pmap.c revision 216315
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 216315 2010-12-09 06:34:28Z jchandra $");
70
71#include "opt_msgbuf.h"
72#include "opt_ddb.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/proc.h>
77#include <sys/msgbuf.h>
78#include <sys/vmmeter.h>
79#include <sys/mman.h>
80#include <sys/smp.h>
81#ifdef DDB
82#include <ddb/ddb.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_phys.h>
88#include <sys/lock.h>
89#include <sys/mutex.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_page.h>
92#include <vm/vm_map.h>
93#include <vm/vm_object.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pageout.h>
96#include <vm/vm_pager.h>
97#include <vm/uma.h>
98#include <sys/pcpu.h>
99#include <sys/sched.h>
100#ifdef SMP
101#include <sys/smp.h>
102#endif
103
104#include <machine/cache.h>
105#include <machine/md_var.h>
106#include <machine/tlb.h>
107
108#undef PMAP_DEBUG
109
110#ifndef PMAP_SHPGPERPROC
111#define	PMAP_SHPGPERPROC 200
112#endif
113
114#if !defined(DIAGNOSTIC)
115#define	PMAP_INLINE __inline
116#else
117#define	PMAP_INLINE
118#endif
119
120/*
121 * Get PDEs and PTEs for user/kernel address space
122 *
123 * XXX The & for pmap_segshift() is wrong, as is the fact that it doesn't
124 *     trim off gratuitous bits of the address space.  By having the &
125 *     there, we break defining NUSERPGTBLS below because the address space
126 *     is defined such that it ends immediately after NPDEPG*NPTEPG*PAGE_SIZE,
127 *     so we end up getting NUSERPGTBLS of 0.
128 */
129#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
130#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
131#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
132#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
133
134#ifdef __mips_n64
135#define	NUPDE			(NPDEPG * NPDEPG)
136#define	NUSERPGTBLS		(NUPDE + NPDEPG)
137#else
138#define	NUPDE			(NPDEPG)
139#define	NUSERPGTBLS		(NUPDE)
140#endif
141
142#define	is_kernel_pmap(x)	((x) == kernel_pmap)
143
144struct pmap kernel_pmap_store;
145pd_entry_t *kernel_segmap;
146
147vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
148vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
149
150static int nkpt;
151unsigned pmap_max_asid;		/* max ASID supported by the system */
152
153#define	PMAP_ASID_RESERVED	0
154
155vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
156
157static void pmap_asid_alloc(pmap_t pmap);
158
159/*
160 * Data for the pv entry allocation mechanism
161 */
162static uma_zone_t pvzone;
163static struct vm_object pvzone_obj;
164static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
165
166static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
167static pv_entry_t get_pv_entry(pmap_t locked_pmap);
168static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
169static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
170    vm_offset_t va);
171static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
172static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
173    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
174static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
175static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
176static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
180static void pmap_invalidate_all(pmap_t pmap);
181static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
182static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
183
184static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
185static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
186static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
187static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
188
189#ifdef SMP
190static void pmap_invalidate_page_action(void *arg);
191static void pmap_invalidate_all_action(void *arg);
192static void pmap_update_page_action(void *arg);
193#endif
194
195#ifndef __mips_n64
196/*
197 * This structure is for high memory (memory above 512Meg in 32 bit) support.
198 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
199 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
200 *
201 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
202 * access a highmem physical address on a CPU, we map the physical address to
203 * the reserved virtual address for the CPU in the kernel pagetable.  This is
204 * done with interrupts disabled(although a spinlock and sched_pin would be
205 * sufficient).
206 */
207struct local_sysmaps {
208	vm_offset_t	base;
209	uint32_t	saved_intr;
210	uint16_t	valid1, valid2;
211};
212static struct local_sysmaps sysmap_lmem[MAXCPU];
213
214static __inline void
215pmap_alloc_lmem_map(void)
216{
217	int i;
218
219	for (i = 0; i < MAXCPU; i++) {
220		sysmap_lmem[i].base = virtual_avail;
221		virtual_avail += PAGE_SIZE * 2;
222		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
223	}
224}
225
226static __inline vm_offset_t
227pmap_lmem_map1(vm_paddr_t phys)
228{
229	struct local_sysmaps *sysm;
230	pt_entry_t *pte, npte;
231	vm_offset_t va;
232	uint32_t intr;
233	int cpu;
234
235	intr = intr_disable();
236	cpu = PCPU_GET(cpuid);
237	sysm = &sysmap_lmem[cpu];
238	sysm->saved_intr = intr;
239	va = sysm->base;
240	npte = TLBLO_PA_TO_PFN(phys) |
241	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
242	pte = pmap_pte(kernel_pmap, va);
243	*pte = npte;
244	sysm->valid1 = 1;
245	return (va);
246}
247
248static __inline vm_offset_t
249pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
250{
251	struct local_sysmaps *sysm;
252	pt_entry_t *pte, npte;
253	vm_offset_t va1, va2;
254	uint32_t intr;
255	int cpu;
256
257	intr = intr_disable();
258	cpu = PCPU_GET(cpuid);
259	sysm = &sysmap_lmem[cpu];
260	sysm->saved_intr = intr;
261	va1 = sysm->base;
262	va2 = sysm->base + PAGE_SIZE;
263	npte = TLBLO_PA_TO_PFN(phys1) |
264	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
265	pte = pmap_pte(kernel_pmap, va1);
266	*pte = npte;
267	npte =  TLBLO_PA_TO_PFN(phys2) |
268	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
269	pte = pmap_pte(kernel_pmap, va2);
270	*pte = npte;
271	sysm->valid1 = 1;
272	sysm->valid2 = 1;
273	return (va1);
274}
275
276static __inline void
277pmap_lmem_unmap(void)
278{
279	struct local_sysmaps *sysm;
280	pt_entry_t *pte;
281	int cpu;
282
283	cpu = PCPU_GET(cpuid);
284	sysm = &sysmap_lmem[cpu];
285	pte = pmap_pte(kernel_pmap, sysm->base);
286	*pte = PTE_G;
287	tlb_invalidate_address(kernel_pmap, sysm->base);
288	sysm->valid1 = 0;
289	if (sysm->valid2) {
290		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
291		*pte = PTE_G;
292		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
293		sysm->valid2 = 0;
294	}
295	intr_restore(sysm->saved_intr);
296}
297#else  /* __mips_n64 */
298
299static __inline void
300pmap_alloc_lmem_map(void)
301{
302}
303
304static __inline vm_offset_t
305pmap_lmem_map1(vm_paddr_t phys)
306{
307
308	return (0);
309}
310
311static __inline vm_offset_t
312pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
313{
314
315	return (0);
316}
317
318static __inline vm_offset_t
319pmap_lmem_unmap(void)
320{
321
322	return (0);
323}
324#endif /* !__mips_n64 */
325
326/*
327 * Page table entry lookup routines.
328 */
329static __inline pd_entry_t *
330pmap_segmap(pmap_t pmap, vm_offset_t va)
331{
332
333	return (&pmap->pm_segtab[pmap_seg_index(va)]);
334}
335
336#ifdef __mips_n64
337static __inline pd_entry_t *
338pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
339{
340	pd_entry_t *pde;
341
342	pde = (pd_entry_t *)*pdpe;
343	return (&pde[pmap_pde_index(va)]);
344}
345
346static __inline pd_entry_t *
347pmap_pde(pmap_t pmap, vm_offset_t va)
348{
349	pd_entry_t *pdpe;
350
351	pdpe = pmap_segmap(pmap, va);
352	if (pdpe == NULL || *pdpe == NULL)
353		return (NULL);
354
355	return (pmap_pdpe_to_pde(pdpe, va));
356}
357#else
358static __inline pd_entry_t *
359pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
360{
361
362	return (pdpe);
363}
364
365static __inline
366pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
367{
368
369	return (pmap_segmap(pmap, va));
370}
371#endif
372
373static __inline pt_entry_t *
374pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
375{
376	pt_entry_t *pte;
377
378	pte = (pt_entry_t *)*pde;
379	return (&pte[pmap_pte_index(va)]);
380}
381
382pt_entry_t *
383pmap_pte(pmap_t pmap, vm_offset_t va)
384{
385	pd_entry_t *pde;
386
387	pde = pmap_pde(pmap, va);
388	if (pde == NULL || *pde == NULL)
389		return (NULL);
390
391	return (pmap_pde_to_pte(pde, va));
392}
393
394vm_offset_t
395pmap_steal_memory(vm_size_t size)
396{
397	vm_size_t bank_size;
398	vm_offset_t pa, va;
399
400	size = round_page(size);
401
402	bank_size = phys_avail[1] - phys_avail[0];
403	while (size > bank_size) {
404		int i;
405
406		for (i = 0; phys_avail[i + 2]; i += 2) {
407			phys_avail[i] = phys_avail[i + 2];
408			phys_avail[i + 1] = phys_avail[i + 3];
409		}
410		phys_avail[i] = 0;
411		phys_avail[i + 1] = 0;
412		if (!phys_avail[0])
413			panic("pmap_steal_memory: out of memory");
414		bank_size = phys_avail[1] - phys_avail[0];
415	}
416
417	pa = phys_avail[0];
418	phys_avail[0] += size;
419	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
420		panic("Out of memory below 512Meg?");
421	va = MIPS_PHYS_TO_DIRECT(pa);
422	bzero((caddr_t)va, size);
423	return (va);
424}
425
426/*
427 * Bootstrap the system enough to run with virtual memory.  This
428 * assumes that the phys_avail array has been initialized.
