pmap.c revision 216324
1288943Sdim/*
2249259Sdim * Copyright (c) 1991 Regents of the University of California.
3249259Sdim * All rights reserved.
4249259Sdim * Copyright (c) 1994 John S. Dyson
5249259Sdim * All rights reserved.
6249259Sdim * Copyright (c) 1994 David Greenman
7249259Sdim * All rights reserved.
8249259Sdim *
9249259Sdim * This code is derived from software contributed to Berkeley by
10249259Sdim * the Systems Programming Group of the University of Utah Computer
11249259Sdim * Science Department and William Jolitz of UUNET Technologies Inc.
12249259Sdim *
13249259Sdim * Redistribution and use in source and binary forms, with or without
14249259Sdim * modification, are permitted provided that the following conditions
15249259Sdim * are met:
16288943Sdim * 1. Redistributions of source code must retain the above copyright
17249259Sdim *    notice, this list of conditions and the following disclaimer.
18249259Sdim * 2. Redistributions in binary form must reproduce the above copyright
19249259Sdim *    notice, this list of conditions and the following disclaimer in the
20276479Sdim *    documentation and/or other materials provided with the distribution.
21249259Sdim * 4. Neither the name of the University nor the names of its contributors
22249259Sdim *    may be used to endorse or promote products derived from this software
23276479Sdim *    without specific prior written permission.
24288943Sdim *
25249259Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26249259Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27249259Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28276479Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29280031Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30249259Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31249259Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32280031Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33280031Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34280031Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35280031Sdim * SUCH DAMAGE.
36249259Sdim *
37280031Sdim *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38280031Sdim *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39280031Sdim *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40280031Sdim */
41249259Sdim
42280031Sdim/*
43280031Sdim *	Manages physical address maps.
44280031Sdim *
45280031Sdim *	In addition to hardware address maps, this
46280031Sdim *	module is called upon to provide software-use-only
47280031Sdim *	maps which may or may not be stored in the same
48280031Sdim *	form as hardware maps.	These pseudo-maps are
49280031Sdim *	used to store intermediate results from copy
50280031Sdim *	operations to and from address spaces.
51280031Sdim *
52280031Sdim *	Since the information managed by this module is
53280031Sdim *	also stored by the logical address mapping module,
54280031Sdim *	this module may throw away valid virtual-to-physical
55280031Sdim *	mappings at almost any time.  However, invalidations
56280031Sdim *	of virtual-to-physical mappings must be done as
57280031Sdim *	requested.
58249259Sdim *
59280031Sdim *	In order to cope with hardware architectures which
60280031Sdim *	make virtual-to-physical map invalidates expensive,
61280031Sdim *	this module may delay invalidate or reduced protection
62280031Sdim *	operations until such time as they are actually
63249259Sdim *	necessary.  This module is given full information as
64280031Sdim *	to which processors are currently using which maps,
65280031Sdim *	and to when physical maps must be made correct.
66280031Sdim */
67249259Sdim
68280031Sdim#include <sys/cdefs.h>
69280031Sdim__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 216324 2010-12-09 12:30:13Z jchandra $");
70280031Sdim
71249259Sdim#include "opt_msgbuf.h"
72280031Sdim#include "opt_ddb.h"
73280031Sdim
74249259Sdim#include <sys/param.h>
75280031Sdim#include <sys/systm.h>
76280031Sdim#include <sys/proc.h>
77280031Sdim#include <sys/msgbuf.h>
78280031Sdim#include <sys/vmmeter.h>
79280031Sdim#include <sys/mman.h>
80280031Sdim#include <sys/smp.h>
81280031Sdim#ifdef DDB
82249259Sdim#include <ddb/ddb.h>
83280031Sdim#endif
84280031Sdim
85280031Sdim#include <vm/vm.h>
86280031Sdim#include <vm/vm_param.h>
87288943Sdim#include <vm/vm_phys.h>
88280031Sdim#include <sys/lock.h>
89249259Sdim#include <sys/mutex.h>
90280031Sdim#include <vm/vm_kern.h>
91280031Sdim#include <vm/vm_page.h>
92280031Sdim#include <vm/vm_map.h>
93280031Sdim#include <vm/vm_object.h>
94249259Sdim#include <vm/vm_extern.h>
95280031Sdim#include <vm/vm_pageout.h>
96280031Sdim#include <vm/vm_pager.h>
97280031Sdim#include <vm/uma.h>
98280031Sdim#include <sys/pcpu.h>
99249259Sdim#include <sys/sched.h>
100280031Sdim#ifdef SMP
101280031Sdim#include <sys/smp.h>
102280031Sdim#endif
103280031Sdim
104280031Sdim#include <machine/cache.h>
105280031Sdim#include <machine/md_var.h>
106280031Sdim#include <machine/tlb.h>
107249259Sdim
108280031Sdim#undef PMAP_DEBUG
109280031Sdim
110280031Sdim#ifndef PMAP_SHPGPERPROC
111280031Sdim#define	PMAP_SHPGPERPROC 200
112249259Sdim#endif
113280031Sdim
114280031Sdim#if !defined(DIAGNOSTIC)
115280031Sdim#define	PMAP_INLINE __inline
116249259Sdim#else
117249259Sdim#define	PMAP_INLINE
118280031Sdim#endif
119280031Sdim
120280031Sdim/*
121249259Sdim * Get PDEs and PTEs for user/kernel address space
122249259Sdim *
123296417Sdim * XXX The & for pmap_segshift() is wrong, as is the fact that it doesn't
124296417Sdim *     trim off gratuitous bits of the address space.  By having the &
125296417Sdim *     there, we break defining NUSERPGTBLS below because the address space
126296417Sdim *     is defined such that it ends immediately after NPDEPG*NPTEPG*PAGE_SIZE,
127296417Sdim *     so we end up getting NUSERPGTBLS of 0.
128296417Sdim */
129296417Sdim#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
130296417Sdim#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
131296417Sdim#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
132296417Sdim#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
133296417Sdim
134296417Sdim#ifdef __mips_n64
135296417Sdim#define	NUPDE			(NPDEPG * NPDEPG)
136296417Sdim#define	NUSERPGTBLS		(NUPDE + NPDEPG)
137296417Sdim#else
138296417Sdim#define	NUPDE			(NPDEPG)
139296417Sdim#define	NUSERPGTBLS		(NUPDE)
140296417Sdim#endif
141296417Sdim
142296417Sdim#define	is_kernel_pmap(x)	((x) == kernel_pmap)
143296417Sdim
144296417Sdimstruct pmap kernel_pmap_store;
145296417Sdimpd_entry_t *kernel_segmap;
146296417Sdim
147296417Sdimvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
148296417Sdimvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
149296417Sdim
150296417Sdimstatic int nkpt;
151296417Sdimunsigned pmap_max_asid;		/* max ASID supported by the system */
152296417Sdim
153296417Sdim#define	PMAP_ASID_RESERVED	0
154296417Sdim
155280031Sdimvm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
156280031Sdim
157280031Sdimstatic void pmap_asid_alloc(pmap_t pmap);
158280031Sdim
159280031Sdim/*
160280031Sdim * Data for the pv entry allocation mechanism
161249259Sdim */
162280031Sdimstatic uma_zone_t pvzone;
163280031Sdimstatic struct vm_object pvzone_obj;
164249259Sdimstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
165249259Sdim
166280031Sdimstatic PMAP_INLINE void free_pv_entry(pv_entry_t pv);
167280031Sdimstatic pv_entry_t get_pv_entry(pmap_t locked_pmap);
168280031Sdimstatic void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
169280031Sdimstatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
170249259Sdim    vm_offset_t va);
171249259Sdimstatic __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
172280031Sdimstatic vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
173280031Sdim    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
174280031Sdimstatic int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
175280031Sdimstatic void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
176280031Sdimstatic void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
177280031Sdimstatic boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178280031Sdim    vm_offset_t va, vm_page_t m);
179280031Sdimstatic void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
180280031Sdimstatic void pmap_invalidate_all(pmap_t pmap);
181249259Sdimstatic void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
182280031Sdimstatic int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
183280031Sdim
184280031Sdimstatic vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
185280031Sdimstatic vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
186280031Sdimstatic int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
187280031Sdimstatic int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
188280031Sdim
189249259Sdim#ifdef SMP
190280031Sdimstatic void pmap_invalidate_page_action(void *arg);
191288943Sdimstatic void pmap_invalidate_all_action(void *arg);
192288943Sdimstatic void pmap_update_page_action(void *arg);
193296417Sdim#endif
194296417Sdim
195249259Sdim#ifndef __mips_n64
196280031Sdim/*
197280031Sdim * This structure is for high memory (memory above 512Meg in 32 bit) support.
198280031Sdim * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
199280031Sdim * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
200280031Sdim *
201280031Sdim * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
202280031Sdim * access a highmem physical address on a CPU, we map the physical address to
203280031Sdim * the reserved virtual address for the CPU in the kernel pagetable.  This is
204280031Sdim * done with interrupts disabled(although a spinlock and sched_pin would be
205280031Sdim * sufficient).
206280031Sdim */
207280031Sdimstruct local_sysmaps {
208280031Sdim	vm_offset_t	base;
209280031Sdim	uint32_t	saved_intr;
210280031Sdim	uint16_t	valid1, valid2;
211280031Sdim};
212280031Sdimstatic struct local_sysmaps sysmap_lmem[MAXCPU];
213280031Sdim
214280031Sdimstatic __inline void
215280031Sdimpmap_alloc_lmem_map(void)
216280031Sdim{
217280031Sdim	int i;
218280031Sdim
219280031Sdim	for (i = 0; i < MAXCPU; i++) {
220280031Sdim		sysmap_lmem[i].base = virtual_avail;
221280031Sdim		virtual_avail += PAGE_SIZE * 2;
222280031Sdim		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
223280031Sdim	}
224280031Sdim}
225280031Sdim
226280031Sdimstatic __inline vm_offset_t
227280031Sdimpmap_lmem_map1(vm_paddr_t phys)
228280031Sdim{
229280031Sdim	struct local_sysmaps *sysm;
230280031Sdim	pt_entry_t *pte, npte;
231280031Sdim	vm_offset_t va;
232280031Sdim	uint32_t intr;
233280031Sdim	int cpu;
234280031Sdim
235280031Sdim	intr = intr_disable();
236280031Sdim	cpu = PCPU_GET(cpuid);
237280031Sdim	sysm = &sysmap_lmem[cpu];
238280031Sdim	sysm->saved_intr = intr;
239249259Sdim	va = sysm->base;
240280031Sdim	npte = TLBLO_PA_TO_PFN(phys) |
241249259Sdim	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
242249259Sdim	pte = pmap_pte(kernel_pmap, va);
243280031Sdim	*pte = npte;
244280031Sdim	sysm->valid1 = 1;
245280031Sdim	return (va);
246280031Sdim}
247280031Sdim
248280031Sdimstatic __inline vm_offset_t
249280031Sdimpmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
250249259Sdim{
251249259Sdim	struct local_sysmaps *sysm;
252280031Sdim	pt_entry_t *pte, npte;
253280031Sdim	vm_offset_t va1, va2;
254280031Sdim	uint32_t intr;
255280031Sdim	int cpu;
256280031Sdim
257280031Sdim	intr = intr_disable();
258280031Sdim	cpu = PCPU_GET(cpuid);
259280031Sdim	sysm = &sysmap_lmem[cpu];
260280031Sdim	sysm->saved_intr = intr;
261280031Sdim	va1 = sysm->base;
262280031Sdim	va2 = sysm->base + PAGE_SIZE;
263280031Sdim	npte = TLBLO_PA_TO_PFN(phys1) |
264280031Sdim	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
265280031Sdim	pte = pmap_pte(kernel_pmap, va1);
266288943Sdim	*pte = npte;
267288943Sdim	npte =  TLBLO_PA_TO_PFN(phys2) |
268280031Sdim	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
269280031Sdim	pte = pmap_pte(kernel_pmap, va2);
270280031Sdim	*pte = npte;
271280031Sdim	sysm->valid1 = 1;
272280031Sdim	sysm->valid2 = 1;
273280031Sdim	return (va1);
274249259Sdim}
275249259Sdim
276296417Sdimstatic __inline void
277296417Sdimpmap_lmem_unmap(void)
278296417Sdim{
279296417Sdim	struct local_sysmaps *sysm;
280296417Sdim	pt_entry_t *pte;
281296417Sdim	int cpu;
282280031Sdim
283280031Sdim	cpu = PCPU_GET(cpuid);
284280031Sdim	sysm = &sysmap_lmem[cpu];
285249259Sdim	pte = pmap_pte(kernel_pmap, sysm->base);
286280031Sdim	*pte = PTE_G;
287249259Sdim	tlb_invalidate_address(kernel_pmap, sysm->base);
288276479Sdim	sysm->valid1 = 0;
289249259Sdim	if (sysm->valid2) {
290249259Sdim		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
291280031Sdim		*pte = PTE_G;
292280031Sdim		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
293249259Sdim		sysm->valid2 = 0;
294280031Sdim	}
295280031Sdim	intr_restore(sysm->saved_intr);
296280031Sdim}
297280031Sdim#else  /* __mips_n64 */
298280031Sdim
299288943Sdimstatic __inline void
300280031Sdimpmap_alloc_lmem_map(void)
301288943Sdim{
302280031Sdim}
303280031Sdim
304276479Sdimstatic __inline vm_offset_t
305280031Sdimpmap_lmem_map1(vm_paddr_t phys)
306249259Sdim{
307280031Sdim
308280031Sdim	return (0);
309249259Sdim}
310249259Sdim
311280031Sdimstatic __inline vm_offset_t
312280031Sdimpmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
313280031Sdim{
314280031Sdim
315280031Sdim	return (0);
316280031Sdim}
317280031Sdim
318280031Sdimstatic __inline vm_offset_t
319280031Sdimpmap_lmem_unmap(void)
320280031Sdim{
321280031Sdim
322280031Sdim	return (0);
323280031Sdim}
324280031Sdim#endif /* !__mips_n64 */
325280031Sdim
326280031Sdim/*
327280031Sdim * Page table entry lookup routines.
