pmap.c revision 238561
1169689Skan/*
2169689Skan * Copyright (c) 1991 Regents of the University of California.
3169689Skan * All rights reserved.
4169689Skan * Copyright (c) 1994 John S. Dyson
5169689Skan * All rights reserved.
6169689Skan * Copyright (c) 1994 David Greenman
7169689Skan * All rights reserved.
8169689Skan *
9169689Skan * This code is derived from software contributed to Berkeley by
10169689Skan * the Systems Programming Group of the University of Utah Computer
11169689Skan * Science Department and William Jolitz of UUNET Technologies Inc.
12169689Skan *
13169689Skan * Redistribution and use in source and binary forms, with or without
14169689Skan * modification, are permitted provided that the following conditions
15169689Skan * are met:
16169689Skan * 1. Redistributions of source code must retain the above copyright
17169689Skan *    notice, this list of conditions and the following disclaimer.
18169689Skan * 2. Redistributions in binary form must reproduce the above copyright
19169689Skan *    notice, this list of conditions and the following disclaimer in the
20169689Skan *    documentation and/or other materials provided with the distribution.
21169689Skan * 4. Neither the name of the University nor the names of its contributors
22169689Skan *    may be used to endorse or promote products derived from this software
23169689Skan *    without specific prior written permission.
24169689Skan *
25169689Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26169689Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27169689Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28169689Skan * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29169689Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30169689Skan * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31169689Skan * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32169689Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33169689Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34169689Skan * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35169689Skan * SUCH DAMAGE.
36169689Skan *
37169689Skan *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38169689Skan *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39169689Skan *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40169689Skan */
41169689Skan
42169689Skan/*
43169689Skan *	Manages physical address maps.
44169689Skan *
45169689Skan *	In addition to hardware address maps, this
46169689Skan *	module is called upon to provide software-use-only
47169689Skan *	maps which may or may not be stored in the same
48169689Skan *	form as hardware maps.	These pseudo-maps are
49169689Skan *	used to store intermediate results from copy
50169689Skan *	operations to and from address spaces.
51169689Skan *
52169689Skan *	Since the information managed by this module is
53169689Skan *	also stored by the logical address mapping module,
54169689Skan *	this module may throw away valid virtual-to-physical
55169689Skan *	mappings at almost any time.  However, invalidations
56169689Skan *	of virtual-to-physical mappings must be done as
57169689Skan *	requested.
58169689Skan *
59169689Skan *	In order to cope with hardware architectures which
60169689Skan *	make virtual-to-physical map invalidates expensive,
61169689Skan *	this module may delay invalidate or reduced protection
62169689Skan *	operations until such time as they are actually
63169689Skan *	necessary.  This module is given full information as
64169689Skan *	to which processors are currently using which maps,
65169689Skan *	and to when physical maps must be made correct.
66169689Skan */
67169689Skan
68169689Skan#include <sys/cdefs.h>
69169689Skan__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 238561 2012-07-18 05:21:34Z alc $");
70169689Skan
71169689Skan#include "opt_ddb.h"
72169689Skan
73169689Skan#include <sys/param.h>
74169689Skan#include <sys/systm.h>
75169689Skan#include <sys/proc.h>
76169689Skan#include <sys/msgbuf.h>
77169689Skan#include <sys/vmmeter.h>
78169689Skan#include <sys/mman.h>
79169689Skan#include <sys/smp.h>
80169689Skan#ifdef DDB
81169689Skan#include <ddb/ddb.h>
82169689Skan#endif
83169689Skan
84169689Skan#include <vm/vm.h>
85169689Skan#include <vm/vm_param.h>
86169689Skan#include <vm/vm_phys.h>
87169689Skan#include <sys/lock.h>
88169689Skan#include <sys/mutex.h>
89169689Skan#include <vm/vm_kern.h>
90169689Skan#include <vm/vm_page.h>
91169689Skan#include <vm/vm_map.h>
92169689Skan#include <vm/vm_object.h>
93169689Skan#include <vm/vm_extern.h>
94169689Skan#include <vm/vm_pageout.h>
95169689Skan#include <vm/vm_pager.h>
96169689Skan#include <vm/uma.h>
97169689Skan#include <sys/pcpu.h>
98169689Skan#include <sys/sched.h>
99169689Skan#ifdef SMP
100169689Skan#include <sys/smp.h>
101169689Skan#endif
102169689Skan
103169689Skan#include <machine/cache.h>
104169689Skan#include <machine/md_var.h>
105169689Skan#include <machine/tlb.h>
106169689Skan
107169689Skan#undef PMAP_DEBUG
108169689Skan
109169689Skan#ifndef PMAP_SHPGPERPROC
110169689Skan#define	PMAP_SHPGPERPROC 200
111169689Skan#endif
112169689Skan
113169689Skan#if !defined(DIAGNOSTIC)
114169689Skan#define	PMAP_INLINE __inline
115169689Skan#else
116169689Skan#define	PMAP_INLINE
117169689Skan#endif
118169689Skan
119169689Skan/*
120169689Skan * Get PDEs and PTEs for user/kernel address space
121169689Skan */
122169689Skan#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
123169689Skan#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
124169689Skan#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
125169689Skan#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
126169689Skan
127169689Skan#ifdef __mips_n64
128169689Skan#define	NUPDE			(NPDEPG * NPDEPG)
129169689Skan#define	NUSERPGTBLS		(NUPDE + NPDEPG)
130169689Skan#else
131169689Skan#define	NUPDE			(NPDEPG)
132169689Skan#define	NUSERPGTBLS		(NUPDE)
133169689Skan#endif
134169689Skan
135169689Skan#define	is_kernel_pmap(x)	((x) == kernel_pmap)
136169689Skan
137169689Skanstruct pmap kernel_pmap_store;
138169689Skanpd_entry_t *kernel_segmap;
139169689Skan
140169689Skanvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
141169689Skanvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
142169689Skan
143169689Skanstatic int nkpt;
144169689Skanunsigned pmap_max_asid;		/* max ASID supported by the system */
145169689Skan
146169689Skan#define	PMAP_ASID_RESERVED	0
147169689Skan
148169689Skanvm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
149169689Skan
150169689Skanstatic void pmap_asid_alloc(pmap_t pmap);
151169689Skan
152169689Skan/*
153169689Skan * Data for the pv entry allocation mechanism
154169689Skan */
155169689Skanstatic uma_zone_t pvzone;
156169689Skanstatic struct vm_object pvzone_obj;
157169689Skanstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
158169689Skan
159169689Skanstatic PMAP_INLINE void free_pv_entry(pv_entry_t pv);
160169689Skanstatic pv_entry_t get_pv_entry(pmap_t locked_pmap);
161169689Skanstatic void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
162169689Skanstatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
163169689Skan    vm_offset_t va);
164169689Skanstatic __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
165169689Skanstatic vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
166169689Skan    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
167169689Skanstatic int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
168169689Skanstatic void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
169169689Skanstatic void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
170169689Skanstatic boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
171169689Skan    vm_offset_t va, vm_page_t m);
172169689Skanstatic void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
173169689Skanstatic void pmap_invalidate_all(pmap_t pmap);
174169689Skanstatic void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
175169689Skanstatic int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
176169689Skan
177169689Skanstatic vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
178169689Skanstatic vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
179169689Skanstatic int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
180169689Skanstatic pt_entry_t init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
181169689Skan
182169689Skan#ifdef SMP
183169689Skanstatic void pmap_invalidate_page_action(void *arg);
184169689Skanstatic void pmap_update_page_action(void *arg);
185169689Skan#endif
186169689Skan
187169689Skan#ifndef __mips_n64
188169689Skan/*
189169689Skan * This structure is for high memory (memory above 512Meg in 32 bit) support.
190169689Skan * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
191169689Skan * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
192169689Skan *
193169689Skan * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
194169689Skan * access a highmem physical address on a CPU, we map the physical address to
195169689Skan * the reserved virtual address for the CPU in the kernel pagetable.  This is
196169689Skan * done with interrupts disabled(although a spinlock and sched_pin would be
197169689Skan * sufficient).
198169689Skan */
199169689Skanstruct local_sysmaps {
200169689Skan	vm_offset_t	base;
201169689Skan	uint32_t	saved_intr;
202169689Skan	uint16_t	valid1, valid2;
203169689Skan};
204169689Skanstatic struct local_sysmaps sysmap_lmem[MAXCPU];
205169689Skan
206169689Skanstatic __inline void
207169689Skanpmap_alloc_lmem_map(void)
208169689Skan{
209169689Skan	int i;
210169689Skan
211169689Skan	for (i = 0; i < MAXCPU; i++) {
212169689Skan		sysmap_lmem[i].base = virtual_avail;
213169689Skan		virtual_avail += PAGE_SIZE * 2;
214169689Skan		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
215169689Skan	}
216169689Skan}
217169689Skan
218169689Skanstatic __inline vm_offset_t
219169689Skanpmap_lmem_map1(vm_paddr_t phys)
220169689Skan{
221169689Skan	struct local_sysmaps *sysm;
222169689Skan	pt_entry_t *pte, npte;
223169689Skan	vm_offset_t va;
224169689Skan	uint32_t intr;
225169689Skan	int cpu;
226169689Skan
227169689Skan	intr = intr_disable();
228169689Skan	cpu = PCPU_GET(cpuid);
229169689Skan	sysm = &sysmap_lmem[cpu];
230169689Skan	sysm->saved_intr = intr;
231169689Skan	va = sysm->base;
232169689Skan	npte = TLBLO_PA_TO_PFN(phys) |
233169689Skan	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
234169689Skan	pte = pmap_pte(kernel_pmap, va);
235169689Skan	*pte = npte;
236169689Skan	sysm->valid1 = 1;
237169689Skan	return (va);
238169689Skan}
239169689Skan
240169689Skanstatic __inline vm_offset_t
241169689Skanpmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
242169689Skan{
243169689Skan	struct local_sysmaps *sysm;
244169689Skan	pt_entry_t *pte, npte;
245169689Skan	vm_offset_t va1, va2;
246169689Skan	uint32_t intr;
247169689Skan	int cpu;
248169689Skan
249169689Skan	intr = intr_disable();
250169689Skan	cpu = PCPU_GET(cpuid);
251169689Skan	sysm = &sysmap_lmem[cpu];
252169689Skan	sysm->saved_intr = intr;
253169689Skan	va1 = sysm->base;
254169689Skan	va2 = sysm->base + PAGE_SIZE;
255169689Skan	npte = TLBLO_PA_TO_PFN(phys1) |
256169689Skan	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
257169689Skan	pte = pmap_pte(kernel_pmap, va1);
258169689Skan	*pte = npte;
259169689Skan	npte =  TLBLO_PA_TO_PFN(phys2) |
260169689Skan	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
261169689Skan	pte = pmap_pte(kernel_pmap, va2);
262169689Skan	*pte = npte;
263169689Skan	sysm->valid1 = 1;
264169689Skan	sysm->valid2 = 1;
265169689Skan	return (va1);
266169689Skan}
267169689Skan
268169689Skanstatic __inline void
269169689Skanpmap_lmem_unmap(void)
270169689Skan{
271169689Skan	struct local_sysmaps *sysm;
272169689Skan	pt_entry_t *pte;
273169689Skan	int cpu;
274169689Skan
275169689Skan	cpu = PCPU_GET(cpuid);
276169689Skan	sysm = &sysmap_lmem[cpu];
277169689Skan	pte = pmap_pte(kernel_pmap, sysm->base);
278169689Skan	*pte = PTE_G;
279169689Skan	tlb_invalidate_address(kernel_pmap, sysm->base);
280169689Skan	sysm->valid1 = 0;
281169689Skan	if (sysm->valid2) {
282169689Skan		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
283169689Skan		*pte = PTE_G;
284169689Skan		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
285169689Skan		sysm->valid2 = 0;
286169689Skan	}
287169689Skan	intr_restore(sysm->saved_intr);
288169689Skan}
289169689Skan#else  /* __mips_n64 */
290169689Skan
291169689Skanstatic __inline void
292169689Skanpmap_alloc_lmem_map(void)
293169689Skan{
294169689Skan}
295169689Skan
296169689Skanstatic __inline vm_offset_t
297169689Skanpmap_lmem_map1(vm_paddr_t phys)
298169689Skan{
299169689Skan
300169689Skan	return (0);
301169689Skan}
302169689Skan
303169689Skanstatic __inline vm_offset_t
304169689Skanpmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
305169689Skan{
306169689Skan
307169689Skan	return (0);
308169689Skan}
309169689Skan
310169689Skanstatic __inline vm_offset_t
311169689Skanpmap_lmem_unmap(void)
312{
313
314	return (0);
315}
316#endif /* !__mips_n64 */
317
318/*
319 * Page table entry lookup routines.
