;
1249	while (kernel_vm_end < addr) {
1250		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1251#ifdef __mips_n64
1252		if (*pdpe == 0) {
1253			/* new intermediate page table entry */
1254			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1255			if (nkpg == NULL)
1256				panic("pmap_growkernel: no memory to grow kernel");
1257			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1258			continue; /* try again */
1259		}
1260#endif
1261		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1262		if (*pde != 0) {
1263			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1264			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1265				kernel_vm_end = kernel_map->max_offset;
1266				break;
1267			}
1268			continue;
1269		}
1270
1271		/*
1272		 * This index is bogus, but out of the way
1273		 */
1274		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1275		if (!nkpg)
1276			panic("pmap_growkernel: no memory to grow kernel");
1277		nkpt++;
1278		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1279
1280		/*
1281		 * The R[4-7]?00 stores only one copy of the Global bit in
1282		 * the translation lookaside buffer for each 2 page entry.
1283		 * Thus invalid entrys must have the Global bit set so when
1284		 * Entry LO and Entry HI G bits are anded together they will
1285		 * produce a global bit to store in the tlb.
1286		 */
1287		pte = (pt_entry_t *)*pde;
1288		for (i = 0; i < NPTEPG; i++)
1289			pte[i] = PTE_G;
1290
1291		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1292		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1293			kernel_vm_end = kernel_map->max_offset;
1294			break;
1295		}
1296	}
1297}
1298
1299/***************************************************
1300 * page management routines.
1301 ***************************************************/
1302
1303CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1304#ifdef __mips_n64
1305CTASSERT(_NPCM == 3);
1306CTASSERT(_NPCPV == 168);
1307#else
1308CTASSERT(_NPCM == 11);
1309CTASSERT(_NPCPV == 336);
1310#endif
1311
1312static __inline struct pv_chunk *
1313pv_to_chunk(pv_entry_t pv)
1314{
1315
1316	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1317}
1318
1319#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1320
1321#ifdef __mips_n64
1322#define	PC_FREE0_1	0xfffffffffffffffful
1323#define	PC_FREE2	0x000000fffffffffful
1324#else
1325#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1326#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1327#endif
1328
1329static const u_long pc_freemask[_NPCM] = {
1330#ifdef __mips_n64
1331	PC_FREE0_1, PC_FREE0_1, PC_FREE2
1332#else
1333	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1334	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1335	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1336	PC_FREE0_9, PC_FREE10
1337#endif
1338};
1339
1340static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1341
1342SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1343    "Current number of pv entries");
1344
1345#ifdef PV_STATS
1346static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1347
1348SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1349    "Current number of pv entry chunks");
1350SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1351    "Current number of pv entry chunks allocated");
1352SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1353    "Current number of pv entry chunks frees");
1354SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1355    "Number of times tried to get a chunk page but failed.");
1356
1357static long pv_entry_frees, pv_entry_allocs;
1358static int pv_entry_spare;
1359
1360SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1361    "Current number of pv entry frees");
1362SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1363    "Current number of pv entry allocs");
1364SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1365    "Current number of spare pv entries");
1366#endif
1367
1368/*
1369 * We are in a serious low memory condition.  Resort to
1370 * drastic measures to free some pages so we can allocate
1371 * another pv entry chunk.
1372 */
1373static vm_page_t
1374pmap_pv_reclaim(pmap_t locked_pmap)
1375{
1376	struct pch newtail;
1377	struct pv_chunk *pc;
1378	pd_entry_t *pde;
1379	pmap_t pmap;
1380	pt_entry_t *pte, oldpte;
1381	pv_entry_t pv;
1382	vm_offset_t va;
1383	vm_page_t m, m_pc;
1384	u_long inuse;
1385	int bit, field, freed, idx;
1386
1387	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1388	pmap = NULL;
1389	m_pc = NULL;
1390	TAILQ_INIT(&newtail);
1391	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
1392		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1393		if (pmap != pc->pc_pmap) {
1394			if (pmap != NULL) {
1395				pmap_invalidate_all(pmap);
1396				if (pmap != locked_pmap)
1397					PMAP_UNLOCK(pmap);
1398			}
1399			pmap = pc->pc_pmap;
1400			/* Avoid deadlock and lock recursion. */
1401			if (pmap > locked_pmap)
1402				PMAP_LOCK(pmap);
1403			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1404				pmap = NULL;
1405				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1406				continue;
1407			}
1408		}
1409
1410		/*
1411		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1412		 */
1413		freed = 0;
1414		for (field = 0; field < _NPCM; field++) {
1415			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1416			    inuse != 0; inuse &= ~(1UL << bit)) {
1417				bit = ffsl(inuse) - 1;
1418				idx = field * sizeof(inuse) * NBBY + bit;
1419				pv = &pc->pc_pventry[idx];
1420				va = pv->pv_va;
1421				pde = pmap_pde(pmap, va);
1422				KASSERT(pde != NULL && *pde != 0,
1423				    ("pmap_pv_reclaim: pde"));
1424				pte = pmap_pde_to_pte(pde, va);
1425				oldpte = *pte;
1426				if (pte_test(&oldpte, PTE_W))
1427					continue;
1428				if (is_kernel_pmap(pmap))
1429					*pte = PTE_G;
1430				else
1431					*pte = 0;
1432				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
1433				if (pte_test(&oldpte, PTE_D))
1434					vm_page_dirty(m);
1435				if (m->md.pv_flags & PV_TABLE_REF)
1436					vm_page_aflag_set(m, PGA_REFERENCED);
1437				m->md.pv_flags &= ~PV_TABLE_REF;
1438				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1439				if (TAILQ_EMPTY(&m->md.pv_list))
1440					vm_page_aflag_clear(m, PGA_WRITEABLE);
1441				pc->pc_map[field] |= 1UL << bit;
1442				pmap_unuse_pt(pmap, va, *pde);
1443				freed++;
1444			}
1445		}
1446		if (freed == 0) {
1447			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1448			continue;
1449		}
1450		/* Every freed mapping is for a 4 KB page. */
1451		pmap->pm_stats.resident_count -= freed;
1452		PV_STAT(pv_entry_frees += freed);
1453		PV_STAT(pv_entry_spare += freed);
1454		pv_entry_count -= freed;
1455		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1456		for (field = 0; field < _NPCM; field++)
1457			if (pc->pc_map[field] != pc_freemask[field]) {
1458				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1459				    pc_list);
1460				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1461
1462				/*
1463				 * One freed pv entry in locked_pmap is
1464				 * sufficient.
1465				 */
1466				if (pmap == locked_pmap)
1467					goto out;
1468				break;
1469			}
1470		if (field == _NPCM) {
1471			PV_STAT(pv_entry_spare -= _NPCPV);
1472			PV_STAT(pc_chunk_count--);
1473			PV_STAT(pc_chunk_frees++);
1474			/* Entire chunk is free; return it. */
1475			m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
1476			    (vm_offset_t)pc));
1477			break;
1478		}
1479	}
1480out:
1481	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
1482	if (pmap != NULL) {
1483		pmap_invalidate_all(pmap);
1484		if (pmap != locked_pmap)
1485			PMAP_UNLOCK(pmap);
1486	}
1487	return (m_pc);
1488}
1489
1490/*
1491 * free the pv_entry back to the free list
1492 */
1493static void
1494free_pv_entry(pmap_t pmap, pv_entry_t pv)
1495{
1496	struct pv_chunk *pc;
1497	int bit, field, idx;
1498
1499	rw_assert(&pvh_global_lock, RA_WLOCKED);
1500	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1501	PV_STAT(pv_entry_frees++);
1502	PV_STAT(pv_entry_spare++);
1503	pv_entry_count--;
1504	pc = pv_to_chunk(pv);
1505	idx = pv - &pc->pc_pventry[0];
1506	field = idx / (sizeof(u_long) * NBBY);
1507	bit = idx % (sizeof(u_long) * NBBY);
1508	pc->pc_map[field] |= 1ul << bit;
1509	for (idx = 0; idx < _NPCM; idx++)
1510		if (pc->pc_map[idx] != pc_freemask[idx]) {
1511			/*
1512			 * 98% of the time, pc is already at the head of the
1513			 * list.  If it isn't already, move it to the head.
1514			 */
1515			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
1516			    pc)) {
1517				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1518				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1519				    pc_list);
1520			}
1521			return;
1522		}
1523	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1524	free_pv_chunk(pc);
1525}
1526
1527static void
1528free_pv_chunk(struct pv_chunk *pc)
1529{
1530	vm_page_t m;
1531
1532 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1533	PV_STAT(pv_entry_spare -= _NPCPV);
1534	PV_STAT(pc_chunk_count--);
1535	PV_STAT(pc_chunk_frees++);
1536	/* entire chunk is free, return it */
1537	m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
1538	vm_page_unwire(m, 0);
1539	vm_page_free(m);
1540}
1541
1542/*
1543 * get a new pv_entry, allocating a block from the system
1544 * when needed.