328280031Sdim */
329280031Sdimstatic __inline pd_entry_t *
330280031Sdimpmap_segmap(pmap_t pmap, vm_offset_t va)
331280031Sdim{
332280031Sdim
333280031Sdim	return (&pmap->pm_segtab[pmap_seg_index(va)]);
334280031Sdim}
335280031Sdim
336280031Sdim#ifdef __mips_n64
337280031Sdimstatic __inline pd_entry_t *
338280031Sdimpmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
339280031Sdim{
340280031Sdim	pd_entry_t *pde;
341280031Sdim
342280031Sdim	pde = (pd_entry_t *)*pdpe;
343280031Sdim	return (&pde[pmap_pde_index(va)]);
344280031Sdim}
345288943Sdim
346280031Sdimstatic __inline pd_entry_t *
347280031Sdimpmap_pde(pmap_t pmap, vm_offset_t va)
348280031Sdim{
349280031Sdim	pd_entry_t *pdpe;
350280031Sdim
351288943Sdim	pdpe = pmap_segmap(pmap, va);
352280031Sdim	if (pdpe == NULL || *pdpe == NULL)
353288943Sdim		return (NULL);
354280031Sdim
355280031Sdim	return (pmap_pdpe_to_pde(pdpe, va));
356280031Sdim}
357280031Sdim#else
358280031Sdimstatic __inline pd_entry_t *
359280031Sdimpmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
360280031Sdim{
361280031Sdim
362280031Sdim	return (pdpe);
363280031Sdim}
364280031Sdim
365280031Sdimstatic __inline
366280031Sdimpd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
367280031Sdim{
368280031Sdim
369280031Sdim	return (pmap_segmap(pmap, va));
370280031Sdim}
371280031Sdim#endif
372280031Sdim
373280031Sdimstatic __inline pt_entry_t *
374280031Sdimpmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
375280031Sdim{
376280031Sdim	pt_entry_t *pte;
377280031Sdim
378280031Sdim	pte = (pt_entry_t *)*pde;
379280031Sdim	return (&pte[pmap_pte_index(va)]);
380280031Sdim}
381280031Sdim
382280031Sdimpt_entry_t *
383280031Sdimpmap_pte(pmap_t pmap, vm_offset_t va)
384280031Sdim{
385280031Sdim	pd_entry_t *pde;
386280031Sdim
387280031Sdim	pde = pmap_pde(pmap, va);
388280031Sdim	if (pde == NULL || *pde == NULL)
389288943Sdim		return (NULL);
390280031Sdim
391288943Sdim	return (pmap_pde_to_pte(pde, va));
392280031Sdim}
393280031Sdim
394280031Sdimvm_offset_t
395280031Sdimpmap_steal_memory(vm_size_t size)
396280031Sdim{
397280031Sdim	vm_size_t bank_size;
398280031Sdim	vm_offset_t pa, va;
399280031Sdim
400280031Sdim	size = round_page(size);
401280031Sdim
402280031Sdim	bank_size = phys_avail[1] - phys_avail[0];
403280031Sdim	while (size > bank_size) {
404280031Sdim		int i;
405280031Sdim
406280031Sdim		for (i = 0; phys_avail[i + 2]; i += 2) {
407280031Sdim			phys_avail[i] = phys_avail[i + 2];
408280031Sdim			phys_avail[i + 1] = phys_avail[i + 3];
409280031Sdim		}
410280031Sdim		phys_avail[i] = 0;
411280031Sdim		phys_avail[i + 1] = 0;
412280031Sdim		if (!phys_avail[0])
413280031Sdim			panic("pmap_steal_memory: out of memory");
414280031Sdim		bank_size = phys_avail[1] - phys_avail[0];
415280031Sdim	}
416280031Sdim
417280031Sdim	pa = phys_avail[0];
418280031Sdim	phys_avail[0] += size;
419280031Sdim	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
420280031Sdim		panic("Out of memory below 512Meg?");
421280031Sdim	va = MIPS_PHYS_TO_DIRECT(pa);
422280031Sdim	bzero((caddr_t)va, size);
423280031Sdim	return (va);
424288943Sdim}
425288943Sdim
426288943Sdim/*
427288943Sdim * Bootstrap the system enough to run with virtual memory.  This
428288943Sdim * assumes that the phys_avail array has been initialized.
429288943Sdim */
430288943Sdimstatic void
431288943Sdimpmap_create_kernel_pagetable(void)
432280031Sdim{
433288943Sdim	int i, j;
434288943Sdim	vm_offset_t ptaddr;
435288943Sdim	pt_entry_t *pte;
436288943Sdim#ifdef __mips_n64
437288943Sdim	pd_entry_t *pde;
438280031Sdim	vm_offset_t pdaddr;
439288943Sdim	int npt, npde;
440288943Sdim#endif
441288943Sdim
442280031Sdim	/*
443280031Sdim	 * Allocate segment table for the kernel
444280031Sdim	 */
445280031Sdim	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
446288943Sdim
447288943Sdim	/*
448288943Sdim	 * Allocate second level page tables for the kernel
449280031Sdim	 */
450280031Sdim#ifdef __mips_n64
451280031Sdim	npde = howmany(NKPT, NPDEPG);
452288943Sdim	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
453280031Sdim#endif
454280031Sdim	nkpt = NKPT;
455288943Sdim	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
456288943Sdim
457288943Sdim	/*
458288943Sdim	 * The R[4-7]?00 stores only one copy of the Global bit in the
459288943Sdim	 * translation lookaside buffer for each 2 page entry. Thus invalid
460288943Sdim	 * entrys must have the Global bit set so when Entry LO and Entry HI
461288943Sdim	 * G bits are anded together they will produce a global bit to store
462288943Sdim	 * in the tlb.
463288943Sdim	 */
464288943Sdim	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
465288943Sdim		*pte = PTE_G;
466288943Sdim
467288943Sdim#ifdef __mips_n64
468288943Sdim	for (i = 0,  npt = nkpt; npt > 0; i++) {
469288943Sdim		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
470288943Sdim		pde = (pd_entry_t *)kernel_segmap[i];
471288943Sdim
472288943Sdim		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
473288943Sdim			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
474288943Sdim	}
475280031Sdim#else
476280031Sdim	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
477288943Sdim		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
478288943Sdim#endif
479288943Sdim
480288943Sdim	PMAP_LOCK_INIT(kernel_pmap);
481288943Sdim	kernel_pmap->pm_segtab = kernel_segmap;
482288943Sdim	kernel_pmap->pm_active = ~0;
483288943Sdim	TAILQ_INIT(&kernel_pmap->pm_pvlist);
484288943Sdim	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
485288943Sdim	kernel_pmap->pm_asid[0].gen = 0;
486280031Sdim	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
487280031Sdim}
488280031Sdim
489280031Sdimvoid
490280031Sdimpmap_bootstrap(void)
491280031Sdim{
492280031Sdim	int i;
493280031Sdim	int need_local_mappings = 0;
494288943Sdim
495288943Sdim	/* Sort. */
496288943Sdimagain:
497288943Sdim	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
498288943Sdim		/*
499280031Sdim		 * Keep the memory aligned on page boundary.
500288943Sdim		 */
501288943Sdim		phys_avail[i] = round_page(phys_avail[i]);
502288943Sdim		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
503280031Sdim
504288943Sdim		if (i < 2)
505288943Sdim			continue;
506288943Sdim		if (phys_avail[i - 2] > phys_avail[i]) {
507280031Sdim			vm_paddr_t ptemp[2];
508288943Sdim
509288943Sdim			ptemp[0] = phys_avail[i + 0];
510288943Sdim			ptemp[1] = phys_avail[i + 1];
511288943Sdim
512288943Sdim			phys_avail[i + 0] = phys_avail[i - 2];
513288943Sdim			phys_avail[i + 1] = phys_avail[i - 1];
514280031Sdim
515280031Sdim			phys_avail[i - 2] = ptemp[0];
516288943Sdim			phys_avail[i - 1] = ptemp[1];
517288943Sdim			goto again;
518280031Sdim		}
519280031Sdim	}
520288943Sdim
521288943Sdim       	/*
522288943Sdim	 * In 32 bit, we may have memory which cannot be mapped directly.
523288943Sdim	 * This memory will need temporary mapping before it can be
524288943Sdim	 * accessed.
525288943Sdim	 */
526288943Sdim	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
527288943Sdim		need_local_mappings = 1;
528288943Sdim
529288943Sdim	/*
530288943Sdim	 * Copy the phys_avail[] array before we start stealing memory from it.
531288943Sdim	 */
532288943Sdim	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
533280031Sdim		physmem_desc[i] = phys_avail[i];
534288943Sdim		physmem_desc[i + 1] = phys_avail[i + 1];
535288943Sdim	}
536280031Sdim
537280031Sdim	Maxmem = atop(phys_avail[i - 1]);
538280031Sdim
539280031Sdim	if (bootverbose) {
540280031Sdim		printf("Physical memory chunk(s):\n");
541280031Sdim		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
542288943Sdim			vm_paddr_t size;
543288943Sdim
544280031Sdim			size = phys_avail[i + 1] - phys_avail[i];
545280031Sdim			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
546280031Sdim			    (uintmax_t) phys_avail[i],
547280031Sdim			    (uintmax_t) phys_avail[i + 1] - 1,
548280031Sdim			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
549288943Sdim		}
550280031Sdim		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
551280031Sdim	}
552280031Sdim	/*
553280031Sdim	 * Steal the message buffer from the beginning of memory.
554288943Sdim	 */
555288943Sdim	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
556280031Sdim	msgbufinit(msgbufp, MSGBUF_SIZE);
557280031Sdim
558280031Sdim	/*
559280031Sdim	 * Steal thread0 kstack.
560296417Sdim	 */
561280031Sdim	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
562280031Sdim
563280031Sdim	virtual_avail = VM_MIN_KERNEL_ADDRESS;
564280031Sdim	virtual_end = VM_MAX_KERNEL_ADDRESS;
565280031Sdim
566280031Sdim#ifdef SMP
567280031Sdim	/*
568280031Sdim	 * Steal some virtual address space to map the pcpu area.
569288943Sdim	 */
570288943Sdim	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
571280031Sdim	pcpup = (struct pcpu *)virtual_avail;
572288943Sdim	virtual_avail += PAGE_SIZE * 2;
573296417Sdim
574296417Sdim	/*
575288943Sdim	 * Initialize the wired TLB entry mapping the pcpu region for
576280031Sdim	 * the BSP at 'pcpup'. Up until this point we were operating
577288943Sdim	 * with the 'pcpup' for the BSP pointing to a virtual address
578288943Sdim	 * in KSEG0 so there was no need for a TLB mapping.
579280031Sdim	 */
580280031Sdim	mips_pcpu_tlb_init(PCPU_ADDR(0));
581280031Sdim
582288943Sdim	if (bootverbose)
583288943Sdim		printf("pcpu is available at virtual address %p.\n", pcpup);
584288943Sdim#endif
585288943Sdim
586288943Sdim	if (need_local_mappings)
587288943Sdim		pmap_alloc_lmem_map();
588288943Sdim	pmap_create_kernel_pagetable();
589288943Sdim	pmap_max_asid = VMNUM_PIDS;
590296417Sdim	mips_wr_entryhi(0);
591296417Sdim	mips_wr_pagemask(0);
592296417Sdim}
593296417Sdim
594296417Sdim/*
595296417Sdim * Initialize a vm_page's machine-dependent fields.
596296417Sdim */
597296417Sdimvoid
598296417Sdimpmap_page_init(vm_page_t m)
599296417Sdim{
600296417Sdim
601296417Sdim	TAILQ_INIT(&m->md.pv_list);
602288943Sdim	m->md.pv_list_count = 0;
603288943Sdim	m->md.pv_flags = 0;
604288943Sdim}
605288943Sdim
606288943Sdim/*
607288943Sdim *	Initialize the pmap module.
608288943Sdim *	Called by vm_init, to initialize any structures that the pmap
609288943Sdim *	system needs to map virtual memory.
610288943Sdim *	pmap_init has been enhanced to support in a fairly consistant
611288943Sdim *	way, discontiguous physical memory.
612288943Sdim */
613288943Sdimvoid
614280031Sdimpmap_init(void)
615288943Sdim{
616288943Sdim
617288943Sdim	/*
618288943Sdim	 * Initialize the address space (zone) for the pv entries.  Set a
619288943Sdim	 * high water mark so that the system can recover from excessive
620249259Sdim	 * numbers of pv entries.
621249259Sdim	 */
622288943Sdim	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
623288943Sdim	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
624288943Sdim	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
625288943Sdim	pv_entry_high_water = 9 * (pv_entry_max / 10);
626288943Sdim	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
627288943Sdim}
628288943Sdim
629288943Sdim/***************************************************
630288943Sdim * Low level helper routines.....