429 */
430static void
431pmap_create_kernel_pagetable(void)
432{
433	int i, j;
434	vm_offset_t ptaddr;
435	pt_entry_t *pte;
436#ifdef __mips_n64
437	pd_entry_t *pde;
438	vm_offset_t pdaddr;
439	int npt, npde;
440#endif
441
442	/*
443	 * Allocate segment table for the kernel
444	 */
445	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
446
447	/*
448	 * Allocate second level page tables for the kernel
449	 */
450#ifdef __mips_n64
451	npde = howmany(NKPT, NPDEPG);
452	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
453#endif
454	nkpt = NKPT;
455	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
456
457	/*
458	 * The R[4-7]?00 stores only one copy of the Global bit in the
459	 * translation lookaside buffer for each 2 page entry. Thus invalid
460	 * entrys must have the Global bit set so when Entry LO and Entry HI
461	 * G bits are anded together they will produce a global bit to store
462	 * in the tlb.
463	 */
464	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
465		*pte = PTE_G;
466
467#ifdef __mips_n64
468	for (i = 0,  npt = nkpt; npt > 0; i++) {
469		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
470		pde = (pd_entry_t *)kernel_segmap[i];
471
472		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
473			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
474	}
475#else
476	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
477		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
478#endif
479
480	PMAP_LOCK_INIT(kernel_pmap);
481	kernel_pmap->pm_segtab = kernel_segmap;
482	kernel_pmap->pm_active = ~0;
483	TAILQ_INIT(&kernel_pmap->pm_pvlist);
484	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
485	kernel_pmap->pm_asid[0].gen = 0;
486	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
487}
488
489void
490pmap_bootstrap(void)
491{
492	int i;
493	int need_local_mappings = 0;
494
495	/* Sort. */
496again:
497	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
498		/*
499		 * Keep the memory aligned on page boundary.
500		 */
501		phys_avail[i] = round_page(phys_avail[i]);
502		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
503
504		if (i < 2)
505			continue;
506		if (phys_avail[i - 2] > phys_avail[i]) {
507			vm_paddr_t ptemp[2];
508
509			ptemp[0] = phys_avail[i + 0];
510			ptemp[1] = phys_avail[i + 1];
511
512			phys_avail[i + 0] = phys_avail[i - 2];
513			phys_avail[i + 1] = phys_avail[i - 1];
514
515			phys_avail[i - 2] = ptemp[0];
516			phys_avail[i - 1] = ptemp[1];
517			goto again;
518		}
519	}
520
521       	/*
522	 * In 32 bit, we may have memory which cannot be mapped directly.
523	 * This memory will need temporary mapping before it can be
524	 * accessed.
525	 */
526	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
527		need_local_mappings = 1;
528
529	/*
530	 * Copy the phys_avail[] array before we start stealing memory from it.
531	 */
532	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
533		physmem_desc[i] = phys_avail[i];
534		physmem_desc[i + 1] = phys_avail[i + 1];
535	}
536
537	Maxmem = atop(phys_avail[i - 1]);
538
539	if (bootverbose) {
540		printf("Physical memory chunk(s):\n");
541		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
542			vm_paddr_t size;
543
544			size = phys_avail[i + 1] - phys_avail[i];
545			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
546			    (uintmax_t) phys_avail[i],
547			    (uintmax_t) phys_avail[i + 1] - 1,
548			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
549		}
550		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
551	}
552	/*
553	 * Steal the message buffer from the beginning of memory.
554	 */
555	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
556	msgbufinit(msgbufp, MSGBUF_SIZE);
557
558	/*
559	 * Steal thread0 kstack.
560	 */
561	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
562
563	virtual_avail = VM_MIN_KERNEL_ADDRESS;
564	virtual_end = VM_MAX_KERNEL_ADDRESS;
565
566#ifdef SMP
567	/*
568	 * Steal some virtual address space to map the pcpu area.
569	 */
570	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
571	pcpup = (struct pcpu *)virtual_avail;
572	virtual_avail += PAGE_SIZE * 2;
573
574	/*
575	 * Initialize the wired TLB entry mapping the pcpu region for
576	 * the BSP at 'pcpup'. Up until this point we were operating
577	 * with the 'pcpup' for the BSP pointing to a virtual address
578	 * in KSEG0 so there was no need for a TLB mapping.
579	 */
580	mips_pcpu_tlb_init(PCPU_ADDR(0));
581
582	if (bootverbose)
583		printf("pcpu is available at virtual address %p.\n", pcpup);
584#endif
585
586	if (need_local_mappings)
587		pmap_alloc_lmem_map();
588	pmap_create_kernel_pagetable();
589	pmap_max_asid = VMNUM_PIDS;
590	mips_wr_entryhi(0);
591	mips_wr_pagemask(0);
592}
593
594/*
595 * Initialize a vm_page's machine-dependent fields.
596 */
597void
598pmap_page_init(vm_page_t m)
599{
600
601	TAILQ_INIT(&m->md.pv_list);
602	m->md.pv_list_count = 0;
603	m->md.pv_flags = 0;
604}
605
606/*
607 *	Initialize the pmap module.
608 *	Called by vm_init, to initialize any structures that the pmap
609 *	system needs to map virtual memory.
610 *	pmap_init has been enhanced to support in a fairly consistant
611 *	way, discontiguous physical memory.
612 */
613void
614pmap_init(void)
615{
616
617	/*
618	 * Initialize the address space (zone) for the pv entries.  Set a
619	 * high water mark so that the system can recover from excessive
620	 * numbers of pv entries.
621	 */
622	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
623	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
624	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
625	pv_entry_high_water = 9 * (pv_entry_max / 10);
626	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
627}
628
629/***************************************************
630 * Low level helper routines.....
631 ***************************************************/
632
633static __inline void
634pmap_invalidate_all_local(pmap_t pmap)
635{
636
637	if (pmap == kernel_pmap) {
638		tlb_invalidate_all();
639		return;
640	}
641	if (pmap->pm_active & PCPU_GET(cpumask))
642		tlb_invalidate_all_user(pmap);
643	else
644		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
645}
646
647#ifdef SMP
648static void
649pmap_invalidate_all(pmap_t pmap)
650{
651
652	smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap);
653}
654
655static void
656pmap_invalidate_all_action(void *arg)
657{
658
659	pmap_invalidate_all_local((pmap_t)arg);
660}
661#else
662static void
663pmap_invalidate_all(pmap_t pmap)
664{
665
666	pmap_invalidate_all_local(pmap);
667}
668#endif
669
670static __inline void
671pmap_invalidate_page_local(pmap_t pmap, vm_offset_t va)
672{
673
674	if (is_kernel_pmap(pmap)) {
675		tlb_invalidate_address(pmap, va);
676		return;
677	}
678	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
679		return;
680	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
681		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
682		return;
683	}
684	tlb_invalidate_address(pmap, va);
685}
686
687#ifdef SMP
688struct pmap_invalidate_page_arg {
689	pmap_t pmap;
690	vm_offset_t va;
691};
692
693static void
694pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
695{
696	struct pmap_invalidate_page_arg arg;
697
698	arg.pmap = pmap;
699	arg.va = va;
700	smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg);
701}
702
703static void
704pmap_invalidate_page_action(void *arg)
705{
706	struct pmap_invalidate_page_arg *p = arg;
707
708	pmap_invalidate_page_local(p->pmap, p->va);
709}
710#else
711static void
712pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
713{
714
715	pmap_invalidate_page_local(pmap, va);
716}
717#endif
718
719static __inline void
720pmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
721{
722
723	if (is_kernel_pmap(pmap)) {
724		tlb_update(pmap, va, pte);
725		return;
726	}
727	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
728		return;
729	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
730		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
731		return;
732	}
733	tlb_update(pmap, va, pte);
734}
735
736#ifdef SMP
737struct pmap_update_page_arg {
738	pmap_t pmap;
739	vm_offset_t va;
740	pt_entry_t pte;
741};
742
743static void
744pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
745{
746	struct pmap_update_page_arg arg;
747
748	arg.pmap = pmap;
749	arg.va = va;
750	arg.pte = pte;
751	smp_rendezvous(0, pmap_update_page_action, 0, &arg);
752}
753
754static void
755pmap_update_page_action(void *arg)
756{
757	struct pmap_update_page_arg *p = arg;
758
759	pmap_update_page_local(p->pmap, p->va, p->pte);
760}
761#else
762static void
763pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
764{
765
766	pmap_update_page_local(pmap, va, pte);
767}
768#endif
769
770/*
771 *	Routine:	pmap_extract
772 *	Function:
773 *		Extract the physical page address associated
774 *		with the given map/virtual_address pair.
775 */
776vm_paddr_t
777pmap_extract(pmap_t pmap, vm_offset_t va)
778{
779	pt_entry_t *pte;
780	vm_offset_t retval = 0;
781
782	PMAP_LOCK(pmap);
783	pte = pmap_pte(pmap, va);
784	if (pte) {
785		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
786	}
787	PMAP_UNLOCK(pmap);
788	return (retval);
789}
790
791/*
792 *	Routine:	pmap_extract_and_hold
793 *	Function:
794 *		Atomically extract and hold the physical page
795 *		with the given pmap and virtual address pair
796 *		if that mapping permits the given protection.