320 */
321static __inline pd_entry_t *
322pmap_segmap(pmap_t pmap, vm_offset_t va)
323{
324
325	return (&pmap->pm_segtab[pmap_seg_index(va)]);
326}
327
328#ifdef __mips_n64
329static __inline pd_entry_t *
330pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
331{
332	pd_entry_t *pde;
333
334	pde = (pd_entry_t *)*pdpe;
335	return (&pde[pmap_pde_index(va)]);
336}
337
338static __inline pd_entry_t *
339pmap_pde(pmap_t pmap, vm_offset_t va)
340{
341	pd_entry_t *pdpe;
342
343	pdpe = pmap_segmap(pmap, va);
344	if (pdpe == NULL || *pdpe == NULL)
345		return (NULL);
346
347	return (pmap_pdpe_to_pde(pdpe, va));
348}
349#else
350static __inline pd_entry_t *
351pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
352{
353
354	return (pdpe);
355}
356
357static __inline
358pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
359{
360
361	return (pmap_segmap(pmap, va));
362}
363#endif
364
365static __inline pt_entry_t *
366pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
367{
368	pt_entry_t *pte;
369
370	pte = (pt_entry_t *)*pde;
371	return (&pte[pmap_pte_index(va)]);
372}
373
374pt_entry_t *
375pmap_pte(pmap_t pmap, vm_offset_t va)
376{
377	pd_entry_t *pde;
378
379	pde = pmap_pde(pmap, va);
380	if (pde == NULL || *pde == NULL)
381		return (NULL);
382
383	return (pmap_pde_to_pte(pde, va));
384}
385
386vm_offset_t
387pmap_steal_memory(vm_size_t size)
388{
389	vm_paddr_t bank_size, pa;
390	vm_offset_t va;
391
392	size = round_page(size);
393	bank_size = phys_avail[1] - phys_avail[0];
394	while (size > bank_size) {
395		int i;
396
397		for (i = 0; phys_avail[i + 2]; i += 2) {
398			phys_avail[i] = phys_avail[i + 2];
399			phys_avail[i + 1] = phys_avail[i + 3];
400		}
401		phys_avail[i] = 0;
402		phys_avail[i + 1] = 0;
403		if (!phys_avail[0])
404			panic("pmap_steal_memory: out of memory");
405		bank_size = phys_avail[1] - phys_avail[0];
406	}
407
408	pa = phys_avail[0];
409	phys_avail[0] += size;
410	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
411		panic("Out of memory below 512Meg?");
412	va = MIPS_PHYS_TO_DIRECT(pa);
413	bzero((caddr_t)va, size);
414	return (va);
415}
416
417/*
418 * Bootstrap the system enough to run with virtual memory.  This
419 * assumes that the phys_avail array has been initialized.
420 */
421static void
422pmap_create_kernel_pagetable(void)
423{
424	int i, j;
425	vm_offset_t ptaddr;
426	pt_entry_t *pte;
427#ifdef __mips_n64
428	pd_entry_t *pde;
429	vm_offset_t pdaddr;
430	int npt, npde;
431#endif
432
433	/*
434	 * Allocate segment table for the kernel
435	 */
436	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
437
438	/*
439	 * Allocate second level page tables for the kernel
440	 */
441#ifdef __mips_n64
442	npde = howmany(NKPT, NPDEPG);
443	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
444#endif
445	nkpt = NKPT;
446	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
447
448	/*
449	 * The R[4-7]?00 stores only one copy of the Global bit in the
450	 * translation lookaside buffer for each 2 page entry. Thus invalid
451	 * entrys must have the Global bit set so when Entry LO and Entry HI
452	 * G bits are anded together they will produce a global bit to store
453	 * in the tlb.
454	 */
455	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
456		*pte = PTE_G;
457
458#ifdef __mips_n64
459	for (i = 0,  npt = nkpt; npt > 0; i++) {
460		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
461		pde = (pd_entry_t *)kernel_segmap[i];
462
463		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
464			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
465	}
466#else
467	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
468		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
469#endif
470
471	PMAP_LOCK_INIT(kernel_pmap);
472	kernel_pmap->pm_segtab = kernel_segmap;
473	CPU_FILL(&kernel_pmap->pm_active);
474	TAILQ_INIT(&kernel_pmap->pm_pvlist);
475	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
476	kernel_pmap->pm_asid[0].gen = 0;
477	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
478}
479
480void
481pmap_bootstrap(void)
482{
483	int i;
484	int need_local_mappings = 0;
485
486	/* Sort. */
487again:
488	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
489		/*
490		 * Keep the memory aligned on page boundary.
491		 */
492		phys_avail[i] = round_page(phys_avail[i]);
493		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
494
495		if (i < 2)
496			continue;
497		if (phys_avail[i - 2] > phys_avail[i]) {
498			vm_paddr_t ptemp[2];
499
500			ptemp[0] = phys_avail[i + 0];
501			ptemp[1] = phys_avail[i + 1];
502
503			phys_avail[i + 0] = phys_avail[i - 2];
504			phys_avail[i + 1] = phys_avail[i - 1];
505
506			phys_avail[i - 2] = ptemp[0];
507			phys_avail[i - 1] = ptemp[1];
508			goto again;
509		}
510	}
511
512       	/*
513	 * In 32 bit, we may have memory which cannot be mapped directly.
514	 * This memory will need temporary mapping before it can be
515	 * accessed.
516	 */
517	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
518		need_local_mappings = 1;
519
520	/*
521	 * Copy the phys_avail[] array before we start stealing memory from it.
522	 */
523	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
524		physmem_desc[i] = phys_avail[i];
525		physmem_desc[i + 1] = phys_avail[i + 1];
526	}
527
528	Maxmem = atop(phys_avail[i - 1]);
529
530	if (bootverbose) {
531		printf("Physical memory chunk(s):\n");
532		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
533			vm_paddr_t size;
534
535			size = phys_avail[i + 1] - phys_avail[i];
536			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
537			    (uintmax_t) phys_avail[i],
538			    (uintmax_t) phys_avail[i + 1] - 1,
539			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
540		}
541		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
542	}
543	/*
544	 * Steal the message buffer from the beginning of memory.
545	 */
546	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
547	msgbufinit(msgbufp, msgbufsize);
548
549	/*
550	 * Steal thread0 kstack.
551	 */
552	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
553
554	virtual_avail = VM_MIN_KERNEL_ADDRESS;
555	virtual_end = VM_MAX_KERNEL_ADDRESS;
556
557#ifdef SMP
558	/*
559	 * Steal some virtual address space to map the pcpu area.
560	 */
561	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
562	pcpup = (struct pcpu *)virtual_avail;
563	virtual_avail += PAGE_SIZE * 2;
564
565	/*
566	 * Initialize the wired TLB entry mapping the pcpu region for
567	 * the BSP at 'pcpup'. Up until this point we were operating
568	 * with the 'pcpup' for the BSP pointing to a virtual address
569	 * in KSEG0 so there was no need for a TLB mapping.
570	 */
571	mips_pcpu_tlb_init(PCPU_ADDR(0));
572
573	if (bootverbose)
574		printf("pcpu is available at virtual address %p.\n", pcpup);
575#endif
576
577	if (need_local_mappings)
578		pmap_alloc_lmem_map();
579	pmap_create_kernel_pagetable();
580	pmap_max_asid = VMNUM_PIDS;
581	mips_wr_entryhi(0);
582	mips_wr_pagemask(0);
583}
584
585/*
586 * Initialize a vm_page's machine-dependent fields.
587 */
588void
589pmap_page_init(vm_page_t m)
590{
591
592	TAILQ_INIT(&m->md.pv_list);
593	m->md.pv_list_count = 0;
594	m->md.pv_flags = 0;
595}
596
597/*
598 *	Initialize the pmap module.
599 *	Called by vm_init, to initialize any structures that the pmap
600 *	system needs to map virtual memory.
601 *	pmap_init has been enhanced to support in a fairly consistant
602 *	way, discontiguous physical memory.
603 */
604void
605pmap_init(void)
606{
607
608	/*
609	 * Initialize the address space (zone) for the pv entries.  Set a
610	 * high water mark so that the system can recover from excessive
611	 * numbers of pv entries.
612	 */
613	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
614	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
615	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
616	pv_entry_high_water = 9 * (pv_entry_max / 10);
617	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
618}
619
620/***************************************************
621 * Low level helper routines.....
622 ***************************************************/
623
624#ifdef	SMP
625static __inline void
626pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
627{
628	int	cpuid, cpu, self;
629	cpuset_t active_cpus;
630
631	sched_pin();
632	if (is_kernel_pmap(pmap)) {
633		smp_rendezvous(NULL, fn, NULL, arg);
634		goto out;
635	}
636	/* Force ASID update on inactive CPUs */
637	CPU_FOREACH(cpu) {
638		if (!CPU_ISSET(cpu, &pmap->pm_active))
639			pmap->pm_asid[cpu].gen = 0;
640	}
641	cpuid = PCPU_GET(cpuid);
642	/*
643	 * XXX: barrier/locking for active?
644	 *
645	 * Take a snapshot of active here, any further changes are ignored.
646	 * tlb update/invalidate should be harmless on inactive CPUs
647	 */
648	active_cpus = pmap->pm_active;
649	self = CPU_ISSET(cpuid, &active_cpus);
650	CPU_CLR(cpuid, &active_cpus);
651	/* Optimize for the case where this cpu is the only active one */
652	if (CPU_EMPTY(&active_cpus)) {
653		if (self)
654			fn(arg);
655	} else {
656		if (self)
657			CPU_SET(cpuid, &active_cpus);
658		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
659	}
660out:
661	sched_unpin();
662}
663#else /* !SMP */
664static __inline void
665pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
666{
667	int	cpuid;
668
669	if (is_kernel_pmap(pmap)) {
670		fn(arg);
671		return;
672	}
673	cpuid = PCPU_GET(cpuid);
674	if (!CPU_ISSET(cpuid, &pmap->pm_active))
675		pmap->pm_asid[cpuid].gen = 0;
676	else
677		fn(arg);
678}
679#endif /* SMP */
680
681static void
682pmap_invalidate_all(pmap_t pmap)
683{
684
685	pmap_call_on_active_cpus(pmap,
686	    (void (*)(void *))tlb_invalidate_all_user, pmap);
687}
688
689struct pmap_invalidate_page_arg {
690	pmap_t pmap;
691	vm_offset_t va;
692};
693
694static void
695pmap_invalidate_page_action(void *arg)
696{
697	struct pmap_invalidate_page_arg *p = arg;
698
699	tlb_invalidate_address(p->pmap, p->va);
700}
701
702static void
703pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
704{
705	struct pmap_invalidate_page_arg arg;
706
707	arg.pmap = pmap;
708	arg.va = va;
709	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
710}
711
712struct pmap_update_page_arg {
713	pmap_t pmap;
714	vm_offset_t va;
715	pt_entry_t pte;
716};
717
718static void
719pmap_update_page_action(void *arg)
720{
721	struct pmap_update_page_arg *p = arg;
722
723	tlb_update(p->pmap, p->va, p->pte);
724}
725
726static void
727pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
728{
729	struct pmap_update_page_arg arg;
730
731	arg.pmap = pmap;
732	arg.va = va;
733	arg.pte = pte;
734	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
735}
736
737/*
738 *	Routine:	pmap_extract
739 *	Function:
740 *		Extract the physical page address associated
741 *		with the given map/virtual_address pair.
742 */
743vm_paddr_t
744pmap_extract(pmap_t pmap, vm_offset_t va)
745{
746	pt_entry_t *pte;
747	vm_offset_t retval = 0;
748
749	PMAP_LOCK(pmap);
750	pte = pmap_pte(pmap, va);
751	if (pte) {
752		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
753	}
754	PMAP_UNLOCK(pmap);
755	return (retval);
756}
757
758/*
759 *	Routine:	pmap_extract_and_hold
760 *	Function:
761 *		Atomically extract and hold the physical page
762 *		with the given pmap and virtual address pair
763 *		if that mapping permits the given protection.
