pmap.c revision 227623
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 227623 2011-11-17 13:14:59Z jchandra $");
70
71#include "opt_ddb.h"
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80#ifdef DDB
81#include <ddb/ddb.h>
82#endif
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/vm_phys.h>
87#include <sys/lock.h>
88#include <sys/mutex.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96#include <vm/uma.h>
97#include <sys/pcpu.h>
98#include <sys/sched.h>
99#ifdef SMP
100#include <sys/smp.h>
101#endif
102
103#include <machine/cache.h>
104#include <machine/md_var.h>
105#include <machine/tlb.h>
106
107#undef PMAP_DEBUG
108
109#ifndef PMAP_SHPGPERPROC
110#define	PMAP_SHPGPERPROC 200
111#endif
112
113#if !defined(DIAGNOSTIC)
114#define	PMAP_INLINE __inline
115#else
116#define	PMAP_INLINE
117#endif
118
119/*
120 * Get PDEs and PTEs for user/kernel address space
121 */
122#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
123#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
124#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
125#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
126
127#ifdef __mips_n64
128#define	NUPDE			(NPDEPG * NPDEPG)
129#define	NUSERPGTBLS		(NUPDE + NPDEPG)
130#else
131#define	NUPDE			(NPDEPG)
132#define	NUSERPGTBLS		(NUPDE)
133#endif
134
135#define	is_kernel_pmap(x)	((x) == kernel_pmap)
136
137struct pmap kernel_pmap_store;
138pd_entry_t *kernel_segmap;
139
140vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
141vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
142
143static int nkpt;
144unsigned pmap_max_asid;		/* max ASID supported by the system */
145
146#define	PMAP_ASID_RESERVED	0
147
148vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
149
150static void pmap_asid_alloc(pmap_t pmap);
151
152/*
153 * Data for the pv entry allocation mechanism
154 */
155static uma_zone_t pvzone;
156static struct vm_object pvzone_obj;
157static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
158
159static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
160static pv_entry_t get_pv_entry(pmap_t locked_pmap);
161static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
162static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
163    vm_offset_t va);
164static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
165static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
166    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
167static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
168static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
169static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
170static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
171    vm_offset_t va, vm_page_t m);
172static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
173static void pmap_invalidate_all(pmap_t pmap);
174static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
175static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
176
177static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
178static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
179static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
180static pt_entry_t init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
181
182#ifdef SMP
183static void pmap_invalidate_page_action(void *arg);
184static void pmap_update_page_action(void *arg);
185#endif
186
187#ifndef __mips_n64
188/*
189 * This structure is for high memory (memory above 512Meg in 32 bit) support.
190 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
191 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
192 *
193 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
194 * access a highmem physical address on a CPU, we map the physical address to
195 * the reserved virtual address for the CPU in the kernel pagetable.  This is
196 * done with interrupts disabled(although a spinlock and sched_pin would be
197 * sufficient).
198 */
199struct local_sysmaps {
200	vm_offset_t	base;
201	uint32_t	saved_intr;
202	uint16_t	valid1, valid2;
203};
204static struct local_sysmaps sysmap_lmem[MAXCPU];
205
206static __inline void
207pmap_alloc_lmem_map(void)
208{
209	int i;
210
211	for (i = 0; i < MAXCPU; i++) {
212		sysmap_lmem[i].base = virtual_avail;
213		virtual_avail += PAGE_SIZE * 2;
214		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
215	}
216}
217
218static __inline vm_offset_t
219pmap_lmem_map1(vm_paddr_t phys)
220{
221	struct local_sysmaps *sysm;
222	pt_entry_t *pte, npte;
223	vm_offset_t va;
224	uint32_t intr;
225	int cpu;
226
227	intr = intr_disable();
228	cpu = PCPU_GET(cpuid);
229	sysm = &sysmap_lmem[cpu];
230	sysm->saved_intr = intr;
231	va = sysm->base;
232	npte = TLBLO_PA_TO_PFN(phys) |
233	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
234	pte = pmap_pte(kernel_pmap, va);
235	*pte = npte;
236	sysm->valid1 = 1;
237	return (va);
238}
239
240static __inline vm_offset_t
241pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
242{
243	struct local_sysmaps *sysm;
244	pt_entry_t *pte, npte;
245	vm_offset_t va1, va2;
246	uint32_t intr;
247	int cpu;
248
249	intr = intr_disable();
250	cpu = PCPU_GET(cpuid);
251	sysm = &sysmap_lmem[cpu];
252	sysm->saved_intr = intr;
253	va1 = sysm->base;
254	va2 = sysm->base + PAGE_SIZE;
255	npte = TLBLO_PA_TO_PFN(phys1) |
256	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
257	pte = pmap_pte(kernel_pmap, va1);
258	*pte = npte;
259	npte =  TLBLO_PA_TO_PFN(phys2) |
260	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
261	pte = pmap_pte(kernel_pmap, va2);
262	*pte = npte;
263	sysm->valid1 = 1;
264	sysm->valid2 = 1;
265	return (va1);
266}
267
268static __inline void
269pmap_lmem_unmap(void)
270{
271	struct local_sysmaps *sysm;
272	pt_entry_t *pte;
273	int cpu;
274
275	cpu = PCPU_GET(cpuid);
276	sysm = &sysmap_lmem[cpu];
277	pte = pmap_pte(kernel_pmap, sysm->base);
278	*pte = PTE_G;
279	tlb_invalidate_address(kernel_pmap, sysm->base);
280	sysm->valid1 = 0;
281	if (sysm->valid2) {
282		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
283		*pte = PTE_G;
284		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
285		sysm->valid2 = 0;
286	}
287	intr_restore(sysm->saved_intr);
288}
289#else  /* __mips_n64 */
290
291static __inline void
292pmap_alloc_lmem_map(void)
293{
294}
295
296static __inline vm_offset_t
297pmap_lmem_map1(vm_paddr_t phys)
298{
299
300	return (0);
301}
302
303static __inline vm_offset_t
304pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
305{
306
307	return (0);
308}
309
310static __inline vm_offset_t
311pmap_lmem_unmap(void)
312{
313
314	return (0);
315}
316#endif /* !__mips_n64 */
317
318/*
319 * Page table entry lookup routines.
320 */
321static __inline pd_entry_t *
322pmap_segmap(pmap_t pmap, vm_offset_t va)
323{
324
325	return (&pmap->pm_segtab[pmap_seg_index(va)]);
326}
327
328#ifdef __mips_n64
329static __inline pd_entry_t *
330pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
331{
332	pd_entry_t *pde;
333
334	pde = (pd_entry_t *)*pdpe;
335	return (&pde[pmap_pde_index(va)]);
336}
337
338static __inline pd_entry_t *
339pmap_pde(pmap_t pmap, vm_offset_t va)
340{
341	pd_entry_t *pdpe;
342
343	pdpe = pmap_segmap(pmap, va);
344	if (pdpe == NULL || *pdpe == NULL)
345		return (NULL);
346
347	return (pmap_pdpe_to_pde(pdpe, va));
348}
349#else
350static __inline pd_entry_t *
351pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
352{
353
354	return (pdpe);
355}
356
357static __inline
358pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
359{
360
361	return (pmap_segmap(pmap, va));
362}
363#endif
364
365static __inline pt_entry_t *
366pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
367{
368	pt_entry_t *pte;
369
370	pte = (pt_entry_t *)*pde;
371	return (&pte[pmap_pte_index(va)]);
372}
373
374pt_entry_t *
375pmap_pte(pmap_t pmap, vm_offset_t va)
376{
377	pd_entry_t *pde;
378
379	pde = pmap_pde(pmap, va);
380	if (pde == NULL || *pde == NULL)
381		return (NULL);
382
383	return (pmap_pde_to_pte(pde, va));
384}
385
386vm_offset_t
387pmap_steal_memory(vm_size_t size)
388{
389	vm_paddr_t bank_size, pa;
390	vm_offset_t va;
391
392	size = round_page(size);
393	bank_size = phys_avail[1] - phys_avail[0];
394	while (size > bank_size) {
395		int i;
396
397		for (i = 0; phys_avail[i + 2]; i += 2) {
398			phys_avail[i] = phys_avail[i + 2];
399			phys_avail[i + 1] = phys_avail[i + 3];
400		}
401		phys_avail[i] = 0;
402		phys_avail[i + 1] = 0;
403		if (!phys_avail[0])
404			panic("pmap_steal_memory: out of memory");
405		bank_size = phys_avail[1] - phys_avail[0];
406	}
407
408	pa = phys_avail[0];
409	phys_avail[0] += size;
410	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
411		panic("Out of memory below 512Meg?");
412	va = MIPS_PHYS_TO_DIRECT(pa);
413	bzero((caddr_t)va, size);
414	return (va);
415}
416
417/*
418 * Bootstrap the system enough to run with virtual memory.  This
419 * assumes that the phys_avail array has been initialized.
420 */
421static void
422pmap_create_kernel_pagetable(void)
423{
424	int i, j;
425	vm_offset_t ptaddr;
426	pt_entry_t *pte;
427#ifdef __mips_n64
428	pd_entry_t *pde;
429	vm_offset_t pdaddr;
430	int npt, npde;
431#endif
432
433	/*
434	 * Allocate segment table for the kernel
435	 */
436	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
437
438	/*
439	 * Allocate second level page tables for the kernel
440	 */
441#ifdef __mips_n64
442	npde = howmany(NKPT, NPDEPG);
443	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
444#endif
445	nkpt = NKPT;
446	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
447
448	/*
449	 * The R[4-7]?00 stores only one copy of the Global bit in the
450	 * translation lookaside buffer for each 2 page entry. Thus invalid
451	 * entrys must have the Global bit set so when Entry LO and Entry HI
452	 * G bits are anded together they will produce a global bit to store
453	 * in the tlb.
454	 */
455	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
456		*pte = PTE_G;
457
458#ifdef __mips_n64
459	for (i = 0,  npt = nkpt; npt > 0; i++) {
460		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
461		pde = (pd_entry_t *)kernel_segmap[i];
462
463		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
464			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
465	}
466#else
467	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
468		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
469#endif
470
471	PMAP_LOCK_INIT(kernel_pmap);
472	kernel_pmap->pm_segtab = kernel_segmap;
473	CPU_FILL(&kernel_pmap->pm_active);
474	TAILQ_INIT(&kernel_pmap->pm_pvlist);
475	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
476	kernel_pmap->pm_asid[0].gen = 0;
477	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
478}
479
480void
481pmap_bootstrap(void)
482{
483	int i;
484	int need_local_mappings = 0;
485
486	/* Sort. */
487again:
488	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
489		/*
490		 * Keep the memory aligned on page boundary.
491		 */
492		phys_avail[i] = round_page(phys_avail[i]);
493		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
494
495		if (i < 2)
496			continue;
497		if (phys_avail[i - 2] > phys_avail[i]) {
498			vm_paddr_t ptemp[2];
499
500			ptemp[0] = phys_avail[i + 0];
501			ptemp[1] = phys_avail[i + 1];
502
503			phys_avail[i + 0] = phys_avail[i - 2];
504			phys_avail[i + 1] = phys_avail[i - 1];
505
506			phys_avail[i - 2] = ptemp[0];
507			phys_avail[i - 1] = ptemp[1];
508			goto again;
509		}
510	}
511
512       	/*
513	 * In 32 bit, we may have memory which cannot be mapped directly.
514	 * This memory will need temporary mapping before it can be
515	 * accessed.