797 */
798vm_page_t
799pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
800{
801	pt_entry_t pte;
802	vm_page_t m;
803	vm_paddr_t pa;
804
805	m = NULL;
806	pa = 0;
807	PMAP_LOCK(pmap);
808retry:
809	pte = *pmap_pte(pmap, va);
810	if (pte != 0 && pte_test(&pte, PTE_V) &&
811	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
812		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
813			goto retry;
814
815		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
816		vm_page_hold(m);
817	}
818	PA_UNLOCK_COND(pa);
819	PMAP_UNLOCK(pmap);
820	return (m);
821}
822
823/***************************************************
824 * Low level mapping routines.....
825 ***************************************************/
826
827/*
828 * add a wired page to the kva
829 */
830void
831pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
832{
833	pt_entry_t *pte;
834	pt_entry_t opte, npte;
835
836#ifdef PMAP_DEBUG
837	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
838#endif
839	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
840
841	pte = pmap_pte(kernel_pmap, va);
842	opte = *pte;
843	*pte = npte;
844	if (pte_test(&opte, PTE_V) && opte != npte)
845		pmap_update_page(kernel_pmap, va, npte);
846}
847
848void
849pmap_kenter(vm_offset_t va, vm_paddr_t pa)
850{
851
852	KASSERT(is_cacheable_mem(pa),
853		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
854
855	pmap_kenter_attr(va, pa, PTE_C_CACHE);
856}
857
858/*
859 * remove a page from the kernel pagetables
860 */
861 /* PMAP_INLINE */ void
862pmap_kremove(vm_offset_t va)
863{
864	pt_entry_t *pte;
865
866	/*
867	 * Write back all caches from the page being destroyed
868	 */
869	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
870
871	pte = pmap_pte(kernel_pmap, va);
872	*pte = PTE_G;
873	pmap_invalidate_page(kernel_pmap, va);
874}
875
876/*
877 *	Used to map a range of physical addresses into kernel
878 *	virtual address space.
879 *
880 *	The value passed in '*virt' is a suggested virtual address for
881 *	the mapping. Architectures which can support a direct-mapped
882 *	physical to virtual region can return the appropriate address
883 *	within that region, leaving '*virt' unchanged. Other
884 *	architectures should map the pages starting at '*virt' and
885 *	update '*virt' with the first usable address after the mapped
886 *	region.
887 *
888 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
889 */
890vm_offset_t
891pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
892{
893	vm_offset_t va, sva;
894
895	if (MIPS_DIRECT_MAPPABLE(end - 1))
896		return (MIPS_PHYS_TO_DIRECT(start));
897
898	va = sva = *virt;
899	while (start < end) {
900		pmap_kenter(va, start);
901		va += PAGE_SIZE;
902		start += PAGE_SIZE;
903	}
904	*virt = va;
905	return (sva);
906}
907
908/*
909 * Add a list of wired pages to the kva
910 * this routine is only used for temporary
911 * kernel mappings that do not need to have
912 * page modification or references recorded.
913 * Note that old mappings are simply written
914 * over.  The page *must* be wired.
915 */
916void
917pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
918{
919	int i;
920	vm_offset_t origva = va;
921
922	for (i = 0; i < count; i++) {
923		pmap_flush_pvcache(m[i]);
924		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
925		va += PAGE_SIZE;
926	}
927
928	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
929}
930
931/*
932 * this routine jerks page mappings from the
933 * kernel -- it is meant only for temporary mappings.
934 */
935void
936pmap_qremove(vm_offset_t va, int count)
937{
938	/*
939	 * No need to wb/inv caches here,
940	 *   pmap_kremove will do it for us
941	 */
942
943	while (count-- > 0) {
944		pmap_kremove(va);
945		va += PAGE_SIZE;
946	}
947}
948
949/***************************************************
950 * Page table page management routines.....
951 ***************************************************/
952
953/*  Revision 1.507
954 *
955 * Simplify the reference counting of page table pages.	 Specifically, use
956 * the page table page's wired count rather than its hold count to contain
957 * the reference count.
958 */
959
960/*
961 * This routine unholds page table pages, and if the hold count
962 * drops to zero, then it decrements the wire count.
963 */
964static PMAP_INLINE int
965pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
966{
967	--m->wire_count;
968	if (m->wire_count == 0)
969		return (_pmap_unwire_pte_hold(pmap, va, m));
970	else
971		return (0);
972}
973
974static int
975_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
976{
977	pd_entry_t *pde;
978
979	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
980	/*
981	 * unmap the page table page
982	 */
983#ifdef __mips_n64
984	if (m->pindex < NUPDE)
985		pde = pmap_pde(pmap, va);
986	else
987		pde = pmap_segmap(pmap, va);
988#else
989	pde = pmap_pde(pmap, va);
990#endif
991	*pde = 0;
992	pmap->pm_stats.resident_count--;
993
994#ifdef __mips_n64
995	if (m->pindex < NUPDE) {
996		pd_entry_t *pdp;
997		vm_page_t pdpg;
998
999		/*
1000		 * Recursively decrement next level pagetable refcount
1001		 */
1002		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
1003		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
1004		pmap_unwire_pte_hold(pmap, va, pdpg);
1005	}
1006#endif
1007	if (pmap->pm_ptphint == m)
1008		pmap->pm_ptphint = NULL;
1009
1010	/*
1011	 * If the page is finally unwired, simply free it.
1012	 */
1013	vm_page_free_zero(m);
1014	atomic_subtract_int(&cnt.v_wire_count, 1);
1015	return (1);
1016}
1017
1018/*
1019 * After removing a page table entry, this routine is used to
1020 * conditionally free the page, and manage the hold/wire counts.
1021 */
1022static int
1023pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1024{
1025	unsigned ptepindex;
1026	pd_entry_t pteva;
1027
1028	if (va >= VM_MAXUSER_ADDRESS)
1029		return (0);
1030
1031	if (mpte == NULL) {
1032		ptepindex = pmap_pde_pindex(va);
1033		if (pmap->pm_ptphint &&
1034		    (pmap->pm_ptphint->pindex == ptepindex)) {
1035			mpte = pmap->pm_ptphint;
1036		} else {
1037			pteva = *pmap_pde(pmap, va);
1038			mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
1039			pmap->pm_ptphint = mpte;
1040		}
1041	}
1042	return (pmap_unwire_pte_hold(pmap, va, mpte));
1043}
1044
1045void
1046pmap_pinit0(pmap_t pmap)
1047{
1048	int i;
1049
1050	PMAP_LOCK_INIT(pmap);
1051	pmap->pm_segtab = kernel_segmap;
1052	pmap->pm_active = 0;
1053	pmap->pm_ptphint = NULL;
1054	for (i = 0; i < MAXCPU; i++) {
1055		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1056		pmap->pm_asid[i].gen = 0;
1057	}
1058	PCPU_SET(curpmap, pmap);
1059	TAILQ_INIT(&pmap->pm_pvlist);
1060	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1061}
1062
1063void
1064pmap_grow_direct_page_cache()
1065{
1066
1067#ifdef __mips_n64
1068	vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1069#else
1070	vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1071#endif
1072}
1073
1074vm_page_t
1075pmap_alloc_direct_page(unsigned int index, int req)
1076{
1077	vm_page_t m;
1078
1079	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req);
1080	if (m == NULL)
1081		return (NULL);
1082
1083	if ((m->flags & PG_ZERO) == 0)
1084		pmap_zero_page(m);
1085
1086	m->pindex = index;
1087	atomic_add_int(&cnt.v_wire_count, 1);
1088	m->wire_count = 1;
1089	return (m);
1090}
1091
1092/*
1093 * Initialize a preallocated and zeroed pmap structure,
1094 * such as one in a vmspace structure.
1095 */
1096int
1097pmap_pinit(pmap_t pmap)
1098{
1099	vm_offset_t ptdva;
1100	vm_page_t ptdpg;
1101	int i;
1102
1103	PMAP_LOCK_INIT(pmap);
1104
1105	/*
1106	 * allocate the page directory page
1107	 */
1108	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1109	       pmap_grow_direct_page_cache();
1110
1111	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1112	pmap->pm_segtab = (pd_entry_t *)ptdva;
1113	pmap->pm_active = 0;
1114	pmap->pm_ptphint = NULL;
1115	for (i = 0; i < MAXCPU; i++) {
1116		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1117		pmap->pm_asid[i].gen = 0;
1118	}
1119	TAILQ_INIT(&pmap->pm_pvlist);
1120	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1121
1122	return (1);
1123}
1124
1125/*
1126 * this routine is called if the page table page is not
1127 * mapped correctly.
1128 */
1129static vm_page_t
1130_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1131{
1132	vm_offset_t pageva;
1133	vm_page_t m;
1134
1135	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1136	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1137	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1138
1139	/*
1140	 * Find or fabricate a new pagetable page
1141	 */
1142	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1143		if (flags & M_WAITOK) {
1144			PMAP_UNLOCK(pmap);
1145			vm_page_unlock_queues();
1146			pmap_grow_direct_page_cache();
1147			vm_page_lock_queues();
1148			PMAP_LOCK(pmap);
1149		}
1150
1151		/*
1152		 * Indicate the need to retry.	While waiting, the page
1153		 * table page may have been allocated.