631280031Sdim ***************************************************/
632280031Sdim
633280031Sdimstatic __inline void
634288943Sdimpmap_invalidate_all_local(pmap_t pmap)
635288943Sdim{
636288943Sdim
637288943Sdim	if (pmap == kernel_pmap) {
638249259Sdim		tlb_invalidate_all();
639249259Sdim		return;
640288943Sdim	}
641280031Sdim	if (pmap->pm_active & PCPU_GET(cpumask))
642280031Sdim		tlb_invalidate_all_user(pmap);
643249259Sdim	else
644288943Sdim		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
645280031Sdim}
646280031Sdim
647280031Sdim#ifdef SMP
648280031Sdimstatic void
649249259Sdimpmap_invalidate_all(pmap_t pmap)
650280031Sdim{
651280031Sdim
652249259Sdim	smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap);
653280031Sdim}
654280031Sdim
655280031Sdimstatic void
656280031Sdimpmap_invalidate_all_action(void *arg)
657280031Sdim{
658280031Sdim
659280031Sdim	pmap_invalidate_all_local((pmap_t)arg);
660288943Sdim}
661280031Sdim#else
662280031Sdimstatic void
663280031Sdimpmap_invalidate_all(pmap_t pmap)
664280031Sdim{
665280031Sdim
666280031Sdim	pmap_invalidate_all_local(pmap);
667280031Sdim}
668280031Sdim#endif
669280031Sdim
670280031Sdimstatic __inline void
671280031Sdimpmap_invalidate_page_local(pmap_t pmap, vm_offset_t va)
672280031Sdim{
673280031Sdim
674280031Sdim	if (is_kernel_pmap(pmap)) {
675280031Sdim		tlb_invalidate_address(pmap, va);
676280031Sdim		return;
677280031Sdim	}
678280031Sdim	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
679280031Sdim		return;
680288943Sdim	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
681280031Sdim		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
682280031Sdim		return;
683280031Sdim	}
684280031Sdim	tlb_invalidate_address(pmap, va);
685280031Sdim}
686280031Sdim
687280031Sdim#ifdef SMP
688280031Sdimstruct pmap_invalidate_page_arg {
689288943Sdim	pmap_t pmap;
690280031Sdim	vm_offset_t va;
691280031Sdim};
692288943Sdim
693288943Sdimstatic void
694280031Sdimpmap_invalidate_page(pmap_t pmap, vm_offset_t va)
695280031Sdim{
696249259Sdim	struct pmap_invalidate_page_arg arg;
697280031Sdim
698280031Sdim	arg.pmap = pmap;
699280031Sdim	arg.va = va;
700280031Sdim	smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg);
701288943Sdim}
702288943Sdim
703288943Sdimstatic void
704288943Sdimpmap_invalidate_page_action(void *arg)
705288943Sdim{
706288943Sdim	struct pmap_invalidate_page_arg *p = arg;
707288943Sdim
708288943Sdim	pmap_invalidate_page_local(p->pmap, p->va);
709288943Sdim}
710288943Sdim#else
711288943Sdimstatic void
712288943Sdimpmap_invalidate_page(pmap_t pmap, vm_offset_t va)
713288943Sdim{
714288943Sdim
715288943Sdim	pmap_invalidate_page_local(pmap, va);
716288943Sdim}
717288943Sdim#endif
718288943Sdim
719288943Sdimstatic __inline void
720288943Sdimpmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
721288943Sdim{
722288943Sdim
723288943Sdim	if (is_kernel_pmap(pmap)) {
724288943Sdim		tlb_update(pmap, va, pte);
725288943Sdim		return;
726280031Sdim	}
727280031Sdim	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
728296417Sdim		return;
729296417Sdim	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
730288943Sdim		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
731288943Sdim		return;
732288943Sdim	}
733288943Sdim	tlb_update(pmap, va, pte);
734288943Sdim}
735288943Sdim
736288943Sdim#ifdef SMP
737280031Sdimstruct pmap_update_page_arg {
738280031Sdim	pmap_t pmap;
739280031Sdim	vm_offset_t va;
740280031Sdim	pt_entry_t pte;
741288943Sdim};
742280031Sdim
743280031Sdimstatic void
744296417Sdimpmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
745296417Sdim{
746280031Sdim	struct pmap_update_page_arg arg;
747288943Sdim
748249259Sdim	arg.pmap = pmap;
749280031Sdim	arg.va = va;
750249259Sdim	arg.pte = pte;
751280031Sdim	smp_rendezvous(0, pmap_update_page_action, 0, &arg);
752249259Sdim}
753280031Sdim
754288943Sdimstatic void
755288943Sdimpmap_update_page_action(void *arg)
756288943Sdim{
757288943Sdim	struct pmap_update_page_arg *p = arg;
758288943Sdim
759288943Sdim	pmap_update_page_local(p->pmap, p->va, p->pte);
760288943Sdim}
761288943Sdim#else
762288943Sdimstatic void
763288943Sdimpmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
764288943Sdim{
765280031Sdim
766249259Sdim	pmap_update_page_local(pmap, va, pte);
767288943Sdim}
768288943Sdim#endif
769249259Sdim
770249259Sdim/*
771288943Sdim *	Routine:	pmap_extract
772288943Sdim *	Function:
773288943Sdim *		Extract the physical page address associated
774288943Sdim *		with the given map/virtual_address pair.
775249259Sdim */
776249259Sdimvm_paddr_t
777288943Sdimpmap_extract(pmap_t pmap, vm_offset_t va)
778288943Sdim{
779288943Sdim	pt_entry_t *pte;
780249259Sdim	vm_offset_t retval = 0;
781288943Sdim
782288943Sdim	PMAP_LOCK(pmap);
783288943Sdim	pte = pmap_pte(pmap, va);
784288943Sdim	if (pte) {
785288943Sdim		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
786288943Sdim	}
787288943Sdim	PMAP_UNLOCK(pmap);
788288943Sdim	return (retval);
789288943Sdim}
790249259Sdim
791288943Sdim/*
792288943Sdim *	Routine:	pmap_extract_and_hold
793249259Sdim *	Function:
794280031Sdim *		Atomically extract and hold the physical page
795280031Sdim *		with the given pmap and virtual address pair
796249259Sdim *		if that mapping permits the given protection.
797280031Sdim */
798280031Sdimvm_page_t
799249259Sdimpmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
800249259Sdim{
801288943Sdim	pt_entry_t pte;
802280031Sdim	vm_page_t m;
803249259Sdim	vm_paddr_t pa;
804249259Sdim
805249259Sdim	m = NULL;
806288943Sdim	pa = 0;
807280031Sdim	PMAP_LOCK(pmap);
808249259Sdimretry:
809280031Sdim	pte = *pmap_pte(pmap, va);
810280031Sdim	if (pte != 0 && pte_test(&pte, PTE_V) &&
811288943Sdim	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
812280031Sdim		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
813280031Sdim			goto retry;
814280031Sdim
815280031Sdim		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
816280031Sdim		vm_page_hold(m);
817280031Sdim	}
818280031Sdim	PA_UNLOCK_COND(pa);
819280031Sdim	PMAP_UNLOCK(pmap);
820280031Sdim	return (m);
821280031Sdim}
822280031Sdim
823280031Sdim/***************************************************
824280031Sdim * Low level mapping routines.....
825280031Sdim ***************************************************/
826280031Sdim
827280031Sdim/*
828280031Sdim * add a wired page to the kva
829280031Sdim */
830280031Sdimvoid
831280031Sdimpmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
832280031Sdim{
833280031Sdim	pt_entry_t *pte;
834280031Sdim	pt_entry_t opte, npte;
835280031Sdim
836280031Sdim#ifdef PMAP_DEBUG
837280031Sdim	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
838280031Sdim#endif
839280031Sdim	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
840288943Sdim
841288943Sdim	pte = pmap_pte(kernel_pmap, va);
842288943Sdim	opte = *pte;
843288943Sdim	*pte = npte;
844280031Sdim	if (pte_test(&opte, PTE_V) && opte != npte)
845280031Sdim		pmap_update_page(kernel_pmap, va, npte);
846280031Sdim}
847280031Sdim
848280031Sdimvoid
849280031Sdimpmap_kenter(vm_offset_t va, vm_paddr_t pa)
850280031Sdim{
851280031Sdim
852280031Sdim	KASSERT(is_cacheable_mem(pa),
853280031Sdim		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
854280031Sdim
855288943Sdim	pmap_kenter_attr(va, pa, PTE_C_CACHE);
856288943Sdim}
857288943Sdim
858280031Sdim/*
859280031Sdim * remove a page from the kernel pagetables
860280031Sdim */
861280031Sdim /* PMAP_INLINE */ void
862249259Sdimpmap_kremove(vm_offset_t va)
863249259Sdim{
864280031Sdim	pt_entry_t *pte;
865280031Sdim
866280031Sdim	/*
867280031Sdim	 * Write back all caches from the page being destroyed
868280031Sdim	 */
869288943Sdim	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
870288943Sdim
871288943Sdim	pte = pmap_pte(kernel_pmap, va);
872280031Sdim	*pte = PTE_G;
873280031Sdim	pmap_invalidate_page(kernel_pmap, va);
874280031Sdim}
875280031Sdim
876280031Sdim/*
877280031Sdim *	Used to map a range of physical addresses into kernel
878249259Sdim *	virtual address space.
879249259Sdim *
880276479Sdim *	The value passed in '*virt' is a suggested virtual address for
881249259Sdim *	the mapping. Architectures which can support a direct-mapped
882280031Sdim *	physical to virtual region can return the appropriate address
883280031Sdim *	within that region, leaving '*virt' unchanged. Other
884249259Sdim *	architectures should map the pages starting at '*virt' and
885249259Sdim *	update '*virt' with the first usable address after the mapped
886249259Sdim *	region.
887249259Sdim *
888249259Sdim *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
889249259Sdim */
890249259Sdimvm_offset_t
891249259Sdimpmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
892249259Sdim{
893249259Sdim	vm_offset_t va, sva;
894249259Sdim
895249259Sdim	if (MIPS_DIRECT_MAPPABLE(end - 1))
896249259Sdim		return (MIPS_PHYS_TO_DIRECT(start));
897280031Sdim
898280031Sdim	va = sva = *virt;
899249259Sdim	while (start < end) {
900249259Sdim		pmap_kenter(va, start);
901280031Sdim		va += PAGE_SIZE;
902280031Sdim		start += PAGE_SIZE;
903249259Sdim	}
904249259Sdim	*virt = va;
905249259Sdim	return (sva);
906249259Sdim}
907280031Sdim
908280031Sdim/*
909280031Sdim * Add a list of wired pages to the kva
910280031Sdim * this routine is only used for temporary
911249259Sdim * kernel mappings that do not need to have
912249259Sdim * page modification or references recorded.
913249259Sdim * Note that old mappings are simply written
914249259Sdim * over.  The page *must* be wired.
915249259Sdim */
916280031Sdimvoid
917280031Sdimpmap_qenter(vm_offset_t va, vm_page_t *m, int count)
918249259Sdim{
919249259Sdim	int i;
920249259Sdim	vm_offset_t origva = va;
921249259Sdim
922249259Sdim	for (i = 0; i < count; i++) {
923249259Sdim		pmap_flush_pvcache(m[i]);
924249259Sdim		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
925249259Sdim		va += PAGE_SIZE;
926249259Sdim	}
927249259Sdim
928249259Sdim	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
929249259Sdim}
930249259Sdim
931249259Sdim/*
932276479Sdim * this routine jerks page mappings from the
933249259Sdim * kernel -- it is meant only for temporary mappings.
934249259Sdim */
935249259Sdimvoid
936249259Sdimpmap_qremove(vm_offset_t va, int count)
937249259Sdim{
938249259Sdim	/*
939280031Sdim	 * No need to wb/inv caches here,
940249259Sdim	 *   pmap_kremove will do it for us
941249259Sdim	 */
942249259Sdim
943249259Sdim	while (count-- > 0) {
944249259Sdim		pmap_kremove(va);
945280031Sdim		va += PAGE_SIZE;
946280031Sdim	}
947249259Sdim}
948249259Sdim
949280031Sdim/***************************************************
950280031Sdim * Page table page management routines.....
951249259Sdim ***************************************************/
952249259Sdim
953280031Sdim/*  Revision 1.507
954280031Sdim *
955249259Sdim * Simplify the reference counting of page table pages.	 Specifically, use
956249259Sdim * the page table page's wired count rather than its hold count to contain
957249259Sdim * the reference count.
958249259Sdim */
959280031Sdim
960280031Sdim/*
961249259Sdim * This routine unholds page table pages, and if the hold count
962249259Sdim * drops to zero, then it decrements the wire count.
963249259Sdim */
964280031Sdimstatic PMAP_INLINE int
965280031Sdimpmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
966249259Sdim{
967249259Sdim	--m->wire_count;
968249259Sdim	if (m->wire_count == 0)
969249259Sdim		return (_pmap_unwire_pte_hold(pmap, va, m));
970249259Sdim	else
971249259Sdim		return (0);
972249259Sdim}
973280031Sdim
974280031Sdimstatic int
975249259Sdim_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
976249259Sdim{
977249259Sdim	pd_entry_t *pde;
978249259Sdim
979249259Sdim	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
980249259Sdim	/*
981249259Sdim	 * unmap the page table page
982249259Sdim	 */
983249259Sdim#ifdef __mips_n64
984249259Sdim	if (m->pindex < NUPDE)
985249259Sdim		pde = pmap_pde(pmap, va);
986280031Sdim	else
987249259Sdim		pde = pmap_segmap(pmap, va);
988276479Sdim#else
989249259Sdim	pde = pmap_pde(pmap, va);
990249259Sdim#endif
991280031Sdim	*pde = 0;
992280031Sdim	pmap->pm_stats.resident_count--;
993280031Sdim
994280031Sdim#ifdef __mips_n64
995280031Sdim	if (m->pindex < NUPDE) {
996249259Sdim		pd_entry_t *pdp;
997249259Sdim		vm_page_t pdpg;
998296417Sdim
999296417Sdim		/*
1000296417Sdim		 * Recursively decrement next level pagetable refcount
1001296417Sdim		 */
1002296417Sdim		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
1003296417Sdim		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
1004296417Sdim		pmap_unwire_pte_hold(pmap, va, pdpg);
1005296417Sdim	}
1006296417Sdim#endif
1007296417Sdim	if (pmap->pm_ptphint == m)
1008296417Sdim		pmap->pm_ptphint = NULL;
1009249259Sdim
1010249259Sdim	/*
1011249259Sdim	 * If the page is finally unwired, simply free it.
1012249259Sdim	 */
1013280031Sdim	vm_page_free_zero(m);
1014280031Sdim	atomic_subtract_int(&cnt.v_wire_count, 1);
1015249259Sdim	return (1);
1016249259Sdim}
1017249259Sdim
1018280031Sdim/*
1019280031Sdim * After removing a page table entry, this routine is used to
1020249259Sdim * conditionally free the page, and manage the hold/wire counts.