764 */
765vm_page_t
766pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
767{
768	pt_entry_t *ptep;
769	pt_entry_t pte;
770	vm_page_t m;
771	vm_paddr_t pa;
772
773	m = NULL;
774	pa = 0;
775	PMAP_LOCK(pmap);
776retry:
777	ptep = pmap_pte(pmap, va);
778	if ((ptep != NULL)  && ((pte = *ptep) != 0) &&
779	    pte_test(&pte, PTE_V) &&
780	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
781		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
782			goto retry;
783
784		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
785		vm_page_hold(m);
786	}
787	PA_UNLOCK_COND(pa);
788	PMAP_UNLOCK(pmap);
789	return (m);
790}
791
792/***************************************************
793 * Low level mapping routines.....
794 ***************************************************/
795
796/*
797 * add a wired page to the kva
798 */
799void
800pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
801{
802	pt_entry_t *pte;
803	pt_entry_t opte, npte;
804
805#ifdef PMAP_DEBUG
806	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
807#endif
808	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
809
810	pte = pmap_pte(kernel_pmap, va);
811	opte = *pte;
812	*pte = npte;
813	if (pte_test(&opte, PTE_V) && opte != npte)
814		pmap_update_page(kernel_pmap, va, npte);
815}
816
817void
818pmap_kenter(vm_offset_t va, vm_paddr_t pa)
819{
820
821	KASSERT(is_cacheable_mem(pa),
822		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
823
824	pmap_kenter_attr(va, pa, PTE_C_CACHE);
825}
826
827/*
828 * remove a page from the kernel pagetables
829 */
830 /* PMAP_INLINE */ void
831pmap_kremove(vm_offset_t va)
832{
833	pt_entry_t *pte;
834
835	/*
836	 * Write back all caches from the page being destroyed
837	 */
838	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
839
840	pte = pmap_pte(kernel_pmap, va);
841	*pte = PTE_G;
842	pmap_invalidate_page(kernel_pmap, va);
843}
844
845/*
846 *	Used to map a range of physical addresses into kernel
847 *	virtual address space.
848 *
849 *	The value passed in '*virt' is a suggested virtual address for
850 *	the mapping. Architectures which can support a direct-mapped
851 *	physical to virtual region can return the appropriate address
852 *	within that region, leaving '*virt' unchanged. Other
853 *	architectures should map the pages starting at '*virt' and
854 *	update '*virt' with the first usable address after the mapped
855 *	region.
856 *
857 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
858 */
859vm_offset_t
860pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
861{
862	vm_offset_t va, sva;
863
864	if (MIPS_DIRECT_MAPPABLE(end - 1))
865		return (MIPS_PHYS_TO_DIRECT(start));
866
867	va = sva = *virt;
868	while (start < end) {
869		pmap_kenter(va, start);
870		va += PAGE_SIZE;
871		start += PAGE_SIZE;
872	}
873	*virt = va;
874	return (sva);
875}
876
877/*
878 * Add a list of wired pages to the kva
879 * this routine is only used for temporary
880 * kernel mappings that do not need to have
881 * page modification or references recorded.
882 * Note that old mappings are simply written
883 * over.  The page *must* be wired.
884 */
885void
886pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
887{
888	int i;
889	vm_offset_t origva = va;
890
891	for (i = 0; i < count; i++) {
892		pmap_flush_pvcache(m[i]);
893		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
894		va += PAGE_SIZE;
895	}
896
897	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
898}
899
900/*
901 * this routine jerks page mappings from the
902 * kernel -- it is meant only for temporary mappings.
903 */
904void
905pmap_qremove(vm_offset_t va, int count)
906{
907	/*
908	 * No need to wb/inv caches here,
909	 *   pmap_kremove will do it for us
910	 */
911
912	while (count-- > 0) {
913		pmap_kremove(va);
914		va += PAGE_SIZE;
915	}
916}
917
918/***************************************************
919 * Page table page management routines.....
920 ***************************************************/
921
922/*  Revision 1.507
923 *
924 * Simplify the reference counting of page table pages.	 Specifically, use
925 * the page table page's wired count rather than its hold count to contain
926 * the reference count.
927 */
928
929/*
930 * This routine unholds page table pages, and if the hold count
931 * drops to zero, then it decrements the wire count.
932 */
933static PMAP_INLINE int
934pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
935{
936	--m->wire_count;
937	if (m->wire_count == 0)
938		return (_pmap_unwire_pte_hold(pmap, va, m));
939	else
940		return (0);
941}
942
943static int
944_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
945{
946	pd_entry_t *pde;
947
948	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
949	/*
950	 * unmap the page table page
951	 */
952#ifdef __mips_n64
953	if (m->pindex < NUPDE)
954		pde = pmap_pde(pmap, va);
955	else
956		pde = pmap_segmap(pmap, va);
957#else
958	pde = pmap_pde(pmap, va);
959#endif
960	*pde = 0;
961	pmap->pm_stats.resident_count--;
962
963#ifdef __mips_n64
964	if (m->pindex < NUPDE) {
965		pd_entry_t *pdp;
966		vm_page_t pdpg;
967
968		/*
969		 * Recursively decrement next level pagetable refcount
970		 */
971		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
972		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
973		pmap_unwire_pte_hold(pmap, va, pdpg);
974	}
975#endif
976	if (pmap->pm_ptphint == m)
977		pmap->pm_ptphint = NULL;
978
979	/*
980	 * If the page is finally unwired, simply free it.
981	 */
982	vm_page_free_zero(m);
983	atomic_subtract_int(&cnt.v_wire_count, 1);
984	return (1);
985}
986
987/*
988 * After removing a page table entry, this routine is used to
989 * conditionally free the page, and manage the hold/wire counts.
990 */
991static int
992pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
993{
994	unsigned ptepindex;
995	pd_entry_t pteva;
996
997	if (va >= VM_MAXUSER_ADDRESS)
998		return (0);
999
1000	if (mpte == NULL) {
1001		ptepindex = pmap_pde_pindex(va);
1002		if (pmap->pm_ptphint &&
1003		    (pmap->pm_ptphint->pindex == ptepindex)) {
1004			mpte = pmap->pm_ptphint;
1005		} else {
1006			pteva = *pmap_pde(pmap, va);
1007			mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
1008			pmap->pm_ptphint = mpte;
1009		}
1010	}
1011	return (pmap_unwire_pte_hold(pmap, va, mpte));
1012}
1013
1014void
1015pmap_pinit0(pmap_t pmap)
1016{
1017	int i;
1018
1019	PMAP_LOCK_INIT(pmap);
1020	pmap->pm_segtab = kernel_segmap;
1021	CPU_ZERO(&pmap->pm_active);
1022	pmap->pm_ptphint = NULL;
1023	for (i = 0; i < MAXCPU; i++) {
1024		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1025		pmap->pm_asid[i].gen = 0;
1026	}
1027	PCPU_SET(curpmap, pmap);
1028	TAILQ_INIT(&pmap->pm_pvlist);
1029	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1030}
1031
1032void
1033pmap_grow_direct_page_cache()
1034{
1035
1036#ifdef __mips_n64
1037	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1038#else
1039	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1040#endif
1041}
1042
1043vm_page_t
1044pmap_alloc_direct_page(unsigned int index, int req)
1045{
1046	vm_page_t m;
1047
1048	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1049	    VM_ALLOC_ZERO);
1050	if (m == NULL)
1051		return (NULL);
1052
1053	if ((m->flags & PG_ZERO) == 0)
1054		pmap_zero_page(m);
1055
1056	m->pindex = index;
1057	return (m);
1058}
1059
1060/*
1061 * Initialize a preallocated and zeroed pmap structure,
1062 * such as one in a vmspace structure.
1063 */
1064int
1065pmap_pinit(pmap_t pmap)
1066{
1067	vm_offset_t ptdva;
1068	vm_page_t ptdpg;
1069	int i;
1070
1071	PMAP_LOCK_INIT(pmap);
1072
1073	/*
1074	 * allocate the page directory page
1075	 */
1076	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1077	       pmap_grow_direct_page_cache();
1078
1079	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1080	pmap->pm_segtab = (pd_entry_t *)ptdva;
1081	CPU_ZERO(&pmap->pm_active);
1082	pmap->pm_ptphint = NULL;
1083	for (i = 0; i < MAXCPU; i++) {
1084		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1085		pmap->pm_asid[i].gen = 0;
1086	}
1087	TAILQ_INIT(&pmap->pm_pvlist);
1088	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1089
1090	return (1);
1091}
1092
1093/*
1094 * this routine is called if the page table page is not
1095 * mapped correctly.
1096 */
1097static vm_page_t
1098_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1099{
1100	vm_offset_t pageva;
1101	vm_page_t m;
1102
1103	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1104	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1105	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1106
1107	/*
1108	 * Find or fabricate a new pagetable page
1109	 */
1110	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1111		if (flags & M_WAITOK) {
1112			PMAP_UNLOCK(pmap);
1113			vm_page_unlock_queues();
1114			pmap_grow_direct_page_cache();
1115			vm_page_lock_queues();
1116			PMAP_LOCK(pmap);
1117		}
1118
1119		/*
1120		 * Indicate the need to retry.	While waiting, the page
1121		 * table page may have been allocated.
1122		 */
1123		return (NULL);
1124	}
1125
1126	/*
1127	 * Map the pagetable page into the process address space, if it
1128	 * isn't already there.
1129	 */
1130	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1131
1132#ifdef __mips_n64
1133	if (ptepindex >= NUPDE) {
1134		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1135	} else {
1136		pd_entry_t *pdep, *pde;
1137		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1138		int pdeindex = ptepindex & (NPDEPG - 1);
1139		vm_page_t pg;
1140
1141		pdep = &pmap->pm_segtab[segindex];
1142		if (*pdep == NULL) {
1143			/* recurse for allocating page dir */
1144			if (_pmap_allocpte(pmap, NUPDE + segindex,
1145			    flags) == NULL) {
1146				/* alloc failed, release current */
1147				--m->wire_count;
1148				atomic_subtract_int(&cnt.v_wire_count, 1);
1149				vm_page_free_zero(m);
1150				return (NULL);
1151			}
1152		} else {
1153			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1154			pg->wire_count++;
1155		}
1156		/* Next level entry */
1157		pde = (pd_entry_t *)*pdep;
1158		pde[pdeindex] = (pd_entry_t)pageva;
1159		pmap->pm_ptphint = m;
1160	}
1161#else
1162	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1163#endif
1164	pmap->pm_stats.resident_count++;
1165
1166	/*
1167	 * Set the page table hint
1168	 */
1169	pmap->pm_ptphint = m;
1170	return (m);
1171}
1172
1173static vm_page_t
1174pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1175{
1176	unsigned ptepindex;
1177	pd_entry_t *pde;
1178	vm_page_t m;
1179
1180	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1181	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1182	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1183
1184	/*
1185	 * Calculate pagetable page index
1186	 */
1187	ptepindex = pmap_pde_pindex(va);
1188retry:
1189	/*
1190	 * Get the page directory entry
1191	 */
1192	pde = pmap_pde(pmap, va);
1193
1194	/*
1195	 * If the page table page is mapped, we just increment the hold
1196	 * count, and activate it.
1197	 */
1198	if (pde != NULL && *pde != NULL) {
1199		/*
1200		 * In order to get the page table page, try the hint first.
1201		 */
1202		if (pmap->pm_ptphint &&
1203		    (pmap->pm_ptphint->pindex == ptepindex)) {
1204			m = pmap->pm_ptphint;
1205		} else {
1206			m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1207			pmap->pm_ptphint = m;
1208		}
1209		m->wire_count++;
1210	} else {
1211		/*
1212		 * Here if the pte page isn't mapped, or if it has been
1213		 * deallocated.
1214		 */
1215		m = _pmap_allocpte(pmap, ptepindex, flags);
1216		if (m == NULL && (flags & M_WAITOK))
1217			goto retry;
1218	}
1219	return (m);
1220}
1221
1222
1223/***************************************************
1224* Pmap allocation/deallocation routines.