1154		 */
1155		return (NULL);
1156	}
1157
1158	/*
1159	 * Map the pagetable page into the process address space, if it
1160	 * isn't already there.
1161	 */
1162	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1163
1164#ifdef __mips_n64
1165	if (ptepindex >= NUPDE) {
1166		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1167	} else {
1168		pd_entry_t *pdep, *pde;
1169		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1170		int pdeindex = ptepindex & (NPDEPG - 1);
1171		vm_page_t pg;
1172
1173		pdep = &pmap->pm_segtab[segindex];
1174		if (*pdep == NULL) {
1175			/* recurse for allocating page dir */
1176			if (_pmap_allocpte(pmap, NUPDE + segindex,
1177			    flags) == NULL) {
1178				/* alloc failed, release current */
1179				--m->wire_count;
1180				atomic_subtract_int(&cnt.v_wire_count, 1);
1181				vm_page_free_zero(m);
1182				return (NULL);
1183			}
1184		} else {
1185			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1186			pg->wire_count++;
1187		}
1188		/* Next level entry */
1189		pde = (pd_entry_t *)*pdep;
1190		pde[pdeindex] = (pd_entry_t)pageva;
1191		pmap->pm_ptphint = m;
1192	}
1193#else
1194	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1195#endif
1196	pmap->pm_stats.resident_count++;
1197
1198	/*
1199	 * Set the page table hint
1200	 */
1201	pmap->pm_ptphint = m;
1202	return (m);
1203}
1204
1205static vm_page_t
1206pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1207{
1208	unsigned ptepindex;
1209	pd_entry_t *pde;
1210	vm_page_t m;
1211
1212	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1213	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1214	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1215
1216	/*
1217	 * Calculate pagetable page index
1218	 */
1219	ptepindex = pmap_pde_pindex(va);
1220retry:
1221	/*
1222	 * Get the page directory entry
1223	 */
1224	pde = pmap_pde(pmap, va);
1225
1226	/*
1227	 * If the page table page is mapped, we just increment the hold
1228	 * count, and activate it.
1229	 */
1230	if (pde != NULL && *pde != NULL) {
1231		/*
1232		 * In order to get the page table page, try the hint first.
1233		 */
1234		if (pmap->pm_ptphint &&
1235		    (pmap->pm_ptphint->pindex == ptepindex)) {
1236			m = pmap->pm_ptphint;
1237		} else {
1238			m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1239			pmap->pm_ptphint = m;
1240		}
1241		m->wire_count++;
1242	} else {
1243		/*
1244		 * Here if the pte page isn't mapped, or if it has been
1245		 * deallocated.
1246		 */
1247		m = _pmap_allocpte(pmap, ptepindex, flags);
1248		if (m == NULL && (flags & M_WAITOK))
1249			goto retry;
1250	}
1251	return (m);
1252}
1253
1254
1255/***************************************************
1256* Pmap allocation/deallocation routines.
1257 ***************************************************/
1258/*
1259 *  Revision 1.397
1260 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1261 *    called only the page directory page(s) can be left in the pmap pte
1262 *    object, since all page table pages will have been freed by
1263 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1264 *    reference to the pmap and the page directory is wired, so the page(s)
1265 *    can never be busy.  So all there is to do is clear the magic mappings
1266 *    from the page directory and free the page(s).
1267 */
1268
1269
1270/*
1271 * Release any resources held by the given physical map.
1272 * Called when a pmap initialized by pmap_pinit is being released.
1273 * Should only be called if the map contains no valid mappings.
1274 */
1275void
1276pmap_release(pmap_t pmap)
1277{
1278	vm_offset_t ptdva;
1279	vm_page_t ptdpg;
1280
1281	KASSERT(pmap->pm_stats.resident_count == 0,
1282	    ("pmap_release: pmap resident count %ld != 0",
1283	    pmap->pm_stats.resident_count));
1284
1285	ptdva = (vm_offset_t)pmap->pm_segtab;
1286	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1287
1288	ptdpg->wire_count--;
1289	atomic_subtract_int(&cnt.v_wire_count, 1);
1290	vm_page_free_zero(ptdpg);
1291	PMAP_LOCK_DESTROY(pmap);
1292}
1293
1294/*
1295 * grow the number of kernel page table entries, if needed
1296 */
1297void
1298pmap_growkernel(vm_offset_t addr)
1299{
1300	vm_page_t nkpg;
1301	pd_entry_t *pde, *pdpe;
1302	pt_entry_t *pte;
1303	int i;
1304
1305	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1306	addr = roundup2(addr, NBSEG);
1307	if (addr - 1 >= kernel_map->max_offset)
1308		addr = kernel_map->max_offset;
1309	while (kernel_vm_end < addr) {
1310		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1311#ifdef __mips_n64
1312		if (*pdpe == 0) {
1313			/* new intermediate page table entry */
1314			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1315			if (nkpg == NULL)
1316				panic("pmap_growkernel: no memory to grow kernel");
1317			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1318			continue; /* try again */
1319		}
1320#endif
1321		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1322		if (*pde != 0) {
1323			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1324			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1325				kernel_vm_end = kernel_map->max_offset;
1326				break;
1327			}
1328			continue;
1329		}
1330
1331		/*
1332		 * This index is bogus, but out of the way
1333		 */
1334		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1335		if (!nkpg)
1336			panic("pmap_growkernel: no memory to grow kernel");
1337		nkpt++;
1338		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1339
1340		/*
1341		 * The R[4-7]?00 stores only one copy of the Global bit in
1342		 * the translation lookaside buffer for each 2 page entry.
1343		 * Thus invalid entrys must have the Global bit set so when
1344		 * Entry LO and Entry HI G bits are anded together they will
1345		 * produce a global bit to store in the tlb.
1346		 */
1347		pte = (pt_entry_t *)*pde;
1348		for (i = 0; i < NPTEPG; i++)
1349			pte[i] = PTE_G;
1350
1351		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1352		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1353			kernel_vm_end = kernel_map->max_offset;
1354			break;
1355		}
1356	}
1357}
1358
1359/***************************************************
1360* page management routines.
1361 ***************************************************/
1362
1363/*
1364 * free the pv_entry back to the free list
1365 */
1366static PMAP_INLINE void
1367free_pv_entry(pv_entry_t pv)
1368{
1369
1370	pv_entry_count--;
1371	uma_zfree(pvzone, pv);
1372}
1373
1374/*
1375 * get a new pv_entry, allocating a block from the system
1376 * when needed.
1377 * the memory allocation is performed bypassing the malloc code
1378 * because of the possibility of allocations at interrupt time.
1379 */
1380static pv_entry_t
1381get_pv_entry(pmap_t locked_pmap)
1382{
1383	static const struct timeval printinterval = { 60, 0 };
1384	static struct timeval lastprint;
1385	struct vpgqueues *vpq;
1386	pt_entry_t *pte, oldpte;
1387	pmap_t pmap;
1388	pv_entry_t allocated_pv, next_pv, pv;
1389	vm_offset_t va;
1390	vm_page_t m;
1391
1392	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1393	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1394	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1395	if (allocated_pv != NULL) {
1396		pv_entry_count++;
1397		if (pv_entry_count > pv_entry_high_water)
1398			pagedaemon_wakeup();
1399		else
1400			return (allocated_pv);
1401	}
1402	/*
1403	 * Reclaim pv entries: At first, destroy mappings to inactive
1404	 * pages.  After that, if a pv entry is still needed, destroy
1405	 * mappings to active pages.
1406	 */
1407	if (ratecheck(&lastprint, &printinterval))
1408		printf("Approaching the limit on PV entries, "
1409		    "increase the vm.pmap.shpgperproc tunable.\n");
1410	vpq = &vm_page_queues[PQ_INACTIVE];
1411retry:
1412	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1413		if (m->hold_count || m->busy)
1414			continue;
1415		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1416			va = pv->pv_va;
1417			pmap = pv->pv_pmap;
1418			/* Avoid deadlock and lock recursion. */
1419			if (pmap > locked_pmap)
1420				PMAP_LOCK(pmap);
1421			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1422				continue;
1423			pmap->pm_stats.resident_count--;
1424			pte = pmap_pte(pmap, va);
1425			KASSERT(pte != NULL, ("pte"));
1426			oldpte = *pte;
1427			if (is_kernel_pmap(pmap))
1428				*pte = PTE_G;
1429			else
1430				*pte = 0;
1431			KASSERT(!pte_test(&oldpte, PTE_W),
1432			    ("wired pte for unwired page"));
1433			if (m->md.pv_flags & PV_TABLE_REF)
1434				vm_page_flag_set(m, PG_REFERENCED);
1435			if (pte_test(&oldpte, PTE_D))
1436				vm_page_dirty(m);
1437			pmap_invalidate_page(pmap, va);
1438			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1439			m->md.pv_list_count--;
1440			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1441			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1442			if (pmap != locked_pmap)
1443				PMAP_UNLOCK(pmap);
1444			if (allocated_pv == NULL)
1445				allocated_pv = pv;
1446			else
1447				free_pv_entry(pv);
1448		}
1449		if (TAILQ_EMPTY(&m->md.pv_list)) {
1450			vm_page_flag_clear(m, PG_WRITEABLE);
1451			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1452		}
1453	}
1454	if (allocated_pv == NULL) {
1455		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1456			vpq = &vm_page_queues[PQ_ACTIVE];
1457			goto retry;
1458		}
1459		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1460	}
1461	return (allocated_pv);
1462}
1463
1464/*
1465 *  Revision 1.370
1466 *
1467 *  Move pmap_collect() out of the machine-dependent code, rename it
1468 *  to reflect its new location, and add page queue and flag locking.