1021249259Sdim */
1022249259Sdimstatic int
1023249259Sdimpmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1024249259Sdim{
1025249259Sdim	unsigned ptepindex;
1026249259Sdim	pd_entry_t pteva;
1027249259Sdim
1028249259Sdim	if (va >= VM_MAXUSER_ADDRESS)
1029249259Sdim		return (0);
1030249259Sdim
1031249259Sdim	if (mpte == NULL) {
1032280031Sdim		ptepindex = pmap_pde_pindex(va);
1033280031Sdim		if (pmap->pm_ptphint &&
1034249259Sdim		    (pmap->pm_ptphint->pindex == ptepindex)) {
1035249259Sdim			mpte = pmap->pm_ptphint;
1036280031Sdim		} else {
1037280031Sdim			pteva = *pmap_pde(pmap, va);
1038280031Sdim			mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
1039280031Sdim			pmap->pm_ptphint = mpte;
1040280031Sdim		}
1041249259Sdim	}
1042249259Sdim	return (pmap_unwire_pte_hold(pmap, va, mpte));
1043249259Sdim}
1044249259Sdim
1045249259Sdimvoid
1046249259Sdimpmap_pinit0(pmap_t pmap)
1047249259Sdim{
1048249259Sdim	int i;
1049249259Sdim
1050249259Sdim	PMAP_LOCK_INIT(pmap);
1051249259Sdim	pmap->pm_segtab = kernel_segmap;
1052249259Sdim	pmap->pm_active = 0;
1053249259Sdim	pmap->pm_ptphint = NULL;
1054249259Sdim	for (i = 0; i < MAXCPU; i++) {
1055249259Sdim		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1056249259Sdim		pmap->pm_asid[i].gen = 0;
1057249259Sdim	}
1058288943Sdim	PCPU_SET(curpmap, pmap);
1059288943Sdim	TAILQ_INIT(&pmap->pm_pvlist);
1060288943Sdim	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1061288943Sdim}
1062288943Sdim
1063288943Sdimvoid
1064288943Sdimpmap_grow_direct_page_cache()
1065288943Sdim{
1066288943Sdim
1067249259Sdim#ifdef __mips_n64
1068288943Sdim	vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1069288943Sdim#else
1070288943Sdim	vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1071288943Sdim#endif
1072288943Sdim}
1073288943Sdim
1074288943Sdimvm_page_t
1075288943Sdimpmap_alloc_direct_page(unsigned int index, int req)
1076288943Sdim{
1077288943Sdim	vm_page_t m;
1078288943Sdim
1079288943Sdim	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req);
1080288943Sdim	if (m == NULL)
1081288943Sdim		return (NULL);
1082288943Sdim
1083288943Sdim	if ((m->flags & PG_ZERO) == 0)
1084288943Sdim		pmap_zero_page(m);
1085288943Sdim
1086288943Sdim	m->pindex = index;
1087288943Sdim	atomic_add_int(&cnt.v_wire_count, 1);
1088288943Sdim	m->wire_count = 1;
1089288943Sdim	return (m);
1090288943Sdim}
1091288943Sdim
1092288943Sdim/*
1093288943Sdim * Initialize a preallocated and zeroed pmap structure,
1094288943Sdim * such as one in a vmspace structure.
1095288943Sdim */
1096288943Sdimint
1097288943Sdimpmap_pinit(pmap_t pmap)
1098288943Sdim{
1099288943Sdim	vm_offset_t ptdva;
1100288943Sdim	vm_page_t ptdpg;
1101288943Sdim	int i;
1102288943Sdim
1103249259Sdim	PMAP_LOCK_INIT(pmap);
1104280031Sdim
1105280031Sdim	/*
1106249259Sdim	 * allocate the page directory page
1107249259Sdim	 */
1108249259Sdim	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1109249259Sdim	       pmap_grow_direct_page_cache();
1110249259Sdim
1111249259Sdim	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1112249259Sdim	pmap->pm_segtab = (pd_entry_t *)ptdva;
1113296417Sdim	pmap->pm_active = 0;
1114276479Sdim	pmap->pm_ptphint = NULL;
1115276479Sdim	for (i = 0; i < MAXCPU; i++) {
1116276479Sdim		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1117276479Sdim		pmap->pm_asid[i].gen = 0;
1118276479Sdim	}
1119276479Sdim	TAILQ_INIT(&pmap->pm_pvlist);
1120288943Sdim	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1121276479Sdim
1122276479Sdim	return (1);
1123276479Sdim}
1124288943Sdim
1125276479Sdim/*
1126276479Sdim * this routine is called if the page table page is not
1127276479Sdim * mapped correctly.
1128276479Sdim */
1129288943Sdimstatic vm_page_t
1130288943Sdim_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1131288943Sdim{
1132288943Sdim	vm_offset_t pageva;
1133276479Sdim	vm_page_t m;
1134288943Sdim
1135276479Sdim	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1136288943Sdim	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1137276479Sdim	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1138276479Sdim
1139276479Sdim	/*
1140276479Sdim	 * Find or fabricate a new pagetable page
1141296417Sdim	 */
1142249259Sdim	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1143249259Sdim		if (flags & M_WAITOK) {
1144249259Sdim			PMAP_UNLOCK(pmap);
1145280031Sdim			vm_page_unlock_queues();
1146280031Sdim			pmap_grow_direct_page_cache();
1147249259Sdim			vm_page_lock_queues();
1148249259Sdim			PMAP_LOCK(pmap);
1149249259Sdim		}
1150288943Sdim
1151249259Sdim		/*
1152249259Sdim		 * Indicate the need to retry.	While waiting, the page
1153249259Sdim		 * table page may have been allocated.
1154249259Sdim		 */
1155249259Sdim		return (NULL);
1156288943Sdim	}
1157249259Sdim
1158249259Sdim	/*
1159288943Sdim	 * Map the pagetable page into the process address space, if it
1160249259Sdim	 * isn't already there.
1161288943Sdim	 */
1162249259Sdim	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1163249259Sdim
1164249259Sdim#ifdef __mips_n64
1165249259Sdim	if (ptepindex >= NUPDE) {
1166249259Sdim		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1167288943Sdim	} else {
1168249259Sdim		pd_entry_t *pdep, *pde;
1169249259Sdim		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1170249259Sdim		int pdeindex = ptepindex & (NPDEPG - 1);
1171288943Sdim		vm_page_t pg;
1172249259Sdim
1173288943Sdim		pdep = &pmap->pm_segtab[segindex];
1174288943Sdim		if (*pdep == NULL) {
1175288943Sdim			/* recurse for allocating page dir */
1176288943Sdim			if (_pmap_allocpte(pmap, NUPDE + segindex,
1177249259Sdim			    flags) == NULL) {
1178249259Sdim				/* alloc failed, release current */
1179288943Sdim				--m->wire_count;
1180288943Sdim				atomic_subtract_int(&cnt.v_wire_count, 1);
1181249259Sdim				vm_page_free_zero(m);
1182249259Sdim				return (NULL);
1183280031Sdim			}
1184280031Sdim		} else {
1185280031Sdim			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1186280031Sdim			pg->wire_count++;
1187280031Sdim		}
1188280031Sdim		/* Next level entry */
1189249259Sdim		pde = (pd_entry_t *)*pdep;
1190249259Sdim		pde[pdeindex] = (pd_entry_t)pageva;
1191249259Sdim		pmap->pm_ptphint = m;
1192280031Sdim	}
1193280031Sdim#else
1194288943Sdim	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1195288943Sdim#endif
1196288943Sdim	pmap->pm_stats.resident_count++;
1197249259Sdim
1198249259Sdim	/*
1199288943Sdim	 * Set the page table hint
1200249259Sdim	 */
1201249259Sdim	pmap->pm_ptphint = m;
1202280031Sdim	return (m);
1203280031Sdim}
1204249259Sdim
1205249259Sdimstatic vm_page_t
1206249259Sdimpmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1207288943Sdim{
1208280031Sdim	unsigned ptepindex;
1209280031Sdim	pd_entry_t *pde;
1210249259Sdim	vm_page_t m;
1211249259Sdim
1212288943Sdim	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1213249259Sdim	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1214288943Sdim	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1215249259Sdim
1216288943Sdim	/*
1217249259Sdim	 * Calculate pagetable page index
1218288943Sdim	 */
1219249259Sdim	ptepindex = pmap_pde_pindex(va);
1220249259Sdimretry:
1221280031Sdim	/*
1222280031Sdim	 * Get the page directory entry
1223249259Sdim	 */
1224249259Sdim	pde = pmap_pde(pmap, va);
1225288943Sdim
1226249259Sdim	/*
1227288943Sdim	 * If the page table page is mapped, we just increment the hold
1228249259Sdim	 * count, and activate it.
1229288943Sdim	 */
1230249259Sdim	if (pde != NULL && *pde != NULL) {
1231249259Sdim		/*
1232249259Sdim		 * In order to get the page table page, try the hint first.
1233249259Sdim		 */
1234249259Sdim		if (pmap->pm_ptphint &&
1235249259Sdim		    (pmap->pm_ptphint->pindex == ptepindex)) {
1236288943Sdim			m = pmap->pm_ptphint;
1237249259Sdim		} else {
1238249259Sdim			m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1239288943Sdim			pmap->pm_ptphint = m;
1240288943Sdim		}
1241288943Sdim		m->wire_count++;
1242288943Sdim	} else {
1243288943Sdim		/*
1244288943Sdim		 * Here if the pte page isn't mapped, or if it has been
1245288943Sdim		 * deallocated.
1246288943Sdim		 */
1247288943Sdim		m = _pmap_allocpte(pmap, ptepindex, flags);
1248288943Sdim		if (m == NULL && (flags & M_WAITOK))
1249288943Sdim			goto retry;
1250288943Sdim	}
1251288943Sdim	return (m);
1252288943Sdim}
1253288943Sdim
1254288943Sdim
1255288943Sdim/***************************************************
1256288943Sdim* Pmap allocation/deallocation routines.
1257288943Sdim ***************************************************/
1258288943Sdim/*
1259288943Sdim *  Revision 1.397
1260288943Sdim *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1261288943Sdim *    called only the page directory page(s) can be left in the pmap pte
1262288943Sdim *    object, since all page table pages will have been freed by
1263288943Sdim *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1264288943Sdim *    reference to the pmap and the page directory is wired, so the page(s)
1265288943Sdim *    can never be busy.  So all there is to do is clear the magic mappings
1266288943Sdim *    from the page directory and free the page(s).
1267288943Sdim */
1268288943Sdim
1269288943Sdim
1270288943Sdim/*
1271288943Sdim * Release any resources held by the given physical map.
1272288943Sdim * Called when a pmap initialized by pmap_pinit is being released.
1273288943Sdim * Should only be called if the map contains no valid mappings.
1274288943Sdim */
1275288943Sdimvoid
1276288943Sdimpmap_release(pmap_t pmap)
1277288943Sdim{
1278288943Sdim	vm_offset_t ptdva;
1279288943Sdim	vm_page_t ptdpg;
1280288943Sdim
1281288943Sdim	KASSERT(pmap->pm_stats.resident_count == 0,
1282288943Sdim	    ("pmap_release: pmap resident count %ld != 0",
1283288943Sdim	    pmap->pm_stats.resident_count));
1284288943Sdim
1285288943Sdim	ptdva = (vm_offset_t)pmap->pm_segtab;
1286288943Sdim	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1287288943Sdim
1288288943Sdim	ptdpg->wire_count--;
1289288943Sdim	atomic_subtract_int(&cnt.v_wire_count, 1);
1290288943Sdim	vm_page_free_zero(ptdpg);
1291288943Sdim	PMAP_LOCK_DESTROY(pmap);
1292288943Sdim}
1293288943Sdim
1294288943Sdim/*
1295288943Sdim * grow the number of kernel page table entries, if needed
1296288943Sdim */
1297288943Sdimvoid
1298288943Sdimpmap_growkernel(vm_offset_t addr)
1299288943Sdim{
1300288943Sdim	vm_page_t nkpg;
1301288943Sdim	pd_entry_t *pde, *pdpe;
1302288943Sdim	pt_entry_t *pte;
1303288943Sdim	int i;
1304288943Sdim
1305288943Sdim	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1306288943Sdim	addr = roundup2(addr, NBSEG);
1307288943Sdim	if (addr - 1 >= kernel_map->max_offset)
1308288943Sdim		addr = kernel_map->max_offset;
1309288943Sdim	while (kernel_vm_end < addr) {
1310288943Sdim		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1311288943Sdim#ifdef __mips_n64
1312288943Sdim		if (*pdpe == 0) {
1313288943Sdim			/* new intermediate page table entry */
1314288943Sdim			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1315296417Sdim			if (nkpg == NULL)
1316296417Sdim				panic("pmap_growkernel: no memory to grow kernel");
1317296417Sdim			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1318296417Sdim			continue; /* try again */
1319296417Sdim		}
1320296417Sdim#endif
1321296417Sdim		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1322296417Sdim		if (*pde != 0) {
1323			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1324			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1325				kernel_vm_end = kernel_map->max_offset;
1326				break;
1327			}
1328			continue;
1329		}
1330
1331		/*
1332		 * This index is bogus, but out of the way
1333		 */
1334		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1335		if (!nkpg)
1336			panic("pmap_growkernel: no memory to grow kernel");
1337		nkpt++;
1338		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1339
1340		/*
1341		 * The R[4-7]?00 stores only one copy of the Global bit in
1342		 * the translation lookaside buffer for each 2 page entry.
1343		 * Thus invalid entrys must have the Global bit set so when
1344		 * Entry LO and Entry HI G bits are anded together they will
1345		 * produce a global bit to store in the tlb.
1346		 */
1347		pte = (pt_entry_t *)*pde;
1348		for (i = 0; i < NPTEPG; i++)
1349			pte[i] = PTE_G;
1350
1351		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1352		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1353			kernel_vm_end = kernel_map->max_offset;
1354			break;
1355		}
1356	}
1357}
1358
1359/***************************************************
1360* page management routines.
1361 ***************************************************/
1362
1363/*
1364 * free the pv_entry back to the free list
1365 */
1366static PMAP_INLINE void
1367free_pv_entry(pv_entry_t pv)
1368{
1369
1370	pv_entry_count--;
1371	uma_zfree(pvzone, pv);
1372}
1373
1374/*
1375 * get a new pv_entry, allocating a block from the system
1376 * when needed.
1377 * the memory allocation is performed bypassing the malloc code
1378 * because of the possibility of allocations at interrupt time.
1379 */
1380static pv_entry_t
1381get_pv_entry(pmap_t locked_pmap)
1382{
1383	static const struct timeval printinterval = { 60, 0 };
1384	static struct timeval lastprint;
1385	struct vpgqueues *vpq;
1386	pt_entry_t *pte, oldpte;
1387	pmap_t pmap;
1388	pv_entry_t allocated_pv, next_pv, pv;
1389	vm_offset_t va;
1390	vm_page_t m;
1391
1392	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1393	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1394	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1395	if (allocated_pv != NULL) {
1396		pv_entry_count++;
1397		if (pv_entry_count > pv_entry_high_water)
1398			pagedaemon_wakeup();
1399		else
1400			return (allocated_pv);
1401	}
1402	/*
1403	 * Reclaim pv entries: At first, destroy mappings to inactive
1404	 * pages.  After that, if a pv entry is still needed, destroy
1405	 * mappings to active pages.