1545 */
1546static pv_entry_t
1547get_pv_entry(pmap_t pmap, boolean_t try)
1548{
1549	struct pv_chunk *pc;
1550	pv_entry_t pv;
1551	vm_page_t m;
1552	int bit, field, idx;
1553
1554	rw_assert(&pvh_global_lock, RA_WLOCKED);
1555	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1556	PV_STAT(pv_entry_allocs++);
1557	pv_entry_count++;
1558retry:
1559	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1560	if (pc != NULL) {
1561		for (field = 0; field < _NPCM; field++) {
1562			if (pc->pc_map[field]) {
1563				bit = ffsl(pc->pc_map[field]) - 1;
1564				break;
1565			}
1566		}
1567		if (field < _NPCM) {
1568			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
1569			pv = &pc->pc_pventry[idx];
1570			pc->pc_map[field] &= ~(1ul << bit);
1571			/* If this was the last item, move it to tail */
1572			for (field = 0; field < _NPCM; field++)
1573				if (pc->pc_map[field] != 0) {
1574					PV_STAT(pv_entry_spare--);
1575					return (pv);	/* not full, return */
1576				}
1577			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1578			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1579			PV_STAT(pv_entry_spare--);
1580			return (pv);
1581		}
1582	}
1583	/* No free items, allocate another chunk */
1584	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
1585	    VM_ALLOC_WIRED);
1586	if (m == NULL) {
1587		if (try) {
1588			pv_entry_count--;
1589			PV_STAT(pc_chunk_tryfail++);
1590			return (NULL);
1591		}
1592		m = pmap_pv_reclaim(pmap);
1593		if (m == NULL)
1594			goto retry;
1595	}
1596	PV_STAT(pc_chunk_count++);
1597	PV_STAT(pc_chunk_allocs++);
1598	pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1599	pc->pc_pmap = pmap;
1600	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1601	for (field = 1; field < _NPCM; field++)
1602		pc->pc_map[field] = pc_freemask[field];
1603	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1604	pv = &pc->pc_pventry[0];
1605	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1606	PV_STAT(pv_entry_spare += _NPCPV - 1);
1607	return (pv);
1608}
1609
1610static pv_entry_t
1611pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1612{
1613	pv_entry_t pv;
1614
1615	rw_assert(&pvh_global_lock, RA_WLOCKED);
1616	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1617		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1618			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1619			break;
1620		}
1621	}
1622	return (pv);
1623}
1624
1625static void
1626pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1627{
1628	pv_entry_t pv;
1629
1630	pv = pmap_pvh_remove(pvh, pmap, va);
1631	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1632	     (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
1633	     (u_long)va));
1634	free_pv_entry(pmap, pv);
1635}
1636
1637static void
1638pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1639{
1640
1641	rw_assert(&pvh_global_lock, RA_WLOCKED);
1642	pmap_pvh_free(&m->md, pmap, va);
1643	if (TAILQ_EMPTY(&m->md.pv_list))
1644		vm_page_aflag_clear(m, PGA_WRITEABLE);
1645}
1646
1647/*
1648 * Conditionally create a pv entry.
1649 */
1650static boolean_t
1651pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1652    vm_page_t m)
1653{
1654	pv_entry_t pv;
1655
1656	rw_assert(&pvh_global_lock, RA_WLOCKED);
1657	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1658	if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
1659		pv->pv_va = va;
1660		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1661		return (TRUE);
1662	} else
1663		return (FALSE);
1664}
1665
1666/*
1667 * pmap_remove_pte: do the things to unmap a page in a process
1668 */
1669static int
1670pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1671    pd_entry_t pde)
1672{
1673	pt_entry_t oldpte;
1674	vm_page_t m;
1675	vm_paddr_t pa;
1676
1677	rw_assert(&pvh_global_lock, RA_WLOCKED);
1678	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1679
1680	/*
1681	 * Write back all cache lines from the page being unmapped.
1682	 */
1683	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1684
1685	oldpte = *ptq;
1686	if (is_kernel_pmap(pmap))
1687		*ptq = PTE_G;
1688	else
1689		*ptq = 0;
1690
1691	if (pte_test(&oldpte, PTE_W))
1692		pmap->pm_stats.wired_count -= 1;
1693
1694	pmap->pm_stats.resident_count -= 1;
1695
1696	if (pte_test(&oldpte, PTE_MANAGED)) {
1697		pa = TLBLO_PTE_TO_PA(oldpte);
1698		m = PHYS_TO_VM_PAGE(pa);
1699		if (pte_test(&oldpte, PTE_D)) {
1700			KASSERT(!pte_test(&oldpte, PTE_RO),
1701			    ("%s: modified page not writable: va: %p, pte: %#jx",
1702			    __func__, (void *)va, (uintmax_t)oldpte));
1703			vm_page_dirty(m);
1704		}
1705		if (m->md.pv_flags & PV_TABLE_REF)
1706			vm_page_aflag_set(m, PGA_REFERENCED);
1707		m->md.pv_flags &= ~PV_TABLE_REF;
1708
1709		pmap_remove_entry(pmap, m, va);
1710	}
1711	return (pmap_unuse_pt(pmap, va, pde));
1712}
1713
1714/*
1715 * Remove a single page from a process address space
1716 */
1717static void
1718pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1719{
1720	pd_entry_t *pde;
1721	pt_entry_t *ptq;
1722
1723	rw_assert(&pvh_global_lock, RA_WLOCKED);
1724	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1725	pde = pmap_pde(pmap, va);
1726	if (pde == NULL || *pde == 0)
1727		return;
1728	ptq = pmap_pde_to_pte(pde, va);
1729
1730	/*
1731	 * If there is no pte for this address, just skip it!
1732	 */
1733	if (!pte_test(ptq, PTE_V))
1734		return;
1735
1736	(void)pmap_remove_pte(pmap, ptq, va, *pde);
1737	pmap_invalidate_page(pmap, va);
1738}
1739
1740/*
1741 *	Remove the given range of addresses from the specified map.
1742 *
1743 *	It is assumed that the start and end are properly
1744 *	rounded to the page size.
1745 */
1746void
1747pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1748{
1749	pd_entry_t *pde, *pdpe;
1750	pt_entry_t *pte;
1751	vm_offset_t va, va_next;
1752
1753	/*
1754	 * Perform an unsynchronized read.  This is, however, safe.
1755	 */
1756	if (pmap->pm_stats.resident_count == 0)
1757		return;
1758
1759	rw_wlock(&pvh_global_lock);
1760	PMAP_LOCK(pmap);
1761
1762	/*
1763	 * special handling of removing one page.  a very common operation
1764	 * and easy to short circuit some code.
1765	 */
1766	if ((sva + PAGE_SIZE) == eva) {
1767		pmap_remove_page(pmap, sva);
1768		goto out;
1769	}
1770	for (; sva < eva; sva = va_next) {
1771		pdpe = pmap_segmap(pmap, sva);
1772#ifdef __mips_n64
1773		if (*pdpe == 0) {
1774			va_next = (sva + NBSEG) & ~SEGMASK;
1775			if (va_next < sva)
1776				va_next = eva;
1777			continue;
1778		}
1779#endif
1780		va_next = (sva + NBPDR) & ~PDRMASK;
1781		if (va_next < sva)
1782			va_next = eva;
1783
1784		pde = pmap_pdpe_to_pde(pdpe, sva);
1785		if (*pde == NULL)
1786			continue;
1787
1788		/*
1789		 * Limit our scan to either the end of the va represented
1790		 * by the current page table page, or to the end of the
1791		 * range being removed.
1792		 */
1793		if (va_next > eva)
1794			va_next = eva;
1795
1796		va = va_next;
1797		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1798		    sva += PAGE_SIZE) {
1799			if (!pte_test(pte, PTE_V)) {
1800				if (va != va_next) {
1801					pmap_invalidate_range(pmap, va, sva);
1802					va = va_next;
1803				}
1804				continue;
1805			}
1806			if (va == va_next)
1807				va = sva;
1808			if (pmap_remove_pte(pmap, pte, sva, *pde)) {
1809				sva += PAGE_SIZE;
1810				break;
1811			}
1812		}
1813		if (va != va_next)
1814			pmap_invalidate_range(pmap, va, sva);
1815	}
1816out:
1817	rw_wunlock(&pvh_global_lock);
1818	PMAP_UNLOCK(pmap);
1819}
1820
1821/*
1822 *	Routine:	pmap_remove_all
1823 *	Function:
1824 *		Removes this physical page from
1825 *		all physical maps in which it resides.
1826 *		Reflects back modify bits to the pager.