516	 */
517	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
518		need_local_mappings = 1;
519
520	/*
521	 * Copy the phys_avail[] array before we start stealing memory from it.
522	 */
523	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
524		physmem_desc[i] = phys_avail[i];
525		physmem_desc[i + 1] = phys_avail[i + 1];
526	}
527
528	Maxmem = atop(phys_avail[i - 1]);
529
530	if (bootverbose) {
531		printf("Physical memory chunk(s):\n");
532		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
533			vm_paddr_t size;
534
535			size = phys_avail[i + 1] - phys_avail[i];
536			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
537			    (uintmax_t) phys_avail[i],
538			    (uintmax_t) phys_avail[i + 1] - 1,
539			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
540		}
541		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
542	}
543	/*
544	 * Steal the message buffer from the beginning of memory.
545	 */
546	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
547	msgbufinit(msgbufp, msgbufsize);
548
549	/*
550	 * Steal thread0 kstack.
551	 */
552	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
553
554	virtual_avail = VM_MIN_KERNEL_ADDRESS;
555	virtual_end = VM_MAX_KERNEL_ADDRESS;
556
557#ifdef SMP
558	/*
559	 * Steal some virtual address space to map the pcpu area.
560	 */
561	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
562	pcpup = (struct pcpu *)virtual_avail;
563	virtual_avail += PAGE_SIZE * 2;
564
565	/*
566	 * Initialize the wired TLB entry mapping the pcpu region for
567	 * the BSP at 'pcpup'. Up until this point we were operating
568	 * with the 'pcpup' for the BSP pointing to a virtual address
569	 * in KSEG0 so there was no need for a TLB mapping.
570	 */
571	mips_pcpu_tlb_init(PCPU_ADDR(0));
572
573	if (bootverbose)
574		printf("pcpu is available at virtual address %p.\n", pcpup);
575#endif
576
577	if (need_local_mappings)
578		pmap_alloc_lmem_map();
579	pmap_create_kernel_pagetable();
580	pmap_max_asid = VMNUM_PIDS;
581	mips_wr_entryhi(0);
582	mips_wr_pagemask(0);
583}
584
585/*
586 * Initialize a vm_page's machine-dependent fields.
587 */
588void
589pmap_page_init(vm_page_t m)
590{
591
592	TAILQ_INIT(&m->md.pv_list);
593	m->md.pv_list_count = 0;
594	m->md.pv_flags = 0;
595}
596
597/*
598 *	Initialize the pmap module.
599 *	Called by vm_init, to initialize any structures that the pmap
600 *	system needs to map virtual memory.
601 *	pmap_init has been enhanced to support in a fairly consistant
602 *	way, discontiguous physical memory.
603 */
604void
605pmap_init(void)
606{
607
608	/*
609	 * Initialize the address space (zone) for the pv entries.  Set a
610	 * high water mark so that the system can recover from excessive
611	 * numbers of pv entries.
612	 */
613	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
614	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
615	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
616	pv_entry_high_water = 9 * (pv_entry_max / 10);
617	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
618}
619
620/***************************************************
621 * Low level helper routines.....
622 ***************************************************/
623
624#ifdef	SMP
625static __inline void
626pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
627{
628	int	cpuid, cpu, self;
629	cpuset_t active_cpus;
630
631	sched_pin();
632	if (is_kernel_pmap(pmap)) {
633		smp_rendezvous(NULL, fn, NULL, arg);
634		goto out;
635	}
636	/* Force ASID update on inactive CPUs */
637	CPU_FOREACH(cpu) {
638		if (!CPU_ISSET(cpu, &pmap->pm_active))
639			pmap->pm_asid[cpu].gen = 0;
640	}
641	cpuid = PCPU_GET(cpuid);
642	/*
643	 * XXX: barrier/locking for active?
644	 *
645	 * Take a snapshot of active here, any further changes are ignored.
646	 * tlb update/invalidate should be harmless on inactive CPUs
647	 */
648	active_cpus = pmap->pm_active;
649	self = CPU_ISSET(cpuid, &active_cpus);
650	CPU_CLR(cpuid, &active_cpus);
651	/* Optimize for the case where this cpu is the only active one */
652	if (CPU_EMPTY(&active_cpus)) {
653		if (self)
654			fn(arg);
655	} else {
656		if (self)
657			CPU_SET(cpuid, &active_cpus);
658		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
659	}
660out:
661	sched_unpin();
662}
663#else /* !SMP */
664static __inline void
665pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
666{
667	int	cpuid;
668
669	if (is_kernel_pmap(pmap)) {
670		fn(arg);
671		return;
672	}
673	cpuid = PCPU_GET(cpuid);
674	if (!CPU_ISSET(cpuid, &pmap->pm_active))
675		pmap->pm_asid[cpuid].gen = 0;
676	else
677		fn(arg);
678}
679#endif /* SMP */
680
681static void
682pmap_invalidate_all(pmap_t pmap)
683{
684
685	pmap_call_on_active_cpus(pmap,
686	    (void (*)(void *))tlb_invalidate_all_user, pmap);
687}
688
689struct pmap_invalidate_page_arg {
690	pmap_t pmap;
691	vm_offset_t va;
692};
693
694static void
695pmap_invalidate_page_action(void *arg)
696{
697	struct pmap_invalidate_page_arg *p = arg;
698
699	tlb_invalidate_address(p->pmap, p->va);
700}
701
702static void
703pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
704{
705	struct pmap_invalidate_page_arg arg;
706
707	arg.pmap = pmap;
708	arg.va = va;
709	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
710}
711
712struct pmap_update_page_arg {
713	pmap_t pmap;
714	vm_offset_t va;
715	pt_entry_t pte;
716};
717
718static void
719pmap_update_page_action(void *arg)
720{
721	struct pmap_update_page_arg *p = arg;
722
723	tlb_update(p->pmap, p->va, p->pte);
724}
725
726static void
727pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
728{
729	struct pmap_update_page_arg arg;
730
731	arg.pmap = pmap;
732	arg.va = va;
733	arg.pte = pte;
734	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
735}
736
737/*
738 *	Routine:	pmap_extract
739 *	Function:
740 *		Extract the physical page address associated
741 *		with the given map/virtual_address pair.
742 */
743vm_paddr_t
744pmap_extract(pmap_t pmap, vm_offset_t va)
745{
746	pt_entry_t *pte;
747	vm_offset_t retval = 0;
748
749	PMAP_LOCK(pmap);
750	pte = pmap_pte(pmap, va);
751	if (pte) {
752		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
753	}
754	PMAP_UNLOCK(pmap);
755	return (retval);
756}
757
758/*
759 *	Routine:	pmap_extract_and_hold
760 *	Function:
761 *		Atomically extract and hold the physical page
762 *		with the given pmap and virtual address pair
763 *		if that mapping permits the given protection.
764 */
765vm_page_t
766pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
767{
768	pt_entry_t pte;
769	vm_page_t m;
770	vm_paddr_t pa;
771
772	m = NULL;
773	pa = 0;
774	PMAP_LOCK(pmap);
775retry:
776	pte = *pmap_pte(pmap, va);
777	if (pte != 0 && pte_test(&pte, PTE_V) &&
778	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
779		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
780			goto retry;
781
782		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
783		vm_page_hold(m);
784	}
785	PA_UNLOCK_COND(pa);
786	PMAP_UNLOCK(pmap);
787	return (m);
788}
789
790/***************************************************
791 * Low level mapping routines.....
792 ***************************************************/
793
794/*
795 * add a wired page to the kva
796 */
797void
798pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
799{
800	pt_entry_t *pte;
801	pt_entry_t opte, npte;
802
803#ifdef PMAP_DEBUG
804	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
805#endif
806	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
807
808	pte = pmap_pte(kernel_pmap, va);
809	opte = *pte;
810	*pte = npte;
811	if (pte_test(&opte, PTE_V) && opte != npte)
812		pmap_update_page(kernel_pmap, va, npte);
813}
814
815void
816pmap_kenter(vm_offset_t va, vm_paddr_t pa)
817{
818
819	KASSERT(is_cacheable_mem(pa),
820		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
821
822	pmap_kenter_attr(va, pa, PTE_C_CACHE);
823}
824
825/*
826 * remove a page from the kernel pagetables
827 */
828 /* PMAP_INLINE */ void
829pmap_kremove(vm_offset_t va)
830{
831	pt_entry_t *pte;
832
833	/*
834	 * Write back all caches from the page being destroyed
835	 */
836	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
837
838	pte = pmap_pte(kernel_pmap, va);
839	*pte = PTE_G;
840	pmap_invalidate_page(kernel_pmap, va);
841}
842
843/*
844 *	Used to map a range of physical addresses into kernel
845 *	virtual address space.
846 *
847 *	The value passed in '*virt' is a suggested virtual address for
848 *	the mapping. Architectures which can support a direct-mapped
849 *	physical to virtual region can return the appropriate address
850 *	within that region, leaving '*virt' unchanged. Other
851 *	architectures should map the pages starting at '*virt' and
852 *	update '*virt' with the first usable address after the mapped
853 *	region.
854 *
855 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
856 */
857vm_offset_t
858pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
859{
860	vm_offset_t va, sva;
861
862	if (MIPS_DIRECT_MAPPABLE(end - 1))
863		return (MIPS_PHYS_TO_DIRECT(start));
864
865	va = sva = *virt;
866	while (start < end) {
867		pmap_kenter(va, start);
868		va += PAGE_SIZE;
869		start += PAGE_SIZE;
870	}
871	*virt = va;
872	return (sva);
873}
874
875/*
876 * Add a list of wired pages to the kva
877 * this routine is only used for temporary
878 * kernel mappings that do not need to have
879 * page modification or references recorded.
880 * Note that old mappings are simply written
881 * over.  The page *must* be wired.
882 */
883void
884pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
885{
886	int i;
887	vm_offset_t origva = va;
888
889	for (i = 0; i < count; i++) {
890		pmap_flush_pvcache(m[i]);
891		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
892		va += PAGE_SIZE;
893	}
894
895	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
896}
897
898/*
899 * this routine jerks page mappings from the
900 * kernel -- it is meant only for temporary mappings.
901 */
902void
903pmap_qremove(vm_offset_t va, int count)
904{
905	/*
906	 * No need to wb/inv caches here,
907	 *   pmap_kremove will do it for us
908	 */
909
910	while (count-- > 0) {
911		pmap_kremove(va);
912		va += PAGE_SIZE;
913	}
914}
915
916/***************************************************
917 * Page table page management routines.....
918 ***************************************************/
919
920/*  Revision 1.507
921 *
922 * Simplify the reference counting of page table pages.	 Specifically, use
923 * the page table page's wired count rather than its hold count to contain
924 * the reference count.
925 */
926
927/*
928 * This routine unholds page table pages, and if the hold count
929 * drops to zero, then it decrements the wire count.
930 */
931static PMAP_INLINE int
932pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
933{
934	--m->wire_count;
935	if (m->wire_count == 0)
936		return (_pmap_unwire_pte_hold(pmap, va, m));
937	else
938		return (0);
939}
940
941static int
942_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
943{
944	pd_entry_t *pde;
945
946	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
947	/*
948	 * unmap the page table page
949	 */
950#ifdef __mips_n64
951	if (m->pindex < NUPDE)
952		pde = pmap_pde(pmap, va);
953	else
954		pde = pmap_segmap(pmap, va);
955#else
956	pde = pmap_pde(pmap, va);
957#endif
958	*pde = 0;
959	pmap->pm_stats.resident_count--;
960
961#ifdef __mips_n64
962	if (m->pindex < NUPDE) {
963		pd_entry_t *pdp;
964		vm_page_t pdpg;
965
966		/*
967		 * Recursively decrement next level pagetable refcount
968		 */
969		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
970		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
971		pmap_unwire_pte_hold(pmap, va, pdpg);
972	}
973#endif
974	if (pmap->pm_ptphint == m)
975		pmap->pm_ptphint = NULL;
976
977	/*
978	 * If the page is finally unwired, simply free it.