1406	 */
1407	if (ratecheck(&lastprint, &printinterval))
1408		printf("Approaching the limit on PV entries, "
1409		    "increase the vm.pmap.shpgperproc tunable.\n");
1410	vpq = &vm_page_queues[PQ_INACTIVE];
1411retry:
1412	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1413		if (m->hold_count || m->busy)
1414			continue;
1415		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1416			va = pv->pv_va;
1417			pmap = pv->pv_pmap;
1418			/* Avoid deadlock and lock recursion. */
1419			if (pmap > locked_pmap)
1420				PMAP_LOCK(pmap);
1421			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1422				continue;
1423			pmap->pm_stats.resident_count--;
1424			pte = pmap_pte(pmap, va);
1425			KASSERT(pte != NULL, ("pte"));
1426			oldpte = *pte;
1427			if (is_kernel_pmap(pmap))
1428				*pte = PTE_G;
1429			else
1430				*pte = 0;
1431			KASSERT(!pte_test(&oldpte, PTE_W),
1432			    ("wired pte for unwired page"));
1433			if (m->md.pv_flags & PV_TABLE_REF)
1434				vm_page_flag_set(m, PG_REFERENCED);
1435			if (pte_test(&oldpte, PTE_D))
1436				vm_page_dirty(m);
1437			pmap_invalidate_page(pmap, va);
1438			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1439			m->md.pv_list_count--;
1440			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1441			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1442			if (pmap != locked_pmap)
1443				PMAP_UNLOCK(pmap);
1444			if (allocated_pv == NULL)
1445				allocated_pv = pv;
1446			else
1447				free_pv_entry(pv);
1448		}
1449		if (TAILQ_EMPTY(&m->md.pv_list)) {
1450			vm_page_flag_clear(m, PG_WRITEABLE);
1451			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1452		}
1453	}
1454	if (allocated_pv == NULL) {
1455		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1456			vpq = &vm_page_queues[PQ_ACTIVE];
1457			goto retry;
1458		}
1459		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1460	}
1461	return (allocated_pv);
1462}
1463
1464/*
1465 *  Revision 1.370
1466 *
1467 *  Move pmap_collect() out of the machine-dependent code, rename it
1468 *  to reflect its new location, and add page queue and flag locking.
1469 *
1470 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1471 *  of pmap_collect() in terms of machine-independent interfaces;
1472 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1473 *
1474 *  MIPS implementation was identical to alpha [Junos 8.2]
1475 */
1476
1477/*
1478 * If it is the first entry on the list, it is actually
1479 * in the header and we must copy the following entry up
1480 * to the header.  Otherwise we must search the list for
1481 * the entry.  In either case we free the now unused entry.
1482 */
1483
1484static pv_entry_t
1485pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1486{
1487	pv_entry_t pv;
1488
1489	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1490	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1491	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1492		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1493			if (pmap == pv->pv_pmap && va == pv->pv_va)
1494				break;
1495		}
1496	} else {
1497		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1498			if (va == pv->pv_va)
1499				break;
1500		}
1501	}
1502	if (pv != NULL) {
1503		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1504		pvh->pv_list_count--;
1505		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1506	}
1507	return (pv);
1508}
1509
1510static void
1511pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1512{
1513	pv_entry_t pv;
1514
1515	pv = pmap_pvh_remove(pvh, pmap, va);
1516	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1517	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1518	     (u_long)va));
1519	free_pv_entry(pv);
1520}
1521
1522static void
1523pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1524{
1525
1526	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1527	pmap_pvh_free(&m->md, pmap, va);
1528	if (TAILQ_EMPTY(&m->md.pv_list))
1529		vm_page_flag_clear(m, PG_WRITEABLE);
1530}
1531
1532/*
1533 * Conditionally create a pv entry.
1534 */
1535static boolean_t
1536pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1537    vm_page_t m)
1538{
1539	pv_entry_t pv;
1540
1541	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1542	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1543	if (pv_entry_count < pv_entry_high_water &&
1544	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1545		pv_entry_count++;
1546		pv->pv_va = va;
1547		pv->pv_pmap = pmap;
1548		pv->pv_ptem = mpte;
1549		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1550		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1551		m->md.pv_list_count++;
1552		return (TRUE);
1553	} else
1554		return (FALSE);
1555}
1556
1557/*
1558 * pmap_remove_pte: do the things to unmap a page in a process
1559 */
1560static int
1561pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1562{
1563	pt_entry_t oldpte;
1564	vm_page_t m;
1565	vm_offset_t pa;
1566
1567	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1568	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1569
1570	oldpte = *ptq;
1571	if (is_kernel_pmap(pmap))
1572		*ptq = PTE_G;
1573	else
1574		*ptq = 0;
1575
1576	if (pte_test(&oldpte, PTE_W))
1577		pmap->pm_stats.wired_count -= 1;
1578
1579	pmap->pm_stats.resident_count -= 1;
1580	pa = TLBLO_PTE_TO_PA(oldpte);
1581
1582	if (page_is_managed(pa)) {
1583		m = PHYS_TO_VM_PAGE(pa);
1584		if (pte_test(&oldpte, PTE_D)) {
1585			KASSERT(!pte_test(&oldpte, PTE_RO),
1586			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1587			    __func__, (void *)va, oldpte));
1588			vm_page_dirty(m);
1589		}
1590		if (m->md.pv_flags & PV_TABLE_REF)
1591			vm_page_flag_set(m, PG_REFERENCED);
1592		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1593
1594		pmap_remove_entry(pmap, m, va);
1595	}
1596	return (pmap_unuse_pt(pmap, va, NULL));
1597}
1598
1599/*
1600 * Remove a single page from a process address space
1601 */
1602static void
1603pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1604{
1605	pt_entry_t *ptq;
1606
1607	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1608	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1609	ptq = pmap_pte(pmap, va);
1610
1611	/*
1612	 * if there is no pte for this address, just skip it!!!
1613	 */
1614	if (!ptq || !pte_test(ptq, PTE_V)) {
1615		return;
1616	}
1617
1618	/*
1619	 * Write back all caches from the page being destroyed
1620	 */
1621	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1622
1623	/*
1624	 * get a local va for mappings for this pmap.
1625	 */
1626	(void)pmap_remove_pte(pmap, ptq, va);
1627	pmap_invalidate_page(pmap, va);
1628
1629	return;
1630}
1631
1632/*
1633 *	Remove the given range of addresses from the specified map.
1634 *
1635 *	It is assumed that the start and end are properly
1636 *	rounded to the page size.
1637 */
1638void
1639pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1640{
1641	vm_offset_t va_next;
1642	pd_entry_t *pde, *pdpe;
1643	pt_entry_t *pte;
1644
1645	if (pmap == NULL)
1646		return;
1647
1648	if (pmap->pm_stats.resident_count == 0)
1649		return;
1650
1651	vm_page_lock_queues();
1652	PMAP_LOCK(pmap);
1653
1654	/*
1655	 * special handling of removing one page.  a very common operation
1656	 * and easy to short circuit some code.
1657	 */
1658	if ((sva + PAGE_SIZE) == eva) {
1659		pmap_remove_page(pmap, sva);
1660		goto out;
1661	}
1662	for (; sva < eva; sva = va_next) {
1663		pdpe = pmap_segmap(pmap, sva);
1664#ifdef __mips_n64
1665		if (*pdpe == 0) {
1666			va_next = (sva + NBSEG) & ~SEGMASK;
1667			if (va_next < sva)
1668				va_next = eva;
1669			continue;
1670		}
1671#endif
1672		va_next = (sva + NBPDR) & ~PDRMASK;
1673		if (va_next < sva)
1674			va_next = eva;
1675
1676		pde = pmap_pdpe_to_pde(pdpe, sva);
1677		if (*pde == 0)
1678			continue;
1679		if (va_next > eva)
1680			va_next = eva;
1681		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1682		    pte++, sva += PAGE_SIZE) {
1683			pmap_remove_page(pmap, sva);
1684		}
1685	}
1686out:
1687	vm_page_unlock_queues();
1688	PMAP_UNLOCK(pmap);
1689}
1690
1691/*
1692 *	Routine:	pmap_remove_all
1693 *	Function:
1694 *		Removes this physical page from
1695 *		all physical maps in which it resides.
1696 *		Reflects back modify bits to the pager.
1697 *
1698 *	Notes:
1699 *		Original versions of this routine were very
1700 *		inefficient because they iteratively called
1701 *		pmap_remove (slow...)
1702 */
1703
1704void
1705pmap_remove_all(vm_page_t m)
1706{
1707	pv_entry_t pv;
1708	pt_entry_t *pte, tpte;
1709
1710	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1711	    ("pmap_remove_all: page %p is fictitious", m));
1712	vm_page_lock_queues();
1713
1714	if (m->md.pv_flags & PV_TABLE_REF)
1715		vm_page_flag_set(m, PG_REFERENCED);
1716
1717	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1718		PMAP_LOCK(pv->pv_pmap);
1719
1720		/*
1721		 * If it's last mapping writeback all caches from
1722		 * the page being destroyed
1723	 	 */
1724		if (m->md.pv_list_count == 1)
1725			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1726
1727		pv->pv_pmap->pm_stats.resident_count--;
1728
1729		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1730
1731		tpte = *pte;
1732		if (is_kernel_pmap(pv->pv_pmap))
1733			*pte = PTE_G;
1734		else
1735			*pte = 0;
1736
1737		if (pte_test(&tpte, PTE_W))
1738			pv->pv_pmap->pm_stats.wired_count--;
1739
1740		/*
1741		 * Update the vm_page_t clean and reference bits.
1742		 */
1743		if (pte_test(&tpte, PTE_D)) {
1744			KASSERT(!pte_test(&tpte, PTE_RO),
1745			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1746			    __func__, (void *)pv->pv_va, tpte));
1747			vm_page_dirty(m);
1748		}
1749		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1750
1751		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1752		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1753		m->md.pv_list_count--;
1754		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1755		PMAP_UNLOCK(pv->pv_pmap);
1756		free_pv_entry(pv);
1757	}
1758
1759	vm_page_flag_clear(m, PG_WRITEABLE);
1760	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1761	vm_page_unlock_queues();
1762}
1763
1764/*
1765 *	Set the physical protection on the
1766 *	specified range of this map as requested.
1767 */
1768void
1769pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1770{
1771	pt_entry_t *pte;
1772	pd_entry_t *pde, *pdpe;
1773	vm_offset_t va_next;
1774
1775	if (pmap == NULL)
1776		return;
1777
1778	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1779		pmap_remove(pmap, sva, eva);
1780		return;
1781	}
1782	if (prot & VM_PROT_WRITE)
1783		return;
1784
1785	vm_page_lock_queues();
1786	PMAP_LOCK(pmap);
1787	for (; sva < eva; sva = va_next) {
1788		pt_entry_t pbits;
1789		vm_page_t m;
1790		vm_paddr_t pa;
1791
1792		pdpe = pmap_segmap(pmap, sva);
1793#ifdef __mips_n64
1794		if (*pdpe == 0) {
1795			va_next = (sva + NBSEG) & ~SEGMASK;
1796			if (va_next < sva)
1797				va_next = eva;
1798			continue;
1799		}
1800#endif
1801		va_next = (sva + NBPDR) & ~PDRMASK;
1802		if (va_next < sva)
1803			va_next = eva;
1804
1805		pde = pmap_pdpe_to_pde(pdpe, sva);
1806		if (pde == NULL || *pde == NULL)
1807			continue;
1808		if (va_next > eva)
1809			va_next = eva;
1810
1811		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1812		     sva += PAGE_SIZE) {
1813
1814			/* Skip invalid PTEs */
1815			if (!pte_test(pte, PTE_V))
1816				continue;
1817			pbits = *pte;
1818			pa = TLBLO_PTE_TO_PA(pbits);
1819			if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1820				m = PHYS_TO_VM_PAGE(pa);
1821				vm_page_dirty(m);
1822				m->md.pv_flags &= ~PV_TABLE_MOD;
1823			}
1824			pte_clear(&pbits, PTE_D);
1825			pte_set(&pbits, PTE_RO);
1826
1827			if (pbits != *pte) {
1828				*pte = pbits;
1829				pmap_update_page(pmap, sva, pbits);
1830			}
1831		}
1832	}
1833	vm_page_unlock_queues();
1834	PMAP_UNLOCK(pmap);
1835}
1836
1837/*
1838 *	Insert the given physical page (p) at
1839 *	the specified virtual address (v) in the
1840 *	target physical map with the protection requested.
1841 *
1842 *	If specified, the page will be wired down, meaning
1843 *	that the related pte can not be reclaimed.
1844 *
1845 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1846 *	or lose information.  That is, this routine must actually
1847 *	insert this page into the given map NOW.
1848 */
1849void
1850pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1851    vm_prot_t prot, boolean_t wired)
1852{
1853	vm_offset_t pa, opa;
1854	pt_entry_t *pte;
1855	pt_entry_t origpte, newpte;
1856	pv_entry_t pv;
1857	vm_page_t mpte, om;
1858	int rw = 0;
1859
1860	if (pmap == NULL)
1861		return;
1862
1863	va &= ~PAGE_MASK;
1864 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1865	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1866	    (m->oflags & VPO_BUSY) != 0,
1867	    ("pmap_enter: page %p is not busy", m));
1868
1869	mpte = NULL;
1870
1871	vm_page_lock_queues();
1872	PMAP_LOCK(pmap);
1873
1874	/*
1875	 * In the case that a page table page is not resident, we are
1876	 * creating it here.
1877	 */
1878	if (va < VM_MAXUSER_ADDRESS) {
1879		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1880	}
1881	pte = pmap_pte(pmap, va);
1882
1883	/*
1884	 * Page Directory table entry not valid, we need a new PT page
1885	 */
1886	if (pte == NULL) {
1887		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
1888		    (void *)pmap->pm_segtab, (void *)va);
1889	}
1890	pa = VM_PAGE_TO_PHYS(m);
1891	om = NULL;
1892	origpte = *pte;
1893	opa = TLBLO_PTE_TO_PA(origpte);
1894
1895	/*
1896	 * Mapping has not changed, must be protection or wiring change.