1469 *
1470 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1471 *  of pmap_collect() in terms of machine-independent interfaces;
1472 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1473 *
1474 *  MIPS implementation was identical to alpha [Junos 8.2]
1475 */
1476
1477/*
1478 * If it is the first entry on the list, it is actually
1479 * in the header and we must copy the following entry up
1480 * to the header.  Otherwise we must search the list for
1481 * the entry.  In either case we free the now unused entry.
1482 */
1483
1484static pv_entry_t
1485pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1486{
1487	pv_entry_t pv;
1488
1489	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1490	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1491	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1492		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1493			if (pmap == pv->pv_pmap && va == pv->pv_va)
1494				break;
1495		}
1496	} else {
1497		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1498			if (va == pv->pv_va)
1499				break;
1500		}
1501	}
1502	if (pv != NULL) {
1503		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1504		pvh->pv_list_count--;
1505		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1506	}
1507	return (pv);
1508}
1509
1510static void
1511pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1512{
1513	pv_entry_t pv;
1514
1515	pv = pmap_pvh_remove(pvh, pmap, va);
1516	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1517	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1518	     (u_long)va));
1519	free_pv_entry(pv);
1520}
1521
1522static void
1523pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1524{
1525
1526	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1527	pmap_pvh_free(&m->md, pmap, va);
1528	if (TAILQ_EMPTY(&m->md.pv_list))
1529		vm_page_flag_clear(m, PG_WRITEABLE);
1530}
1531
1532/*
1533 * Conditionally create a pv entry.
1534 */
1535static boolean_t
1536pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1537    vm_page_t m)
1538{
1539	pv_entry_t pv;
1540
1541	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1542	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1543	if (pv_entry_count < pv_entry_high_water &&
1544	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1545		pv_entry_count++;
1546		pv->pv_va = va;
1547		pv->pv_pmap = pmap;
1548		pv->pv_ptem = mpte;
1549		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1550		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1551		m->md.pv_list_count++;
1552		return (TRUE);
1553	} else
1554		return (FALSE);
1555}
1556
1557/*
1558 * pmap_remove_pte: do the things to unmap a page in a process
1559 */
1560static int
1561pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1562{
1563	pt_entry_t oldpte;
1564	vm_page_t m;
1565	vm_offset_t pa;
1566
1567	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1568	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1569
1570	oldpte = *ptq;
1571	if (is_kernel_pmap(pmap))
1572		*ptq = PTE_G;
1573	else
1574		*ptq = 0;
1575
1576	if (pte_test(&oldpte, PTE_W))
1577		pmap->pm_stats.wired_count -= 1;
1578
1579	pmap->pm_stats.resident_count -= 1;
1580	pa = TLBLO_PTE_TO_PA(oldpte);
1581
1582	if (page_is_managed(pa)) {
1583		m = PHYS_TO_VM_PAGE(pa);
1584		if (pte_test(&oldpte, PTE_D)) {
1585			KASSERT(!pte_test(&oldpte, PTE_RO),
1586			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1587			    __func__, (void *)va, oldpte));
1588			vm_page_dirty(m);
1589		}
1590		if (m->md.pv_flags & PV_TABLE_REF)
1591			vm_page_flag_set(m, PG_REFERENCED);
1592		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1593
1594		pmap_remove_entry(pmap, m, va);
1595	}
1596	return (pmap_unuse_pt(pmap, va, NULL));
1597}
1598
1599/*
1600 * Remove a single page from a process address space
1601 */
1602static void
1603pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1604{
1605	pt_entry_t *ptq;
1606
1607	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1608	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1609	ptq = pmap_pte(pmap, va);
1610
1611	/*
1612	 * if there is no pte for this address, just skip it!!!
1613	 */
1614	if (!ptq || !pte_test(ptq, PTE_V)) {
1615		return;
1616	}
1617
1618	/*
1619	 * Write back all caches from the page being destroyed
1620	 */
1621	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1622
1623	/*
1624	 * get a local va for mappings for this pmap.
1625	 */
1626	(void)pmap_remove_pte(pmap, ptq, va);
1627	pmap_invalidate_page(pmap, va);
1628
1629	return;
1630}
1631
1632/*
1633 *	Remove the given range of addresses from the specified map.
1634 *
1635 *	It is assumed that the start and end are properly
1636 *	rounded to the page size.
1637 */
1638void
1639pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1640{
1641	vm_offset_t va_next;
1642	pd_entry_t *pde, *pdpe;
1643	pt_entry_t *pte;
1644
1645	if (pmap == NULL)
1646		return;
1647
1648	if (pmap->pm_stats.resident_count == 0)
1649		return;
1650
1651	vm_page_lock_queues();
1652	PMAP_LOCK(pmap);
1653
1654	/*
1655	 * special handling of removing one page.  a very common operation
1656	 * and easy to short circuit some code.
1657	 */
1658	if ((sva + PAGE_SIZE) == eva) {
1659		pmap_remove_page(pmap, sva);
1660		goto out;
1661	}
1662	for (; sva < eva; sva = va_next) {
1663		pdpe = pmap_segmap(pmap, sva);
1664#ifdef __mips_n64
1665		if (*pdpe == 0) {
1666			va_next = (sva + NBSEG) & ~SEGMASK;
1667			if (va_next < sva)
1668				va_next = eva;
1669			continue;
1670		}
1671#endif
1672		va_next = (sva + NBPDR) & ~PDRMASK;
1673		if (va_next < sva)
1674			va_next = eva;
1675
1676		pde = pmap_pdpe_to_pde(pdpe, sva);
1677		if (*pde == 0)
1678			continue;
1679		if (va_next > eva)
1680			va_next = eva;
1681		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1682		    pte++, sva += PAGE_SIZE) {
1683			pmap_remove_page(pmap, sva);
1684		}
1685	}
1686out:
1687	vm_page_unlock_queues();
1688	PMAP_UNLOCK(pmap);
1689}
1690
1691/*
1692 *	Routine:	pmap_remove_all
1693 *	Function:
1694 *		Removes this physical page from
1695 *		all physical maps in which it resides.
1696 *		Reflects back modify bits to the pager.
1697 *
1698 *	Notes:
1699 *		Original versions of this routine were very
1700 *		inefficient because they iteratively called
1701 *		pmap_remove (slow...)
1702 */
1703
1704void
1705pmap_remove_all(vm_page_t m)
1706{
1707	pv_entry_t pv;
1708	pt_entry_t *pte, tpte;
1709
1710	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1711	    ("pmap_remove_all: page %p is fictitious", m));
1712	vm_page_lock_queues();
1713
1714	if (m->md.pv_flags & PV_TABLE_REF)
1715		vm_page_flag_set(m, PG_REFERENCED);
1716
1717	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1718		PMAP_LOCK(pv->pv_pmap);
1719
1720		/*
1721		 * If it's last mapping writeback all caches from
1722		 * the page being destroyed
1723	 	 */
1724		if (m->md.pv_list_count == 1)
1725			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1726
1727		pv->pv_pmap->pm_stats.resident_count--;
1728
1729		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1730
1731		tpte = *pte;
1732		if (is_kernel_pmap(pv->pv_pmap))
1733			*pte = PTE_G;
1734		else
1735			*pte = 0;
1736
1737		if (pte_test(&tpte, PTE_W))
1738			pv->pv_pmap->pm_stats.wired_count--;
1739
1740		/*
1741		 * Update the vm_page_t clean and reference bits.
1742		 */
1743		if (pte_test(&tpte, PTE_D)) {
1744			KASSERT(!pte_test(&tpte, PTE_RO),
1745			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1746			    __func__, (void *)pv->pv_va, tpte));
1747			vm_page_dirty(m);
1748		}
1749		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1750
1751		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1752		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1753		m->md.pv_list_count--;
1754		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1755		PMAP_UNLOCK(pv->pv_pmap);
1756		free_pv_entry(pv);
1757	}
1758
1759	vm_page_flag_clear(m, PG_WRITEABLE);
1760	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1761	vm_page_unlock_queues();
1762}
1763
1764/*
1765 *	Set the physical protection on the
1766 *	specified range of this map as requested.