1225 ***************************************************/
1226/*
1227 *  Revision 1.397
1228 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1229 *    called only the page directory page(s) can be left in the pmap pte
1230 *    object, since all page table pages will have been freed by
1231 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1232 *    reference to the pmap and the page directory is wired, so the page(s)
1233 *    can never be busy.  So all there is to do is clear the magic mappings
1234 *    from the page directory and free the page(s).
1235 */
1236
1237
1238/*
1239 * Release any resources held by the given physical map.
1240 * Called when a pmap initialized by pmap_pinit is being released.
1241 * Should only be called if the map contains no valid mappings.
1242 */
1243void
1244pmap_release(pmap_t pmap)
1245{
1246	vm_offset_t ptdva;
1247	vm_page_t ptdpg;
1248
1249	KASSERT(pmap->pm_stats.resident_count == 0,
1250	    ("pmap_release: pmap resident count %ld != 0",
1251	    pmap->pm_stats.resident_count));
1252
1253	ptdva = (vm_offset_t)pmap->pm_segtab;
1254	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1255
1256	ptdpg->wire_count--;
1257	atomic_subtract_int(&cnt.v_wire_count, 1);
1258	vm_page_free_zero(ptdpg);
1259	PMAP_LOCK_DESTROY(pmap);
1260}
1261
1262/*
1263 * grow the number of kernel page table entries, if needed
1264 */
1265void
1266pmap_growkernel(vm_offset_t addr)
1267{
1268	vm_page_t nkpg;
1269	pd_entry_t *pde, *pdpe;
1270	pt_entry_t *pte;
1271	int i;
1272
1273	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1274	addr = roundup2(addr, NBSEG);
1275	if (addr - 1 >= kernel_map->max_offset)
1276		addr = kernel_map->max_offset;
1277	while (kernel_vm_end < addr) {
1278		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1279#ifdef __mips_n64
1280		if (*pdpe == 0) {
1281			/* new intermediate page table entry */
1282			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1283			if (nkpg == NULL)
1284				panic("pmap_growkernel: no memory to grow kernel");
1285			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1286			continue; /* try again */
1287		}
1288#endif
1289		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1290		if (*pde != 0) {
1291			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1292			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1293				kernel_vm_end = kernel_map->max_offset;
1294				break;
1295			}
1296			continue;
1297		}
1298
1299		/*
1300		 * This index is bogus, but out of the way
1301		 */
1302		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1303		if (!nkpg)
1304			panic("pmap_growkernel: no memory to grow kernel");
1305		nkpt++;
1306		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1307
1308		/*
1309		 * The R[4-7]?00 stores only one copy of the Global bit in
1310		 * the translation lookaside buffer for each 2 page entry.
1311		 * Thus invalid entrys must have the Global bit set so when
1312		 * Entry LO and Entry HI G bits are anded together they will
1313		 * produce a global bit to store in the tlb.
1314		 */
1315		pte = (pt_entry_t *)*pde;
1316		for (i = 0; i < NPTEPG; i++)
1317			pte[i] = PTE_G;
1318
1319		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1320		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1321			kernel_vm_end = kernel_map->max_offset;
1322			break;
1323		}
1324	}
1325}
1326
1327/***************************************************
1328* page management routines.
1329 ***************************************************/
1330
1331/*
1332 * free the pv_entry back to the free list
1333 */
1334static PMAP_INLINE void
1335free_pv_entry(pv_entry_t pv)
1336{
1337
1338	pv_entry_count--;
1339	uma_zfree(pvzone, pv);
1340}
1341
1342/*
1343 * get a new pv_entry, allocating a block from the system
1344 * when needed.
1345 * the memory allocation is performed bypassing the malloc code
1346 * because of the possibility of allocations at interrupt time.
1347 */
1348static pv_entry_t
1349get_pv_entry(pmap_t locked_pmap)
1350{
1351	static const struct timeval printinterval = { 60, 0 };
1352	static struct timeval lastprint;
1353	struct vpgqueues *vpq;
1354	pt_entry_t *pte, oldpte;
1355	pmap_t pmap;
1356	pv_entry_t allocated_pv, next_pv, pv;
1357	vm_offset_t va;
1358	vm_page_t m;
1359
1360	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1363	if (allocated_pv != NULL) {
1364		pv_entry_count++;
1365		if (pv_entry_count > pv_entry_high_water)
1366			pagedaemon_wakeup();
1367		else
1368			return (allocated_pv);
1369	}
1370	/*
1371	 * Reclaim pv entries: At first, destroy mappings to inactive
1372	 * pages.  After that, if a pv entry is still needed, destroy
1373	 * mappings to active pages.
1374	 */
1375	if (ratecheck(&lastprint, &printinterval))
1376		printf("Approaching the limit on PV entries, "
1377		    "increase the vm.pmap.shpgperproc tunable.\n");
1378	vpq = &vm_page_queues[PQ_INACTIVE];
1379retry:
1380	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1381		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
1382			continue;
1383		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1384			va = pv->pv_va;
1385			pmap = pv->pv_pmap;
1386			/* Avoid deadlock and lock recursion. */
1387			if (pmap > locked_pmap)
1388				PMAP_LOCK(pmap);
1389			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1390				continue;
1391			pmap->pm_stats.resident_count--;
1392			pte = pmap_pte(pmap, va);
1393			KASSERT(pte != NULL, ("pte"));
1394			oldpte = *pte;
1395			if (is_kernel_pmap(pmap))
1396				*pte = PTE_G;
1397			else
1398				*pte = 0;
1399			KASSERT(!pte_test(&oldpte, PTE_W),
1400			    ("wired pte for unwired page"));
1401			if (m->md.pv_flags & PV_TABLE_REF)
1402				vm_page_aflag_set(m, PGA_REFERENCED);
1403			if (pte_test(&oldpte, PTE_D))
1404				vm_page_dirty(m);
1405			pmap_invalidate_page(pmap, va);
1406			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1407			m->md.pv_list_count--;
1408			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1409			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1410			if (pmap != locked_pmap)
1411				PMAP_UNLOCK(pmap);
1412			if (allocated_pv == NULL)
1413				allocated_pv = pv;
1414			else
1415				free_pv_entry(pv);
1416		}
1417		if (TAILQ_EMPTY(&m->md.pv_list)) {
1418			vm_page_aflag_clear(m, PGA_WRITEABLE);
1419			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1420		}
1421	}
1422	if (allocated_pv == NULL) {
1423		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1424			vpq = &vm_page_queues[PQ_ACTIVE];
1425			goto retry;
1426		}
1427		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1428	}
1429	return (allocated_pv);
1430}
1431
1432/*
1433 *  Revision 1.370
1434 *
1435 *  Move pmap_collect() out of the machine-dependent code, rename it
1436 *  to reflect its new location, and add page queue and flag locking.
1437 *
1438 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1439 *  of pmap_collect() in terms of machine-independent interfaces;
1440 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1441 *
1442 *  MIPS implementation was identical to alpha [Junos 8.2]
1443 */
1444
1445/*
1446 * If it is the first entry on the list, it is actually
1447 * in the header and we must copy the following entry up
1448 * to the header.  Otherwise we must search the list for
1449 * the entry.  In either case we free the now unused entry.
1450 */
1451
1452static pv_entry_t
1453pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1454{
1455	pv_entry_t pv;
1456
1457	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1458	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1459	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1460		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1461			if (pmap == pv->pv_pmap && va == pv->pv_va)
1462				break;
1463		}
1464	} else {
1465		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1466			if (va == pv->pv_va)
1467				break;
1468		}
1469	}
1470	if (pv != NULL) {
1471		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1472		pvh->pv_list_count--;
1473		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1474	}
1475	return (pv);
1476}
1477
1478static void
1479pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1480{
1481	pv_entry_t pv;
1482
1483	pv = pmap_pvh_remove(pvh, pmap, va);
1484	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1485	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1486	     (u_long)va));
1487	free_pv_entry(pv);
1488}
1489
1490static void
1491pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1492{
1493
1494	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1495	pmap_pvh_free(&m->md, pmap, va);
1496	if (TAILQ_EMPTY(&m->md.pv_list))
1497		vm_page_aflag_clear(m, PGA_WRITEABLE);
1498}
1499
1500/*
1501 * Conditionally create a pv entry.
1502 */
1503static boolean_t
1504pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1505    vm_page_t m)
1506{
1507	pv_entry_t pv;
1508
1509	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1510	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1511	if (pv_entry_count < pv_entry_high_water &&
1512	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1513		pv_entry_count++;
1514		pv->pv_va = va;
1515		pv->pv_pmap = pmap;
1516		pv->pv_ptem = mpte;
1517		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1518		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1519		m->md.pv_list_count++;
1520		return (TRUE);
1521	} else
1522		return (FALSE);
1523}
1524
1525/*
1526 * pmap_remove_pte: do the things to unmap a page in a process
1527 */
1528static int
1529pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1530{
1531	pt_entry_t oldpte;
1532	vm_page_t m;
1533	vm_paddr_t pa;
1534
1535	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1537
1538	oldpte = *ptq;
1539	if (is_kernel_pmap(pmap))
1540		*ptq = PTE_G;
1541	else
1542		*ptq = 0;
1543
1544	if (pte_test(&oldpte, PTE_W))
1545		pmap->pm_stats.wired_count -= 1;
1546
1547	pmap->pm_stats.resident_count -= 1;
1548	pa = TLBLO_PTE_TO_PA(oldpte);
1549
1550	if (page_is_managed(pa)) {
1551		m = PHYS_TO_VM_PAGE(pa);
1552		if (pte_test(&oldpte, PTE_D)) {
1553			KASSERT(!pte_test(&oldpte, PTE_RO),
1554			    ("%s: modified page not writable: va: %p, pte: %#jx",
1555			    __func__, (void *)va, (uintmax_t)oldpte));
1556			vm_page_dirty(m);
1557		}
1558		if (m->md.pv_flags & PV_TABLE_REF)
1559			vm_page_aflag_set(m, PGA_REFERENCED);
1560		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1561
1562		pmap_remove_entry(pmap, m, va);
1563	}
1564	return (pmap_unuse_pt(pmap, va, NULL));
1565}
1566
1567/*
1568 * Remove a single page from a process address space
1569 */
1570static void
1571pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1572{
1573	pt_entry_t *ptq;
1574
1575	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1576	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1577	ptq = pmap_pte(pmap, va);
1578
1579	/*
1580	 * if there is no pte for this address, just skip it!!!
1581	 */
1582	if (!ptq || !pte_test(ptq, PTE_V)) {
1583		return;
1584	}
1585
1586	/*
1587	 * Write back all caches from the page being destroyed
1588	 */
1589	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1590
1591	/*
1592	 * get a local va for mappings for this pmap.
1593	 */
1594	(void)pmap_remove_pte(pmap, ptq, va);
1595	pmap_invalidate_page(pmap, va);
1596
1597	return;
1598}
1599
1600/*
1601 *	Remove the given range of addresses from the specified map.
1602 *
1603 *	It is assumed that the start and end are properly
1604 *	rounded to the page size.
1605 */
1606void
1607pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1608{
1609	vm_offset_t va_next;
1610	pd_entry_t *pde, *pdpe;
1611	pt_entry_t *pte;
1612
1613	if (pmap == NULL)
1614		return;
1615
1616	if (pmap->pm_stats.resident_count == 0)
1617		return;
1618
1619	vm_page_lock_queues();
1620	PMAP_LOCK(pmap);
1621
1622	/*
1623	 * special handling of removing one page.  a very common operation
1624	 * and easy to short circuit some code.
1625	 */
1626	if ((sva + PAGE_SIZE) == eva) {
1627		pmap_remove_page(pmap, sva);
1628		goto out;
1629	}
1630	for (; sva < eva; sva = va_next) {
1631		pdpe = pmap_segmap(pmap, sva);
1632#ifdef __mips_n64
1633		if (*pdpe == 0) {
1634			va_next = (sva + NBSEG) & ~SEGMASK;
1635			if (va_next < sva)
1636				va_next = eva;
1637			continue;
1638		}
1639#endif
1640		va_next = (sva + NBPDR) & ~PDRMASK;
1641		if (va_next < sva)
1642			va_next = eva;
1643
1644		pde = pmap_pdpe_to_pde(pdpe, sva);
1645		if (*pde == 0)
1646			continue;
1647		if (va_next > eva)
1648			va_next = eva;
1649		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1650		    pte++, sva += PAGE_SIZE) {
1651			pmap_remove_page(pmap, sva);
1652		}
1653	}
1654out:
1655	vm_page_unlock_queues();
1656	PMAP_UNLOCK(pmap);
1657}
1658
1659/*
1660 *	Routine:	pmap_remove_all
1661 *	Function:
1662 *		Removes this physical page from
1663 *		all physical maps in which it resides.