1897	 */
1898	if (pte_test(&origpte, PTE_V) && opa == pa) {
1899		/*
1900		 * Wiring change, just update stats. We don't worry about
1901		 * wiring PT pages as they remain resident as long as there
1902		 * are valid mappings in them. Hence, if a user page is
1903		 * wired, the PT page will be also.
1904		 */
1905		if (wired && !pte_test(&origpte, PTE_W))
1906			pmap->pm_stats.wired_count++;
1907		else if (!wired && pte_test(&origpte, PTE_W))
1908			pmap->pm_stats.wired_count--;
1909
1910		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
1911		    ("%s: modified page not writable: va: %p, pte: 0x%x",
1912		    __func__, (void *)va, origpte));
1913
1914		/*
1915		 * Remove extra pte reference
1916		 */
1917		if (mpte)
1918			mpte->wire_count--;
1919
1920		if (page_is_managed(opa)) {
1921			om = m;
1922		}
1923		goto validate;
1924	}
1925
1926	pv = NULL;
1927
1928	/*
1929	 * Mapping has changed, invalidate old range and fall through to
1930	 * handle validating new mapping.
1931	 */
1932	if (opa) {
1933		if (pte_test(&origpte, PTE_W))
1934			pmap->pm_stats.wired_count--;
1935
1936		if (page_is_managed(opa)) {
1937			om = PHYS_TO_VM_PAGE(opa);
1938			pv = pmap_pvh_remove(&om->md, pmap, va);
1939		}
1940		if (mpte != NULL) {
1941			mpte->wire_count--;
1942			KASSERT(mpte->wire_count > 0,
1943			    ("pmap_enter: missing reference to page table page,"
1944			    " va: %p", (void *)va));
1945		}
1946	} else
1947		pmap->pm_stats.resident_count++;
1948
1949	/*
1950	 * Enter on the PV list if part of our managed memory. Note that we
1951	 * raise IPL while manipulating pv_table since pmap_enter can be
1952	 * called at interrupt time.
1953	 */
1954	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1955		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1956		    ("pmap_enter: managed mapping within the clean submap"));
1957		if (pv == NULL)
1958			pv = get_pv_entry(pmap);
1959		pv->pv_va = va;
1960		pv->pv_pmap = pmap;
1961		pv->pv_ptem = mpte;
1962		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1963		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1964		m->md.pv_list_count++;
1965	} else if (pv != NULL)
1966		free_pv_entry(pv);
1967
1968	/*
1969	 * Increment counters
1970	 */
1971	if (wired)
1972		pmap->pm_stats.wired_count++;
1973
1974validate:
1975	if ((access & VM_PROT_WRITE) != 0)
1976		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1977	rw = init_pte_prot(va, m, prot);
1978
1979#ifdef PMAP_DEBUG
1980	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1981#endif
1982	/*
1983	 * Now validate mapping with desired protection/wiring.
1984	 */
1985	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1986
1987	if (is_cacheable_mem(pa))
1988		newpte |= PTE_C_CACHE;
1989	else
1990		newpte |= PTE_C_UNCACHED;
1991
1992	if (wired)
1993		newpte |= PTE_W;
1994
1995	if (is_kernel_pmap(pmap))
1996	         newpte |= PTE_G;
1997
1998	/*
1999	 * if the mapping or permission bits are different, we need to
2000	 * update the pte.
2001	 */
2002	if (origpte != newpte) {
2003		if (pte_test(&origpte, PTE_V)) {
2004			*pte = newpte;
2005			if (page_is_managed(opa) && (opa != pa)) {
2006				if (om->md.pv_flags & PV_TABLE_REF)
2007					vm_page_flag_set(om, PG_REFERENCED);
2008				om->md.pv_flags &=
2009				    ~(PV_TABLE_REF | PV_TABLE_MOD);
2010			}
2011			if (pte_test(&origpte, PTE_D)) {
2012				KASSERT(!pte_test(&origpte, PTE_RO),
2013				    ("pmap_enter: modified page not writable:"
2014				    " va: %p, pte: 0x%x", (void *)va, origpte));
2015				if (page_is_managed(opa))
2016					vm_page_dirty(om);
2017			}
2018			if (page_is_managed(opa) &&
2019			    TAILQ_EMPTY(&om->md.pv_list))
2020				vm_page_flag_clear(om, PG_WRITEABLE);
2021		} else {
2022			*pte = newpte;
2023		}
2024	}
2025	pmap_update_page(pmap, va, newpte);
2026
2027	/*
2028	 * Sync I & D caches for executable pages.  Do this only if the the
2029	 * target pmap belongs to the current process.  Otherwise, an
2030	 * unresolvable TLB miss may occur.
2031	 */
2032	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2033	    (prot & VM_PROT_EXECUTE)) {
2034		mips_icache_sync_range(va, PAGE_SIZE);
2035		mips_dcache_wbinv_range(va, PAGE_SIZE);
2036	}
2037	vm_page_unlock_queues();
2038	PMAP_UNLOCK(pmap);
2039}
2040
2041/*
2042 * this code makes some *MAJOR* assumptions:
2043 * 1. Current pmap & pmap exists.
2044 * 2. Not wired.
2045 * 3. Read access.
2046 * 4. No page table pages.
2047 * but is *MUCH* faster than pmap_enter...
2048 */
2049
2050void
2051pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2052{
2053
2054	vm_page_lock_queues();
2055	PMAP_LOCK(pmap);
2056	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2057	vm_page_unlock_queues();
2058	PMAP_UNLOCK(pmap);
2059}
2060
2061static vm_page_t
2062pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2063    vm_prot_t prot, vm_page_t mpte)
2064{
2065	pt_entry_t *pte;
2066	vm_offset_t pa;
2067
2068	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2069	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2070	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2071	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2072	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2073
2074	/*
2075	 * In the case that a page table page is not resident, we are
2076	 * creating it here.
2077	 */
2078	if (va < VM_MAXUSER_ADDRESS) {
2079		pd_entry_t *pde;
2080		unsigned ptepindex;
2081
2082		/*
2083		 * Calculate pagetable page index
2084		 */
2085		ptepindex = pmap_pde_pindex(va);
2086		if (mpte && (mpte->pindex == ptepindex)) {
2087			mpte->wire_count++;
2088		} else {
2089			/*
2090			 * Get the page directory entry
2091			 */
2092			pde = pmap_pde(pmap, va);
2093
2094			/*
2095			 * If the page table page is mapped, we just
2096			 * increment the hold count, and activate it.
2097			 */
2098			if (pde && *pde != 0) {
2099				if (pmap->pm_ptphint &&
2100				    (pmap->pm_ptphint->pindex == ptepindex)) {
2101					mpte = pmap->pm_ptphint;
2102				} else {
2103					mpte = PHYS_TO_VM_PAGE(
2104						MIPS_DIRECT_TO_PHYS(*pde));
2105					pmap->pm_ptphint = mpte;
2106				}
2107				mpte->wire_count++;
2108			} else {
2109				mpte = _pmap_allocpte(pmap, ptepindex,
2110				    M_NOWAIT);
2111				if (mpte == NULL)
2112					return (mpte);
2113			}
2114		}
2115	} else {
2116		mpte = NULL;
2117	}
2118
2119	pte = pmap_pte(pmap, va);
2120	if (pte_test(pte, PTE_V)) {
2121		if (mpte != NULL) {
2122			mpte->wire_count--;
2123			mpte = NULL;
2124		}
2125		return (mpte);
2126	}
2127
2128	/*
2129	 * Enter on the PV list if part of our managed memory.
2130	 */
2131	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2132	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2133		if (mpte != NULL) {
2134			pmap_unwire_pte_hold(pmap, va, mpte);
2135			mpte = NULL;
2136		}
2137		return (mpte);
2138	}
2139
2140	/*
2141	 * Increment counters
2142	 */
2143	pmap->pm_stats.resident_count++;
2144
2145	pa = VM_PAGE_TO_PHYS(m);
2146
2147	/*
2148	 * Now validate mapping with RO protection
2149	 */
2150	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2151
2152	if (is_cacheable_mem(pa))
2153		*pte |= PTE_C_CACHE;
2154	else
2155		*pte |= PTE_C_UNCACHED;
2156
2157	if (is_kernel_pmap(pmap))
2158		*pte |= PTE_G;
2159	else {
2160		*pte |= PTE_RO;
2161		/*
2162		 * Sync I & D caches.  Do this only if the the target pmap
2163		 * belongs to the current process.  Otherwise, an
2164		 * unresolvable TLB miss may occur. */
2165		if (pmap == &curproc->p_vmspace->vm_pmap) {
2166			va &= ~PAGE_MASK;
2167			mips_icache_sync_range(va, PAGE_SIZE);
2168			mips_dcache_wbinv_range(va, PAGE_SIZE);
2169		}
2170	}
2171	return (mpte);
2172}
2173
2174/*
2175 * Make a temporary mapping for a physical address.  This is only intended
2176 * to be used for panic dumps.
2177 *
2178 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2179 */
2180void *
2181pmap_kenter_temporary(vm_paddr_t pa, int i)
2182{
2183	vm_offset_t va;
2184
2185	if (i != 0)
2186		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2187		    __func__);
2188
2189	if (MIPS_DIRECT_MAPPABLE(pa)) {
2190		va = MIPS_PHYS_TO_DIRECT(pa);
2191	} else {
2192#ifndef __mips_n64    /* XXX : to be converted to new style */
2193		int cpu;
2194		register_t intr;
2195		struct local_sysmaps *sysm;
2196		pt_entry_t *pte, npte;
2197
2198		/* If this is used other than for dumps, we may need to leave
2199		 * interrupts disasbled on return. If crash dumps don't work when
2200		 * we get to this point, we might want to consider this (leaving things
2201		 * disabled as a starting point ;-)
2202	 	 */
2203		intr = intr_disable();
2204		cpu = PCPU_GET(cpuid);
2205		sysm = &sysmap_lmem[cpu];
2206		/* Since this is for the debugger, no locks or any other fun */
2207		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2208		pte = pmap_pte(kernel_pmap, sysm->base);
2209		*pte = npte;
2210		sysm->valid1 = 1;
2211		pmap_update_page(kernel_pmap, sysm->base, npte);
2212		va = sysm->base;
2213		intr_restore(intr);
2214#endif
2215	}
2216	return ((void *)va);
2217}
2218
2219void
2220pmap_kenter_temporary_free(vm_paddr_t pa)
2221{
2222#ifndef __mips_n64    /* XXX : to be converted to new style */
2223	int cpu;
2224	register_t intr;
2225	struct local_sysmaps *sysm;
2226#endif
2227
2228	if (MIPS_DIRECT_MAPPABLE(pa)) {
2229		/* nothing to do for this case */
2230		return;
2231	}
2232#ifndef __mips_n64    /* XXX : to be converted to new style */
2233	cpu = PCPU_GET(cpuid);
2234	sysm = &sysmap_lmem[cpu];
2235	if (sysm->valid1) {
2236		pt_entry_t *pte;
2237
2238		intr = intr_disable();
2239		pte = pmap_pte(kernel_pmap, sysm->base);
2240		*pte = PTE_G;
2241		pmap_invalidate_page(kernel_pmap, sysm->base);
2242		intr_restore(intr);
2243		sysm->valid1 = 0;
2244	}
2245#endif
2246}
2247
2248/*
2249 * Moved the code to Machine Independent
2250 *	 vm_map_pmap_enter()
2251 */
2252
2253/*
2254 * Maps a sequence of resident pages belonging to the same object.
2255 * The sequence begins with the given page m_start.  This page is
2256 * mapped at the given virtual address start.  Each subsequent page is
2257 * mapped at a virtual address that is offset from start by the same
2258 * amount as the page is offset from m_start within the object.  The
2259 * last page in the sequence is the page with the largest offset from
2260 * m_start that can be mapped at a virtual address less than the given
2261 * virtual address end.  Not every virtual page between start and end
2262 * is mapped; only those for which a resident page exists with the
2263 * corresponding offset from m_start are mapped.
2264 */
2265void
2266pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2267    vm_page_t m_start, vm_prot_t prot)
2268{
2269	vm_page_t m, mpte;
2270	vm_pindex_t diff, psize;
2271
2272	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2273	psize = atop(end - start);
2274	mpte = NULL;
2275	m = m_start;
2276	vm_page_lock_queues();
2277	PMAP_LOCK(pmap);
2278	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2279		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2280		    prot, mpte);
2281		m = TAILQ_NEXT(m, listq);
2282	}
2283	vm_page_unlock_queues();
2284 	PMAP_UNLOCK(pmap);
2285}
2286
2287/*
2288 * pmap_object_init_pt preloads the ptes for a given object
2289 * into the specified pmap.  This eliminates the blast of soft
2290 * faults on process startup and immediately after an mmap.
2291 */
2292void
2293pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2294    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2295{
2296	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2297	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2298	    ("pmap_object_init_pt: non-device object"));
2299}
2300
2301/*
2302 *	Routine:	pmap_change_wiring
2303 *	Function:	Change the wiring attribute for a map/virtual-address
2304 *			pair.
2305 *	In/out conditions:
2306 *			The mapping must already exist in the pmap.
2307 */
2308void
2309pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2310{
2311	pt_entry_t *pte;
2312
2313	if (pmap == NULL)
2314		return;
2315
2316	PMAP_LOCK(pmap);
2317	pte = pmap_pte(pmap, va);
2318
2319	if (wired && !pte_test(pte, PTE_W))
2320		pmap->pm_stats.wired_count++;
2321	else if (!wired && pte_test(pte, PTE_W))
2322		pmap->pm_stats.wired_count--;
2323
2324	/*
2325	 * Wiring is not a hardware characteristic so there is no need to
2326	 * invalidate TLB.
2327	 */
2328	if (wired)
2329		pte_set(pte, PTE_W);
2330	else
2331		pte_clear(pte, PTE_W);
2332	PMAP_UNLOCK(pmap);
2333}
2334
2335/*
2336 *	Copy the range specified by src_addr/len
2337 *	from the source map to the range dst_addr/len
2338 *	in the destination map.