979	 */
980	vm_page_free_zero(m);
981	atomic_subtract_int(&cnt.v_wire_count, 1);
982	return (1);
983}
984
985/*
986 * After removing a page table entry, this routine is used to
987 * conditionally free the page, and manage the hold/wire counts.
988 */
989static int
990pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
991{
992	unsigned ptepindex;
993	pd_entry_t pteva;
994
995	if (va >= VM_MAXUSER_ADDRESS)
996		return (0);
997
998	if (mpte == NULL) {
999		ptepindex = pmap_pde_pindex(va);
1000		if (pmap->pm_ptphint &&
1001		    (pmap->pm_ptphint->pindex == ptepindex)) {
1002			mpte = pmap->pm_ptphint;
1003		} else {
1004			pteva = *pmap_pde(pmap, va);
1005			mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
1006			pmap->pm_ptphint = mpte;
1007		}
1008	}
1009	return (pmap_unwire_pte_hold(pmap, va, mpte));
1010}
1011
1012void
1013pmap_pinit0(pmap_t pmap)
1014{
1015	int i;
1016
1017	PMAP_LOCK_INIT(pmap);
1018	pmap->pm_segtab = kernel_segmap;
1019	CPU_ZERO(&pmap->pm_active);
1020	pmap->pm_ptphint = NULL;
1021	for (i = 0; i < MAXCPU; i++) {
1022		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1023		pmap->pm_asid[i].gen = 0;
1024	}
1025	PCPU_SET(curpmap, pmap);
1026	TAILQ_INIT(&pmap->pm_pvlist);
1027	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1028}
1029
1030void
1031pmap_grow_direct_page_cache()
1032{
1033
1034#ifdef __mips_n64
1035	vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1036#else
1037	vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1038#endif
1039}
1040
1041vm_page_t
1042pmap_alloc_direct_page(unsigned int index, int req)
1043{
1044	vm_page_t m;
1045
1046	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1047	    VM_ALLOC_ZERO);
1048	if (m == NULL)
1049		return (NULL);
1050
1051	if ((m->flags & PG_ZERO) == 0)
1052		pmap_zero_page(m);
1053
1054	m->pindex = index;
1055	return (m);
1056}
1057
1058/*
1059 * Initialize a preallocated and zeroed pmap structure,
1060 * such as one in a vmspace structure.
1061 */
1062int
1063pmap_pinit(pmap_t pmap)
1064{
1065	vm_offset_t ptdva;
1066	vm_page_t ptdpg;
1067	int i;
1068
1069	PMAP_LOCK_INIT(pmap);
1070
1071	/*
1072	 * allocate the page directory page
1073	 */
1074	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1075	       pmap_grow_direct_page_cache();
1076
1077	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1078	pmap->pm_segtab = (pd_entry_t *)ptdva;
1079	CPU_ZERO(&pmap->pm_active);
1080	pmap->pm_ptphint = NULL;
1081	for (i = 0; i < MAXCPU; i++) {
1082		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1083		pmap->pm_asid[i].gen = 0;
1084	}
1085	TAILQ_INIT(&pmap->pm_pvlist);
1086	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1087
1088	return (1);
1089}
1090
1091/*
1092 * this routine is called if the page table page is not
1093 * mapped correctly.
1094 */
1095static vm_page_t
1096_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1097{
1098	vm_offset_t pageva;
1099	vm_page_t m;
1100
1101	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1102	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1103	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1104
1105	/*
1106	 * Find or fabricate a new pagetable page
1107	 */
1108	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1109		if (flags & M_WAITOK) {
1110			PMAP_UNLOCK(pmap);
1111			vm_page_unlock_queues();
1112			pmap_grow_direct_page_cache();
1113			vm_page_lock_queues();
1114			PMAP_LOCK(pmap);
1115		}
1116
1117		/*
1118		 * Indicate the need to retry.	While waiting, the page
1119		 * table page may have been allocated.
1120		 */
1121		return (NULL);
1122	}
1123
1124	/*
1125	 * Map the pagetable page into the process address space, if it
1126	 * isn't already there.
1127	 */
1128	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1129
1130#ifdef __mips_n64
1131	if (ptepindex >= NUPDE) {
1132		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1133	} else {
1134		pd_entry_t *pdep, *pde;
1135		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1136		int pdeindex = ptepindex & (NPDEPG - 1);
1137		vm_page_t pg;
1138
1139		pdep = &pmap->pm_segtab[segindex];
1140		if (*pdep == NULL) {
1141			/* recurse for allocating page dir */
1142			if (_pmap_allocpte(pmap, NUPDE + segindex,
1143			    flags) == NULL) {
1144				/* alloc failed, release current */
1145				--m->wire_count;
1146				atomic_subtract_int(&cnt.v_wire_count, 1);
1147				vm_page_free_zero(m);
1148				return (NULL);
1149			}
1150		} else {
1151			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1152			pg->wire_count++;
1153		}
1154		/* Next level entry */
1155		pde = (pd_entry_t *)*pdep;
1156		pde[pdeindex] = (pd_entry_t)pageva;
1157		pmap->pm_ptphint = m;
1158	}
1159#else
1160	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1161#endif
1162	pmap->pm_stats.resident_count++;
1163
1164	/*
1165	 * Set the page table hint
1166	 */
1167	pmap->pm_ptphint = m;
1168	return (m);
1169}
1170
1171static vm_page_t
1172pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1173{
1174	unsigned ptepindex;
1175	pd_entry_t *pde;
1176	vm_page_t m;
1177
1178	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1179	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1180	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1181
1182	/*
1183	 * Calculate pagetable page index
1184	 */
1185	ptepindex = pmap_pde_pindex(va);
1186retry:
1187	/*
1188	 * Get the page directory entry
1189	 */
1190	pde = pmap_pde(pmap, va);
1191
1192	/*
1193	 * If the page table page is mapped, we just increment the hold
1194	 * count, and activate it.
1195	 */
1196	if (pde != NULL && *pde != NULL) {
1197		/*
1198		 * In order to get the page table page, try the hint first.
1199		 */
1200		if (pmap->pm_ptphint &&
1201		    (pmap->pm_ptphint->pindex == ptepindex)) {
1202			m = pmap->pm_ptphint;
1203		} else {
1204			m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1205			pmap->pm_ptphint = m;
1206		}
1207		m->wire_count++;
1208	} else {
1209		/*
1210		 * Here if the pte page isn't mapped, or if it has been
1211		 * deallocated.
1212		 */
1213		m = _pmap_allocpte(pmap, ptepindex, flags);
1214		if (m == NULL && (flags & M_WAITOK))
1215			goto retry;
1216	}
1217	return (m);
1218}
1219
1220
1221/***************************************************
1222* Pmap allocation/deallocation routines.
1223 ***************************************************/
1224/*
1225 *  Revision 1.397
1226 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1227 *    called only the page directory page(s) can be left in the pmap pte
1228 *    object, since all page table pages will have been freed by
1229 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1230 *    reference to the pmap and the page directory is wired, so the page(s)
1231 *    can never be busy.  So all there is to do is clear the magic mappings
1232 *    from the page directory and free the page(s).
1233 */
1234
1235
1236/*
1237 * Release any resources held by the given physical map.
1238 * Called when a pmap initialized by pmap_pinit is being released.
1239 * Should only be called if the map contains no valid mappings.
1240 */
1241void
1242pmap_release(pmap_t pmap)
1243{
1244	vm_offset_t ptdva;
1245	vm_page_t ptdpg;
1246
1247	KASSERT(pmap->pm_stats.resident_count == 0,
1248	    ("pmap_release: pmap resident count %ld != 0",
1249	    pmap->pm_stats.resident_count));
1250
1251	ptdva = (vm_offset_t)pmap->pm_segtab;
1252	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1253
1254	ptdpg->wire_count--;
1255	atomic_subtract_int(&cnt.v_wire_count, 1);
1256	vm_page_free_zero(ptdpg);
1257	PMAP_LOCK_DESTROY(pmap);
1258}
1259
1260/*
1261 * grow the number of kernel page table entries, if needed
1262 */
1263void
1264pmap_growkernel(vm_offset_t addr)
1265{
1266	vm_page_t nkpg;
1267	pd_entry_t *pde, *pdpe;
1268	pt_entry_t *pte;
1269	int i;
1270
1271	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1272	addr = roundup2(addr, NBSEG);
1273	if (addr - 1 >= kernel_map->max_offset)
1274		addr = kernel_map->max_offset;
1275	while (kernel_vm_end < addr) {
1276		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1277#ifdef __mips_n64
1278		if (*pdpe == 0) {
1279			/* new intermediate page table entry */
1280			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1281			if (nkpg == NULL)
1282				panic("pmap_growkernel: no memory to grow kernel");
1283			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1284			continue; /* try again */
1285		}
1286#endif
1287		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1288		if (*pde != 0) {
1289			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1290			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1291				kernel_vm_end = kernel_map->max_offset;
1292				break;
1293			}
1294			continue;
1295		}
1296
1297		/*
1298		 * This index is bogus, but out of the way
1299		 */
1300		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1301		if (!nkpg)
1302			panic("pmap_growkernel: no memory to grow kernel");
1303		nkpt++;
1304		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1305
1306		/*
1307		 * The R[4-7]?00 stores only one copy of the Global bit in
1308		 * the translation lookaside buffer for each 2 page entry.
1309		 * Thus invalid entrys must have the Global bit set so when
1310		 * Entry LO and Entry HI G bits are anded together they will
1311		 * produce a global bit to store in the tlb.
1312		 */
1313		pte = (pt_entry_t *)*pde;
1314		for (i = 0; i < NPTEPG; i++)
1315			pte[i] = PTE_G;
1316
1317		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1318		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1319			kernel_vm_end = kernel_map->max_offset;
1320			break;
1321		}
1322	}
1323}
1324
1325/***************************************************
1326* page management routines.
1327 ***************************************************/
1328
1329/*
1330 * free the pv_entry back to the free list
1331 */
1332static PMAP_INLINE void
1333free_pv_entry(pv_entry_t pv)
1334{
1335
1336	pv_entry_count--;
1337	uma_zfree(pvzone, pv);
1338}
1339
1340/*
1341 * get a new pv_entry, allocating a block from the system
1342 * when needed.
1343 * the memory allocation is performed bypassing the malloc code
1344 * because of the possibility of allocations at interrupt time.
1345 */
1346static pv_entry_t
1347get_pv_entry(pmap_t locked_pmap)
1348{
1349	static const struct timeval printinterval = { 60, 0 };
1350	static struct timeval lastprint;
1351	struct vpgqueues *vpq;
1352	pt_entry_t *pte, oldpte;
1353	pmap_t pmap;
1354	pv_entry_t allocated_pv, next_pv, pv;
1355	vm_offset_t va;
1356	vm_page_t m;
1357
1358	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1359	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1360	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1361	if (allocated_pv != NULL) {
1362		pv_entry_count++;
1363		if (pv_entry_count > pv_entry_high_water)
1364			pagedaemon_wakeup();
1365		else
1366			return (allocated_pv);
1367	}
1368	/*
1369	 * Reclaim pv entries: At first, destroy mappings to inactive
1370	 * pages.  After that, if a pv entry is still needed, destroy
1371	 * mappings to active pages.