1827 *
1828 *	Notes:
1829 *		Original versions of this routine were very
1830 *		inefficient because they iteratively called
1831 *		pmap_remove (slow...)
1832 */
1833
1834void
1835pmap_remove_all(vm_page_t m)
1836{
1837	pv_entry_t pv;
1838	pmap_t pmap;
1839	pd_entry_t *pde;
1840	pt_entry_t *pte, tpte;
1841
1842	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1843	    ("pmap_remove_all: page %p is not managed", m));
1844	rw_wlock(&pvh_global_lock);
1845
1846	if (m->md.pv_flags & PV_TABLE_REF)
1847		vm_page_aflag_set(m, PGA_REFERENCED);
1848
1849	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1850		pmap = PV_PMAP(pv);
1851		PMAP_LOCK(pmap);
1852
1853		/*
1854		 * If it's last mapping writeback all caches from
1855		 * the page being destroyed
1856	 	 */
1857		if (TAILQ_NEXT(pv, pv_list) == NULL)
1858			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1859
1860		pmap->pm_stats.resident_count--;
1861
1862		pde = pmap_pde(pmap, pv->pv_va);
1863		KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
1864		pte = pmap_pde_to_pte(pde, pv->pv_va);
1865
1866		tpte = *pte;
1867		if (is_kernel_pmap(pmap))
1868			*pte = PTE_G;
1869		else
1870			*pte = 0;
1871
1872		if (pte_test(&tpte, PTE_W))
1873			pmap->pm_stats.wired_count--;
1874
1875		/*
1876		 * Update the vm_page_t clean and reference bits.
1877		 */
1878		if (pte_test(&tpte, PTE_D)) {
1879			KASSERT(!pte_test(&tpte, PTE_RO),
1880			    ("%s: modified page not writable: va: %p, pte: %#jx",
1881			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1882			vm_page_dirty(m);
1883		}
1884		pmap_invalidate_page(pmap, pv->pv_va);
1885
1886		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1887		pmap_unuse_pt(pmap, pv->pv_va, *pde);
1888		free_pv_entry(pmap, pv);
1889		PMAP_UNLOCK(pmap);
1890	}
1891
1892	vm_page_aflag_clear(m, PGA_WRITEABLE);
1893	m->md.pv_flags &= ~PV_TABLE_REF;
1894	rw_wunlock(&pvh_global_lock);
1895}
1896
1897/*
1898 *	Set the physical protection on the
1899 *	specified range of this map as requested.
1900 */
1901void
1902pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1903{
1904	pt_entry_t pbits, *pte;
1905	pd_entry_t *pde, *pdpe;
1906	vm_offset_t va, va_next;
1907	vm_paddr_t pa;
1908	vm_page_t m;
1909
1910	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1911		pmap_remove(pmap, sva, eva);
1912		return;
1913	}
1914	if (prot & VM_PROT_WRITE)
1915		return;
1916
1917	PMAP_LOCK(pmap);
1918	for (; sva < eva; sva = va_next) {
1919		pdpe = pmap_segmap(pmap, sva);
1920#ifdef __mips_n64
1921		if (*pdpe == 0) {
1922			va_next = (sva + NBSEG) & ~SEGMASK;
1923			if (va_next < sva)
1924				va_next = eva;
1925			continue;
1926		}
1927#endif
1928		va_next = (sva + NBPDR) & ~PDRMASK;
1929		if (va_next < sva)
1930			va_next = eva;
1931
1932		pde = pmap_pdpe_to_pde(pdpe, sva);
1933		if (*pde == NULL)
1934			continue;
1935
1936		/*
1937		 * Limit our scan to either the end of the va represented
1938		 * by the current page table page, or to the end of the
1939		 * range being write protected.
1940		 */
1941		if (va_next > eva)
1942			va_next = eva;
1943
1944		va = va_next;
1945		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1946		    sva += PAGE_SIZE) {
1947			pbits = *pte;
1948			if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
1949			    PTE_RO)) {
1950				if (va != va_next) {
1951					pmap_invalidate_range(pmap, va, sva);
1952					va = va_next;
1953				}
1954				continue;
1955			}
1956			pte_set(&pbits, PTE_RO);
1957			if (pte_test(&pbits, PTE_D)) {
1958				pte_clear(&pbits, PTE_D);
1959				if (pte_test(&pbits, PTE_MANAGED)) {
1960					pa = TLBLO_PTE_TO_PA(pbits);
1961					m = PHYS_TO_VM_PAGE(pa);
1962					vm_page_dirty(m);
1963				}
1964				if (va == va_next)
1965					va = sva;
1966			} else {
1967				/*
1968				 * Unless PTE_D is set, any TLB entries
1969				 * mapping "sva" don't allow write access, so
1970				 * they needn't be invalidated.
1971				 */
1972				if (va != va_next) {
1973					pmap_invalidate_range(pmap, va, sva);
1974					va = va_next;
1975				}
1976			}
1977			*pte = pbits;
1978		}
1979		if (va != va_next)
1980			pmap_invalidate_range(pmap, va, sva);
1981	}
1982	PMAP_UNLOCK(pmap);
1983}
1984
1985/*
1986 *	Insert the given physical page (p) at
1987 *	the specified virtual address (v) in the
1988 *	target physical map with the protection requested.
1989 *
1990 *	If specified, the page will be wired down, meaning
1991 *	that the related pte can not be reclaimed.
1992 *
1993 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1994 *	or lose information.  That is, this routine must actually
1995 *	insert this page into the given map NOW.
1996 */
1997void
1998pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1999    vm_prot_t prot, boolean_t wired)
2000{
2001	vm_paddr_t pa, opa;
2002	pt_entry_t *pte;
2003	pt_entry_t origpte, newpte;
2004	pv_entry_t pv;
2005	vm_page_t mpte, om;
2006
2007	va &= ~PAGE_MASK;
2008 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2009	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
2010	    va >= kmi.clean_eva,
2011	    ("pmap_enter: managed mapping within the clean submap"));
2012	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || vm_page_xbusied(m),
2013	    ("pmap_enter: page %p is not busy", m));
2014	pa = VM_PAGE_TO_PHYS(m);
2015	newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, access, prot);
2016	if (wired)
2017		newpte |= PTE_W;
2018	if (is_kernel_pmap(pmap))
2019		newpte |= PTE_G;
2020	if (is_cacheable_mem(pa))
2021		newpte |= PTE_C_CACHE;
2022	else
2023		newpte |= PTE_C_UNCACHED;
2024
2025	mpte = NULL;
2026
2027	rw_wlock(&pvh_global_lock);
2028	PMAP_LOCK(pmap);
2029
2030	/*
2031	 * In the case that a page table page is not resident, we are
2032	 * creating it here.
2033	 */
2034	if (va < VM_MAXUSER_ADDRESS) {
2035		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2036	}
2037	pte = pmap_pte(pmap, va);
2038
2039	/*
2040	 * Page Directory table entry not valid, we need a new PT page
2041	 */
2042	if (pte == NULL) {
2043		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
2044		    (void *)pmap->pm_segtab, (void *)va);
2045	}
2046	om = NULL;
2047	origpte = *pte;
2048	opa = TLBLO_PTE_TO_PA(origpte);
2049
2050	/*
2051	 * Mapping has not changed, must be protection or wiring change.
2052	 */
2053	if (pte_test(&origpte, PTE_V) && opa == pa) {
2054		/*
2055		 * Wiring change, just update stats. We don't worry about
2056		 * wiring PT pages as they remain resident as long as there
2057		 * are valid mappings in them. Hence, if a user page is
2058		 * wired, the PT page will be also.
2059		 */
2060		if (wired && !pte_test(&origpte, PTE_W))
2061			pmap->pm_stats.wired_count++;
2062		else if (!wired && pte_test(&origpte, PTE_W))
2063			pmap->pm_stats.wired_count--;
2064
2065		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
2066		    ("%s: modified page not writable: va: %p, pte: %#jx",
2067		    __func__, (void *)va, (uintmax_t)origpte));
2068
2069		/*
2070		 * Remove extra pte reference
2071		 */
2072		if (mpte)
2073			mpte->wire_count--;
2074
2075		if (pte_test(&origpte, PTE_MANAGED)) {
2076			m->md.pv_flags |= PV_TABLE_REF;
2077			om = m;
2078			newpte |= PTE_MANAGED;
2079			if (!pte_test(&newpte, PTE_RO))
2080				vm_page_aflag_set(m, PGA_WRITEABLE);
2081		}
2082		goto validate;
2083	}
2084
2085	pv = NULL;
2086
2087	/*
2088	 * Mapping has changed, invalidate old range and fall through to
2089	 * handle validating new mapping.