2339 *
2340 *	This routine is only advisory and need not do anything.
2341 */
2342
2343void
2344pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2345    vm_size_t len, vm_offset_t src_addr)
2346{
2347}
2348
2349/*
2350 *	pmap_zero_page zeros the specified hardware page by mapping
2351 *	the page into KVM and using bzero to clear its contents.
2352 *
2353 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2354 */
2355void
2356pmap_zero_page(vm_page_t m)
2357{
2358	vm_offset_t va;
2359	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2360
2361	if (MIPS_DIRECT_MAPPABLE(phys)) {
2362		va = MIPS_PHYS_TO_DIRECT(phys);
2363		bzero((caddr_t)va, PAGE_SIZE);
2364		mips_dcache_wbinv_range(va, PAGE_SIZE);
2365	} else {
2366		va = pmap_lmem_map1(phys);
2367		bzero((caddr_t)va, PAGE_SIZE);
2368		mips_dcache_wbinv_range(va, PAGE_SIZE);
2369		pmap_lmem_unmap();
2370	}
2371}
2372
2373/*
2374 *	pmap_zero_page_area zeros the specified hardware page by mapping
2375 *	the page into KVM and using bzero to clear its contents.
2376 *
2377 *	off and size may not cover an area beyond a single hardware page.
2378 */
2379void
2380pmap_zero_page_area(vm_page_t m, int off, int size)
2381{
2382	vm_offset_t va;
2383	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2384
2385	if (MIPS_DIRECT_MAPPABLE(phys)) {
2386		va = MIPS_PHYS_TO_DIRECT(phys);
2387		bzero((char *)(caddr_t)va + off, size);
2388		mips_dcache_wbinv_range(va + off, size);
2389	} else {
2390		va = pmap_lmem_map1(phys);
2391		bzero((char *)va + off, size);
2392		mips_dcache_wbinv_range(va + off, size);
2393		pmap_lmem_unmap();
2394	}
2395}
2396
2397void
2398pmap_zero_page_idle(vm_page_t m)
2399{
2400	vm_offset_t va;
2401	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2402
2403	if (MIPS_DIRECT_MAPPABLE(phys)) {
2404		va = MIPS_PHYS_TO_DIRECT(phys);
2405		bzero((caddr_t)va, PAGE_SIZE);
2406		mips_dcache_wbinv_range(va, PAGE_SIZE);
2407	} else {
2408		va = pmap_lmem_map1(phys);
2409		bzero((caddr_t)va, PAGE_SIZE);
2410		mips_dcache_wbinv_range(va, PAGE_SIZE);
2411		pmap_lmem_unmap();
2412	}
2413}
2414
2415/*
2416 *	pmap_copy_page copies the specified (machine independent)
2417 *	page by mapping the page into virtual memory and using
2418 *	bcopy to copy the page, one machine dependent page at a
2419 *	time.
2420 *
2421 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2422 */
2423void
2424pmap_copy_page(vm_page_t src, vm_page_t dst)
2425{
2426	vm_offset_t va_src, va_dst;
2427	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2428	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2429
2430	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2431		/* easy case, all can be accessed via KSEG0 */
2432		/*
2433		 * Flush all caches for VA that are mapped to this page
2434		 * to make sure that data in SDRAM is up to date
2435		 */
2436		pmap_flush_pvcache(src);
2437		mips_dcache_wbinv_range_index(
2438		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2439		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2440		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2441		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2442		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2443	} else {
2444		va_src = pmap_lmem_map2(phys_src, phys_dst);
2445		va_dst = va_src + PAGE_SIZE;
2446		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2447		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2448		pmap_lmem_unmap();
2449	}
2450}
2451
2452/*
2453 * Returns true if the pmap's pv is one of the first
2454 * 16 pvs linked to from this page.  This count may
2455 * be changed upwards or downwards in the future; it
2456 * is only necessary that true be returned for a small
2457 * subset of pmaps for proper page aging.
2458 */
2459boolean_t
2460pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2461{
2462	pv_entry_t pv;
2463	int loops = 0;
2464	boolean_t rv;
2465
2466	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2467	    ("pmap_page_exists_quick: page %p is not managed", m));
2468	rv = FALSE;
2469	vm_page_lock_queues();
2470	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2471		if (pv->pv_pmap == pmap) {
2472			rv = TRUE;
2473			break;
2474		}
2475		loops++;
2476		if (loops >= 16)
2477			break;
2478	}
2479	vm_page_unlock_queues();
2480	return (rv);
2481}
2482
2483/*
2484 * Remove all pages from specified address space
2485 * this aids process exit speeds.  Also, this code
2486 * is special cased for current process only, but
2487 * can have the more generic (and slightly slower)
2488 * mode enabled.  This is much faster than pmap_remove
2489 * in the case of running down an entire address space.
2490 */
2491void
2492pmap_remove_pages(pmap_t pmap)
2493{
2494	pt_entry_t *pte, tpte;
2495	pv_entry_t pv, npv;
2496	vm_page_t m;
2497
2498	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2499		printf("warning: pmap_remove_pages called with non-current pmap\n");
2500		return;
2501	}
2502	vm_page_lock_queues();
2503	PMAP_LOCK(pmap);
2504	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
2505
2506		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2507		if (!pte_test(pte, PTE_V))
2508			panic("pmap_remove_pages: page on pm_pvlist has no pte");
2509		tpte = *pte;
2510
2511/*
2512 * We cannot remove wired pages from a process' mapping at this time
2513 */
2514		if (pte_test(&tpte, PTE_W)) {
2515			npv = TAILQ_NEXT(pv, pv_plist);
2516			continue;
2517		}
2518		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2519
2520		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2521		KASSERT(m != NULL,
2522		    ("pmap_remove_pages: bad tpte %x", tpte));
2523
2524		pv->pv_pmap->pm_stats.resident_count--;
2525
2526		/*
2527		 * Update the vm_page_t clean and reference bits.
2528		 */
2529		if (pte_test(&tpte, PTE_D)) {
2530			vm_page_dirty(m);
2531		}
2532		npv = TAILQ_NEXT(pv, pv_plist);
2533		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2534
2535		m->md.pv_list_count--;
2536		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2537		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2538			vm_page_flag_clear(m, PG_WRITEABLE);
2539		}
2540		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2541		free_pv_entry(pv);
2542	}
2543	pmap_invalidate_all(pmap);
2544	PMAP_UNLOCK(pmap);
2545	vm_page_unlock_queues();
2546}
2547
2548/*
2549 * pmap_testbit tests bits in pte's
2550 * note that the testbit/changebit routines are inline,
2551 * and a lot of things compile-time evaluate.
2552 */
2553static boolean_t
2554pmap_testbit(vm_page_t m, int bit)
2555{
2556	pv_entry_t pv;
2557	pt_entry_t *pte;
2558	boolean_t rv = FALSE;
2559
2560	if (m->flags & PG_FICTITIOUS)
2561		return (rv);
2562
2563	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2564		return (rv);
2565
2566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2567	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2568		PMAP_LOCK(pv->pv_pmap);
2569		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2570		rv = pte_test(pte, bit);
2571		PMAP_UNLOCK(pv->pv_pmap);
2572		if (rv)
2573			break;
2574	}
2575	return (rv);
2576}
2577
2578/*
2579 * this routine is used to clear dirty bits in ptes
2580 */
2581static __inline void
2582pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2583{
2584	pv_entry_t pv;
2585	pt_entry_t *pte;
2586
2587	if (m->flags & PG_FICTITIOUS)
2588		return;
2589
2590	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2591	/*
2592	 * Loop over all current mappings setting/clearing as appropos If
2593	 * setting RO do we need to clear the VAC?
2594	 */
2595	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2596		PMAP_LOCK(pv->pv_pmap);
2597		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2598		if (setem) {
2599			*pte |= bit;
2600			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2601		} else {
2602			pt_entry_t pbits = *pte;
2603
2604			if (pbits & bit) {
2605				if (bit == PTE_D) {
2606					if (pbits & PTE_D)
2607						vm_page_dirty(m);
2608					*pte = (pbits & ~PTE_D) | PTE_RO;
2609				} else {
2610					*pte = pbits & ~bit;
2611				}
2612				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2613			}
2614		}
2615		PMAP_UNLOCK(pv->pv_pmap);
2616	}
2617	if (!setem && bit == PTE_D)
2618		vm_page_flag_clear(m, PG_WRITEABLE);
2619}
2620
2621/*
2622 *	pmap_page_wired_mappings:
2623 *
2624 *	Return the number of managed mappings to the given physical page
2625 *	that are wired.
2626 */
2627int
2628pmap_page_wired_mappings(vm_page_t m)
2629{
2630	pv_entry_t pv;
2631	pmap_t pmap;
2632	pt_entry_t *pte;
2633	int count;
2634
2635	count = 0;
2636	if ((m->flags & PG_FICTITIOUS) != 0)
2637		return (count);
2638	vm_page_lock_queues();
2639	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2640		pmap = pv->pv_pmap;
2641		PMAP_LOCK(pmap);
2642		pte = pmap_pte(pmap, pv->pv_va);
2643		if (pte_test(pte, PTE_W))
2644			count++;
2645		PMAP_UNLOCK(pmap);
2646	}
2647	vm_page_unlock_queues();
2648	return (count);
2649}
2650
2651/*
2652 * Clear the write and modified bits in each of the given page's mappings.
2653 */
2654void
2655pmap_remove_write(vm_page_t m)
2656{
2657	pv_entry_t pv, npv;
2658	vm_offset_t va;
2659	pt_entry_t *pte;
2660
2661	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2662	    ("pmap_remove_write: page %p is not managed", m));
2663
2664	/*
2665	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2666	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2667	 * is clear, no page table entries need updating.
2668	 */
2669	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2670	if ((m->oflags & VPO_BUSY) == 0 &&
2671	    (m->flags & PG_WRITEABLE) == 0)
2672		return;
2673
2674	/*
2675	 * Loop over all current mappings setting/clearing as appropos.
2676	 */
2677	vm_page_lock_queues();
2678	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2679		npv = TAILQ_NEXT(pv, pv_plist);
2680		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2681		if (pte == NULL || !pte_test(pte, PTE_V))
2682			panic("page on pm_pvlist has no pte");
2683
2684		va = pv->pv_va;
2685		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2686		    VM_PROT_READ | VM_PROT_EXECUTE);
2687	}
2688	vm_page_flag_clear(m, PG_WRITEABLE);
2689	vm_page_unlock_queues();
2690}
2691
2692/*
2693 *	pmap_ts_referenced:
2694 *
2695 *	Return the count of reference bits for a page, clearing all of them.
2696 */
2697int
2698pmap_ts_referenced(vm_page_t m)
2699{
2700
2701	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2702	    ("pmap_ts_referenced: page %p is not managed", m));
2703	if (m->md.pv_flags & PV_TABLE_REF) {
2704		vm_page_lock_queues();
2705		m->md.pv_flags &= ~PV_TABLE_REF;
2706		vm_page_unlock_queues();
2707		return (1);
2708	}
2709	return (0);
2710}
2711
2712/*
2713 *	pmap_is_modified:
2714 *
2715 *	Return whether or not the specified physical page was modified
2716 *	in any physical maps.
2717 */
2718boolean_t
2719pmap_is_modified(vm_page_t m)
2720{
2721	boolean_t rv;
2722
2723	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2724	    ("pmap_is_modified: page %p is not managed", m));
2725
2726	/*
2727	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2728	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2729	 * is clear, no PTEs can have PTE_D set.
2730	 */
2731	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2732	if ((m->oflags & VPO_BUSY) == 0 &&
2733	    (m->flags & PG_WRITEABLE) == 0)
2734		return (FALSE);
2735	vm_page_lock_queues();
2736	if (m->md.pv_flags & PV_TABLE_MOD)
2737		rv = TRUE;
2738	else
2739		rv = pmap_testbit(m, PTE_D);
2740	vm_page_unlock_queues();
2741	return (rv);
2742}
2743
2744/* N/C */
2745
2746/*
2747 *	pmap_is_prefaultable:
2748 *
2749 *	Return whether or not the specified virtual address is elgible
2750 *	for prefault.
2751 */
2752boolean_t
2753pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2754{
2755	pd_entry_t *pde;
2756	pt_entry_t *pte;
2757	boolean_t rv;
2758
2759	rv = FALSE;
2760	PMAP_LOCK(pmap);
2761	pde = pmap_pde(pmap, addr);
2762	if (pde != NULL && *pde != 0) {
2763		pte = pmap_pde_to_pte(pde, addr);
2764		rv = (*pte == 0);
2765	}
2766	PMAP_UNLOCK(pmap);
2767	return (rv);
2768}
2769
2770/*
2771 *	Clear the modify bits on the specified physical page.
2772 */
2773void
2774pmap_clear_modify(vm_page_t m)
2775{
2776
2777	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2778	    ("pmap_clear_modify: page %p is not managed", m));
2779	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2780	KASSERT((m->oflags & VPO_BUSY) == 0,
2781	    ("pmap_clear_modify: page %p is busy", m));
2782
2783	/*
2784	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_D set.
2785	 * If the object containing the page is locked and the page is not
2786	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2787	 */
2788	if ((m->flags & PG_WRITEABLE) == 0)
2789		return;
2790	vm_page_lock_queues();
2791	if (m->md.pv_flags & PV_TABLE_MOD) {
2792		pmap_changebit(m, PTE_D, FALSE);
2793		m->md.pv_flags &= ~PV_TABLE_MOD;
2794	}
2795	vm_page_unlock_queues();
2796}
2797
2798/*
2799 *	pmap_is_referenced:
2800 *
2801 *	Return whether or not the specified physical page was referenced
2802 *	in any physical maps.
2803 */
2804boolean_t
2805pmap_is_referenced(vm_page_t m)
2806{
2807
2808	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2809	    ("pmap_is_referenced: page %p is not managed", m));
2810	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2811}
2812
2813/*
2814 *	pmap_clear_reference:
2815 *
2816 *	Clear the reference bit on the specified physical page.