1664 *		Reflects back modify bits to the pager.
1665 *
1666 *	Notes:
1667 *		Original versions of this routine were very
1668 *		inefficient because they iteratively called
1669 *		pmap_remove (slow...)
1670 */
1671
1672void
1673pmap_remove_all(vm_page_t m)
1674{
1675	pv_entry_t pv;
1676	pt_entry_t *pte, tpte;
1677
1678	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1679	    ("pmap_remove_all: page %p is not managed", m));
1680	vm_page_lock_queues();
1681
1682	if (m->md.pv_flags & PV_TABLE_REF)
1683		vm_page_aflag_set(m, PGA_REFERENCED);
1684
1685	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1686		PMAP_LOCK(pv->pv_pmap);
1687
1688		/*
1689		 * If it's last mapping writeback all caches from
1690		 * the page being destroyed
1691	 	 */
1692		if (m->md.pv_list_count == 1)
1693			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1694
1695		pv->pv_pmap->pm_stats.resident_count--;
1696
1697		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1698
1699		tpte = *pte;
1700		if (is_kernel_pmap(pv->pv_pmap))
1701			*pte = PTE_G;
1702		else
1703			*pte = 0;
1704
1705		if (pte_test(&tpte, PTE_W))
1706			pv->pv_pmap->pm_stats.wired_count--;
1707
1708		/*
1709		 * Update the vm_page_t clean and reference bits.
1710		 */
1711		if (pte_test(&tpte, PTE_D)) {
1712			KASSERT(!pte_test(&tpte, PTE_RO),
1713			    ("%s: modified page not writable: va: %p, pte: %#jx",
1714			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1715			vm_page_dirty(m);
1716		}
1717		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1718
1719		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1720		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1721		m->md.pv_list_count--;
1722		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1723		PMAP_UNLOCK(pv->pv_pmap);
1724		free_pv_entry(pv);
1725	}
1726
1727	vm_page_aflag_clear(m, PGA_WRITEABLE);
1728	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1729	vm_page_unlock_queues();
1730}
1731
1732/*
1733 *	Set the physical protection on the
1734 *	specified range of this map as requested.
1735 */
1736void
1737pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1738{
1739	pt_entry_t *pte;
1740	pd_entry_t *pde, *pdpe;
1741	vm_offset_t va_next;
1742
1743	if (pmap == NULL)
1744		return;
1745
1746	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1747		pmap_remove(pmap, sva, eva);
1748		return;
1749	}
1750	if (prot & VM_PROT_WRITE)
1751		return;
1752
1753	vm_page_lock_queues();
1754	PMAP_LOCK(pmap);
1755	for (; sva < eva; sva = va_next) {
1756		pt_entry_t pbits;
1757		vm_page_t m;
1758		vm_paddr_t pa;
1759
1760		pdpe = pmap_segmap(pmap, sva);
1761#ifdef __mips_n64
1762		if (*pdpe == 0) {
1763			va_next = (sva + NBSEG) & ~SEGMASK;
1764			if (va_next < sva)
1765				va_next = eva;
1766			continue;
1767		}
1768#endif
1769		va_next = (sva + NBPDR) & ~PDRMASK;
1770		if (va_next < sva)
1771			va_next = eva;
1772
1773		pde = pmap_pdpe_to_pde(pdpe, sva);
1774		if (pde == NULL || *pde == NULL)
1775			continue;
1776		if (va_next > eva)
1777			va_next = eva;
1778
1779		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1780		     sva += PAGE_SIZE) {
1781
1782			/* Skip invalid PTEs */
1783			if (!pte_test(pte, PTE_V))
1784				continue;
1785			pbits = *pte;
1786			pa = TLBLO_PTE_TO_PA(pbits);
1787			if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1788				m = PHYS_TO_VM_PAGE(pa);
1789				vm_page_dirty(m);
1790				m->md.pv_flags &= ~PV_TABLE_MOD;
1791			}
1792			pte_clear(&pbits, PTE_D);
1793			pte_set(&pbits, PTE_RO);
1794
1795			if (pbits != *pte) {
1796				*pte = pbits;
1797				pmap_update_page(pmap, sva, pbits);
1798			}
1799		}
1800	}
1801	vm_page_unlock_queues();
1802	PMAP_UNLOCK(pmap);
1803}
1804
1805/*
1806 *	Insert the given physical page (p) at
1807 *	the specified virtual address (v) in the
1808 *	target physical map with the protection requested.
1809 *
1810 *	If specified, the page will be wired down, meaning
1811 *	that the related pte can not be reclaimed.
1812 *
1813 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1814 *	or lose information.  That is, this routine must actually
1815 *	insert this page into the given map NOW.
1816 */
1817void
1818pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1819    vm_prot_t prot, boolean_t wired)
1820{
1821	vm_paddr_t pa, opa;
1822	pt_entry_t *pte;
1823	pt_entry_t origpte, newpte;
1824	pv_entry_t pv;
1825	vm_page_t mpte, om;
1826	pt_entry_t rw = 0;
1827
1828	if (pmap == NULL)
1829		return;
1830
1831	va &= ~PAGE_MASK;
1832 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1833	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
1834	    ("pmap_enter: page %p is not busy", m));
1835
1836	mpte = NULL;
1837
1838	vm_page_lock_queues();
1839	PMAP_LOCK(pmap);
1840
1841	/*
1842	 * In the case that a page table page is not resident, we are
1843	 * creating it here.
1844	 */
1845	if (va < VM_MAXUSER_ADDRESS) {
1846		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1847	}
1848	pte = pmap_pte(pmap, va);
1849
1850	/*
1851	 * Page Directory table entry not valid, we need a new PT page
1852	 */
1853	if (pte == NULL) {
1854		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
1855		    (void *)pmap->pm_segtab, (void *)va);
1856	}
1857	pa = VM_PAGE_TO_PHYS(m);
1858	om = NULL;
1859	origpte = *pte;
1860	opa = TLBLO_PTE_TO_PA(origpte);
1861
1862	/*
1863	 * Mapping has not changed, must be protection or wiring change.
1864	 */
1865	if (pte_test(&origpte, PTE_V) && opa == pa) {
1866		/*
1867		 * Wiring change, just update stats. We don't worry about
1868		 * wiring PT pages as they remain resident as long as there
1869		 * are valid mappings in them. Hence, if a user page is
1870		 * wired, the PT page will be also.
1871		 */
1872		if (wired && !pte_test(&origpte, PTE_W))
1873			pmap->pm_stats.wired_count++;
1874		else if (!wired && pte_test(&origpte, PTE_W))
1875			pmap->pm_stats.wired_count--;
1876
1877		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
1878		    ("%s: modified page not writable: va: %p, pte: %#jx",
1879		    __func__, (void *)va, (uintmax_t)origpte));
1880
1881		/*
1882		 * Remove extra pte reference
1883		 */
1884		if (mpte)
1885			mpte->wire_count--;
1886
1887		if (page_is_managed(opa)) {
1888			om = m;
1889		}
1890		goto validate;
1891	}
1892
1893	pv = NULL;
1894
1895	/*
1896	 * Mapping has changed, invalidate old range and fall through to
1897	 * handle validating new mapping.
1898	 */
1899	if (opa) {
1900		if (pte_test(&origpte, PTE_W))
1901			pmap->pm_stats.wired_count--;
1902
1903		if (page_is_managed(opa)) {
1904			om = PHYS_TO_VM_PAGE(opa);
1905			pv = pmap_pvh_remove(&om->md, pmap, va);
1906		}
1907		if (mpte != NULL) {
1908			mpte->wire_count--;
1909			KASSERT(mpte->wire_count > 0,
1910			    ("pmap_enter: missing reference to page table page,"
1911			    " va: %p", (void *)va));
1912		}
1913	} else
1914		pmap->pm_stats.resident_count++;
1915
1916	/*
1917	 * Enter on the PV list if part of our managed memory. Note that we
1918	 * raise IPL while manipulating pv_table since pmap_enter can be
1919	 * called at interrupt time.
1920	 */
1921	if ((m->oflags & VPO_UNMANAGED) == 0) {
1922		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1923		    ("pmap_enter: managed mapping within the clean submap"));
1924		if (pv == NULL)
1925			pv = get_pv_entry(pmap);
1926		pv->pv_va = va;
1927		pv->pv_pmap = pmap;
1928		pv->pv_ptem = mpte;
1929		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1930		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1931		m->md.pv_list_count++;
1932	} else if (pv != NULL)
1933		free_pv_entry(pv);
1934
1935	/*
1936	 * Increment counters
1937	 */
1938	if (wired)
1939		pmap->pm_stats.wired_count++;
1940
1941validate:
1942	if ((access & VM_PROT_WRITE) != 0)
1943		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1944	rw = init_pte_prot(va, m, prot);
1945
1946#ifdef PMAP_DEBUG
1947	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1948#endif
1949	/*
1950	 * Now validate mapping with desired protection/wiring.
1951	 */
1952	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1953
1954	if (is_cacheable_mem(pa))
1955		newpte |= PTE_C_CACHE;
1956	else
1957		newpte |= PTE_C_UNCACHED;
1958
1959	if (wired)
1960		newpte |= PTE_W;
1961
1962	if (is_kernel_pmap(pmap))
1963	         newpte |= PTE_G;
1964
1965	/*
1966	 * if the mapping or permission bits are different, we need to
1967	 * update the pte.
1968	 */
1969	if (origpte != newpte) {
1970		if (pte_test(&origpte, PTE_V)) {
1971			*pte = newpte;
1972			if (page_is_managed(opa) && (opa != pa)) {
1973				if (om->md.pv_flags & PV_TABLE_REF)
1974					vm_page_aflag_set(om, PGA_REFERENCED);
1975				om->md.pv_flags &=
1976				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1977			}
1978			if (pte_test(&origpte, PTE_D)) {
1979				KASSERT(!pte_test(&origpte, PTE_RO),
1980				    ("pmap_enter: modified page not writable:"
1981				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
1982				if (page_is_managed(opa))
1983					vm_page_dirty(om);
1984			}
1985			if (page_is_managed(opa) &&
1986			    TAILQ_EMPTY(&om->md.pv_list))
1987				vm_page_aflag_clear(om, PGA_WRITEABLE);
1988		} else {
1989			*pte = newpte;
1990		}
1991	}
1992	pmap_update_page(pmap, va, newpte);
1993
1994	/*
1995	 * Sync I & D caches for executable pages.  Do this only if the
1996	 * target pmap belongs to the current process.  Otherwise, an
1997	 * unresolvable TLB miss may occur.
1998	 */
1999	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2000	    (prot & VM_PROT_EXECUTE)) {
2001		mips_icache_sync_range(va, PAGE_SIZE);
2002		mips_dcache_wbinv_range(va, PAGE_SIZE);
2003	}
2004	vm_page_unlock_queues();
2005	PMAP_UNLOCK(pmap);
2006}
2007
2008/*
2009 * this code makes some *MAJOR* assumptions:
2010 * 1. Current pmap & pmap exists.
2011 * 2. Not wired.
2012 * 3. Read access.
2013 * 4. No page table pages.
2014 * but is *MUCH* faster than pmap_enter...
2015 */
2016
2017void
2018pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2019{
2020
2021	vm_page_lock_queues();
2022	PMAP_LOCK(pmap);
2023	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2024	vm_page_unlock_queues();
2025	PMAP_UNLOCK(pmap);
2026}
2027
2028static vm_page_t
2029pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2030    vm_prot_t prot, vm_page_t mpte)
2031{
2032	pt_entry_t *pte;
2033	vm_paddr_t pa;
2034
2035	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2036	    (m->oflags & VPO_UNMANAGED) != 0,
2037	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2038	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2039	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2040
2041	/*
2042	 * In the case that a page table page is not resident, we are
2043	 * creating it here.