2090	 */
2091	if (opa) {
2092		if (pte_test(&origpte, PTE_W))
2093			pmap->pm_stats.wired_count--;
2094
2095		if (pte_test(&origpte, PTE_MANAGED)) {
2096			om = PHYS_TO_VM_PAGE(opa);
2097			pv = pmap_pvh_remove(&om->md, pmap, va);
2098		}
2099		if (mpte != NULL) {
2100			mpte->wire_count--;
2101			KASSERT(mpte->wire_count > 0,
2102			    ("pmap_enter: missing reference to page table page,"
2103			    " va: %p", (void *)va));
2104		}
2105	} else
2106		pmap->pm_stats.resident_count++;
2107
2108	/*
2109	 * Enter on the PV list if part of our managed memory.
2110	 */
2111	if ((m->oflags & VPO_UNMANAGED) == 0) {
2112		m->md.pv_flags |= PV_TABLE_REF;
2113		if (pv == NULL)
2114			pv = get_pv_entry(pmap, FALSE);
2115		pv->pv_va = va;
2116		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2117		newpte |= PTE_MANAGED;
2118		if (!pte_test(&newpte, PTE_RO))
2119			vm_page_aflag_set(m, PGA_WRITEABLE);
2120	} else if (pv != NULL)
2121		free_pv_entry(pmap, pv);
2122
2123	/*
2124	 * Increment counters
2125	 */
2126	if (wired)
2127		pmap->pm_stats.wired_count++;
2128
2129validate:
2130
2131#ifdef PMAP_DEBUG
2132	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
2133#endif
2134
2135	/*
2136	 * if the mapping or permission bits are different, we need to
2137	 * update the pte.
2138	 */
2139	if (origpte != newpte) {
2140		*pte = newpte;
2141		if (pte_test(&origpte, PTE_V)) {
2142			if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
2143				if (om->md.pv_flags & PV_TABLE_REF)
2144					vm_page_aflag_set(om, PGA_REFERENCED);
2145				om->md.pv_flags &= ~PV_TABLE_REF;
2146			}
2147			if (pte_test(&origpte, PTE_D)) {
2148				KASSERT(!pte_test(&origpte, PTE_RO),
2149				    ("pmap_enter: modified page not writable:"
2150				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
2151				if (pte_test(&origpte, PTE_MANAGED))
2152					vm_page_dirty(om);
2153			}
2154			if (pte_test(&origpte, PTE_MANAGED) &&
2155			    TAILQ_EMPTY(&om->md.pv_list))
2156				vm_page_aflag_clear(om, PGA_WRITEABLE);
2157			pmap_update_page(pmap, va, newpte);
2158		}
2159	}
2160
2161	/*
2162	 * Sync I & D caches for executable pages.  Do this only if the
2163	 * target pmap belongs to the current process.  Otherwise, an
2164	 * unresolvable TLB miss may occur.
2165	 */
2166	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2167	    (prot & VM_PROT_EXECUTE)) {
2168		mips_icache_sync_range(va, PAGE_SIZE);
2169		mips_dcache_wbinv_range(va, PAGE_SIZE);
2170	}
2171	rw_wunlock(&pvh_global_lock);
2172	PMAP_UNLOCK(pmap);
2173}
2174
2175/*
2176 * this code makes some *MAJOR* assumptions:
2177 * 1. Current pmap & pmap exists.
2178 * 2. Not wired.
2179 * 3. Read access.
2180 * 4. No page table pages.
2181 * but is *MUCH* faster than pmap_enter...
2182 */
2183
2184void
2185pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2186{
2187
2188	rw_wlock(&pvh_global_lock);
2189	PMAP_LOCK(pmap);
2190	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2191	rw_wunlock(&pvh_global_lock);
2192	PMAP_UNLOCK(pmap);
2193}
2194
2195static vm_page_t
2196pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2197    vm_prot_t prot, vm_page_t mpte)
2198{
2199	pt_entry_t *pte;
2200	vm_paddr_t pa;
2201
2202	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2203	    (m->oflags & VPO_UNMANAGED) != 0,
2204	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2205	rw_assert(&pvh_global_lock, RA_WLOCKED);
2206	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2207
2208	/*
2209	 * In the case that a page table page is not resident, we are
2210	 * creating it here.
2211	 */
2212	if (va < VM_MAXUSER_ADDRESS) {
2213		pd_entry_t *pde;
2214		unsigned ptepindex;
2215
2216		/*
2217		 * Calculate pagetable page index
2218		 */
2219		ptepindex = pmap_pde_pindex(va);
2220		if (mpte && (mpte->pindex == ptepindex)) {
2221			mpte->wire_count++;
2222		} else {
2223			/*
2224			 * Get the page directory entry
2225			 */
2226			pde = pmap_pde(pmap, va);
2227
2228			/*
2229			 * If the page table page is mapped, we just
2230			 * increment the hold count, and activate it.
2231			 */
2232			if (pde && *pde != 0) {
2233				mpte = PHYS_TO_VM_PAGE(
2234				    MIPS_DIRECT_TO_PHYS(*pde));
2235				mpte->wire_count++;
2236			} else {
2237				mpte = _pmap_allocpte(pmap, ptepindex,
2238				    M_NOWAIT);
2239				if (mpte == NULL)
2240					return (mpte);
2241			}
2242		}
2243	} else {
2244		mpte = NULL;
2245	}
2246
2247	pte = pmap_pte(pmap, va);
2248	if (pte_test(pte, PTE_V)) {
2249		if (mpte != NULL) {
2250			mpte->wire_count--;
2251			mpte = NULL;
2252		}
2253		return (mpte);
2254	}
2255
2256	/*
2257	 * Enter on the PV list if part of our managed memory.
2258	 */
2259	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2260	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2261		if (mpte != NULL) {
2262			pmap_unwire_ptp(pmap, va, mpte);
2263			mpte = NULL;
2264		}
2265		return (mpte);
2266	}
2267
2268	/*
2269	 * Increment counters
2270	 */
2271	pmap->pm_stats.resident_count++;
2272
2273	pa = VM_PAGE_TO_PHYS(m);
2274
2275	/*
2276	 * Now validate mapping with RO protection
2277	 */
2278	*pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
2279	if ((m->oflags & VPO_UNMANAGED) == 0)
2280		*pte |= PTE_MANAGED;
2281
2282	if (is_cacheable_mem(pa))
2283		*pte |= PTE_C_CACHE;
2284	else
2285		*pte |= PTE_C_UNCACHED;
2286
2287	if (is_kernel_pmap(pmap))
2288		*pte |= PTE_G;
2289	else {
2290		/*
2291		 * Sync I & D caches.  Do this only if the target pmap
2292		 * belongs to the current process.  Otherwise, an
2293		 * unresolvable TLB miss may occur. */
2294		if (pmap == &curproc->p_vmspace->vm_pmap) {
2295			va &= ~PAGE_MASK;
2296			mips_icache_sync_range(va, PAGE_SIZE);
2297			mips_dcache_wbinv_range(va, PAGE_SIZE);
2298		}
2299	}
2300	return (mpte);
2301}
2302
2303/*
2304 * Make a temporary mapping for a physical address.  This is only intended
2305 * to be used for panic dumps.
2306 *
2307 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2308 */
2309void *
2310pmap_kenter_temporary(vm_paddr_t pa, int i)
2311{
2312	vm_offset_t va;
2313
2314	if (i != 0)
2315		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2316		    __func__);
2317
2318	if (MIPS_DIRECT_MAPPABLE(pa)) {
2319		va = MIPS_PHYS_TO_DIRECT(pa);
2320	} else {
2321#ifndef __mips_n64    /* XXX : to be converted to new style */
2322		int cpu;
2323		register_t intr;
2324		struct local_sysmaps *sysm;
2325		pt_entry_t *pte, npte;
2326
2327		/* If this is used other than for dumps, we may need to leave
2328		 * interrupts disasbled on return. If crash dumps don't work when
2329		 * we get to this point, we might want to consider this (leaving things
2330		 * disabled as a starting point ;-)
2331	 	 */
2332		intr = intr_disable();
2333		cpu = PCPU_GET(cpuid);
2334		sysm = &sysmap_lmem[cpu];
2335		/* Since this is for the debugger, no locks or any other fun */
2336		npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
2337		    PTE_G;
2338		pte = pmap_pte(kernel_pmap, sysm->base);
2339		*pte = npte;
2340		sysm->valid1 = 1;
2341		pmap_update_page(kernel_pmap, sysm->base, npte);
2342		va = sysm->base;
2343		intr_restore(intr);
2344#endif
2345	}
2346	return ((void *)va);
2347}
2348
2349void
2350pmap_kenter_temporary_free(vm_paddr_t pa)
2351{
2352#ifndef __mips_n64    /* XXX : to be converted to new style */
2353	int cpu;
2354	register_t intr;
2355	struct local_sysmaps *sysm;
2356#endif
2357
2358	if (MIPS_DIRECT_MAPPABLE(pa)) {
2359		/* nothing to do for this case */
2360		return;
2361	}
2362#ifndef __mips_n64    /* XXX : to be converted to new style */
2363	cpu = PCPU_GET(cpuid);
2364	sysm = &sysmap_lmem[cpu];
2365	if (sysm->valid1) {
2366		pt_entry_t *pte;
2367
2368		intr = intr_disable();
2369		pte = pmap_pte(kernel_pmap, sysm->base);
2370		*pte = PTE_G;
2371		pmap_invalidate_page(kernel_pmap, sysm->base);
2372		intr_restore(intr);
2373		sysm->valid1 = 0;
2374	}
2375#endif
2376}
2377
2378/*
2379 * Maps a sequence of resident pages belonging to the same object.