1372	 */
1373	if (ratecheck(&lastprint, &printinterval))
1374		printf("Approaching the limit on PV entries, "
1375		    "increase the vm.pmap.shpgperproc tunable.\n");
1376	vpq = &vm_page_queues[PQ_INACTIVE];
1377retry:
1378	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1379		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
1380			continue;
1381		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1382			va = pv->pv_va;
1383			pmap = pv->pv_pmap;
1384			/* Avoid deadlock and lock recursion. */
1385			if (pmap > locked_pmap)
1386				PMAP_LOCK(pmap);
1387			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1388				continue;
1389			pmap->pm_stats.resident_count--;
1390			pte = pmap_pte(pmap, va);
1391			KASSERT(pte != NULL, ("pte"));
1392			oldpte = *pte;
1393			if (is_kernel_pmap(pmap))
1394				*pte = PTE_G;
1395			else
1396				*pte = 0;
1397			KASSERT(!pte_test(&oldpte, PTE_W),
1398			    ("wired pte for unwired page"));
1399			if (m->md.pv_flags & PV_TABLE_REF)
1400				vm_page_aflag_set(m, PGA_REFERENCED);
1401			if (pte_test(&oldpte, PTE_D))
1402				vm_page_dirty(m);
1403			pmap_invalidate_page(pmap, va);
1404			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1405			m->md.pv_list_count--;
1406			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1407			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1408			if (pmap != locked_pmap)
1409				PMAP_UNLOCK(pmap);
1410			if (allocated_pv == NULL)
1411				allocated_pv = pv;
1412			else
1413				free_pv_entry(pv);
1414		}
1415		if (TAILQ_EMPTY(&m->md.pv_list)) {
1416			vm_page_aflag_clear(m, PGA_WRITEABLE);
1417			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1418		}
1419	}
1420	if (allocated_pv == NULL) {
1421		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1422			vpq = &vm_page_queues[PQ_ACTIVE];
1423			goto retry;
1424		}
1425		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1426	}
1427	return (allocated_pv);
1428}
1429
1430/*
1431 *  Revision 1.370
1432 *
1433 *  Move pmap_collect() out of the machine-dependent code, rename it
1434 *  to reflect its new location, and add page queue and flag locking.
1435 *
1436 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1437 *  of pmap_collect() in terms of machine-independent interfaces;
1438 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1439 *
1440 *  MIPS implementation was identical to alpha [Junos 8.2]
1441 */
1442
1443/*
1444 * If it is the first entry on the list, it is actually
1445 * in the header and we must copy the following entry up
1446 * to the header.  Otherwise we must search the list for
1447 * the entry.  In either case we free the now unused entry.
1448 */
1449
1450static pv_entry_t
1451pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1452{
1453	pv_entry_t pv;
1454
1455	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1456	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1457	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1458		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1459			if (pmap == pv->pv_pmap && va == pv->pv_va)
1460				break;
1461		}
1462	} else {
1463		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1464			if (va == pv->pv_va)
1465				break;
1466		}
1467	}
1468	if (pv != NULL) {
1469		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1470		pvh->pv_list_count--;
1471		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1472	}
1473	return (pv);
1474}
1475
1476static void
1477pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1478{
1479	pv_entry_t pv;
1480
1481	pv = pmap_pvh_remove(pvh, pmap, va);
1482	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1483	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1484	     (u_long)va));
1485	free_pv_entry(pv);
1486}
1487
1488static void
1489pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1490{
1491
1492	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1493	pmap_pvh_free(&m->md, pmap, va);
1494	if (TAILQ_EMPTY(&m->md.pv_list))
1495		vm_page_aflag_clear(m, PGA_WRITEABLE);
1496}
1497
1498/*
1499 * Conditionally create a pv entry.
1500 */
1501static boolean_t
1502pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1503    vm_page_t m)
1504{
1505	pv_entry_t pv;
1506
1507	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1508	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1509	if (pv_entry_count < pv_entry_high_water &&
1510	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1511		pv_entry_count++;
1512		pv->pv_va = va;
1513		pv->pv_pmap = pmap;
1514		pv->pv_ptem = mpte;
1515		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1516		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1517		m->md.pv_list_count++;
1518		return (TRUE);
1519	} else
1520		return (FALSE);
1521}
1522
1523/*
1524 * pmap_remove_pte: do the things to unmap a page in a process
1525 */
1526static int
1527pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1528{
1529	pt_entry_t oldpte;
1530	vm_page_t m;
1531	vm_paddr_t pa;
1532
1533	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1534	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1535
1536	oldpte = *ptq;
1537	if (is_kernel_pmap(pmap))
1538		*ptq = PTE_G;
1539	else
1540		*ptq = 0;
1541
1542	if (pte_test(&oldpte, PTE_W))
1543		pmap->pm_stats.wired_count -= 1;
1544
1545	pmap->pm_stats.resident_count -= 1;
1546	pa = TLBLO_PTE_TO_PA(oldpte);
1547
1548	if (page_is_managed(pa)) {
1549		m = PHYS_TO_VM_PAGE(pa);
1550		if (pte_test(&oldpte, PTE_D)) {
1551			KASSERT(!pte_test(&oldpte, PTE_RO),
1552			    ("%s: modified page not writable: va: %p, pte: %#jx",
1553			    __func__, (void *)va, (uintmax_t)oldpte));
1554			vm_page_dirty(m);
1555		}
1556		if (m->md.pv_flags & PV_TABLE_REF)
1557			vm_page_aflag_set(m, PGA_REFERENCED);
1558		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1559
1560		pmap_remove_entry(pmap, m, va);
1561	}
1562	return (pmap_unuse_pt(pmap, va, NULL));
1563}
1564
1565/*
1566 * Remove a single page from a process address space
1567 */
1568static void
1569pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1570{
1571	pt_entry_t *ptq;
1572
1573	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1574	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1575	ptq = pmap_pte(pmap, va);
1576
1577	/*
1578	 * if there is no pte for this address, just skip it!!!
1579	 */
1580	if (!ptq || !pte_test(ptq, PTE_V)) {
1581		return;
1582	}
1583
1584	/*
1585	 * Write back all caches from the page being destroyed
1586	 */
1587	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1588
1589	/*
1590	 * get a local va for mappings for this pmap.
1591	 */
1592	(void)pmap_remove_pte(pmap, ptq, va);
1593	pmap_invalidate_page(pmap, va);
1594
1595	return;
1596}
1597
1598/*
1599 *	Remove the given range of addresses from the specified map.
1600 *
1601 *	It is assumed that the start and end are properly
1602 *	rounded to the page size.
1603 */
1604void
1605pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1606{
1607	vm_offset_t va_next;
1608	pd_entry_t *pde, *pdpe;
1609	pt_entry_t *pte;
1610
1611	if (pmap == NULL)
1612		return;
1613
1614	if (pmap->pm_stats.resident_count == 0)
1615		return;
1616
1617	vm_page_lock_queues();
1618	PMAP_LOCK(pmap);
1619
1620	/*
1621	 * special handling of removing one page.  a very common operation
1622	 * and easy to short circuit some code.
1623	 */
1624	if ((sva + PAGE_SIZE) == eva) {
1625		pmap_remove_page(pmap, sva);
1626		goto out;
1627	}
1628	for (; sva < eva; sva = va_next) {
1629		pdpe = pmap_segmap(pmap, sva);
1630#ifdef __mips_n64
1631		if (*pdpe == 0) {
1632			va_next = (sva + NBSEG) & ~SEGMASK;
1633			if (va_next < sva)
1634				va_next = eva;
1635			continue;
1636		}
1637#endif
1638		va_next = (sva + NBPDR) & ~PDRMASK;
1639		if (va_next < sva)
1640			va_next = eva;
1641
1642		pde = pmap_pdpe_to_pde(pdpe, sva);
1643		if (*pde == 0)
1644			continue;
1645		if (va_next > eva)
1646			va_next = eva;
1647		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1648		    pte++, sva += PAGE_SIZE) {
1649			pmap_remove_page(pmap, sva);
1650		}
1651	}
1652out:
1653	vm_page_unlock_queues();
1654	PMAP_UNLOCK(pmap);
1655}
1656
1657/*
1658 *	Routine:	pmap_remove_all
1659 *	Function:
1660 *		Removes this physical page from
1661 *		all physical maps in which it resides.
1662 *		Reflects back modify bits to the pager.
1663 *
1664 *	Notes:
1665 *		Original versions of this routine were very
1666 *		inefficient because they iteratively called
1667 *		pmap_remove (slow...)
1668 */
1669
1670void
1671pmap_remove_all(vm_page_t m)
1672{
1673	pv_entry_t pv;
1674	pt_entry_t *pte, tpte;
1675
1676	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1677	    ("pmap_remove_all: page %p is not managed", m));
1678	vm_page_lock_queues();
1679
1680	if (m->md.pv_flags & PV_TABLE_REF)
1681		vm_page_aflag_set(m, PGA_REFERENCED);
1682
1683	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1684		PMAP_LOCK(pv->pv_pmap);
1685
1686		/*
1687		 * If it's last mapping writeback all caches from
1688		 * the page being destroyed
1689	 	 */
1690		if (m->md.pv_list_count == 1)
1691			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1692
1693		pv->pv_pmap->pm_stats.resident_count--;
1694
1695		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1696
1697		tpte = *pte;
1698		if (is_kernel_pmap(pv->pv_pmap))
1699			*pte = PTE_G;
1700		else
1701			*pte = 0;
1702
1703		if (pte_test(&tpte, PTE_W))
1704			pv->pv_pmap->pm_stats.wired_count--;
1705
1706		/*
1707		 * Update the vm_page_t clean and reference bits.
1708		 */
1709		if (pte_test(&tpte, PTE_D)) {
1710			KASSERT(!pte_test(&tpte, PTE_RO),
1711			    ("%s: modified page not writable: va: %p, pte: %#jx",
1712			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1713			vm_page_dirty(m);
1714		}
1715		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1716
1717		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1718		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1719		m->md.pv_list_count--;
1720		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1721		PMAP_UNLOCK(pv->pv_pmap);
1722		free_pv_entry(pv);
1723	}
1724
1725	vm_page_aflag_clear(m, PGA_WRITEABLE);
1726	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1727	vm_page_unlock_queues();
1728}
1729
1730/*
1731 *	Set the physical protection on the
1732 *	specified range of this map as requested.