2044	 */
2045	if (va < VM_MAXUSER_ADDRESS) {
2046		pd_entry_t *pde;
2047		unsigned ptepindex;
2048
2049		/*
2050		 * Calculate pagetable page index
2051		 */
2052		ptepindex = pmap_pde_pindex(va);
2053		if (mpte && (mpte->pindex == ptepindex)) {
2054			mpte->wire_count++;
2055		} else {
2056			/*
2057			 * Get the page directory entry
2058			 */
2059			pde = pmap_pde(pmap, va);
2060
2061			/*
2062			 * If the page table page is mapped, we just
2063			 * increment the hold count, and activate it.
2064			 */
2065			if (pde && *pde != 0) {
2066				if (pmap->pm_ptphint &&
2067				    (pmap->pm_ptphint->pindex == ptepindex)) {
2068					mpte = pmap->pm_ptphint;
2069				} else {
2070					mpte = PHYS_TO_VM_PAGE(
2071						MIPS_DIRECT_TO_PHYS(*pde));
2072					pmap->pm_ptphint = mpte;
2073				}
2074				mpte->wire_count++;
2075			} else {
2076				mpte = _pmap_allocpte(pmap, ptepindex,
2077				    M_NOWAIT);
2078				if (mpte == NULL)
2079					return (mpte);
2080			}
2081		}
2082	} else {
2083		mpte = NULL;
2084	}
2085
2086	pte = pmap_pte(pmap, va);
2087	if (pte_test(pte, PTE_V)) {
2088		if (mpte != NULL) {
2089			mpte->wire_count--;
2090			mpte = NULL;
2091		}
2092		return (mpte);
2093	}
2094
2095	/*
2096	 * Enter on the PV list if part of our managed memory.
2097	 */
2098	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2099	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2100		if (mpte != NULL) {
2101			pmap_unwire_pte_hold(pmap, va, mpte);
2102			mpte = NULL;
2103		}
2104		return (mpte);
2105	}
2106
2107	/*
2108	 * Increment counters
2109	 */
2110	pmap->pm_stats.resident_count++;
2111
2112	pa = VM_PAGE_TO_PHYS(m);
2113
2114	/*
2115	 * Now validate mapping with RO protection
2116	 */
2117	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2118
2119	if (is_cacheable_mem(pa))
2120		*pte |= PTE_C_CACHE;
2121	else
2122		*pte |= PTE_C_UNCACHED;
2123
2124	if (is_kernel_pmap(pmap))
2125		*pte |= PTE_G;
2126	else {
2127		*pte |= PTE_RO;
2128		/*
2129		 * Sync I & D caches.  Do this only if the target pmap
2130		 * belongs to the current process.  Otherwise, an
2131		 * unresolvable TLB miss may occur. */
2132		if (pmap == &curproc->p_vmspace->vm_pmap) {
2133			va &= ~PAGE_MASK;
2134			mips_icache_sync_range(va, PAGE_SIZE);
2135			mips_dcache_wbinv_range(va, PAGE_SIZE);
2136		}
2137	}
2138	return (mpte);
2139}
2140
2141/*
2142 * Make a temporary mapping for a physical address.  This is only intended
2143 * to be used for panic dumps.
2144 *
2145 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2146 */
2147void *
2148pmap_kenter_temporary(vm_paddr_t pa, int i)
2149{
2150	vm_offset_t va;
2151
2152	if (i != 0)
2153		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2154		    __func__);
2155
2156	if (MIPS_DIRECT_MAPPABLE(pa)) {
2157		va = MIPS_PHYS_TO_DIRECT(pa);
2158	} else {
2159#ifndef __mips_n64    /* XXX : to be converted to new style */
2160		int cpu;
2161		register_t intr;
2162		struct local_sysmaps *sysm;
2163		pt_entry_t *pte, npte;
2164
2165		/* If this is used other than for dumps, we may need to leave
2166		 * interrupts disasbled on return. If crash dumps don't work when
2167		 * we get to this point, we might want to consider this (leaving things
2168		 * disabled as a starting point ;-)
2169	 	 */
2170		intr = intr_disable();
2171		cpu = PCPU_GET(cpuid);
2172		sysm = &sysmap_lmem[cpu];
2173		/* Since this is for the debugger, no locks or any other fun */
2174		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2175		pte = pmap_pte(kernel_pmap, sysm->base);
2176		*pte = npte;
2177		sysm->valid1 = 1;
2178		pmap_update_page(kernel_pmap, sysm->base, npte);
2179		va = sysm->base;
2180		intr_restore(intr);
2181#endif
2182	}
2183	return ((void *)va);
2184}
2185
2186void
2187pmap_kenter_temporary_free(vm_paddr_t pa)
2188{
2189#ifndef __mips_n64    /* XXX : to be converted to new style */
2190	int cpu;
2191	register_t intr;
2192	struct local_sysmaps *sysm;
2193#endif
2194
2195	if (MIPS_DIRECT_MAPPABLE(pa)) {
2196		/* nothing to do for this case */
2197		return;
2198	}
2199#ifndef __mips_n64    /* XXX : to be converted to new style */
2200	cpu = PCPU_GET(cpuid);
2201	sysm = &sysmap_lmem[cpu];
2202	if (sysm->valid1) {
2203		pt_entry_t *pte;
2204
2205		intr = intr_disable();
2206		pte = pmap_pte(kernel_pmap, sysm->base);
2207		*pte = PTE_G;
2208		pmap_invalidate_page(kernel_pmap, sysm->base);
2209		intr_restore(intr);
2210		sysm->valid1 = 0;
2211	}
2212#endif
2213}
2214
2215/*
2216 * Moved the code to Machine Independent
2217 *	 vm_map_pmap_enter()
2218 */
2219
2220/*
2221 * Maps a sequence of resident pages belonging to the same object.
2222 * The sequence begins with the given page m_start.  This page is
2223 * mapped at the given virtual address start.  Each subsequent page is
2224 * mapped at a virtual address that is offset from start by the same
2225 * amount as the page is offset from m_start within the object.  The
2226 * last page in the sequence is the page with the largest offset from
2227 * m_start that can be mapped at a virtual address less than the given
2228 * virtual address end.  Not every virtual page between start and end
2229 * is mapped; only those for which a resident page exists with the
2230 * corresponding offset from m_start are mapped.
2231 */
2232void
2233pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2234    vm_page_t m_start, vm_prot_t prot)
2235{
2236	vm_page_t m, mpte;
2237	vm_pindex_t diff, psize;
2238
2239	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2240	psize = atop(end - start);
2241	mpte = NULL;
2242	m = m_start;
2243	vm_page_lock_queues();
2244	PMAP_LOCK(pmap);
2245	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2246		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2247		    prot, mpte);
2248		m = TAILQ_NEXT(m, listq);
2249	}
2250	vm_page_unlock_queues();
2251 	PMAP_UNLOCK(pmap);
2252}
2253
2254/*
2255 * pmap_object_init_pt preloads the ptes for a given object
2256 * into the specified pmap.  This eliminates the blast of soft
2257 * faults on process startup and immediately after an mmap.
2258 */
2259void
2260pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2261    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2262{
2263	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2264	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2265	    ("pmap_object_init_pt: non-device object"));
2266}
2267
2268/*
2269 *	Routine:	pmap_change_wiring
2270 *	Function:	Change the wiring attribute for a map/virtual-address
2271 *			pair.
2272 *	In/out conditions:
2273 *			The mapping must already exist in the pmap.
2274 */
2275void
2276pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2277{
2278	pt_entry_t *pte;
2279
2280	if (pmap == NULL)
2281		return;
2282
2283	PMAP_LOCK(pmap);
2284	pte = pmap_pte(pmap, va);
2285
2286	if (wired && !pte_test(pte, PTE_W))
2287		pmap->pm_stats.wired_count++;
2288	else if (!wired && pte_test(pte, PTE_W))
2289		pmap->pm_stats.wired_count--;
2290
2291	/*
2292	 * Wiring is not a hardware characteristic so there is no need to
2293	 * invalidate TLB.
2294	 */
2295	if (wired)
2296		pte_set(pte, PTE_W);
2297	else
2298		pte_clear(pte, PTE_W);
2299	PMAP_UNLOCK(pmap);
2300}
2301
2302/*
2303 *	Copy the range specified by src_addr/len
2304 *	from the source map to the range dst_addr/len
2305 *	in the destination map.
2306 *
2307 *	This routine is only advisory and need not do anything.
2308 */
2309
2310void
2311pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2312    vm_size_t len, vm_offset_t src_addr)
2313{
2314}
2315
2316/*
2317 *	pmap_zero_page zeros the specified hardware page by mapping
2318 *	the page into KVM and using bzero to clear its contents.
2319 *
2320 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2321 */
2322void
2323pmap_zero_page(vm_page_t m)
2324{
2325	vm_offset_t va;
2326	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2327
2328	if (MIPS_DIRECT_MAPPABLE(phys)) {
2329		va = MIPS_PHYS_TO_DIRECT(phys);
2330		bzero((caddr_t)va, PAGE_SIZE);
2331		mips_dcache_wbinv_range(va, PAGE_SIZE);
2332	} else {
2333		va = pmap_lmem_map1(phys);
2334		bzero((caddr_t)va, PAGE_SIZE);
2335		mips_dcache_wbinv_range(va, PAGE_SIZE);
2336		pmap_lmem_unmap();
2337	}
2338}
2339
2340/*
2341 *	pmap_zero_page_area zeros the specified hardware page by mapping
2342 *	the page into KVM and using bzero to clear its contents.
2343 *
2344 *	off and size may not cover an area beyond a single hardware page.
2345 */
2346void
2347pmap_zero_page_area(vm_page_t m, int off, int size)
2348{
2349	vm_offset_t va;
2350	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2351
2352	if (MIPS_DIRECT_MAPPABLE(phys)) {
2353		va = MIPS_PHYS_TO_DIRECT(phys);
2354		bzero((char *)(caddr_t)va + off, size);
2355		mips_dcache_wbinv_range(va + off, size);
2356	} else {
2357		va = pmap_lmem_map1(phys);
2358		bzero((char *)va + off, size);
2359		mips_dcache_wbinv_range(va + off, size);
2360		pmap_lmem_unmap();
2361	}
2362}
2363
2364void
2365pmap_zero_page_idle(vm_page_t m)
2366{
2367	vm_offset_t va;
2368	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2369
2370	if (MIPS_DIRECT_MAPPABLE(phys)) {
2371		va = MIPS_PHYS_TO_DIRECT(phys);
2372		bzero((caddr_t)va, PAGE_SIZE);
2373		mips_dcache_wbinv_range(va, PAGE_SIZE);
2374	} else {
2375		va = pmap_lmem_map1(phys);
2376		bzero((caddr_t)va, PAGE_SIZE);
2377		mips_dcache_wbinv_range(va, PAGE_SIZE);
2378		pmap_lmem_unmap();
2379	}
2380}
2381
2382/*
2383 *	pmap_copy_page copies the specified (machine independent)
2384 *	page by mapping the page into virtual memory and using
2385 *	bcopy to copy the page, one machine dependent page at a
2386 *	time.
2387 *
2388 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2389 */
2390void
2391pmap_copy_page(vm_page_t src, vm_page_t dst)
2392{
2393	vm_offset_t va_src, va_dst;
2394	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2395	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2396
2397	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2398		/* easy case, all can be accessed via KSEG0 */
2399		/*
2400		 * Flush all caches for VA that are mapped to this page
2401		 * to make sure that data in SDRAM is up to date
2402		 */
2403		pmap_flush_pvcache(src);
2404		mips_dcache_wbinv_range_index(
2405		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2406		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2407		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2408		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2409		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2410	} else {
2411		va_src = pmap_lmem_map2(phys_src, phys_dst);
2412		va_dst = va_src + PAGE_SIZE;
2413		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2414		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2415		pmap_lmem_unmap();
2416	}
2417}
2418
2419/*
2420 * Returns true if the pmap's pv is one of the first
2421 * 16 pvs linked to from this page.  This count may
2422 * be changed upwards or downwards in the future; it
2423 * is only necessary that true be returned for a small
2424 * subset of pmaps for proper page aging.