2380 * The sequence begins with the given page m_start.  This page is
2381 * mapped at the given virtual address start.  Each subsequent page is
2382 * mapped at a virtual address that is offset from start by the same
2383 * amount as the page is offset from m_start within the object.  The
2384 * last page in the sequence is the page with the largest offset from
2385 * m_start that can be mapped at a virtual address less than the given
2386 * virtual address end.  Not every virtual page between start and end
2387 * is mapped; only those for which a resident page exists with the
2388 * corresponding offset from m_start are mapped.
2389 */
2390void
2391pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2392    vm_page_t m_start, vm_prot_t prot)
2393{
2394	vm_page_t m, mpte;
2395	vm_pindex_t diff, psize;
2396
2397	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2398
2399	psize = atop(end - start);
2400	mpte = NULL;
2401	m = m_start;
2402	rw_wlock(&pvh_global_lock);
2403	PMAP_LOCK(pmap);
2404	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2405		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2406		    prot, mpte);
2407		m = TAILQ_NEXT(m, listq);
2408	}
2409	rw_wunlock(&pvh_global_lock);
2410 	PMAP_UNLOCK(pmap);
2411}
2412
2413/*
2414 * pmap_object_init_pt preloads the ptes for a given object
2415 * into the specified pmap.  This eliminates the blast of soft
2416 * faults on process startup and immediately after an mmap.
2417 */
2418void
2419pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2420    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2421{
2422	VM_OBJECT_ASSERT_WLOCKED(object);
2423	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2424	    ("pmap_object_init_pt: non-device object"));
2425}
2426
2427/*
2428 *	Routine:	pmap_change_wiring
2429 *	Function:	Change the wiring attribute for a map/virtual-address
2430 *			pair.
2431 *	In/out conditions:
2432 *			The mapping must already exist in the pmap.
2433 */
2434void
2435pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2436{
2437	pt_entry_t *pte;
2438
2439	PMAP_LOCK(pmap);
2440	pte = pmap_pte(pmap, va);
2441
2442	if (wired && !pte_test(pte, PTE_W))
2443		pmap->pm_stats.wired_count++;
2444	else if (!wired && pte_test(pte, PTE_W))
2445		pmap->pm_stats.wired_count--;
2446
2447	/*
2448	 * Wiring is not a hardware characteristic so there is no need to
2449	 * invalidate TLB.
2450	 */
2451	if (wired)
2452		pte_set(pte, PTE_W);
2453	else
2454		pte_clear(pte, PTE_W);
2455	PMAP_UNLOCK(pmap);
2456}
2457
2458/*
2459 *	Copy the range specified by src_addr/len
2460 *	from the source map to the range dst_addr/len
2461 *	in the destination map.
2462 *
2463 *	This routine is only advisory and need not do anything.
2464 */
2465
2466void
2467pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2468    vm_size_t len, vm_offset_t src_addr)
2469{
2470}
2471
2472/*
2473 *	pmap_zero_page zeros the specified hardware page by mapping
2474 *	the page into KVM and using bzero to clear its contents.
2475 *
2476 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2477 */
2478void
2479pmap_zero_page(vm_page_t m)
2480{
2481	vm_offset_t va;
2482	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2483
2484	if (MIPS_DIRECT_MAPPABLE(phys)) {
2485		va = MIPS_PHYS_TO_DIRECT(phys);
2486		bzero((caddr_t)va, PAGE_SIZE);
2487		mips_dcache_wbinv_range(va, PAGE_SIZE);
2488	} else {
2489		va = pmap_lmem_map1(phys);
2490		bzero((caddr_t)va, PAGE_SIZE);
2491		mips_dcache_wbinv_range(va, PAGE_SIZE);
2492		pmap_lmem_unmap();
2493	}
2494}
2495
2496/*
2497 *	pmap_zero_page_area zeros the specified hardware page by mapping
2498 *	the page into KVM and using bzero to clear its contents.
2499 *
2500 *	off and size may not cover an area beyond a single hardware page.
2501 */
2502void
2503pmap_zero_page_area(vm_page_t m, int off, int size)
2504{
2505	vm_offset_t va;
2506	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2507
2508	if (MIPS_DIRECT_MAPPABLE(phys)) {
2509		va = MIPS_PHYS_TO_DIRECT(phys);
2510		bzero((char *)(caddr_t)va + off, size);
2511		mips_dcache_wbinv_range(va + off, size);
2512	} else {
2513		va = pmap_lmem_map1(phys);
2514		bzero((char *)va + off, size);
2515		mips_dcache_wbinv_range(va + off, size);
2516		pmap_lmem_unmap();
2517	}
2518}
2519
2520void
2521pmap_zero_page_idle(vm_page_t m)
2522{
2523	vm_offset_t va;
2524	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2525
2526	if (MIPS_DIRECT_MAPPABLE(phys)) {
2527		va = MIPS_PHYS_TO_DIRECT(phys);
2528		bzero((caddr_t)va, PAGE_SIZE);
2529		mips_dcache_wbinv_range(va, PAGE_SIZE);
2530	} else {
2531		va = pmap_lmem_map1(phys);
2532		bzero((caddr_t)va, PAGE_SIZE);
2533		mips_dcache_wbinv_range(va, PAGE_SIZE);
2534		pmap_lmem_unmap();
2535	}
2536}
2537
2538/*
2539 *	pmap_copy_page copies the specified (machine independent)
2540 *	page by mapping the page into virtual memory and using
2541 *	bcopy to copy the page, one machine dependent page at a
2542 *	time.
2543 *
2544 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2545 */
2546void
2547pmap_copy_page(vm_page_t src, vm_page_t dst)
2548{
2549	vm_offset_t va_src, va_dst;
2550	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2551	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2552
2553	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2554		/* easy case, all can be accessed via KSEG0 */
2555		/*
2556		 * Flush all caches for VA that are mapped to this page
2557		 * to make sure that data in SDRAM is up to date
2558		 */
2559		pmap_flush_pvcache(src);
2560		mips_dcache_wbinv_range_index(
2561		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2562		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2563		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2564		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2565		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2566	} else {
2567		va_src = pmap_lmem_map2(phys_src, phys_dst);
2568		va_dst = va_src + PAGE_SIZE;
2569		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2570		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2571		pmap_lmem_unmap();
2572	}
2573}
2574
2575int unmapped_buf_allowed;
2576
2577void
2578pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2579    vm_offset_t b_offset, int xfersize)
2580{
2581	char *a_cp, *b_cp;
2582	vm_page_t a_m, b_m;
2583	vm_offset_t a_pg_offset, b_pg_offset;
2584	vm_paddr_t a_phys, b_phys;
2585	int cnt;
2586
2587	while (xfersize > 0) {
2588		a_pg_offset = a_offset & PAGE_MASK;
2589		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2590		a_m = ma[a_offset >> PAGE_SHIFT];
2591		a_phys = VM_PAGE_TO_PHYS(a_m);
2592		b_pg_offset = b_offset & PAGE_MASK;
2593		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2594		b_m = mb[b_offset >> PAGE_SHIFT];
2595		b_phys = VM_PAGE_TO_PHYS(b_m);
2596		if (MIPS_DIRECT_MAPPABLE(a_phys) &&
2597		    MIPS_DIRECT_MAPPABLE(b_phys)) {
2598			pmap_flush_pvcache(a_m);
2599			mips_dcache_wbinv_range_index(
2600			    MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
2601			a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
2602			    a_pg_offset;
2603			b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
2604			    b_pg_offset;
2605			bcopy(a_cp, b_cp, cnt);
2606			mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
2607		} else {
2608			a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
2609			b_cp = (char *)a_cp + PAGE_SIZE;
2610			a_cp += a_pg_offset;
2611			b_cp += b_pg_offset;
2612			bcopy(a_cp, b_cp, cnt);
2613			mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
2614			pmap_lmem_unmap();
2615		}
2616		a_offset += cnt;
2617		b_offset += cnt;
2618		xfersize -= cnt;
2619	}
2620}
2621
2622/*
2623 * Returns true if the pmap's pv is one of the first
2624 * 16 pvs linked to from this page.  This count may
2625 * be changed upwards or downwards in the future; it
2626 * is only necessary that true be returned for a small
2627 * subset of pmaps for proper page aging.