1733 */
1734void
1735pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1736{
1737	pt_entry_t *pte;
1738	pd_entry_t *pde, *pdpe;
1739	vm_offset_t va_next;
1740
1741	if (pmap == NULL)
1742		return;
1743
1744	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1745		pmap_remove(pmap, sva, eva);
1746		return;
1747	}
1748	if (prot & VM_PROT_WRITE)
1749		return;
1750
1751	vm_page_lock_queues();
1752	PMAP_LOCK(pmap);
1753	for (; sva < eva; sva = va_next) {
1754		pt_entry_t pbits;
1755		vm_page_t m;
1756		vm_paddr_t pa;
1757
1758		pdpe = pmap_segmap(pmap, sva);
1759#ifdef __mips_n64
1760		if (*pdpe == 0) {
1761			va_next = (sva + NBSEG) & ~SEGMASK;
1762			if (va_next < sva)
1763				va_next = eva;
1764			continue;
1765		}
1766#endif
1767		va_next = (sva + NBPDR) & ~PDRMASK;
1768		if (va_next < sva)
1769			va_next = eva;
1770
1771		pde = pmap_pdpe_to_pde(pdpe, sva);
1772		if (pde == NULL || *pde == NULL)
1773			continue;
1774		if (va_next > eva)
1775			va_next = eva;
1776
1777		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1778		     sva += PAGE_SIZE) {
1779
1780			/* Skip invalid PTEs */
1781			if (!pte_test(pte, PTE_V))
1782				continue;
1783			pbits = *pte;
1784			pa = TLBLO_PTE_TO_PA(pbits);
1785			if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1786				m = PHYS_TO_VM_PAGE(pa);
1787				vm_page_dirty(m);
1788				m->md.pv_flags &= ~PV_TABLE_MOD;
1789			}
1790			pte_clear(&pbits, PTE_D);
1791			pte_set(&pbits, PTE_RO);
1792
1793			if (pbits != *pte) {
1794				*pte = pbits;
1795				pmap_update_page(pmap, sva, pbits);
1796			}
1797		}
1798	}
1799	vm_page_unlock_queues();
1800	PMAP_UNLOCK(pmap);
1801}
1802
1803/*
1804 *	Insert the given physical page (p) at
1805 *	the specified virtual address (v) in the
1806 *	target physical map with the protection requested.
1807 *
1808 *	If specified, the page will be wired down, meaning
1809 *	that the related pte can not be reclaimed.
1810 *
1811 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1812 *	or lose information.  That is, this routine must actually
1813 *	insert this page into the given map NOW.
1814 */
1815void
1816pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1817    vm_prot_t prot, boolean_t wired)
1818{
1819	vm_paddr_t pa, opa;
1820	pt_entry_t *pte;
1821	pt_entry_t origpte, newpte;
1822	pv_entry_t pv;
1823	vm_page_t mpte, om;
1824	pt_entry_t rw = 0;
1825
1826	if (pmap == NULL)
1827		return;
1828
1829	va &= ~PAGE_MASK;
1830 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1831	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
1832	    ("pmap_enter: page %p is not busy", m));
1833
1834	mpte = NULL;
1835
1836	vm_page_lock_queues();
1837	PMAP_LOCK(pmap);
1838
1839	/*
1840	 * In the case that a page table page is not resident, we are
1841	 * creating it here.
1842	 */
1843	if (va < VM_MAXUSER_ADDRESS) {
1844		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1845	}
1846	pte = pmap_pte(pmap, va);
1847
1848	/*
1849	 * Page Directory table entry not valid, we need a new PT page
1850	 */
1851	if (pte == NULL) {
1852		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
1853		    (void *)pmap->pm_segtab, (void *)va);
1854	}
1855	pa = VM_PAGE_TO_PHYS(m);
1856	om = NULL;
1857	origpte = *pte;
1858	opa = TLBLO_PTE_TO_PA(origpte);
1859
1860	/*
1861	 * Mapping has not changed, must be protection or wiring change.
1862	 */
1863	if (pte_test(&origpte, PTE_V) && opa == pa) {
1864		/*
1865		 * Wiring change, just update stats. We don't worry about
1866		 * wiring PT pages as they remain resident as long as there
1867		 * are valid mappings in them. Hence, if a user page is
1868		 * wired, the PT page will be also.
1869		 */
1870		if (wired && !pte_test(&origpte, PTE_W))
1871			pmap->pm_stats.wired_count++;
1872		else if (!wired && pte_test(&origpte, PTE_W))
1873			pmap->pm_stats.wired_count--;
1874
1875		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
1876		    ("%s: modified page not writable: va: %p, pte: %#jx",
1877		    __func__, (void *)va, (uintmax_t)origpte));
1878
1879		/*
1880		 * Remove extra pte reference
1881		 */
1882		if (mpte)
1883			mpte->wire_count--;
1884
1885		if (page_is_managed(opa)) {
1886			om = m;
1887		}
1888		goto validate;
1889	}
1890
1891	pv = NULL;
1892
1893	/*
1894	 * Mapping has changed, invalidate old range and fall through to
1895	 * handle validating new mapping.
1896	 */
1897	if (opa) {
1898		if (pte_test(&origpte, PTE_W))
1899			pmap->pm_stats.wired_count--;
1900
1901		if (page_is_managed(opa)) {
1902			om = PHYS_TO_VM_PAGE(opa);
1903			pv = pmap_pvh_remove(&om->md, pmap, va);
1904		}
1905		if (mpte != NULL) {
1906			mpte->wire_count--;
1907			KASSERT(mpte->wire_count > 0,
1908			    ("pmap_enter: missing reference to page table page,"
1909			    " va: %p", (void *)va));
1910		}
1911	} else
1912		pmap->pm_stats.resident_count++;
1913
1914	/*
1915	 * Enter on the PV list if part of our managed memory. Note that we
1916	 * raise IPL while manipulating pv_table since pmap_enter can be
1917	 * called at interrupt time.
1918	 */
1919	if ((m->oflags & VPO_UNMANAGED) == 0) {
1920		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1921		    ("pmap_enter: managed mapping within the clean submap"));
1922		if (pv == NULL)
1923			pv = get_pv_entry(pmap);
1924		pv->pv_va = va;
1925		pv->pv_pmap = pmap;
1926		pv->pv_ptem = mpte;
1927		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1928		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1929		m->md.pv_list_count++;
1930	} else if (pv != NULL)
1931		free_pv_entry(pv);
1932
1933	/*
1934	 * Increment counters
1935	 */
1936	if (wired)
1937		pmap->pm_stats.wired_count++;
1938
1939validate:
1940	if ((access & VM_PROT_WRITE) != 0)
1941		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1942	rw = init_pte_prot(va, m, prot);
1943
1944#ifdef PMAP_DEBUG
1945	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1946#endif
1947	/*
1948	 * Now validate mapping with desired protection/wiring.
1949	 */
1950	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1951
1952	if (is_cacheable_mem(pa))
1953		newpte |= PTE_C_CACHE;
1954	else
1955		newpte |= PTE_C_UNCACHED;
1956
1957	if (wired)
1958		newpte |= PTE_W;
1959
1960	if (is_kernel_pmap(pmap))
1961	         newpte |= PTE_G;
1962
1963	/*
1964	 * if the mapping or permission bits are different, we need to
1965	 * update the pte.
1966	 */
1967	if (origpte != newpte) {
1968		if (pte_test(&origpte, PTE_V)) {
1969			*pte = newpte;
1970			if (page_is_managed(opa) && (opa != pa)) {
1971				if (om->md.pv_flags & PV_TABLE_REF)
1972					vm_page_aflag_set(om, PGA_REFERENCED);
1973				om->md.pv_flags &=
1974				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1975			}
1976			if (pte_test(&origpte, PTE_D)) {
1977				KASSERT(!pte_test(&origpte, PTE_RO),
1978				    ("pmap_enter: modified page not writable:"
1979				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
1980				if (page_is_managed(opa))
1981					vm_page_dirty(om);
1982			}
1983			if (page_is_managed(opa) &&
1984			    TAILQ_EMPTY(&om->md.pv_list))
1985				vm_page_aflag_clear(om, PGA_WRITEABLE);
1986		} else {
1987			*pte = newpte;
1988		}
1989	}
1990	pmap_update_page(pmap, va, newpte);
1991
1992	/*
1993	 * Sync I & D caches for executable pages.  Do this only if the
1994	 * target pmap belongs to the current process.  Otherwise, an
1995	 * unresolvable TLB miss may occur.
1996	 */
1997	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1998	    (prot & VM_PROT_EXECUTE)) {
1999		mips_icache_sync_range(va, PAGE_SIZE);
2000		mips_dcache_wbinv_range(va, PAGE_SIZE);
2001	}
2002	vm_page_unlock_queues();
2003	PMAP_UNLOCK(pmap);
2004}
2005
2006/*
2007 * this code makes some *MAJOR* assumptions:
2008 * 1. Current pmap & pmap exists.
2009 * 2. Not wired.
2010 * 3. Read access.
2011 * 4. No page table pages.
2012 * but is *MUCH* faster than pmap_enter...
2013 */
2014
2015void
2016pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2017{
2018
2019	vm_page_lock_queues();
2020	PMAP_LOCK(pmap);
2021	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2022	vm_page_unlock_queues();
2023	PMAP_UNLOCK(pmap);
2024}
2025
2026static vm_page_t
2027pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2028    vm_prot_t prot, vm_page_t mpte)
2029{
2030	pt_entry_t *pte;
2031	vm_paddr_t pa;
2032
2033	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2034	    (m->oflags & VPO_UNMANAGED) != 0,
2035	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2036	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2037	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2038
2039	/*
2040	 * In the case that a page table page is not resident, we are
2041	 * creating it here.
2042	 */
2043	if (va < VM_MAXUSER_ADDRESS) {
2044		pd_entry_t *pde;
2045		unsigned ptepindex;
2046
2047		/*
2048		 * Calculate pagetable page index
2049		 */
2050		ptepindex = pmap_pde_pindex(va);
2051		if (mpte && (mpte->pindex == ptepindex)) {
2052			mpte->wire_count++;
2053		} else {
2054			/*
2055			 * Get the page directory entry
2056			 */
2057			pde = pmap_pde(pmap, va);
2058
2059			/*
2060			 * If the page table page is mapped, we just
2061			 * increment the hold count, and activate it.
2062			 */
2063			if (pde && *pde != 0) {
2064				if (pmap->pm_ptphint &&
2065				    (pmap->pm_ptphint->pindex == ptepindex)) {
2066					mpte = pmap->pm_ptphint;
2067				} else {
2068					mpte = PHYS_TO_VM_PAGE(
2069						MIPS_DIRECT_TO_PHYS(*pde));
2070					pmap->pm_ptphint = mpte;
2071				}
2072				mpte->wire_count++;
2073			} else {
2074				mpte = _pmap_allocpte(pmap, ptepindex,
2075				    M_NOWAIT);
2076				if (mpte == NULL)
2077					return (mpte);
2078			}
2079		}
2080	} else {
2081		mpte = NULL;
2082	}
2083
2084	pte = pmap_pte(pmap, va);
2085	if (pte_test(pte, PTE_V)) {
2086		if (mpte != NULL) {
2087			mpte->wire_count--;
2088			mpte = NULL;
2089		}
2090		return (mpte);
2091	}
2092
2093	/*
2094	 * Enter on the PV list if part of our managed memory.
2095	 */
2096	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2097	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2098		if (mpte != NULL) {
2099			pmap_unwire_pte_hold(pmap, va, mpte);
2100			mpte = NULL;
2101		}
2102		return (mpte);
2103	}
2104
2105	/*
2106	 * Increment counters
2107	 */
2108	pmap->pm_stats.resident_count++;
2109
2110	pa = VM_PAGE_TO_PHYS(m);
2111
2112	/*
2113	 * Now validate mapping with RO protection
2114	 */
2115	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2116
2117	if (is_cacheable_mem(pa))
2118		*pte |= PTE_C_CACHE;
2119	else
2120		*pte |= PTE_C_UNCACHED;
2121
2122	if (is_kernel_pmap(pmap))
2123		*pte |= PTE_G;
2124	else {
2125		*pte |= PTE_RO;
2126		/*
2127		 * Sync I & D caches.  Do this only if the target pmap
2128		 * belongs to the current process.  Otherwise, an
2129		 * unresolvable TLB miss may occur. */
2130		if (pmap == &curproc->p_vmspace->vm_pmap) {
2131			va &= ~PAGE_MASK;
2132			mips_icache_sync_range(va, PAGE_SIZE);
2133			mips_dcache_wbinv_range(va, PAGE_SIZE);
2134		}
2135	}
2136	return (mpte);
2137}
2138
2139/*
2140 * Make a temporary mapping for a physical address.  This is only intended
2141 * to be used for panic dumps.