2425 */
2426boolean_t
2427pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2428{
2429	pv_entry_t pv;
2430	int loops = 0;
2431	boolean_t rv;
2432
2433	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2434	    ("pmap_page_exists_quick: page %p is not managed", m));
2435	rv = FALSE;
2436	vm_page_lock_queues();
2437	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2438		if (pv->pv_pmap == pmap) {
2439			rv = TRUE;
2440			break;
2441		}
2442		loops++;
2443		if (loops >= 16)
2444			break;
2445	}
2446	vm_page_unlock_queues();
2447	return (rv);
2448}
2449
2450/*
2451 * Remove all pages from specified address space
2452 * this aids process exit speeds.  Also, this code
2453 * is special cased for current process only, but
2454 * can have the more generic (and slightly slower)
2455 * mode enabled.  This is much faster than pmap_remove
2456 * in the case of running down an entire address space.
2457 */
2458void
2459pmap_remove_pages(pmap_t pmap)
2460{
2461	pt_entry_t *pte, tpte;
2462	pv_entry_t pv, npv;
2463	vm_page_t m;
2464
2465	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2466		printf("warning: pmap_remove_pages called with non-current pmap\n");
2467		return;
2468	}
2469	vm_page_lock_queues();
2470	PMAP_LOCK(pmap);
2471	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
2472
2473		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2474		if (!pte_test(pte, PTE_V))
2475			panic("pmap_remove_pages: page on pm_pvlist has no pte");
2476		tpte = *pte;
2477
2478/*
2479 * We cannot remove wired pages from a process' mapping at this time
2480 */
2481		if (pte_test(&tpte, PTE_W)) {
2482			npv = TAILQ_NEXT(pv, pv_plist);
2483			continue;
2484		}
2485		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2486
2487		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2488		KASSERT(m != NULL,
2489		    ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2490
2491		pv->pv_pmap->pm_stats.resident_count--;
2492
2493		/*
2494		 * Update the vm_page_t clean and reference bits.
2495		 */
2496		if (pte_test(&tpte, PTE_D)) {
2497			vm_page_dirty(m);
2498		}
2499		npv = TAILQ_NEXT(pv, pv_plist);
2500		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2501
2502		m->md.pv_list_count--;
2503		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2504		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2505			vm_page_aflag_clear(m, PGA_WRITEABLE);
2506		}
2507		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2508		free_pv_entry(pv);
2509	}
2510	pmap_invalidate_all(pmap);
2511	PMAP_UNLOCK(pmap);
2512	vm_page_unlock_queues();
2513}
2514
2515/*
2516 * pmap_testbit tests bits in pte's
2517 * note that the testbit/changebit routines are inline,
2518 * and a lot of things compile-time evaluate.
2519 */
2520static boolean_t
2521pmap_testbit(vm_page_t m, int bit)
2522{
2523	pv_entry_t pv;
2524	pt_entry_t *pte;
2525	boolean_t rv = FALSE;
2526
2527	if (m->oflags & VPO_UNMANAGED)
2528		return (rv);
2529
2530	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2531		return (rv);
2532
2533	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2534	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2535		PMAP_LOCK(pv->pv_pmap);
2536		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2537		rv = pte_test(pte, bit);
2538		PMAP_UNLOCK(pv->pv_pmap);
2539		if (rv)
2540			break;
2541	}
2542	return (rv);
2543}
2544
2545/*
2546 * this routine is used to clear dirty bits in ptes
2547 */
2548static __inline void
2549pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2550{
2551	pv_entry_t pv;
2552	pt_entry_t *pte;
2553
2554	if (m->oflags & VPO_UNMANAGED)
2555		return;
2556
2557	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2558	/*
2559	 * Loop over all current mappings setting/clearing as appropos If
2560	 * setting RO do we need to clear the VAC?
2561	 */
2562	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2563		PMAP_LOCK(pv->pv_pmap);
2564		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2565		if (setem) {
2566			*pte |= bit;
2567			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2568		} else {
2569			pt_entry_t pbits = *pte;
2570
2571			if (pbits & bit) {
2572				if (bit == PTE_D) {
2573					if (pbits & PTE_D)
2574						vm_page_dirty(m);
2575					*pte = (pbits & ~PTE_D) | PTE_RO;
2576				} else {
2577					*pte = pbits & ~bit;
2578				}
2579				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2580			}
2581		}
2582		PMAP_UNLOCK(pv->pv_pmap);
2583	}
2584	if (!setem && bit == PTE_D)
2585		vm_page_aflag_clear(m, PGA_WRITEABLE);
2586}
2587
2588/*
2589 *	pmap_page_wired_mappings:
2590 *
2591 *	Return the number of managed mappings to the given physical page
2592 *	that are wired.
2593 */
2594int
2595pmap_page_wired_mappings(vm_page_t m)
2596{
2597	pv_entry_t pv;
2598	pmap_t pmap;
2599	pt_entry_t *pte;
2600	int count;
2601
2602	count = 0;
2603	if ((m->oflags & VPO_UNMANAGED) != 0)
2604		return (count);
2605	vm_page_lock_queues();
2606	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2607		pmap = pv->pv_pmap;
2608		PMAP_LOCK(pmap);
2609		pte = pmap_pte(pmap, pv->pv_va);
2610		if (pte_test(pte, PTE_W))
2611			count++;
2612		PMAP_UNLOCK(pmap);
2613	}
2614	vm_page_unlock_queues();
2615	return (count);
2616}
2617
2618/*
2619 * Clear the write and modified bits in each of the given page's mappings.
2620 */
2621void
2622pmap_remove_write(vm_page_t m)
2623{
2624	pv_entry_t pv, npv;
2625	vm_offset_t va;
2626	pt_entry_t *pte;
2627
2628	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2629	    ("pmap_remove_write: page %p is not managed", m));
2630
2631	/*
2632	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
2633	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
2634	 * is clear, no page table entries need updating.
2635	 */
2636	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2637	if ((m->oflags & VPO_BUSY) == 0 &&
2638	    (m->aflags & PGA_WRITEABLE) == 0)
2639		return;
2640
2641	/*
2642	 * Loop over all current mappings setting/clearing as appropos.
2643	 */
2644	vm_page_lock_queues();
2645	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2646		npv = TAILQ_NEXT(pv, pv_plist);
2647		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2648		if (pte == NULL || !pte_test(pte, PTE_V))
2649			panic("page on pm_pvlist has no pte");
2650
2651		va = pv->pv_va;
2652		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2653		    VM_PROT_READ | VM_PROT_EXECUTE);
2654	}
2655	vm_page_aflag_clear(m, PGA_WRITEABLE);
2656	vm_page_unlock_queues();
2657}
2658
2659/*
2660 *	pmap_ts_referenced:
2661 *
2662 *	Return the count of reference bits for a page, clearing all of them.
2663 */
2664int
2665pmap_ts_referenced(vm_page_t m)
2666{
2667
2668	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2669	    ("pmap_ts_referenced: page %p is not managed", m));
2670	if (m->md.pv_flags & PV_TABLE_REF) {
2671		vm_page_lock_queues();
2672		m->md.pv_flags &= ~PV_TABLE_REF;
2673		vm_page_unlock_queues();
2674		return (1);
2675	}
2676	return (0);
2677}
2678
2679/*
2680 *	pmap_is_modified:
2681 *
2682 *	Return whether or not the specified physical page was modified
2683 *	in any physical maps.
2684 */
2685boolean_t
2686pmap_is_modified(vm_page_t m)
2687{
2688	boolean_t rv;
2689
2690	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2691	    ("pmap_is_modified: page %p is not managed", m));
2692
2693	/*
2694	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2695	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2696	 * is clear, no PTEs can have PTE_D set.
2697	 */
2698	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2699	if ((m->oflags & VPO_BUSY) == 0 &&
2700	    (m->aflags & PGA_WRITEABLE) == 0)
2701		return (FALSE);
2702	vm_page_lock_queues();
2703	if (m->md.pv_flags & PV_TABLE_MOD)
2704		rv = TRUE;
2705	else
2706		rv = pmap_testbit(m, PTE_D);
2707	vm_page_unlock_queues();
2708	return (rv);
2709}
2710
2711/* N/C */
2712
2713/*
2714 *	pmap_is_prefaultable:
2715 *
2716 *	Return whether or not the specified virtual address is elgible
2717 *	for prefault.
2718 */
2719boolean_t
2720pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2721{
2722	pd_entry_t *pde;
2723	pt_entry_t *pte;
2724	boolean_t rv;
2725
2726	rv = FALSE;
2727	PMAP_LOCK(pmap);
2728	pde = pmap_pde(pmap, addr);
2729	if (pde != NULL && *pde != 0) {
2730		pte = pmap_pde_to_pte(pde, addr);
2731		rv = (*pte == 0);
2732	}
2733	PMAP_UNLOCK(pmap);
2734	return (rv);
2735}
2736
2737/*
2738 *	Clear the modify bits on the specified physical page.
2739 */
2740void
2741pmap_clear_modify(vm_page_t m)
2742{
2743
2744	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2745	    ("pmap_clear_modify: page %p is not managed", m));
2746	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2747	KASSERT((m->oflags & VPO_BUSY) == 0,
2748	    ("pmap_clear_modify: page %p is busy", m));
2749
2750	/*
2751	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
2752	 * If the object containing the page is locked and the page is not
2753	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
2754	 */
2755	if ((m->aflags & PGA_WRITEABLE) == 0)
2756		return;
2757	vm_page_lock_queues();
2758	if (m->md.pv_flags & PV_TABLE_MOD) {
2759		pmap_changebit(m, PTE_D, FALSE);
2760		m->md.pv_flags &= ~PV_TABLE_MOD;
2761	}
2762	vm_page_unlock_queues();
2763}
2764
2765/*
2766 *	pmap_is_referenced:
2767 *
2768 *	Return whether or not the specified physical page was referenced
2769 *	in any physical maps.
2770 */
2771boolean_t
2772pmap_is_referenced(vm_page_t m)
2773{
2774
2775	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2776	    ("pmap_is_referenced: page %p is not managed", m));
2777	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2778}
2779
2780/*
2781 *	pmap_clear_reference:
2782 *
2783 *	Clear the reference bit on the specified physical page.
2784 */
2785void
2786pmap_clear_reference(vm_page_t m)
2787{
2788
2789	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2790	    ("pmap_clear_reference: page %p is not managed", m));
2791	vm_page_lock_queues();
2792	if (m->md.pv_flags & PV_TABLE_REF) {
2793		m->md.pv_flags &= ~PV_TABLE_REF;
2794	}
2795	vm_page_unlock_queues();
2796}
2797
2798/*
2799 * Miscellaneous support routines follow
2800 */
2801
2802/*
2803 * Map a set of physical memory pages into the kernel virtual
2804 * address space. Return a pointer to where it is mapped. This
2805 * routine is intended to be used for mapping device memory,
2806 * NOT real memory.
2807 */
2808
2809/*
2810 * Map a set of physical memory pages into the kernel virtual
2811 * address space. Return a pointer to where it is mapped. This
2812 * routine is intended to be used for mapping device memory,
2813 * NOT real memory.
2814 *
2815 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2816 */
2817void *
2818pmap_mapdev(vm_paddr_t pa, vm_size_t size)
2819{
2820        vm_offset_t va, tmpva, offset;
2821
2822	/*
2823	 * KSEG1 maps only first 512M of phys address space. For
2824	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2825	 */
2826	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2827		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2828	else {
2829		offset = pa & PAGE_MASK;
2830		size = roundup(size + offset, PAGE_SIZE);
2831
2832		va = kmem_alloc_nofault(kernel_map, size);
2833		if (!va)
2834			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2835		pa = trunc_page(pa);
2836		for (tmpva = va; size > 0;) {
2837			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2838			size -= PAGE_SIZE;
2839			tmpva += PAGE_SIZE;
2840			pa += PAGE_SIZE;
2841		}
2842	}
2843
2844	return ((void *)(va + offset));
2845}
2846
2847void
2848pmap_unmapdev(vm_offset_t va, vm_size_t size)
2849{
2850#ifndef __mips_n64
2851	vm_offset_t base, offset, tmpva;
2852
2853	/* If the address is within KSEG1 then there is nothing to do */
2854	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2855		return;
2856
2857	base = trunc_page(va);
2858	offset = va & PAGE_MASK;
2859	size = roundup(size + offset, PAGE_SIZE);
2860	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2861		pmap_kremove(tmpva);
2862	kmem_free(kernel_map, base, size);
2863#endif
2864}
2865
2866/*
2867 * perform the pmap work for mincore
2868 */
2869int
2870pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2871{
2872	pt_entry_t *ptep, pte;
2873	vm_paddr_t pa;
2874	vm_page_t m;
2875	int val;
2876	boolean_t managed;
2877
2878	PMAP_LOCK(pmap);
2879retry:
2880	ptep = pmap_pte(pmap, addr);
2881	pte = (ptep != NULL) ? *ptep : 0;
2882	if (!pte_test(&pte, PTE_V)) {
2883		val = 0;
2884		goto out;
2885	}
2886	val = MINCORE_INCORE;
2887	if (pte_test(&pte, PTE_D))
2888		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2889	pa = TLBLO_PTE_TO_PA(pte);
2890	managed = page_is_managed(pa);
2891	if (managed) {
2892		/*
2893		 * This may falsely report the given address as
2894		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2895		 * per-PTE reference information, it is impossible to
2896		 * determine if the address is MINCORE_REFERENCED.