2628 */
2629boolean_t
2630pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2631{
2632	pv_entry_t pv;
2633	int loops = 0;
2634	boolean_t rv;
2635
2636	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2637	    ("pmap_page_exists_quick: page %p is not managed", m));
2638	rv = FALSE;
2639	rw_wlock(&pvh_global_lock);
2640	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2641		if (PV_PMAP(pv) == pmap) {
2642			rv = TRUE;
2643			break;
2644		}
2645		loops++;
2646		if (loops >= 16)
2647			break;
2648	}
2649	rw_wunlock(&pvh_global_lock);
2650	return (rv);
2651}
2652
2653/*
2654 * Remove all pages from specified address space
2655 * this aids process exit speeds.  Also, this code
2656 * is special cased for current process only, but
2657 * can have the more generic (and slightly slower)
2658 * mode enabled.  This is much faster than pmap_remove
2659 * in the case of running down an entire address space.
2660 */
2661void
2662pmap_remove_pages(pmap_t pmap)
2663{
2664	pd_entry_t *pde;
2665	pt_entry_t *pte, tpte;
2666	pv_entry_t pv;
2667	vm_page_t m;
2668	struct pv_chunk *pc, *npc;
2669	u_long inuse, bitmask;
2670	int allfree, bit, field, idx;
2671
2672	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2673		printf("warning: pmap_remove_pages called with non-current pmap\n");
2674		return;
2675	}
2676	rw_wlock(&pvh_global_lock);
2677	PMAP_LOCK(pmap);
2678	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2679		allfree = 1;
2680		for (field = 0; field < _NPCM; field++) {
2681			inuse = ~pc->pc_map[field] & pc_freemask[field];
2682			while (inuse != 0) {
2683				bit = ffsl(inuse) - 1;
2684				bitmask = 1UL << bit;
2685				idx = field * sizeof(inuse) * NBBY + bit;
2686				pv = &pc->pc_pventry[idx];
2687				inuse &= ~bitmask;
2688
2689				pde = pmap_pde(pmap, pv->pv_va);
2690				KASSERT(pde != NULL && *pde != 0,
2691				    ("pmap_remove_pages: pde"));
2692				pte = pmap_pde_to_pte(pde, pv->pv_va);
2693				if (!pte_test(pte, PTE_V))
2694					panic("pmap_remove_pages: bad pte");
2695				tpte = *pte;
2696
2697/*
2698 * We cannot remove wired pages from a process' mapping at this time
2699 */
2700				if (pte_test(&tpte, PTE_W)) {
2701					allfree = 0;
2702					continue;
2703				}
2704				*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2705
2706				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2707				KASSERT(m != NULL,
2708				    ("pmap_remove_pages: bad tpte %#jx",
2709				    (uintmax_t)tpte));
2710
2711				/*
2712				 * Update the vm_page_t clean and reference bits.
2713				 */
2714				if (pte_test(&tpte, PTE_D))
2715					vm_page_dirty(m);
2716
2717				/* Mark free */
2718				PV_STAT(pv_entry_frees++);
2719				PV_STAT(pv_entry_spare++);
2720				pv_entry_count--;
2721				pc->pc_map[field] |= bitmask;
2722				pmap->pm_stats.resident_count--;
2723				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2724				if (TAILQ_EMPTY(&m->md.pv_list))
2725					vm_page_aflag_clear(m, PGA_WRITEABLE);
2726				pmap_unuse_pt(pmap, pv->pv_va, *pde);
2727			}
2728		}
2729		if (allfree) {
2730			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2731			free_pv_chunk(pc);
2732		}
2733	}
2734	pmap_invalidate_all(pmap);
2735	PMAP_UNLOCK(pmap);
2736	rw_wunlock(&pvh_global_lock);
2737}
2738
2739/*
2740 * pmap_testbit tests bits in pte's
2741 */
2742static boolean_t
2743pmap_testbit(vm_page_t m, int bit)
2744{
2745	pv_entry_t pv;
2746	pmap_t pmap;
2747	pt_entry_t *pte;
2748	boolean_t rv = FALSE;
2749
2750	if (m->oflags & VPO_UNMANAGED)
2751		return (rv);
2752
2753	rw_assert(&pvh_global_lock, RA_WLOCKED);
2754	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2755		pmap = PV_PMAP(pv);
2756		PMAP_LOCK(pmap);
2757		pte = pmap_pte(pmap, pv->pv_va);
2758		rv = pte_test(pte, bit);
2759		PMAP_UNLOCK(pmap);
2760		if (rv)
2761			break;
2762	}
2763	return (rv);
2764}
2765
2766/*
2767 *	pmap_page_wired_mappings:
2768 *
2769 *	Return the number of managed mappings to the given physical page
2770 *	that are wired.
2771 */
2772int
2773pmap_page_wired_mappings(vm_page_t m)
2774{
2775	pv_entry_t pv;
2776	pmap_t pmap;
2777	pt_entry_t *pte;
2778	int count;
2779
2780	count = 0;
2781	if ((m->oflags & VPO_UNMANAGED) != 0)
2782		return (count);
2783	rw_wlock(&pvh_global_lock);
2784	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2785		pmap = PV_PMAP(pv);
2786		PMAP_LOCK(pmap);
2787		pte = pmap_pte(pmap, pv->pv_va);
2788		if (pte_test(pte, PTE_W))
2789			count++;
2790		PMAP_UNLOCK(pmap);
2791	}
2792	rw_wunlock(&pvh_global_lock);
2793	return (count);
2794}
2795
2796/*
2797 * Clear the write and modified bits in each of the given page's mappings.
2798 */
2799void
2800pmap_remove_write(vm_page_t m)
2801{
2802	pmap_t pmap;
2803	pt_entry_t pbits, *pte;
2804	pv_entry_t pv;
2805
2806	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2807	    ("pmap_remove_write: page %p is not managed", m));
2808
2809	/*
2810	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2811	 * set by another thread while the object is locked.  Thus,
2812	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2813	 */
2814	VM_OBJECT_ASSERT_WLOCKED(m->object);
2815	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2816		return;
2817	rw_wlock(&pvh_global_lock);
2818	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2819		pmap = PV_PMAP(pv);
2820		PMAP_LOCK(pmap);
2821		pte = pmap_pte(pmap, pv->pv_va);
2822		KASSERT(pte != NULL && pte_test(pte, PTE_V),
2823		    ("page on pv_list has no pte"));
2824		pbits = *pte;
2825		if (pte_test(&pbits, PTE_D)) {
2826			pte_clear(&pbits, PTE_D);
2827			vm_page_dirty(m);
2828		}
2829		pte_set(&pbits, PTE_RO);
2830		if (pbits != *pte) {
2831			*pte = pbits;
2832			pmap_update_page(pmap, pv->pv_va, pbits);
2833		}
2834		PMAP_UNLOCK(pmap);
2835	}
2836	vm_page_aflag_clear(m, PGA_WRITEABLE);
2837	rw_wunlock(&pvh_global_lock);
2838}
2839
2840/*
2841 *	pmap_ts_referenced:
2842 *
2843 *	Return the count of reference bits for a page, clearing all of them.
2844 */
2845int
2846pmap_ts_referenced(vm_page_t m)
2847{
2848
2849	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2850	    ("pmap_ts_referenced: page %p is not managed", m));
2851	if (m->md.pv_flags & PV_TABLE_REF) {
2852		rw_wlock(&pvh_global_lock);
2853		m->md.pv_flags &= ~PV_TABLE_REF;
2854		rw_wunlock(&pvh_global_lock);
2855		return (1);
2856	}
2857	return (0);
2858}
2859
2860/*
2861 *	pmap_is_modified:
2862 *
2863 *	Return whether or not the specified physical page was modified
2864 *	in any physical maps.
2865 */
2866boolean_t
2867pmap_is_modified(vm_page_t m)
2868{
2869	boolean_t rv;
2870
2871	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2872	    ("pmap_is_modified: page %p is not managed", m));
2873
2874	/*
2875	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2876	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2877	 * is clear, no PTEs can have PTE_D set.
2878	 */
2879	VM_OBJECT_ASSERT_WLOCKED(m->object);
2880	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2881		return (FALSE);
2882	rw_wlock(&pvh_global_lock);
2883	rv = pmap_testbit(m, PTE_D);
2884	rw_wunlock(&pvh_global_lock);
2885	return (rv);
2886}
2887
2888/* N/C */
2889
2890/*
2891 *	pmap_is_prefaultable:
2892 *
2893 *	Return whether or not the specified virtual address is elgible
2894 *	for prefault.