1767 */
1768void
1769pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1770{
1771	pt_entry_t *pte;
1772	pd_entry_t *pde, *pdpe;
1773	vm_offset_t va_next;
1774
1775	if (pmap == NULL)
1776		return;
1777
1778	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1779		pmap_remove(pmap, sva, eva);
1780		return;
1781	}
1782	if (prot & VM_PROT_WRITE)
1783		return;
1784
1785	vm_page_lock_queues();
1786	PMAP_LOCK(pmap);
1787	for (; sva < eva; sva = va_next) {
1788		pt_entry_t pbits;
1789		vm_page_t m;
1790		vm_paddr_t pa;
1791
1792		pdpe = pmap_segmap(pmap, sva);
1793#ifdef __mips_n64
1794		if (*pdpe == 0) {
1795			va_next = (sva + NBSEG) & ~SEGMASK;
1796			if (va_next < sva)
1797				va_next = eva;
1798			continue;
1799		}
1800#endif
1801		va_next = (sva + NBPDR) & ~PDRMASK;
1802		if (va_next < sva)
1803			va_next = eva;
1804
1805		pde = pmap_pdpe_to_pde(pdpe, sva);
1806		if (pde == NULL || *pde == NULL)
1807			continue;
1808		if (va_next > eva)
1809			va_next = eva;
1810
1811		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1812		     sva += PAGE_SIZE) {
1813
1814			/* Skip invalid PTEs */
1815			if (!pte_test(pte, PTE_V))
1816				continue;
1817			pbits = *pte;
1818			pa = TLBLO_PTE_TO_PA(pbits);
1819			if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1820				m = PHYS_TO_VM_PAGE(pa);
1821				vm_page_dirty(m);
1822				m->md.pv_flags &= ~PV_TABLE_MOD;
1823			}
1824			pte_clear(&pbits, PTE_D);
1825			pte_set(&pbits, PTE_RO);
1826
1827			if (pbits != *pte) {
1828				*pte = pbits;
1829				pmap_update_page(pmap, sva, pbits);
1830			}
1831		}
1832	}
1833	vm_page_unlock_queues();
1834	PMAP_UNLOCK(pmap);
1835}
1836
1837/*
1838 *	Insert the given physical page (p) at
1839 *	the specified virtual address (v) in the
1840 *	target physical map with the protection requested.
1841 *
1842 *	If specified, the page will be wired down, meaning
1843 *	that the related pte can not be reclaimed.
1844 *
1845 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1846 *	or lose information.  That is, this routine must actually
1847 *	insert this page into the given map NOW.
1848 */
1849void
1850pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1851    vm_prot_t prot, boolean_t wired)
1852{
1853	vm_offset_t pa, opa;
1854	pt_entry_t *pte;
1855	pt_entry_t origpte, newpte;
1856	pv_entry_t pv;
1857	vm_page_t mpte, om;
1858	int rw = 0;
1859
1860	if (pmap == NULL)
1861		return;
1862
1863	va &= ~PAGE_MASK;
1864 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1865	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1866	    (m->oflags & VPO_BUSY) != 0,
1867	    ("pmap_enter: page %p is not busy", m));
1868
1869	mpte = NULL;
1870
1871	vm_page_lock_queues();
1872	PMAP_LOCK(pmap);
1873
1874	/*
1875	 * In the case that a page table page is not resident, we are
1876	 * creating it here.
1877	 */
1878	if (va < VM_MAXUSER_ADDRESS) {
1879		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1880	}
1881	pte = pmap_pte(pmap, va);
1882
1883	/*
1884	 * Page Directory table entry not valid, we need a new PT page
1885	 */
1886	if (pte == NULL) {
1887		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
1888		    (void *)pmap->pm_segtab, (void *)va);
1889	}
1890	pa = VM_PAGE_TO_PHYS(m);
1891	om = NULL;
1892	origpte = *pte;
1893	opa = TLBLO_PTE_TO_PA(origpte);
1894
1895	/*
1896	 * Mapping has not changed, must be protection or wiring change.
1897	 */
1898	if (pte_test(&origpte, PTE_V) && opa == pa) {
1899		/*
1900		 * Wiring change, just update stats. We don't worry about
1901		 * wiring PT pages as they remain resident as long as there
1902		 * are valid mappings in them. Hence, if a user page is
1903		 * wired, the PT page will be also.
1904		 */
1905		if (wired && !pte_test(&origpte, PTE_W))
1906			pmap->pm_stats.wired_count++;
1907		else if (!wired && pte_test(&origpte, PTE_W))
1908			pmap->pm_stats.wired_count--;
1909
1910		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
1911		    ("%s: modified page not writable: va: %p, pte: 0x%x",
1912		    __func__, (void *)va, origpte));
1913
1914		/*
1915		 * Remove extra pte reference
1916		 */
1917		if (mpte)
1918			mpte->wire_count--;
1919
1920		if (page_is_managed(opa)) {
1921			om = m;
1922		}
1923		goto validate;
1924	}
1925
1926	pv = NULL;
1927
1928	/*
1929	 * Mapping has changed, invalidate old range and fall through to
1930	 * handle validating new mapping.
1931	 */
1932	if (opa) {
1933		if (pte_test(&origpte, PTE_W))
1934			pmap->pm_stats.wired_count--;
1935
1936		if (page_is_managed(opa)) {
1937			om = PHYS_TO_VM_PAGE(opa);
1938			pv = pmap_pvh_remove(&om->md, pmap, va);
1939		}
1940		if (mpte != NULL) {
1941			mpte->wire_count--;
1942			KASSERT(mpte->wire_count > 0,
1943			    ("pmap_enter: missing reference to page table page,"
1944			    " va: %p", (void *)va));
1945		}
1946	} else
1947		pmap->pm_stats.resident_count++;
1948
1949	/*
1950	 * Enter on the PV list if part of our managed memory. Note that we
1951	 * raise IPL while manipulating pv_table since pmap_enter can be
1952	 * called at interrupt time.
1953	 */
1954	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1955		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1956		    ("pmap_enter: managed mapping within the clean submap"));
1957		if (pv == NULL)
1958			pv = get_pv_entry(pmap);
1959		pv->pv_va = va;
1960		pv->pv_pmap = pmap;
1961		pv->pv_ptem = mpte;
1962		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1963		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1964		m->md.pv_list_count++;
1965	} else if (pv != NULL)
1966		free_pv_entry(pv);
1967
1968	/*
1969	 * Increment counters
1970	 */
1971	if (wired)
1972		pmap->pm_stats.wired_count++;
1973
1974validate:
1975	if ((access & VM_PROT_WRITE) != 0)
1976		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1977	rw = init_pte_prot(va, m, prot);
1978
1979#ifdef PMAP_DEBUG
1980	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1981#endif
1982	/*
1983	 * Now validate mapping with desired protection/wiring.
1984	 */
1985	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1986
1987	if (is_cacheable_mem(pa))
1988		newpte |= PTE_C_CACHE;
1989	else
1990		newpte |= PTE_C_UNCACHED;
1991
1992	if (wired)
1993		newpte |= PTE_W;
1994
1995	if (is_kernel_pmap(pmap))
1996	         newpte |= PTE_G;
1997
1998	/*
1999	 * if the mapping or permission bits are different, we need to
2000	 * update the pte.
2001	 */
2002	if (origpte != newpte) {
2003		if (pte_test(&origpte, PTE_V)) {
2004			*pte = newpte;
2005			if (page_is_managed(opa) && (opa != pa)) {
2006				if (om->md.pv_flags & PV_TABLE_REF)
2007					vm_page_flag_set(om, PG_REFERENCED);
2008				om->md.pv_flags &=
2009				    ~(PV_TABLE_REF | PV_TABLE_MOD);
2010			}
2011			if (pte_test(&origpte, PTE_D)) {
2012				KASSERT(!pte_test(&origpte, PTE_RO),
2013				    ("pmap_enter: modified page not writable:"
2014				    " va: %p, pte: 0x%x", (void *)va, origpte));
2015				if (page_is_managed(opa))
2016					vm_page_dirty(om);
2017			}
2018			if (page_is_managed(opa) &&
2019			    TAILQ_EMPTY(&om->md.pv_list))
2020				vm_page_flag_clear(om, PG_WRITEABLE);
2021		} else {
2022			*pte = newpte;
2023		}
2024	}
2025	pmap_update_page(pmap, va, newpte);
2026
2027	/*
2028	 * Sync I & D caches for executable pages.  Do this only if the the
2029	 * target pmap belongs to the current process.  Otherwise, an
2030	 * unresolvable TLB miss may occur.
2031	 */
2032	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2033	    (prot & VM_PROT_EXECUTE)) {
2034		mips_icache_sync_range(va, PAGE_SIZE);
2035		mips_dcache_wbinv_range(va, PAGE_SIZE);
2036	}
2037	vm_page_unlock_queues();
2038	PMAP_UNLOCK(pmap);
2039}
2040
2041/*
2042 * this code makes some *MAJOR* assumptions:
2043 * 1. Current pmap & pmap exists.
2044 * 2. Not wired.
2045 * 3. Read access.
2046 * 4. No page table pages.
2047 * but is *MUCH* faster than pmap_enter...
2048 */
2049
2050void
2051pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2052{
2053
2054	vm_page_lock_queues();
2055	PMAP_LOCK(pmap);
2056	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2057	vm_page_unlock_queues();
2058	PMAP_UNLOCK(pmap);
2059}
2060
2061static vm_page_t
2062pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2063    vm_prot_t prot, vm_page_t mpte)
2064{
2065	pt_entry_t *pte;
2066	vm_offset_t pa;
2067
2068	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2069	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2070	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2071	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2072	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2073
2074	/*
2075	 * In the case that a page table page is not resident, we are
2076	 * creating it here.