2142 *
2143 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2144 */
2145void *
2146pmap_kenter_temporary(vm_paddr_t pa, int i)
2147{
2148	vm_offset_t va;
2149
2150	if (i != 0)
2151		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2152		    __func__);
2153
2154	if (MIPS_DIRECT_MAPPABLE(pa)) {
2155		va = MIPS_PHYS_TO_DIRECT(pa);
2156	} else {
2157#ifndef __mips_n64    /* XXX : to be converted to new style */
2158		int cpu;
2159		register_t intr;
2160		struct local_sysmaps *sysm;
2161		pt_entry_t *pte, npte;
2162
2163		/* If this is used other than for dumps, we may need to leave
2164		 * interrupts disasbled on return. If crash dumps don't work when
2165		 * we get to this point, we might want to consider this (leaving things
2166		 * disabled as a starting point ;-)
2167	 	 */
2168		intr = intr_disable();
2169		cpu = PCPU_GET(cpuid);
2170		sysm = &sysmap_lmem[cpu];
2171		/* Since this is for the debugger, no locks or any other fun */
2172		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2173		pte = pmap_pte(kernel_pmap, sysm->base);
2174		*pte = npte;
2175		sysm->valid1 = 1;
2176		pmap_update_page(kernel_pmap, sysm->base, npte);
2177		va = sysm->base;
2178		intr_restore(intr);
2179#endif
2180	}
2181	return ((void *)va);
2182}
2183
2184void
2185pmap_kenter_temporary_free(vm_paddr_t pa)
2186{
2187#ifndef __mips_n64    /* XXX : to be converted to new style */
2188	int cpu;
2189	register_t intr;
2190	struct local_sysmaps *sysm;
2191#endif
2192
2193	if (MIPS_DIRECT_MAPPABLE(pa)) {
2194		/* nothing to do for this case */
2195		return;
2196	}
2197#ifndef __mips_n64    /* XXX : to be converted to new style */
2198	cpu = PCPU_GET(cpuid);
2199	sysm = &sysmap_lmem[cpu];
2200	if (sysm->valid1) {
2201		pt_entry_t *pte;
2202
2203		intr = intr_disable();
2204		pte = pmap_pte(kernel_pmap, sysm->base);
2205		*pte = PTE_G;
2206		pmap_invalidate_page(kernel_pmap, sysm->base);
2207		intr_restore(intr);
2208		sysm->valid1 = 0;
2209	}
2210#endif
2211}
2212
2213/*
2214 * Moved the code to Machine Independent
2215 *	 vm_map_pmap_enter()
2216 */
2217
2218/*
2219 * Maps a sequence of resident pages belonging to the same object.
2220 * The sequence begins with the given page m_start.  This page is
2221 * mapped at the given virtual address start.  Each subsequent page is
2222 * mapped at a virtual address that is offset from start by the same
2223 * amount as the page is offset from m_start within the object.  The
2224 * last page in the sequence is the page with the largest offset from
2225 * m_start that can be mapped at a virtual address less than the given
2226 * virtual address end.  Not every virtual page between start and end
2227 * is mapped; only those for which a resident page exists with the
2228 * corresponding offset from m_start are mapped.
2229 */
2230void
2231pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2232    vm_page_t m_start, vm_prot_t prot)
2233{
2234	vm_page_t m, mpte;
2235	vm_pindex_t diff, psize;
2236
2237	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2238	psize = atop(end - start);
2239	mpte = NULL;
2240	m = m_start;
2241	vm_page_lock_queues();
2242	PMAP_LOCK(pmap);
2243	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2244		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2245		    prot, mpte);
2246		m = TAILQ_NEXT(m, listq);
2247	}
2248	vm_page_unlock_queues();
2249 	PMAP_UNLOCK(pmap);
2250}
2251
2252/*
2253 * pmap_object_init_pt preloads the ptes for a given object
2254 * into the specified pmap.  This eliminates the blast of soft
2255 * faults on process startup and immediately after an mmap.
2256 */
2257void
2258pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2259    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2260{
2261	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2262	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2263	    ("pmap_object_init_pt: non-device object"));
2264}
2265
2266/*
2267 *	Routine:	pmap_change_wiring
2268 *	Function:	Change the wiring attribute for a map/virtual-address
2269 *			pair.
2270 *	In/out conditions:
2271 *			The mapping must already exist in the pmap.
2272 */
2273void
2274pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2275{
2276	pt_entry_t *pte;
2277
2278	if (pmap == NULL)
2279		return;
2280
2281	PMAP_LOCK(pmap);
2282	pte = pmap_pte(pmap, va);
2283
2284	if (wired && !pte_test(pte, PTE_W))
2285		pmap->pm_stats.wired_count++;
2286	else if (!wired && pte_test(pte, PTE_W))
2287		pmap->pm_stats.wired_count--;
2288
2289	/*
2290	 * Wiring is not a hardware characteristic so there is no need to
2291	 * invalidate TLB.
2292	 */
2293	if (wired)
2294		pte_set(pte, PTE_W);
2295	else
2296		pte_clear(pte, PTE_W);
2297	PMAP_UNLOCK(pmap);
2298}
2299
2300/*
2301 *	Copy the range specified by src_addr/len
2302 *	from the source map to the range dst_addr/len
2303 *	in the destination map.
2304 *
2305 *	This routine is only advisory and need not do anything.
2306 */
2307
2308void
2309pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2310    vm_size_t len, vm_offset_t src_addr)
2311{
2312}
2313
2314/*
2315 *	pmap_zero_page zeros the specified hardware page by mapping
2316 *	the page into KVM and using bzero to clear its contents.
2317 *
2318 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2319 */
2320void
2321pmap_zero_page(vm_page_t m)
2322{
2323	vm_offset_t va;
2324	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2325
2326	if (MIPS_DIRECT_MAPPABLE(phys)) {
2327		va = MIPS_PHYS_TO_DIRECT(phys);
2328		bzero((caddr_t)va, PAGE_SIZE);
2329		mips_dcache_wbinv_range(va, PAGE_SIZE);
2330	} else {
2331		va = pmap_lmem_map1(phys);
2332		bzero((caddr_t)va, PAGE_SIZE);
2333		mips_dcache_wbinv_range(va, PAGE_SIZE);
2334		pmap_lmem_unmap();
2335	}
2336}
2337
2338/*
2339 *	pmap_zero_page_area zeros the specified hardware page by mapping
2340 *	the page into KVM and using bzero to clear its contents.
2341 *
2342 *	off and size may not cover an area beyond a single hardware page.
2343 */
2344void
2345pmap_zero_page_area(vm_page_t m, int off, int size)
2346{
2347	vm_offset_t va;
2348	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2349
2350	if (MIPS_DIRECT_MAPPABLE(phys)) {
2351		va = MIPS_PHYS_TO_DIRECT(phys);
2352		bzero((char *)(caddr_t)va + off, size);
2353		mips_dcache_wbinv_range(va + off, size);
2354	} else {
2355		va = pmap_lmem_map1(phys);
2356		bzero((char *)va + off, size);
2357		mips_dcache_wbinv_range(va + off, size);
2358		pmap_lmem_unmap();
2359	}
2360}
2361
2362void
2363pmap_zero_page_idle(vm_page_t m)
2364{
2365	vm_offset_t va;
2366	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2367
2368	if (MIPS_DIRECT_MAPPABLE(phys)) {
2369		va = MIPS_PHYS_TO_DIRECT(phys);
2370		bzero((caddr_t)va, PAGE_SIZE);
2371		mips_dcache_wbinv_range(va, PAGE_SIZE);
2372	} else {
2373		va = pmap_lmem_map1(phys);
2374		bzero((caddr_t)va, PAGE_SIZE);
2375		mips_dcache_wbinv_range(va, PAGE_SIZE);
2376		pmap_lmem_unmap();
2377	}
2378}
2379
2380/*
2381 *	pmap_copy_page copies the specified (machine independent)
2382 *	page by mapping the page into virtual memory and using
2383 *	bcopy to copy the page, one machine dependent page at a
2384 *	time.
2385 *
2386 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2387 */
2388void
2389pmap_copy_page(vm_page_t src, vm_page_t dst)
2390{
2391	vm_offset_t va_src, va_dst;
2392	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2393	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2394
2395	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2396		/* easy case, all can be accessed via KSEG0 */
2397		/*
2398		 * Flush all caches for VA that are mapped to this page
2399		 * to make sure that data in SDRAM is up to date
2400		 */
2401		pmap_flush_pvcache(src);
2402		mips_dcache_wbinv_range_index(
2403		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2404		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2405		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2406		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2407		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2408	} else {
2409		va_src = pmap_lmem_map2(phys_src, phys_dst);
2410		va_dst = va_src + PAGE_SIZE;
2411		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2412		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2413		pmap_lmem_unmap();
2414	}
2415}
2416
2417/*
2418 * Returns true if the pmap's pv is one of the first
2419 * 16 pvs linked to from this page.  This count may
2420 * be changed upwards or downwards in the future; it
2421 * is only necessary that true be returned for a small
2422 * subset of pmaps for proper page aging.
2423 */
2424boolean_t
2425pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2426{
2427	pv_entry_t pv;
2428	int loops = 0;
2429	boolean_t rv;
2430
2431	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2432	    ("pmap_page_exists_quick: page %p is not managed", m));
2433	rv = FALSE;
2434	vm_page_lock_queues();
2435	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2436		if (pv->pv_pmap == pmap) {
2437			rv = TRUE;
2438			break;
2439		}
2440		loops++;
2441		if (loops >= 16)
2442			break;
2443	}
2444	vm_page_unlock_queues();
2445	return (rv);
2446}
2447
2448/*
2449 * Remove all pages from specified address space
2450 * this aids process exit speeds.  Also, this code
2451 * is special cased for current process only, but
2452 * can have the more generic (and slightly slower)
2453 * mode enabled.  This is much faster than pmap_remove
2454 * in the case of running down an entire address space.
2455 */
2456void
2457pmap_remove_pages(pmap_t pmap)
2458{
2459	pt_entry_t *pte, tpte;
2460	pv_entry_t pv, npv;
2461	vm_page_t m;
2462
2463	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2464		printf("warning: pmap_remove_pages called with non-current pmap\n");
2465		return;
2466	}
2467	vm_page_lock_queues();
2468	PMAP_LOCK(pmap);
2469	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
2470
2471		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2472		if (!pte_test(pte, PTE_V))
2473			panic("pmap_remove_pages: page on pm_pvlist has no pte");
2474		tpte = *pte;
2475
2476/*
2477 * We cannot remove wired pages from a process' mapping at this time
2478 */
2479		if (pte_test(&tpte, PTE_W)) {
2480			npv = TAILQ_NEXT(pv, pv_plist);
2481			continue;
2482		}
2483		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2484
2485		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2486		KASSERT(m != NULL,
2487		    ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2488
2489		pv->pv_pmap->pm_stats.resident_count--;
2490
2491		/*
2492		 * Update the vm_page_t clean and reference bits.