2895 */
2896boolean_t
2897pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2898{
2899	pd_entry_t *pde;
2900	pt_entry_t *pte;
2901	boolean_t rv;
2902
2903	rv = FALSE;
2904	PMAP_LOCK(pmap);
2905	pde = pmap_pde(pmap, addr);
2906	if (pde != NULL && *pde != 0) {
2907		pte = pmap_pde_to_pte(pde, addr);
2908		rv = (*pte == 0);
2909	}
2910	PMAP_UNLOCK(pmap);
2911	return (rv);
2912}
2913
2914/*
2915 *	Apply the given advice to the specified range of addresses within the
2916 *	given pmap.  Depending on the advice, clear the referenced and/or
2917 *	modified flags in each mapping and set the mapped page's dirty field.
2918 */
2919void
2920pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
2921{
2922	pd_entry_t *pde, *pdpe;
2923	pt_entry_t *pte;
2924	vm_offset_t va, va_next;
2925	vm_paddr_t pa;
2926	vm_page_t m;
2927
2928	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2929		return;
2930	rw_wlock(&pvh_global_lock);
2931	PMAP_LOCK(pmap);
2932	for (; sva < eva; sva = va_next) {
2933		pdpe = pmap_segmap(pmap, sva);
2934#ifdef __mips_n64
2935		if (*pdpe == 0) {
2936			va_next = (sva + NBSEG) & ~SEGMASK;
2937			if (va_next < sva)
2938				va_next = eva;
2939			continue;
2940		}
2941#endif
2942		va_next = (sva + NBPDR) & ~PDRMASK;
2943		if (va_next < sva)
2944			va_next = eva;
2945
2946		pde = pmap_pdpe_to_pde(pdpe, sva);
2947		if (*pde == NULL)
2948			continue;
2949
2950		/*
2951		 * Limit our scan to either the end of the va represented
2952		 * by the current page table page, or to the end of the
2953		 * range being write protected.
2954		 */
2955		if (va_next > eva)
2956			va_next = eva;
2957
2958		va = va_next;
2959		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2960		    sva += PAGE_SIZE) {
2961			if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
2962				if (va != va_next) {
2963					pmap_invalidate_range(pmap, va, sva);
2964					va = va_next;
2965				}
2966				continue;
2967			}
2968			pa = TLBLO_PTE_TO_PA(*pte);
2969			m = PHYS_TO_VM_PAGE(pa);
2970			m->md.pv_flags &= ~PV_TABLE_REF;
2971			if (pte_test(pte, PTE_D)) {
2972				if (advice == MADV_DONTNEED) {
2973					/*
2974					 * Future calls to pmap_is_modified()
2975					 * can be avoided by making the page
2976					 * dirty now.
2977					 */
2978					vm_page_dirty(m);
2979				} else {
2980					pte_clear(pte, PTE_D);
2981					if (va == va_next)
2982						va = sva;
2983				}
2984			} else {
2985				/*
2986				 * Unless PTE_D is set, any TLB entries
2987				 * mapping "sva" don't allow write access, so
2988				 * they needn't be invalidated.
2989				 */
2990				if (va != va_next) {
2991					pmap_invalidate_range(pmap, va, sva);
2992					va = va_next;
2993				}
2994			}
2995		}
2996		if (va != va_next)
2997			pmap_invalidate_range(pmap, va, sva);
2998	}
2999	rw_wunlock(&pvh_global_lock);
3000	PMAP_UNLOCK(pmap);
3001}
3002
3003/*
3004 *	Clear the modify bits on the specified physical page.
3005 */
3006void
3007pmap_clear_modify(vm_page_t m)
3008{
3009	pmap_t pmap;
3010	pt_entry_t *pte;
3011	pv_entry_t pv;
3012
3013	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3014	    ("pmap_clear_modify: page %p is not managed", m));
3015	VM_OBJECT_ASSERT_WLOCKED(m->object);
3016	KASSERT(!vm_page_xbusied(m),
3017	    ("pmap_clear_modify: page %p is exclusive busied", m));
3018
3019	/*
3020	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
3021	 * If the object containing the page is locked and the page is not
3022	 * write busied, then PGA_WRITEABLE cannot be concurrently set.
3023	 */
3024	if ((m->aflags & PGA_WRITEABLE) == 0)
3025		return;
3026	rw_wlock(&pvh_global_lock);
3027	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3028		pmap = PV_PMAP(pv);
3029		PMAP_LOCK(pmap);
3030		pte = pmap_pte(pmap, pv->pv_va);
3031		if (pte_test(pte, PTE_D)) {
3032			pte_clear(pte, PTE_D);
3033			pmap_update_page(pmap, pv->pv_va, *pte);
3034		}
3035		PMAP_UNLOCK(pmap);
3036	}
3037	rw_wunlock(&pvh_global_lock);
3038}
3039
3040/*
3041 *	pmap_is_referenced:
3042 *
3043 *	Return whether or not the specified physical page was referenced
3044 *	in any physical maps.
3045 */
3046boolean_t
3047pmap_is_referenced(vm_page_t m)
3048{
3049
3050	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3051	    ("pmap_is_referenced: page %p is not managed", m));
3052	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
3053}
3054
3055/*
3056 * Miscellaneous support routines follow
3057 */
3058
3059/*
3060 * Map a set of physical memory pages into the kernel virtual
3061 * address space. Return a pointer to where it is mapped. This
3062 * routine is intended to be used for mapping device memory,
3063 * NOT real memory.
3064 *
3065 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
3066 */
3067void *
3068pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3069{
3070        vm_offset_t va, tmpva, offset;
3071
3072	/*
3073	 * KSEG1 maps only first 512M of phys address space. For
3074	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
3075	 */
3076	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
3077		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
3078	else {
3079		offset = pa & PAGE_MASK;
3080		size = roundup(size + offset, PAGE_SIZE);
3081
3082		va = kva_alloc(size);
3083		if (!va)
3084			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3085		pa = trunc_page(pa);
3086		for (tmpva = va; size > 0;) {
3087			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
3088			size -= PAGE_SIZE;
3089			tmpva += PAGE_SIZE;
3090			pa += PAGE_SIZE;
3091		}
3092	}
3093
3094	return ((void *)(va + offset));
3095}
3096
3097void
3098pmap_unmapdev(vm_offset_t va, vm_size_t size)
3099{
3100#ifndef __mips_n64
3101	vm_offset_t base, offset;
3102
3103	/* If the address is within KSEG1 then there is nothing to do */
3104	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
3105		return;
3106
3107	base = trunc_page(va);
3108	offset = va & PAGE_MASK;
3109	size = roundup(size + offset, PAGE_SIZE);
3110	kva_free(base, size);
3111#endif
3112}
3113
3114/*
3115 * perform the pmap work for mincore
3116 */
3117int
3118pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
3119{
3120	pt_entry_t *ptep, pte;
3121	vm_paddr_t pa;
3122	vm_page_t m;
3123	int val;
3124
3125	PMAP_LOCK(pmap);
3126retry:
3127	ptep = pmap_pte(pmap, addr);
3128	pte = (ptep != NULL) ? *ptep : 0;
3129	if (!pte_test(&pte, PTE_V)) {
3130		val = 0;
3131		goto out;
3132	}
3133	val = MINCORE_INCORE;
3134	if (pte_test(&pte, PTE_D))
3135		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3136	pa = TLBLO_PTE_TO_PA(pte);
3137	if (pte_test(&pte, PTE_MANAGED)) {
3138		/*
3139		 * This may falsely report the given address as
3140		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
3141		 * per-PTE reference information, it is impossible to
3142		 * determine if the address is MINCORE_REFERENCED.
3143		 */
3144		m = PHYS_TO_VM_PAGE(pa);
3145		if ((m->aflags & PGA_REFERENCED) != 0)
3146			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3147	}
3148	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
3149	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
3150	    pte_test(&pte, PTE_MANAGED)) {
3151		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3152		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3153			goto retry;
3154	} else
3155out:
3156		PA_UNLOCK_COND(*locked_pa);
3157	PMAP_UNLOCK(pmap);
3158	return (val);
3159}
3160
3161void
3162pmap_activate(struct thread *td)
3163{
3164	pmap_t pmap, oldpmap;
3165	struct proc *p = td->td_proc;
3166	u_int cpuid;
3167
3168	critical_enter();
3169
3170	pmap = vmspace_pmap(p->p_vmspace);
3171	oldpmap = PCPU_GET(curpmap);
3172	cpuid = PCPU_GET(cpuid);
3173
3174	if (oldpmap)
3175		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
3176	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
3177	pmap_asid_alloc(pmap);
3178	if (td == curthread) {
3179		PCPU_SET(segbase, pmap->pm_segtab);
3180		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
3181	}
3182
3183	PCPU_SET(curpmap, pmap);
3184	critical_exit();
3185}
3186
3187void
3188pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3189{
3190}
3191
3192/*
3193 *	Increase the starting virtual address of the given mapping if a
3194 *	different alignment might result in more superpage mappings.