2077	 */
2078	if (va < VM_MAXUSER_ADDRESS) {
2079		pd_entry_t *pde;
2080		unsigned ptepindex;
2081
2082		/*
2083		 * Calculate pagetable page index
2084		 */
2085		ptepindex = pmap_pde_pindex(va);
2086		if (mpte && (mpte->pindex == ptepindex)) {
2087			mpte->wire_count++;
2088		} else {
2089			/*
2090			 * Get the page directory entry
2091			 */
2092			pde = pmap_pde(pmap, va);
2093
2094			/*
2095			 * If the page table page is mapped, we just
2096			 * increment the hold count, and activate it.
2097			 */
2098			if (pde && *pde != 0) {
2099				if (pmap->pm_ptphint &&
2100				    (pmap->pm_ptphint->pindex == ptepindex)) {
2101					mpte = pmap->pm_ptphint;
2102				} else {
2103					mpte = PHYS_TO_VM_PAGE(
2104						MIPS_DIRECT_TO_PHYS(*pde));
2105					pmap->pm_ptphint = mpte;
2106				}
2107				mpte->wire_count++;
2108			} else {
2109				mpte = _pmap_allocpte(pmap, ptepindex,
2110				    M_NOWAIT);
2111				if (mpte == NULL)
2112					return (mpte);
2113			}
2114		}
2115	} else {
2116		mpte = NULL;
2117	}
2118
2119	pte = pmap_pte(pmap, va);
2120	if (pte_test(pte, PTE_V)) {
2121		if (mpte != NULL) {
2122			mpte->wire_count--;
2123			mpte = NULL;
2124		}
2125		return (mpte);
2126	}
2127
2128	/*
2129	 * Enter on the PV list if part of our managed memory.
2130	 */
2131	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2132	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2133		if (mpte != NULL) {
2134			pmap_unwire_pte_hold(pmap, va, mpte);
2135			mpte = NULL;
2136		}
2137		return (mpte);
2138	}
2139
2140	/*
2141	 * Increment counters
2142	 */
2143	pmap->pm_stats.resident_count++;
2144
2145	pa = VM_PAGE_TO_PHYS(m);
2146
2147	/*
2148	 * Now validate mapping with RO protection
2149	 */
2150	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2151
2152	if (is_cacheable_mem(pa))
2153		*pte |= PTE_C_CACHE;
2154	else
2155		*pte |= PTE_C_UNCACHED;
2156
2157	if (is_kernel_pmap(pmap))
2158		*pte |= PTE_G;
2159	else {
2160		*pte |= PTE_RO;
2161		/*
2162		 * Sync I & D caches.  Do this only if the the target pmap
2163		 * belongs to the current process.  Otherwise, an
2164		 * unresolvable TLB miss may occur. */
2165		if (pmap == &curproc->p_vmspace->vm_pmap) {
2166			va &= ~PAGE_MASK;
2167			mips_icache_sync_range(va, PAGE_SIZE);
2168			mips_dcache_wbinv_range(va, PAGE_SIZE);
2169		}
2170	}
2171	return (mpte);
2172}
2173
2174/*
2175 * Make a temporary mapping for a physical address.  This is only intended
2176 * to be used for panic dumps.
2177 *
2178 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2179 */
2180void *
2181pmap_kenter_temporary(vm_paddr_t pa, int i)
2182{
2183	vm_offset_t va;
2184
2185	if (i != 0)
2186		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2187		    __func__);
2188
2189	if (MIPS_DIRECT_MAPPABLE(pa)) {
2190		va = MIPS_PHYS_TO_DIRECT(pa);
2191	} else {
2192#ifndef __mips_n64    /* XXX : to be converted to new style */
2193		int cpu;
2194		register_t intr;
2195		struct local_sysmaps *sysm;
2196		pt_entry_t *pte, npte;
2197
2198		/* If this is used other than for dumps, we may need to leave
2199		 * interrupts disasbled on return. If crash dumps don't work when
2200		 * we get to this point, we might want to consider this (leaving things
2201		 * disabled as a starting point ;-)
2202	 	 */
2203		intr = intr_disable();
2204		cpu = PCPU_GET(cpuid);
2205		sysm = &sysmap_lmem[cpu];
2206		/* Since this is for the debugger, no locks or any other fun */
2207		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2208		pte = pmap_pte(kernel_pmap, sysm->base);
2209		*pte = npte;
2210		sysm->valid1 = 1;
2211		pmap_update_page(kernel_pmap, sysm->base, npte);
2212		va = sysm->base;
2213		intr_restore(intr);
2214#endif
2215	}
2216	return ((void *)va);
2217}
2218
2219void
2220pmap_kenter_temporary_free(vm_paddr_t pa)
2221{
2222#ifndef __mips_n64    /* XXX : to be converted to new style */
2223	int cpu;
2224	register_t intr;
2225	struct local_sysmaps *sysm;
2226#endif
2227
2228	if (MIPS_DIRECT_MAPPABLE(pa)) {
2229		/* nothing to do for this case */
2230		return;
2231	}
2232#ifndef __mips_n64    /* XXX : to be converted to new style */
2233	cpu = PCPU_GET(cpuid);
2234	sysm = &sysmap_lmem[cpu];
2235	if (sysm->valid1) {
2236		pt_entry_t *pte;
2237
2238		intr = intr_disable();
2239		pte = pmap_pte(kernel_pmap, sysm->base);
2240		*pte = PTE_G;
2241		pmap_invalidate_page(kernel_pmap, sysm->base);
2242		intr_restore(intr);
2243		sysm->valid1 = 0;
2244	}
2245#endif
2246}
2247
2248/*
2249 * Moved the code to Machine Independent
2250 *	 vm_map_pmap_enter()
2251 */
2252
2253/*
2254 * Maps a sequence of resident pages belonging to the same object.
2255 * The sequence begins with the given page m_start.  This page is
2256 * mapped at the given virtual address start.  Each subsequent page is
2257 * mapped at a virtual address that is offset from start by the same
2258 * amount as the page is offset from m_start within the object.  The
2259 * last page in the sequence is the page with the largest offset from
2260 * m_start that can be mapped at a virtual address less than the given
2261 * virtual address end.  Not every virtual page between start and end
2262 * is mapped; only those for which a resident page exists with the
2263 * corresponding offset from m_start are mapped.
2264 */
2265void
2266pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2267    vm_page_t m_start, vm_prot_t prot)
2268{
2269	vm_page_t m, mpte;
2270	vm_pindex_t diff, psize;
2271
2272	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2273	psize = atop(end - start);
2274	mpte = NULL;
2275	m = m_start;
2276	vm_page_lock_queues();
2277	PMAP_LOCK(pmap);
2278	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2279		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2280		    prot, mpte);
2281		m = TAILQ_NEXT(m, listq);
2282	}
2283	vm_page_unlock_queues();
2284 	PMAP_UNLOCK(pmap);
2285}
2286
2287/*
2288 * pmap_object_init_pt preloads the ptes for a given object
2289 * into the specified pmap.  This eliminates the blast of soft
2290 * faults on process startup and immediately after an mmap.
2291 */
2292void
2293pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2294    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2295{
2296	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2297	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2298	    ("pmap_object_init_pt: non-device object"));
2299}
2300
2301/*
2302 *	Routine:	pmap_change_wiring
2303 *	Function:	Change the wiring attribute for a map/virtual-address
2304 *			pair.
2305 *	In/out conditions:
2306 *			The mapping must already exist in the pmap.
2307 */
2308void
2309pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2310{
2311	pt_entry_t *pte;
2312
2313	if (pmap == NULL)
2314		return;
2315
2316	PMAP_LOCK(pmap);
2317	pte = pmap_pte(pmap, va);
2318
2319	if (wired && !pte_test(pte, PTE_W))
2320		pmap->pm_stats.wired_count++;
2321	else if (!wired && pte_test(pte, PTE_W))
2322		pmap->pm_stats.wired_count--;
2323
2324	/*
2325	 * Wiring is not a hardware characteristic so there is no need to
2326	 * invalidate TLB.
2327	 */
2328	if (wired)
2329		pte_set(pte, PTE_W);
2330	else
2331		pte_clear(pte, PTE_W);
2332	PMAP_UNLOCK(pmap);
2333}
2334
2335/*
2336 *	Copy the range specified by src_addr/len
2337 *	from the source map to the range dst_addr/len
2338 *	in the destination map.
2339 *
2340 *	This routine is only advisory and need not do anything.
2341 */
2342
2343void
2344pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2345    vm_size_t len, vm_offset_t src_addr)
2346{
2347}
2348
2349/*
2350 *	pmap_zero_page zeros the specified hardware page by mapping
2351 *	the page into KVM and using bzero to clear its contents.
2352 *
2353 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2354 */
2355void
2356pmap_zero_page(vm_page_t m)
2357{
2358	vm_offset_t va;
2359	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2360
2361	if (MIPS_DIRECT_MAPPABLE(phys)) {
2362		va = MIPS_PHYS_TO_DIRECT(phys);
2363		bzero((caddr_t)va, PAGE_SIZE);
2364		mips_dcache_wbinv_range(va, PAGE_SIZE);
2365	} else {
2366		va = pmap_lmem_map1(phys);
2367		bzero((caddr_t)va, PAGE_SIZE);
2368		mips_dcache_wbinv_range(va, PAGE_SIZE);
2369		pmap_lmem_unmap();
2370	}
2371}
2372
2373/*
2374 *	pmap_zero_page_area zeros the specified hardware page by mapping
2375 *	the page into KVM and using bzero to clear its contents.