2817 */
2818void
2819pmap_clear_reference(vm_page_t m)
2820{
2821
2822	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2823	    ("pmap_clear_reference: page %p is not managed", m));
2824	vm_page_lock_queues();
2825	if (m->md.pv_flags & PV_TABLE_REF) {
2826		m->md.pv_flags &= ~PV_TABLE_REF;
2827	}
2828	vm_page_unlock_queues();
2829}
2830
2831/*
2832 * Miscellaneous support routines follow
2833 */
2834
2835/*
2836 * Map a set of physical memory pages into the kernel virtual
2837 * address space. Return a pointer to where it is mapped. This
2838 * routine is intended to be used for mapping device memory,
2839 * NOT real memory.
2840 */
2841
2842/*
2843 * Map a set of physical memory pages into the kernel virtual
2844 * address space. Return a pointer to where it is mapped. This
2845 * routine is intended to be used for mapping device memory,
2846 * NOT real memory.
2847 *
2848 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2849 */
2850void *
2851pmap_mapdev(vm_offset_t pa, vm_size_t size)
2852{
2853        vm_offset_t va, tmpva, offset;
2854
2855	/*
2856	 * KSEG1 maps only first 512M of phys address space. For
2857	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2858	 */
2859	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2860		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2861	else {
2862		offset = pa & PAGE_MASK;
2863		size = roundup(size + offset, PAGE_SIZE);
2864
2865		va = kmem_alloc_nofault(kernel_map, size);
2866		if (!va)
2867			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2868		pa = trunc_page(pa);
2869		for (tmpva = va; size > 0;) {
2870			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2871			size -= PAGE_SIZE;
2872			tmpva += PAGE_SIZE;
2873			pa += PAGE_SIZE;
2874		}
2875	}
2876
2877	return ((void *)(va + offset));
2878}
2879
2880void
2881pmap_unmapdev(vm_offset_t va, vm_size_t size)
2882{
2883#ifndef __mips_n64
2884	vm_offset_t base, offset, tmpva;
2885
2886	/* If the address is within KSEG1 then there is nothing to do */
2887	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2888		return;
2889
2890	base = trunc_page(va);
2891	offset = va & PAGE_MASK;
2892	size = roundup(size + offset, PAGE_SIZE);
2893	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2894		pmap_kremove(tmpva);
2895	kmem_free(kernel_map, base, size);
2896#endif
2897}
2898
2899/*
2900 * perform the pmap work for mincore
2901 */
2902int
2903pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2904{
2905	pt_entry_t *ptep, pte;
2906	vm_offset_t pa;
2907	vm_page_t m;
2908	int val;
2909	boolean_t managed;
2910
2911	PMAP_LOCK(pmap);
2912retry:
2913	ptep = pmap_pte(pmap, addr);
2914	pte = (ptep != NULL) ? *ptep : 0;
2915	if (!pte_test(&pte, PTE_V)) {
2916		val = 0;
2917		goto out;
2918	}
2919	val = MINCORE_INCORE;
2920	if (pte_test(&pte, PTE_D))
2921		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2922	pa = TLBLO_PTE_TO_PA(pte);
2923	managed = page_is_managed(pa);
2924	if (managed) {
2925		/*
2926		 * This may falsely report the given address as
2927		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2928		 * per-PTE reference information, it is impossible to
2929		 * determine if the address is MINCORE_REFERENCED.
2930		 */
2931		m = PHYS_TO_VM_PAGE(pa);
2932		if ((m->flags & PG_REFERENCED) != 0)
2933			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2934	}
2935	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2936	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2937		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2938		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2939			goto retry;
2940	} else
2941out:
2942		PA_UNLOCK_COND(*locked_pa);
2943	PMAP_UNLOCK(pmap);
2944	return (val);
2945}
2946
2947void
2948pmap_activate(struct thread *td)
2949{
2950	pmap_t pmap, oldpmap;
2951	struct proc *p = td->td_proc;
2952
2953	critical_enter();
2954
2955	pmap = vmspace_pmap(p->p_vmspace);
2956	oldpmap = PCPU_GET(curpmap);
2957
2958	if (oldpmap)
2959		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2960	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2961	pmap_asid_alloc(pmap);
2962	if (td == curthread) {
2963		PCPU_SET(segbase, pmap->pm_segtab);
2964		mips_wr_entryhi(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2965	}
2966
2967	PCPU_SET(curpmap, pmap);
2968	critical_exit();
2969}
2970
2971void
2972pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2973{
2974}
2975
2976/*
2977 *	Increase the starting virtual address of the given mapping if a
2978 *	different alignment might result in more superpage mappings.
2979 */
2980void
2981pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2982    vm_offset_t *addr, vm_size_t size)
2983{
2984	vm_offset_t superpage_offset;
2985
2986	if (size < NBSEG)
2987		return;
2988	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2989		offset += ptoa(object->pg_color);
2990	superpage_offset = offset & SEGMASK;
2991	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2992	    (*addr & SEGMASK) == superpage_offset)
2993		return;
2994	if ((*addr & SEGMASK) < superpage_offset)
2995		*addr = (*addr & ~SEGMASK) + superpage_offset;
2996	else
2997		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2998}
2999
3000/*
3001 * 	Increase the starting virtual address of the given mapping so
3002 * 	that it is aligned to not be the second page in a TLB entry.
3003 * 	This routine assumes that the length is appropriately-sized so
3004 * 	that the allocation does not share a TLB entry at all if required.
3005 */
3006void
3007pmap_align_tlb(vm_offset_t *addr)
3008{
3009	if ((*addr & PAGE_SIZE) == 0)
3010		return;
3011	*addr += PAGE_SIZE;
3012	return;
3013}
3014
3015#ifdef DDB
3016DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3017{
3018	pmap_t pmap;
3019	struct thread *td = NULL;
3020	struct proc *p;
3021	int i, j, k;
3022	vm_paddr_t pa;
3023	vm_offset_t va;
3024
3025	if (have_addr) {
3026		td = db_lookup_thread(addr, TRUE);
3027		if (td == NULL) {
3028			db_printf("Invalid pid or tid");
3029			return;
3030		}
3031		p = td->td_proc;
3032		if (p->p_vmspace == NULL) {
3033			db_printf("No vmspace for process");
3034			return;
3035		}
3036			pmap = vmspace_pmap(p->p_vmspace);
3037	} else
3038		pmap = kernel_pmap;
3039
3040	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3041	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3042	    pmap->pm_asid[0].gen);
3043	for (i = 0; i < NPDEPG; i++) {
3044		pd_entry_t *pdpe;
3045		pt_entry_t *pde;
3046		pt_entry_t pte;
3047
3048		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3049		if (pdpe == NULL)
3050			continue;
3051		db_printf("[%4d] %p\n", i, pdpe);
3052#ifdef __mips_n64
3053		for (j = 0; j < NPDEPG; j++) {
3054			pde = (pt_entry_t *)pdpe[j];
3055			if (pde == NULL)
3056				continue;
3057			db_printf("\t[%4d] %p\n", j, pde);
3058#else
3059		{
3060			j = 0;
3061			pde =  (pt_entry_t *)pdpe;
3062#endif
3063			for (k = 0; k < NPTEPG; k++) {
3064				pte = pde[k];
3065				if (pte == 0 || !pte_test(&pte, PTE_V))
3066					continue;
3067				pa = TLBLO_PTE_TO_PA(pte);
3068				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3069				db_printf("\t\t[%04d] va: %p pte: %8x pa:%lx\n",
3070				       k, (void *)va, pte, (u_long)pa);
3071			}
3072		}
3073	}
3074}
3075#endif
3076
3077#if defined(DEBUG)
3078
3079static void pads(pmap_t pm);
3080void pmap_pvdump(vm_offset_t pa);
3081
3082/* print address space of pmap*/
3083static void
3084pads(pmap_t pm)
3085{
3086	unsigned va, i, j;
3087	pt_entry_t *ptep;
3088
3089	if (pm == kernel_pmap)
3090		return;
3091	for (i = 0; i < NPTEPG; i++)
3092		if (pm->pm_segtab[i])
3093			for (j = 0; j < NPTEPG; j++) {
3094				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3095				if (pm == kernel_pmap && va < KERNBASE)
3096					continue;
3097				if (pm != kernel_pmap &&
3098				    va >= VM_MAXUSER_ADDRESS)
3099					continue;
3100				ptep = pmap_pte(pm, va);
3101				if (pte_test(ptep, PTE_V))
3102					printf("%x:%x ", va, *(int *)ptep);
3103			}
3104
3105}
3106
3107void
3108pmap_pvdump(vm_offset_t pa)
3109{
3110	register pv_entry_t pv;
3111	vm_page_t m;
3112
3113	printf("pa %x", pa);
3114	m = PHYS_TO_VM_PAGE(pa);
3115	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3116	    pv = TAILQ_NEXT(pv, pv_list)) {
3117		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3118		pads(pv->pv_pmap);
3119	}
3120	printf(" ");
3121}
3122
3123/* N/C */
3124#endif
3125
3126
3127/*
3128 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3129 * It takes almost as much or more time to search the TLB for a
3130 * specific ASID and flush those entries as it does to flush the entire TLB.
3131 * Therefore, when we allocate a new ASID, we just take the next number. When
3132 * we run out of numbers, we flush the TLB, increment the generation count
3133 * and start over. ASID zero is reserved for kernel use.
3134 */
3135static void
3136pmap_asid_alloc(pmap)
3137	pmap_t pmap;
3138{
3139	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3140	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3141	else {
3142		if (PCPU_GET(next_asid) == pmap_max_asid) {
3143			tlb_invalidate_all_user(NULL);
3144			PCPU_SET(asid_generation,
3145			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3146			if (PCPU_GET(asid_generation) == 0) {
3147				PCPU_SET(asid_generation, 1);
3148			}
3149			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3150		}
3151		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3152		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3153		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3154	}
3155}
3156
3157int
3158page_is_managed(vm_offset_t pa)
3159{
3160	vm_offset_t pgnum = mips_btop(pa);
3161
3162	if (pgnum >= first_page) {
3163		vm_page_t m;
3164
3165		m = PHYS_TO_VM_PAGE(pa);
3166		if (m == NULL)
3167			return (0);
3168		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3169			return (1);
3170	}
3171	return (0);
3172}
3173
3174static int
3175init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3176{
3177	int rw;
3178
3179	if (!(prot & VM_PROT_WRITE))
3180		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3181	else if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3182		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3183			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3184		else
3185			rw = PTE_V | PTE_C_CACHE;
3186		vm_page_flag_set(m, PG_WRITEABLE);
3187	} else
3188		/* Needn't emulate a modified bit for unmanaged pages. */
3189		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3190	return (rw);
3191}
3192
3193/*
3194 * pmap_emulate_modified : do dirty bit emulation
3195 *
3196 * On SMP, update just the local TLB, other CPUs will update their
3197 * TLBs from PTE lazily, if they get the exception.
3198 * Returns 0 in case of sucess, 1 if the page is read only and we
3199 * need to fault.
3200 */
3201int
3202pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3203{
3204	vm_page_t m;
3205	pt_entry_t *pte;
3206 	vm_offset_t pa;
3207
3208	PMAP_LOCK(pmap);
3209	pte = pmap_pte(pmap, va);
3210	if (pte == NULL)
3211		panic("pmap_emulate_modified: can't find PTE");
3212#ifdef SMP
3213	/* It is possible that some other CPU changed m-bit */
3214	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3215		pmap_update_page_local(pmap, va, *pte);
3216		PMAP_UNLOCK(pmap);
3217		return (0);
3218	}
3219#else
3220	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3221		panic("pmap_emulate_modified: invalid pte");
3222#endif
3223	if (pte_test(pte, PTE_RO)) {
3224		/* write to read only page in the kernel */
3225		PMAP_UNLOCK(pmap);
3226		return (1);
3227	}
3228	pte_set(pte, PTE_D);
3229	pmap_update_page_local(pmap, va, *pte);
3230	pa = TLBLO_PTE_TO_PA(*pte);
3231	if (!page_is_managed(pa))
3232		panic("pmap_emulate_modified: unmanaged page");
3233	m = PHYS_TO_VM_PAGE(pa);
3234	m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3235	PMAP_UNLOCK(pmap);
3236	return (0);
3237}
3238
3239/*
3240 *	Routine:	pmap_kextract
3241 *	Function:
3242 *		Extract the physical page address associated
3243 *		virtual address.
3244 */
3245 /* PMAP_INLINE */ vm_offset_t
3246pmap_kextract(vm_offset_t va)
3247{
3248	int mapped;
3249
3250	/*
3251	 * First, the direct-mapped regions.
3252	 */
3253#if defined(__mips_n64)
3254	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3255		return (MIPS_XKPHYS_TO_PHYS(va));
3256#endif
3257	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3258		return (MIPS_KSEG0_TO_PHYS(va));
3259
3260	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3261		return (MIPS_KSEG1_TO_PHYS(va));
3262
3263	/*
3264	 * User virtual addresses.
3265	 */
3266	if (va < VM_MAXUSER_ADDRESS) {
3267		pt_entry_t *ptep;
3268
3269		if (curproc && curproc->p_vmspace) {
3270			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3271			if (ptep) {
3272				return (TLBLO_PTE_TO_PA(*ptep) |
3273				    (va & PAGE_MASK));
3274			}
3275			return (0);
3276		}
3277	}
3278
3279	/*
3280	 * Should be kernel virtual here, otherwise fail
3281	 */
3282	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3283#if defined(__mips_n64)
3284	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3285#endif
3286	/*
3287	 * Kernel virtual.
3288	 */
3289
3290	if (mapped) {
3291		pt_entry_t *ptep;
3292
3293		/* Is the kernel pmap initialized? */
3294		if (kernel_pmap->pm_active) {
3295			/* It's inside the virtual address range */
3296			ptep = pmap_pte(kernel_pmap, va);
3297			if (ptep) {
3298				return (TLBLO_PTE_TO_PA(*ptep) |
3299				    (va & PAGE_MASK));
3300			}
3301		}
3302		return (0);
3303	}
3304
3305	panic("%s for unknown address space %p.", __func__, (void *)va);
3306}
3307
3308
3309void
3310pmap_flush_pvcache(vm_page_t m)
3311{
3312	pv_entry_t pv;
3313
3314	if (m != NULL) {
3315		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3316		    pv = TAILQ_NEXT(pv, pv_list)) {
3317			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3318		}
3319	}
3320}
3321