3195 */
3196void
3197pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3198    vm_offset_t *addr, vm_size_t size)
3199{
3200	vm_offset_t superpage_offset;
3201
3202	if (size < NBSEG)
3203		return;
3204	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3205		offset += ptoa(object->pg_color);
3206	superpage_offset = offset & SEGMASK;
3207	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
3208	    (*addr & SEGMASK) == superpage_offset)
3209		return;
3210	if ((*addr & SEGMASK) < superpage_offset)
3211		*addr = (*addr & ~SEGMASK) + superpage_offset;
3212	else
3213		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
3214}
3215
3216#ifdef DDB
3217DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3218{
3219	pmap_t pmap;
3220	struct thread *td = NULL;
3221	struct proc *p;
3222	int i, j, k;
3223	vm_paddr_t pa;
3224	vm_offset_t va;
3225
3226	if (have_addr) {
3227		td = db_lookup_thread(addr, TRUE);
3228		if (td == NULL) {
3229			db_printf("Invalid pid or tid");
3230			return;
3231		}
3232		p = td->td_proc;
3233		if (p->p_vmspace == NULL) {
3234			db_printf("No vmspace for process");
3235			return;
3236		}
3237			pmap = vmspace_pmap(p->p_vmspace);
3238	} else
3239		pmap = kernel_pmap;
3240
3241	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3242	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3243	    pmap->pm_asid[0].gen);
3244	for (i = 0; i < NPDEPG; i++) {
3245		pd_entry_t *pdpe;
3246		pt_entry_t *pde;
3247		pt_entry_t pte;
3248
3249		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3250		if (pdpe == NULL)
3251			continue;
3252		db_printf("[%4d] %p\n", i, pdpe);
3253#ifdef __mips_n64
3254		for (j = 0; j < NPDEPG; j++) {
3255			pde = (pt_entry_t *)pdpe[j];
3256			if (pde == NULL)
3257				continue;
3258			db_printf("\t[%4d] %p\n", j, pde);
3259#else
3260		{
3261			j = 0;
3262			pde =  (pt_entry_t *)pdpe;
3263#endif
3264			for (k = 0; k < NPTEPG; k++) {
3265				pte = pde[k];
3266				if (pte == 0 || !pte_test(&pte, PTE_V))
3267					continue;
3268				pa = TLBLO_PTE_TO_PA(pte);
3269				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3270				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3271				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3272			}
3273		}
3274	}
3275}
3276#endif
3277
3278#if defined(DEBUG)
3279
3280static void pads(pmap_t pm);
3281void pmap_pvdump(vm_offset_t pa);
3282
3283/* print address space of pmap*/
3284static void
3285pads(pmap_t pm)
3286{
3287	unsigned va, i, j;
3288	pt_entry_t *ptep;
3289
3290	if (pm == kernel_pmap)
3291		return;
3292	for (i = 0; i < NPTEPG; i++)
3293		if (pm->pm_segtab[i])
3294			for (j = 0; j < NPTEPG; j++) {
3295				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3296				if (pm == kernel_pmap && va < KERNBASE)
3297					continue;
3298				if (pm != kernel_pmap &&
3299				    va >= VM_MAXUSER_ADDRESS)
3300					continue;
3301				ptep = pmap_pte(pm, va);
3302				if (pte_test(ptep, PTE_V))
3303					printf("%x:%x ", va, *(int *)ptep);
3304			}
3305
3306}
3307
3308void
3309pmap_pvdump(vm_offset_t pa)
3310{
3311	register pv_entry_t pv;
3312	vm_page_t m;
3313
3314	printf("pa %x", pa);
3315	m = PHYS_TO_VM_PAGE(pa);
3316	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3317	    pv = TAILQ_NEXT(pv, pv_list)) {
3318		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3319		pads(pv->pv_pmap);
3320	}
3321	printf(" ");
3322}
3323
3324/* N/C */
3325#endif
3326
3327
3328/*
3329 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3330 * It takes almost as much or more time to search the TLB for a
3331 * specific ASID and flush those entries as it does to flush the entire TLB.
3332 * Therefore, when we allocate a new ASID, we just take the next number. When
3333 * we run out of numbers, we flush the TLB, increment the generation count
3334 * and start over. ASID zero is reserved for kernel use.
3335 */
3336static void
3337pmap_asid_alloc(pmap)
3338	pmap_t pmap;
3339{
3340	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3341	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3342	else {
3343		if (PCPU_GET(next_asid) == pmap_max_asid) {
3344			tlb_invalidate_all_user(NULL);
3345			PCPU_SET(asid_generation,
3346			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3347			if (PCPU_GET(asid_generation) == 0) {
3348				PCPU_SET(asid_generation, 1);
3349			}
3350			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3351		}
3352		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3353		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3354		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3355	}
3356}
3357
3358static pt_entry_t
3359init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
3360{
3361	pt_entry_t rw;
3362
3363	if (!(prot & VM_PROT_WRITE))
3364		rw = PTE_V | PTE_RO;
3365	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3366		if ((access & VM_PROT_WRITE) != 0)
3367			rw = PTE_V | PTE_D;
3368		else
3369			rw = PTE_V;
3370	} else
3371		/* Needn't emulate a modified bit for unmanaged pages. */
3372		rw = PTE_V | PTE_D;
3373	return (rw);
3374}
3375
3376/*
3377 * pmap_emulate_modified : do dirty bit emulation
3378 *
3379 * On SMP, update just the local TLB, other CPUs will update their
3380 * TLBs from PTE lazily, if they get the exception.
3381 * Returns 0 in case of sucess, 1 if the page is read only and we
3382 * need to fault.
3383 */
3384int
3385pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3386{
3387	pt_entry_t *pte;
3388
3389	PMAP_LOCK(pmap);
3390	pte = pmap_pte(pmap, va);
3391	if (pte == NULL)
3392		panic("pmap_emulate_modified: can't find PTE");
3393#ifdef SMP
3394	/* It is possible that some other CPU changed m-bit */
3395	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3396		tlb_update(pmap, va, *pte);
3397		PMAP_UNLOCK(pmap);
3398		return (0);
3399	}
3400#else
3401	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3402		panic("pmap_emulate_modified: invalid pte");
3403#endif
3404	if (pte_test(pte, PTE_RO)) {
3405		PMAP_UNLOCK(pmap);
3406		return (1);
3407	}
3408	pte_set(pte, PTE_D);
3409	tlb_update(pmap, va, *pte);
3410	if (!pte_test(pte, PTE_MANAGED))
3411		panic("pmap_emulate_modified: unmanaged page");
3412	PMAP_UNLOCK(pmap);
3413	return (0);
3414}
3415
3416/*
3417 *	Routine:	pmap_kextract
3418 *	Function:
3419 *		Extract the physical page address associated
3420 *		virtual address.
3421 */
3422vm_paddr_t
3423pmap_kextract(vm_offset_t va)
3424{
3425	int mapped;
3426
3427	/*
3428	 * First, the direct-mapped regions.
3429	 */
3430#if defined(__mips_n64)
3431	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3432		return (MIPS_XKPHYS_TO_PHYS(va));
3433#endif
3434	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3435		return (MIPS_KSEG0_TO_PHYS(va));
3436
3437	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3438		return (MIPS_KSEG1_TO_PHYS(va));
3439
3440	/*
3441	 * User virtual addresses.
3442	 */
3443	if (va < VM_MAXUSER_ADDRESS) {
3444		pt_entry_t *ptep;
3445
3446		if (curproc && curproc->p_vmspace) {
3447			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3448			if (ptep) {
3449				return (TLBLO_PTE_TO_PA(*ptep) |
3450				    (va & PAGE_MASK));
3451			}
3452			return (0);
3453		}
3454	}
3455
3456	/*
3457	 * Should be kernel virtual here, otherwise fail
3458	 */
3459	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3460#if defined(__mips_n64)
3461	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3462#endif
3463	/*
3464	 * Kernel virtual.
3465	 */
3466
3467	if (mapped) {
3468		pt_entry_t *ptep;
3469
3470		/* Is the kernel pmap initialized? */
3471		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3472			/* It's inside the virtual address range */
3473			ptep = pmap_pte(kernel_pmap, va);
3474			if (ptep) {
3475				return (TLBLO_PTE_TO_PA(*ptep) |
3476				    (va & PAGE_MASK));
3477			}
3478		}
3479		return (0);
3480	}
3481
3482	panic("%s for unknown address space %p.", __func__, (void *)va);
3483}
3484
3485
3486void
3487pmap_flush_pvcache(vm_page_t m)
3488{
3489	pv_entry_t pv;
3490
3491	if (m != NULL) {
3492		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3493		    pv = TAILQ_NEXT(pv, pv_list)) {
3494			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3495		}
3496	}
3497}
3498