2493		 */
2494		if (pte_test(&tpte, PTE_D)) {
2495			vm_page_dirty(m);
2496		}
2497		npv = TAILQ_NEXT(pv, pv_plist);
2498		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2499
2500		m->md.pv_list_count--;
2501		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2502		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2503			vm_page_aflag_clear(m, PGA_WRITEABLE);
2504		}
2505		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2506		free_pv_entry(pv);
2507	}
2508	pmap_invalidate_all(pmap);
2509	PMAP_UNLOCK(pmap);
2510	vm_page_unlock_queues();
2511}
2512
2513/*
2514 * pmap_testbit tests bits in pte's
2515 * note that the testbit/changebit routines are inline,
2516 * and a lot of things compile-time evaluate.
2517 */
2518static boolean_t
2519pmap_testbit(vm_page_t m, int bit)
2520{
2521	pv_entry_t pv;
2522	pt_entry_t *pte;
2523	boolean_t rv = FALSE;
2524
2525	if (m->oflags & VPO_UNMANAGED)
2526		return (rv);
2527
2528	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2529		return (rv);
2530
2531	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2532	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2533		PMAP_LOCK(pv->pv_pmap);
2534		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2535		rv = pte_test(pte, bit);
2536		PMAP_UNLOCK(pv->pv_pmap);
2537		if (rv)
2538			break;
2539	}
2540	return (rv);
2541}
2542
2543/*
2544 * this routine is used to clear dirty bits in ptes
2545 */
2546static __inline void
2547pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2548{
2549	pv_entry_t pv;
2550	pt_entry_t *pte;
2551
2552	if (m->oflags & VPO_UNMANAGED)
2553		return;
2554
2555	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2556	/*
2557	 * Loop over all current mappings setting/clearing as appropos If
2558	 * setting RO do we need to clear the VAC?
2559	 */
2560	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2561		PMAP_LOCK(pv->pv_pmap);
2562		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2563		if (setem) {
2564			*pte |= bit;
2565			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2566		} else {
2567			pt_entry_t pbits = *pte;
2568
2569			if (pbits & bit) {
2570				if (bit == PTE_D) {
2571					if (pbits & PTE_D)
2572						vm_page_dirty(m);
2573					*pte = (pbits & ~PTE_D) | PTE_RO;
2574				} else {
2575					*pte = pbits & ~bit;
2576				}
2577				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2578			}
2579		}
2580		PMAP_UNLOCK(pv->pv_pmap);
2581	}
2582	if (!setem && bit == PTE_D)
2583		vm_page_aflag_clear(m, PGA_WRITEABLE);
2584}
2585
2586/*
2587 *	pmap_page_wired_mappings:
2588 *
2589 *	Return the number of managed mappings to the given physical page
2590 *	that are wired.
2591 */
2592int
2593pmap_page_wired_mappings(vm_page_t m)
2594{
2595	pv_entry_t pv;
2596	pmap_t pmap;
2597	pt_entry_t *pte;
2598	int count;
2599
2600	count = 0;
2601	if ((m->oflags & VPO_UNMANAGED) != 0)
2602		return (count);
2603	vm_page_lock_queues();
2604	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2605		pmap = pv->pv_pmap;
2606		PMAP_LOCK(pmap);
2607		pte = pmap_pte(pmap, pv->pv_va);
2608		if (pte_test(pte, PTE_W))
2609			count++;
2610		PMAP_UNLOCK(pmap);
2611	}
2612	vm_page_unlock_queues();
2613	return (count);
2614}
2615
2616/*
2617 * Clear the write and modified bits in each of the given page's mappings.
2618 */
2619void
2620pmap_remove_write(vm_page_t m)
2621{
2622	pv_entry_t pv, npv;
2623	vm_offset_t va;
2624	pt_entry_t *pte;
2625
2626	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2627	    ("pmap_remove_write: page %p is not managed", m));
2628
2629	/*
2630	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
2631	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
2632	 * is clear, no page table entries need updating.
2633	 */
2634	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2635	if ((m->oflags & VPO_BUSY) == 0 &&
2636	    (m->aflags & PGA_WRITEABLE) == 0)
2637		return;
2638
2639	/*
2640	 * Loop over all current mappings setting/clearing as appropos.
2641	 */
2642	vm_page_lock_queues();
2643	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2644		npv = TAILQ_NEXT(pv, pv_plist);
2645		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2646		if (pte == NULL || !pte_test(pte, PTE_V))
2647			panic("page on pm_pvlist has no pte");
2648
2649		va = pv->pv_va;
2650		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2651		    VM_PROT_READ | VM_PROT_EXECUTE);
2652	}
2653	vm_page_aflag_clear(m, PGA_WRITEABLE);
2654	vm_page_unlock_queues();
2655}
2656
2657/*
2658 *	pmap_ts_referenced:
2659 *
2660 *	Return the count of reference bits for a page, clearing all of them.
2661 */
2662int
2663pmap_ts_referenced(vm_page_t m)
2664{
2665
2666	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2667	    ("pmap_ts_referenced: page %p is not managed", m));
2668	if (m->md.pv_flags & PV_TABLE_REF) {
2669		vm_page_lock_queues();
2670		m->md.pv_flags &= ~PV_TABLE_REF;
2671		vm_page_unlock_queues();
2672		return (1);
2673	}
2674	return (0);
2675}
2676
2677/*
2678 *	pmap_is_modified:
2679 *
2680 *	Return whether or not the specified physical page was modified
2681 *	in any physical maps.
2682 */
2683boolean_t
2684pmap_is_modified(vm_page_t m)
2685{
2686	boolean_t rv;
2687
2688	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2689	    ("pmap_is_modified: page %p is not managed", m));
2690
2691	/*
2692	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2693	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2694	 * is clear, no PTEs can have PTE_D set.
2695	 */
2696	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2697	if ((m->oflags & VPO_BUSY) == 0 &&
2698	    (m->aflags & PGA_WRITEABLE) == 0)
2699		return (FALSE);
2700	vm_page_lock_queues();
2701	if (m->md.pv_flags & PV_TABLE_MOD)
2702		rv = TRUE;
2703	else
2704		rv = pmap_testbit(m, PTE_D);
2705	vm_page_unlock_queues();
2706	return (rv);
2707}
2708
2709/* N/C */
2710
2711/*
2712 *	pmap_is_prefaultable:
2713 *
2714 *	Return whether or not the specified virtual address is elgible
2715 *	for prefault.
2716 */
2717boolean_t
2718pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2719{
2720	pd_entry_t *pde;
2721	pt_entry_t *pte;
2722	boolean_t rv;
2723
2724	rv = FALSE;
2725	PMAP_LOCK(pmap);
2726	pde = pmap_pde(pmap, addr);
2727	if (pde != NULL && *pde != 0) {
2728		pte = pmap_pde_to_pte(pde, addr);
2729		rv = (*pte == 0);
2730	}
2731	PMAP_UNLOCK(pmap);
2732	return (rv);
2733}
2734
2735/*
2736 *	Clear the modify bits on the specified physical page.
2737 */
2738void
2739pmap_clear_modify(vm_page_t m)
2740{
2741
2742	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2743	    ("pmap_clear_modify: page %p is not managed", m));
2744	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2745	KASSERT((m->oflags & VPO_BUSY) == 0,
2746	    ("pmap_clear_modify: page %p is busy", m));
2747
2748	/*
2749	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
2750	 * If the object containing the page is locked and the page is not
2751	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
2752	 */
2753	if ((m->aflags & PGA_WRITEABLE) == 0)
2754		return;
2755	vm_page_lock_queues();
2756	if (m->md.pv_flags & PV_TABLE_MOD) {
2757		pmap_changebit(m, PTE_D, FALSE);
2758		m->md.pv_flags &= ~PV_TABLE_MOD;
2759	}
2760	vm_page_unlock_queues();
2761}
2762
2763/*
2764 *	pmap_is_referenced:
2765 *
2766 *	Return whether or not the specified physical page was referenced
2767 *	in any physical maps.
2768 */
2769boolean_t
2770pmap_is_referenced(vm_page_t m)
2771{
2772
2773	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2774	    ("pmap_is_referenced: page %p is not managed", m));
2775	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2776}
2777
2778/*
2779 *	pmap_clear_reference:
2780 *
2781 *	Clear the reference bit on the specified physical page.
2782 */
2783void
2784pmap_clear_reference(vm_page_t m)
2785{
2786
2787	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2788	    ("pmap_clear_reference: page %p is not managed", m));
2789	vm_page_lock_queues();
2790	if (m->md.pv_flags & PV_TABLE_REF) {
2791		m->md.pv_flags &= ~PV_TABLE_REF;
2792	}
2793	vm_page_unlock_queues();
2794}
2795
2796/*
2797 * Miscellaneous support routines follow
2798 */
2799
2800/*
2801 * Map a set of physical memory pages into the kernel virtual
2802 * address space. Return a pointer to where it is mapped. This
2803 * routine is intended to be used for mapping device memory,
2804 * NOT real memory.
2805 */
2806
2807/*
2808 * Map a set of physical memory pages into the kernel virtual
2809 * address space. Return a pointer to where it is mapped. This
2810 * routine is intended to be used for mapping device memory,
2811 * NOT real memory.
2812 *
2813 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2814 */
2815void *
2816pmap_mapdev(vm_paddr_t pa, vm_size_t size)
2817{
2818        vm_offset_t va, tmpva, offset;
2819
2820	/*
2821	 * KSEG1 maps only first 512M of phys address space. For
2822	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2823	 */
2824	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2825		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2826	else {
2827		offset = pa & PAGE_MASK;
2828		size = roundup(size + offset, PAGE_SIZE);
2829
2830		va = kmem_alloc_nofault(kernel_map, size);
2831		if (!va)
2832			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2833		pa = trunc_page(pa);
2834		for (tmpva = va; size > 0;) {
2835			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2836			size -= PAGE_SIZE;
2837			tmpva += PAGE_SIZE;
2838			pa += PAGE_SIZE;
2839		}
2840	}
2841
2842	return ((void *)(va + offset));
2843}
2844
2845void
2846pmap_unmapdev(vm_offset_t va, vm_size_t size)
2847{
2848#ifndef __mips_n64
2849	vm_offset_t base, offset, tmpva;
2850
2851	/* If the address is within KSEG1 then there is nothing to do */
2852	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2853		return;
2854
2855	base = trunc_page(va);
2856	offset = va & PAGE_MASK;
2857	size = roundup(size + offset, PAGE_SIZE);
2858	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2859		pmap_kremove(tmpva);
2860	kmem_free(kernel_map, base, size);
2861#endif
2862}
2863
2864/*
2865 * perform the pmap work for mincore
2866 */
2867int
2868pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2869{
2870	pt_entry_t *ptep, pte;
2871	vm_paddr_t pa;
2872	vm_page_t m;
2873	int val;
2874	boolean_t managed;
2875
2876	PMAP_LOCK(pmap);
2877retry:
2878	ptep = pmap_pte(pmap, addr);
2879	pte = (ptep != NULL) ? *ptep : 0;
2880	if (!pte_test(&pte, PTE_V)) {
2881		val = 0;
2882		goto out;
2883	}
2884	val = MINCORE_INCORE;
2885	if (pte_test(&pte, PTE_D))
2886		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2887	pa = TLBLO_PTE_TO_PA(pte);
2888	managed = page_is_managed(pa);
2889	if (managed) {
2890		/*
2891		 * This may falsely report the given address as
2892		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2893		 * per-PTE reference information, it is impossible to
2894		 * determine if the address is MINCORE_REFERENCED.