2897		 */
2898		m = PHYS_TO_VM_PAGE(pa);
2899		if ((m->aflags & PGA_REFERENCED) != 0)
2900			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2901	}
2902	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2903	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2904		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2905		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2906			goto retry;
2907	} else
2908out:
2909		PA_UNLOCK_COND(*locked_pa);
2910	PMAP_UNLOCK(pmap);
2911	return (val);
2912}
2913
2914void
2915pmap_activate(struct thread *td)
2916{
2917	pmap_t pmap, oldpmap;
2918	struct proc *p = td->td_proc;
2919	u_int cpuid;
2920
2921	critical_enter();
2922
2923	pmap = vmspace_pmap(p->p_vmspace);
2924	oldpmap = PCPU_GET(curpmap);
2925	cpuid = PCPU_GET(cpuid);
2926
2927	if (oldpmap)
2928		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
2929	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2930	pmap_asid_alloc(pmap);
2931	if (td == curthread) {
2932		PCPU_SET(segbase, pmap->pm_segtab);
2933		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
2934	}
2935
2936	PCPU_SET(curpmap, pmap);
2937	critical_exit();
2938}
2939
2940void
2941pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2942{
2943}
2944
2945/*
2946 *	Increase the starting virtual address of the given mapping if a
2947 *	different alignment might result in more superpage mappings.
2948 */
2949void
2950pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2951    vm_offset_t *addr, vm_size_t size)
2952{
2953	vm_offset_t superpage_offset;
2954
2955	if (size < NBSEG)
2956		return;
2957	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2958		offset += ptoa(object->pg_color);
2959	superpage_offset = offset & SEGMASK;
2960	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2961	    (*addr & SEGMASK) == superpage_offset)
2962		return;
2963	if ((*addr & SEGMASK) < superpage_offset)
2964		*addr = (*addr & ~SEGMASK) + superpage_offset;
2965	else
2966		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2967}
2968
2969/*
2970 * 	Increase the starting virtual address of the given mapping so
2971 * 	that it is aligned to not be the second page in a TLB entry.
2972 * 	This routine assumes that the length is appropriately-sized so
2973 * 	that the allocation does not share a TLB entry at all if required.
2974 */
2975void
2976pmap_align_tlb(vm_offset_t *addr)
2977{
2978	if ((*addr & PAGE_SIZE) == 0)
2979		return;
2980	*addr += PAGE_SIZE;
2981	return;
2982}
2983
2984#ifdef DDB
2985DB_SHOW_COMMAND(ptable, ddb_pid_dump)
2986{
2987	pmap_t pmap;
2988	struct thread *td = NULL;
2989	struct proc *p;
2990	int i, j, k;
2991	vm_paddr_t pa;
2992	vm_offset_t va;
2993
2994	if (have_addr) {
2995		td = db_lookup_thread(addr, TRUE);
2996		if (td == NULL) {
2997			db_printf("Invalid pid or tid");
2998			return;
2999		}
3000		p = td->td_proc;
3001		if (p->p_vmspace == NULL) {
3002			db_printf("No vmspace for process");
3003			return;
3004		}
3005			pmap = vmspace_pmap(p->p_vmspace);
3006	} else
3007		pmap = kernel_pmap;
3008
3009	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3010	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3011	    pmap->pm_asid[0].gen);
3012	for (i = 0; i < NPDEPG; i++) {
3013		pd_entry_t *pdpe;
3014		pt_entry_t *pde;
3015		pt_entry_t pte;
3016
3017		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3018		if (pdpe == NULL)
3019			continue;
3020		db_printf("[%4d] %p\n", i, pdpe);
3021#ifdef __mips_n64
3022		for (j = 0; j < NPDEPG; j++) {
3023			pde = (pt_entry_t *)pdpe[j];
3024			if (pde == NULL)
3025				continue;
3026			db_printf("\t[%4d] %p\n", j, pde);
3027#else
3028		{
3029			j = 0;
3030			pde =  (pt_entry_t *)pdpe;
3031#endif
3032			for (k = 0; k < NPTEPG; k++) {
3033				pte = pde[k];
3034				if (pte == 0 || !pte_test(&pte, PTE_V))
3035					continue;
3036				pa = TLBLO_PTE_TO_PA(pte);
3037				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3038				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3039				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3040			}
3041		}
3042	}
3043}
3044#endif
3045
3046#if defined(DEBUG)
3047
3048static void pads(pmap_t pm);
3049void pmap_pvdump(vm_offset_t pa);
3050
3051/* print address space of pmap*/
3052static void
3053pads(pmap_t pm)
3054{
3055	unsigned va, i, j;
3056	pt_entry_t *ptep;
3057
3058	if (pm == kernel_pmap)
3059		return;
3060	for (i = 0; i < NPTEPG; i++)
3061		if (pm->pm_segtab[i])
3062			for (j = 0; j < NPTEPG; j++) {
3063				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3064				if (pm == kernel_pmap && va < KERNBASE)
3065					continue;
3066				if (pm != kernel_pmap &&
3067				    va >= VM_MAXUSER_ADDRESS)
3068					continue;
3069				ptep = pmap_pte(pm, va);
3070				if (pte_test(ptep, PTE_V))
3071					printf("%x:%x ", va, *(int *)ptep);
3072			}
3073
3074}
3075
3076void
3077pmap_pvdump(vm_offset_t pa)
3078{
3079	register pv_entry_t pv;
3080	vm_page_t m;
3081
3082	printf("pa %x", pa);
3083	m = PHYS_TO_VM_PAGE(pa);
3084	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3085	    pv = TAILQ_NEXT(pv, pv_list)) {
3086		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3087		pads(pv->pv_pmap);
3088	}
3089	printf(" ");
3090}
3091
3092/* N/C */
3093#endif
3094
3095
3096/*
3097 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3098 * It takes almost as much or more time to search the TLB for a
3099 * specific ASID and flush those entries as it does to flush the entire TLB.
3100 * Therefore, when we allocate a new ASID, we just take the next number. When
3101 * we run out of numbers, we flush the TLB, increment the generation count
3102 * and start over. ASID zero is reserved for kernel use.
3103 */
3104static void
3105pmap_asid_alloc(pmap)
3106	pmap_t pmap;
3107{
3108	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3109	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3110	else {
3111		if (PCPU_GET(next_asid) == pmap_max_asid) {
3112			tlb_invalidate_all_user(NULL);
3113			PCPU_SET(asid_generation,
3114			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3115			if (PCPU_GET(asid_generation) == 0) {
3116				PCPU_SET(asid_generation, 1);
3117			}
3118			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3119		}
3120		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3121		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3122		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3123	}
3124}
3125
3126int
3127page_is_managed(vm_paddr_t pa)
3128{
3129	vm_offset_t pgnum = atop(pa);
3130
3131	if (pgnum >= first_page) {
3132		vm_page_t m;
3133
3134		m = PHYS_TO_VM_PAGE(pa);
3135		if (m == NULL)
3136			return (0);
3137		if ((m->oflags & VPO_UNMANAGED) == 0)
3138			return (1);
3139	}
3140	return (0);
3141}
3142
3143static pt_entry_t
3144init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3145{
3146	pt_entry_t rw;
3147
3148	if (!(prot & VM_PROT_WRITE))
3149		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3150	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3151		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3152			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3153		else
3154			rw = PTE_V | PTE_C_CACHE;
3155		vm_page_aflag_set(m, PGA_WRITEABLE);
3156	} else
3157		/* Needn't emulate a modified bit for unmanaged pages. */
3158		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3159	return (rw);
3160}
3161
3162/*
3163 * pmap_emulate_modified : do dirty bit emulation
3164 *
3165 * On SMP, update just the local TLB, other CPUs will update their
3166 * TLBs from PTE lazily, if they get the exception.
3167 * Returns 0 in case of sucess, 1 if the page is read only and we
3168 * need to fault.
3169 */
3170int
3171pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3172{
3173	vm_page_t m;
3174	pt_entry_t *pte;
3175 	vm_paddr_t pa;
3176
3177	PMAP_LOCK(pmap);
3178	pte = pmap_pte(pmap, va);
3179	if (pte == NULL)
3180		panic("pmap_emulate_modified: can't find PTE");
3181#ifdef SMP
3182	/* It is possible that some other CPU changed m-bit */
3183	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3184		tlb_update(pmap, va, *pte);
3185		PMAP_UNLOCK(pmap);
3186		return (0);
3187	}
3188#else
3189	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3190		panic("pmap_emulate_modified: invalid pte");
3191#endif
3192	if (pte_test(pte, PTE_RO)) {
3193		/* write to read only page in the kernel */
3194		PMAP_UNLOCK(pmap);
3195		return (1);
3196	}
3197	pte_set(pte, PTE_D);
3198	tlb_update(pmap, va, *pte);
3199	pa = TLBLO_PTE_TO_PA(*pte);
3200	if (!page_is_managed(pa))
3201		panic("pmap_emulate_modified: unmanaged page");
3202	m = PHYS_TO_VM_PAGE(pa);
3203	m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3204	PMAP_UNLOCK(pmap);
3205	return (0);
3206}
3207
3208/*
3209 *	Routine:	pmap_kextract
3210 *	Function:
3211 *		Extract the physical page address associated
3212 *		virtual address.
3213 */
3214vm_paddr_t
3215pmap_kextract(vm_offset_t va)
3216{
3217	int mapped;
3218
3219	/*
3220	 * First, the direct-mapped regions.
3221	 */
3222#if defined(__mips_n64)
3223	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3224		return (MIPS_XKPHYS_TO_PHYS(va));
3225#endif
3226	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3227		return (MIPS_KSEG0_TO_PHYS(va));
3228
3229	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3230		return (MIPS_KSEG1_TO_PHYS(va));
3231
3232	/*
3233	 * User virtual addresses.
3234	 */
3235	if (va < VM_MAXUSER_ADDRESS) {
3236		pt_entry_t *ptep;
3237
3238		if (curproc && curproc->p_vmspace) {
3239			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3240			if (ptep) {
3241				return (TLBLO_PTE_TO_PA(*ptep) |
3242				    (va & PAGE_MASK));
3243			}
3244			return (0);
3245		}
3246	}
3247
3248	/*
3249	 * Should be kernel virtual here, otherwise fail
3250	 */
3251	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3252#if defined(__mips_n64)
3253	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3254#endif
3255	/*
3256	 * Kernel virtual.
3257	 */
3258
3259	if (mapped) {
3260		pt_entry_t *ptep;
3261
3262		/* Is the kernel pmap initialized? */
3263		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3264			/* It's inside the virtual address range */
3265			ptep = pmap_pte(kernel_pmap, va);
3266			if (ptep) {
3267				return (TLBLO_PTE_TO_PA(*ptep) |
3268				    (va & PAGE_MASK));
3269			}
3270		}
3271		return (0);
3272	}
3273
3274	panic("%s for unknown address space %p.", __func__, (void *)va);
3275}
3276
3277
3278void
3279pmap_flush_pvcache(vm_page_t m)
3280{
3281	pv_entry_t pv;
3282
3283	if (m != NULL) {
3284		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3285		    pv = TAILQ_NEXT(pv, pv_list)) {
3286			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3287		}
3288	}
3289}
3290