2895		 */
2896		m = PHYS_TO_VM_PAGE(pa);
2897		if ((m->aflags & PGA_REFERENCED) != 0)
2898			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2899	}
2900	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2901	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2902		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2903		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2904			goto retry;
2905	} else
2906out:
2907		PA_UNLOCK_COND(*locked_pa);
2908	PMAP_UNLOCK(pmap);
2909	return (val);
2910}
2911
2912void
2913pmap_activate(struct thread *td)
2914{
2915	pmap_t pmap, oldpmap;
2916	struct proc *p = td->td_proc;
2917	u_int cpuid;
2918
2919	critical_enter();
2920
2921	pmap = vmspace_pmap(p->p_vmspace);
2922	oldpmap = PCPU_GET(curpmap);
2923	cpuid = PCPU_GET(cpuid);
2924
2925	if (oldpmap)
2926		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
2927	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2928	pmap_asid_alloc(pmap);
2929	if (td == curthread) {
2930		PCPU_SET(segbase, pmap->pm_segtab);
2931		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
2932	}
2933
2934	PCPU_SET(curpmap, pmap);
2935	critical_exit();
2936}
2937
2938void
2939pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2940{
2941}
2942
2943/*
2944 *	Increase the starting virtual address of the given mapping if a
2945 *	different alignment might result in more superpage mappings.
2946 */
2947void
2948pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2949    vm_offset_t *addr, vm_size_t size)
2950{
2951	vm_offset_t superpage_offset;
2952
2953	if (size < NBSEG)
2954		return;
2955	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2956		offset += ptoa(object->pg_color);
2957	superpage_offset = offset & SEGMASK;
2958	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2959	    (*addr & SEGMASK) == superpage_offset)
2960		return;
2961	if ((*addr & SEGMASK) < superpage_offset)
2962		*addr = (*addr & ~SEGMASK) + superpage_offset;
2963	else
2964		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2965}
2966
2967/*
2968 * 	Increase the starting virtual address of the given mapping so
2969 * 	that it is aligned to not be the second page in a TLB entry.
2970 * 	This routine assumes that the length is appropriately-sized so
2971 * 	that the allocation does not share a TLB entry at all if required.
2972 */
2973void
2974pmap_align_tlb(vm_offset_t *addr)
2975{
2976	if ((*addr & PAGE_SIZE) == 0)
2977		return;
2978	*addr += PAGE_SIZE;
2979	return;
2980}
2981
2982#ifdef DDB
2983DB_SHOW_COMMAND(ptable, ddb_pid_dump)
2984{
2985	pmap_t pmap;
2986	struct thread *td = NULL;
2987	struct proc *p;
2988	int i, j, k;
2989	vm_paddr_t pa;
2990	vm_offset_t va;
2991
2992	if (have_addr) {
2993		td = db_lookup_thread(addr, TRUE);
2994		if (td == NULL) {
2995			db_printf("Invalid pid or tid");
2996			return;
2997		}
2998		p = td->td_proc;
2999		if (p->p_vmspace == NULL) {
3000			db_printf("No vmspace for process");
3001			return;
3002		}
3003			pmap = vmspace_pmap(p->p_vmspace);
3004	} else
3005		pmap = kernel_pmap;
3006
3007	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3008	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3009	    pmap->pm_asid[0].gen);
3010	for (i = 0; i < NPDEPG; i++) {
3011		pd_entry_t *pdpe;
3012		pt_entry_t *pde;
3013		pt_entry_t pte;
3014
3015		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3016		if (pdpe == NULL)
3017			continue;
3018		db_printf("[%4d] %p\n", i, pdpe);
3019#ifdef __mips_n64
3020		for (j = 0; j < NPDEPG; j++) {
3021			pde = (pt_entry_t *)pdpe[j];
3022			if (pde == NULL)
3023				continue;
3024			db_printf("\t[%4d] %p\n", j, pde);
3025#else
3026		{
3027			j = 0;
3028			pde =  (pt_entry_t *)pdpe;
3029#endif
3030			for (k = 0; k < NPTEPG; k++) {
3031				pte = pde[k];
3032				if (pte == 0 || !pte_test(&pte, PTE_V))
3033					continue;
3034				pa = TLBLO_PTE_TO_PA(pte);
3035				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3036				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3037				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3038			}
3039		}
3040	}
3041}
3042#endif
3043
3044#if defined(DEBUG)
3045
3046static void pads(pmap_t pm);
3047void pmap_pvdump(vm_offset_t pa);
3048
3049/* print address space of pmap*/
3050static void
3051pads(pmap_t pm)
3052{
3053	unsigned va, i, j;
3054	pt_entry_t *ptep;
3055
3056	if (pm == kernel_pmap)
3057		return;
3058	for (i = 0; i < NPTEPG; i++)
3059		if (pm->pm_segtab[i])
3060			for (j = 0; j < NPTEPG; j++) {
3061				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3062				if (pm == kernel_pmap && va < KERNBASE)
3063					continue;
3064				if (pm != kernel_pmap &&
3065				    va >= VM_MAXUSER_ADDRESS)
3066					continue;
3067				ptep = pmap_pte(pm, va);
3068				if (pte_test(ptep, PTE_V))
3069					printf("%x:%x ", va, *(int *)ptep);
3070			}
3071
3072}
3073
3074void
3075pmap_pvdump(vm_offset_t pa)
3076{
3077	register pv_entry_t pv;
3078	vm_page_t m;
3079
3080	printf("pa %x", pa);
3081	m = PHYS_TO_VM_PAGE(pa);
3082	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3083	    pv = TAILQ_NEXT(pv, pv_list)) {
3084		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3085		pads(pv->pv_pmap);
3086	}
3087	printf(" ");
3088}
3089
3090/* N/C */
3091#endif
3092
3093
3094/*
3095 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3096 * It takes almost as much or more time to search the TLB for a
3097 * specific ASID and flush those entries as it does to flush the entire TLB.
3098 * Therefore, when we allocate a new ASID, we just take the next number. When
3099 * we run out of numbers, we flush the TLB, increment the generation count
3100 * and start over. ASID zero is reserved for kernel use.
3101 */
3102static void
3103pmap_asid_alloc(pmap)
3104	pmap_t pmap;
3105{
3106	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3107	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3108	else {
3109		if (PCPU_GET(next_asid) == pmap_max_asid) {
3110			tlb_invalidate_all_user(NULL);
3111			PCPU_SET(asid_generation,
3112			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3113			if (PCPU_GET(asid_generation) == 0) {
3114				PCPU_SET(asid_generation, 1);
3115			}
3116			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3117		}
3118		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3119		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3120		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3121	}
3122}
3123
3124int
3125page_is_managed(vm_paddr_t pa)
3126{
3127	vm_offset_t pgnum = atop(pa);
3128
3129	if (pgnum >= first_page) {
3130		vm_page_t m;
3131
3132		m = PHYS_TO_VM_PAGE(pa);
3133		if (m == NULL)
3134			return (0);
3135		if ((m->oflags & VPO_UNMANAGED) == 0)
3136			return (1);
3137	}
3138	return (0);
3139}
3140
3141static pt_entry_t
3142init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3143{
3144	pt_entry_t rw;
3145
3146	if (!(prot & VM_PROT_WRITE))
3147		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3148	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3149		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3150			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3151		else
3152			rw = PTE_V | PTE_C_CACHE;
3153		vm_page_aflag_set(m, PGA_WRITEABLE);
3154	} else
3155		/* Needn't emulate a modified bit for unmanaged pages. */
3156		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3157	return (rw);
3158}
3159
3160/*
3161 * pmap_emulate_modified : do dirty bit emulation
3162 *
3163 * On SMP, update just the local TLB, other CPUs will update their
3164 * TLBs from PTE lazily, if they get the exception.
3165 * Returns 0 in case of sucess, 1 if the page is read only and we
3166 * need to fault.
3167 */
3168int
3169pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3170{
3171	vm_page_t m;
3172	pt_entry_t *pte;
3173 	vm_paddr_t pa;
3174
3175	PMAP_LOCK(pmap);
3176	pte = pmap_pte(pmap, va);
3177	if (pte == NULL)
3178		panic("pmap_emulate_modified: can't find PTE");
3179#ifdef SMP
3180	/* It is possible that some other CPU changed m-bit */
3181	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3182		tlb_update(pmap, va, *pte);
3183		PMAP_UNLOCK(pmap);
3184		return (0);
3185	}
3186#else
3187	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3188		panic("pmap_emulate_modified: invalid pte");
3189#endif
3190	if (pte_test(pte, PTE_RO)) {
3191		/* write to read only page in the kernel */
3192		PMAP_UNLOCK(pmap);
3193		return (1);
3194	}
3195	pte_set(pte, PTE_D);
3196	tlb_update(pmap, va, *pte);
3197	pa = TLBLO_PTE_TO_PA(*pte);
3198	if (!page_is_managed(pa))
3199		panic("pmap_emulate_modified: unmanaged page");
3200	m = PHYS_TO_VM_PAGE(pa);
3201	m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3202	PMAP_UNLOCK(pmap);
3203	return (0);
3204}
3205
3206/*
3207 *	Routine:	pmap_kextract
3208 *	Function:
3209 *		Extract the physical page address associated
3210 *		virtual address.
3211 */
3212 /* PMAP_INLINE */ vm_offset_t
3213pmap_kextract(vm_offset_t va)
3214{
3215	int mapped;
3216
3217	/*
3218	 * First, the direct-mapped regions.
3219	 */
3220#if defined(__mips_n64)
3221	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3222		return (MIPS_XKPHYS_TO_PHYS(va));
3223#endif
3224	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3225		return (MIPS_KSEG0_TO_PHYS(va));
3226
3227	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3228		return (MIPS_KSEG1_TO_PHYS(va));
3229
3230	/*
3231	 * User virtual addresses.
3232	 */
3233	if (va < VM_MAXUSER_ADDRESS) {
3234		pt_entry_t *ptep;
3235
3236		if (curproc && curproc->p_vmspace) {
3237			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3238			if (ptep) {
3239				return (TLBLO_PTE_TO_PA(*ptep) |
3240				    (va & PAGE_MASK));
3241			}
3242			return (0);
3243		}
3244	}
3245
3246	/*
3247	 * Should be kernel virtual here, otherwise fail
3248	 */
3249	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3250#if defined(__mips_n64)
3251	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3252#endif
3253	/*
3254	 * Kernel virtual.
3255	 */
3256
3257	if (mapped) {
3258		pt_entry_t *ptep;
3259
3260		/* Is the kernel pmap initialized? */
3261		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3262			/* It's inside the virtual address range */
3263			ptep = pmap_pte(kernel_pmap, va);
3264			if (ptep) {
3265				return (TLBLO_PTE_TO_PA(*ptep) |
3266				    (va & PAGE_MASK));
3267			}
3268		}
3269		return (0);
3270	}
3271
3272	panic("%s for unknown address space %p.", __func__, (void *)va);
3273}
3274
3275
3276void
3277pmap_flush_pvcache(vm_page_t m)
3278{
3279	pv_entry_t pv;
3280
3281	if (m != NULL) {
3282		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3283		    pv = TAILQ_NEXT(pv, pv_list)) {
3284			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3285		}
3286	}
3287}
3288