2376 *
2377 *	off and size may not cover an area beyond a single hardware page.
2378 */
2379void
2380pmap_zero_page_area(vm_page_t m, int off, int size)
2381{
2382	vm_offset_t va;
2383	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2384
2385	if (MIPS_DIRECT_MAPPABLE(phys)) {
2386		va = MIPS_PHYS_TO_DIRECT(phys);
2387		bzero((char *)(caddr_t)va + off, size);
2388		mips_dcache_wbinv_range(va + off, size);
2389	} else {
2390		va = pmap_lmem_map1(phys);
2391		bzero((char *)va + off, size);
2392		mips_dcache_wbinv_range(va + off, size);
2393		pmap_lmem_unmap();
2394	}
2395}
2396
2397void
2398pmap_zero_page_idle(vm_page_t m)
2399{
2400	vm_offset_t va;
2401	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2402
2403	if (MIPS_DIRECT_MAPPABLE(phys)) {
2404		va = MIPS_PHYS_TO_DIRECT(phys);
2405		bzero((caddr_t)va, PAGE_SIZE);
2406		mips_dcache_wbinv_range(va, PAGE_SIZE);
2407	} else {
2408		va = pmap_lmem_map1(phys);
2409		bzero((caddr_t)va, PAGE_SIZE);
2410		mips_dcache_wbinv_range(va, PAGE_SIZE);
2411		pmap_lmem_unmap();
2412	}
2413}
2414
2415/*
2416 *	pmap_copy_page copies the specified (machine independent)
2417 *	page by mapping the page into virtual memory and using
2418 *	bcopy to copy the page, one machine dependent page at a
2419 *	time.
2420 *
2421 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2422 */
2423void
2424pmap_copy_page(vm_page_t src, vm_page_t dst)
2425{
2426	vm_offset_t va_src, va_dst;
2427	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2428	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2429
2430	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2431		/* easy case, all can be accessed via KSEG0 */
2432		/*
2433		 * Flush all caches for VA that are mapped to this page
2434		 * to make sure that data in SDRAM is up to date
2435		 */
2436		pmap_flush_pvcache(src);
2437		mips_dcache_wbinv_range_index(
2438		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2439		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2440		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2441		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2442		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2443	} else {
2444		va_src = pmap_lmem_map2(phys_src, phys_dst);
2445		va_dst = va_src + PAGE_SIZE;
2446		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2447		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2448		pmap_lmem_unmap();
2449	}
2450}
2451
2452/*
2453 * Returns true if the pmap's pv is one of the first
2454 * 16 pvs linked to from this page.  This count may
2455 * be changed upwards or downwards in the future; it
2456 * is only necessary that true be returned for a small
2457 * subset of pmaps for proper page aging.
2458 */
2459boolean_t
2460pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2461{
2462	pv_entry_t pv;
2463	int loops = 0;
2464	boolean_t rv;
2465
2466	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2467	    ("pmap_page_exists_quick: page %p is not managed", m));
2468	rv = FALSE;
2469	vm_page_lock_queues();
2470	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2471		if (pv->pv_pmap == pmap) {
2472			rv = TRUE;
2473			break;
2474		}
2475		loops++;
2476		if (loops >= 16)
2477			break;
2478	}
2479	vm_page_unlock_queues();
2480	return (rv);
2481}
2482
2483/*
2484 * Remove all pages from specified address space
2485 * this aids process exit speeds.  Also, this code
2486 * is special cased for current process only, but
2487 * can have the more generic (and slightly slower)
2488 * mode enabled.  This is much faster than pmap_remove
2489 * in the case of running down an entire address space.
2490 */
2491void
2492pmap_remove_pages(pmap_t pmap)
2493{
2494	pt_entry_t *pte, tpte;
2495	pv_entry_t pv, npv;
2496	vm_page_t m;
2497
2498	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2499		printf("warning: pmap_remove_pages called with non-current pmap\n");
2500		return;
2501	}
2502	vm_page_lock_queues();
2503	PMAP_LOCK(pmap);
2504	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
2505
2506		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2507		if (!pte_test(pte, PTE_V))
2508			panic("pmap_remove_pages: page on pm_pvlist has no pte");
2509		tpte = *pte;
2510
2511/*
2512 * We cannot remove wired pages from a process' mapping at this time
2513 */
2514		if (pte_test(&tpte, PTE_W)) {
2515			npv = TAILQ_NEXT(pv, pv_plist);
2516			continue;
2517		}
2518		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2519
2520		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2521		KASSERT(m != NULL,
2522		    ("pmap_remove_pages: bad tpte %x", tpte));
2523
2524		pv->pv_pmap->pm_stats.resident_count--;
2525
2526		/*
2527		 * Update the vm_page_t clean and reference bits.
2528		 */
2529		if (pte_test(&tpte, PTE_D)) {
2530			vm_page_dirty(m);
2531		}
2532		npv = TAILQ_NEXT(pv, pv_plist);
2533		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2534
2535		m->md.pv_list_count--;
2536		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2537		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2538			vm_page_flag_clear(m, PG_WRITEABLE);
2539		}
2540		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2541		free_pv_entry(pv);
2542	}
2543	pmap_invalidate_all(pmap);
2544	PMAP_UNLOCK(pmap);
2545	vm_page_unlock_queues();
2546}
2547
2548/*
2549 * pmap_testbit tests bits in pte's
2550 * note that the testbit/changebit routines are inline,
2551 * and a lot of things compile-time evaluate.
2552 */
2553static boolean_t
2554pmap_testbit(vm_page_t m, int bit)
2555{
2556	pv_entry_t pv;
2557	pt_entry_t *pte;
2558	boolean_t rv = FALSE;
2559
2560	if (m->flags & PG_FICTITIOUS)
2561		return (rv);
2562
2563	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2564		return (rv);
2565
2566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2567	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2568		PMAP_LOCK(pv->pv_pmap);
2569		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2570		rv = pte_test(pte, bit);
2571		PMAP_UNLOCK(pv->pv_pmap);
2572		if (rv)
2573			break;
2574	}
2575	return (rv);
2576}
2577
2578/*
2579 * this routine is used to clear dirty bits in ptes
2580 */
2581static __inline void
2582pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2583{
2584	pv_entry_t pv;
2585	pt_entry_t *pte;
2586
2587	if (m->flags & PG_FICTITIOUS)
2588		return;
2589
2590	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2591	/*
2592	 * Loop over all current mappings setting/clearing as appropos If
2593	 * setting RO do we need to clear the VAC?
2594	 */
2595	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2596		PMAP_LOCK(pv->pv_pmap);
2597		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2598		if (setem) {
2599			*pte |= bit;
2600			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2601		} else {
2602			pt_entry_t pbits = *pte;
2603
2604			if (pbits & bit) {
2605				if (bit == PTE_D) {
2606					if (pbits & PTE_D)
2607						vm_page_dirty(m);
2608					*pte = (pbits & ~PTE_D) | PTE_RO;
2609				} else {
2610					*pte = pbits & ~bit;
2611				}
2612				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2613			}
2614		}
2615		PMAP_UNLOCK(pv->pv_pmap);
2616	}
2617	if (!setem && bit == PTE_D)
2618		vm_page_flag_clear(m, PG_WRITEABLE);
2619}
2620
2621/*
2622 *	pmap_page_wired_mappings:
2623 *
2624 *	Return the number of managed mappings to the given physical page
2625 *	that are wired.
2626 */
2627int
2628pmap_page_wired_mappings(vm_page_t m)
2629{
2630	pv_entry_t pv;
2631	pmap_t pmap;
2632	pt_entry_t *pte;
2633	int count;
2634
2635	count = 0;
2636	if ((m->flags & PG_FICTITIOUS) != 0)
2637		return (count);
2638	vm_page_lock_queues();
2639	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2640		pmap = pv->pv_pmap;
2641		PMAP_LOCK(pmap);
2642		pte = pmap_pte(pmap, pv->pv_va);
2643		if (pte_test(pte, PTE_W))
2644			count++;
2645		PMAP_UNLOCK(pmap);
2646	}
2647	vm_page_unlock_queues();
2648	return (count);
2649}
2650
2651/*
2652 * Clear the write and modified bits in each of the given page's mappings.
2653 */
2654void
2655pmap_remove_write(vm_page_t m)
2656{
2657	pv_entry_t pv, npv;
2658	vm_offset_t va;
2659	pt_entry_t *pte;
2660
2661	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2662	    ("pmap_remove_write: page %p is not managed", m));
2663
2664	/*
2665	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2666	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2667	 * is clear, no page table entries need updating.
2668	 */
2669	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2670	if ((m->oflags & VPO_BUSY) == 0 &&
2671	    (m->flags & PG_WRITEABLE) == 0)
2672		return;
2673
2674	/*
2675	 * Loop over all current mappings setting/clearing as appropos.
2676	 */
2677	vm_page_lock_queues();
2678	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2679		npv = TAILQ_NEXT(pv, pv_plist);
2680		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2681		if (pte == NULL || !pte_test(pte, PTE_V))
2682			panic("page on pm_pvlist has no pte");
2683
2684		va = pv->pv_va;
2685		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2686		    VM_PROT_READ | VM_PROT_EXECUTE);
2687	}
2688	vm_page_flag_clear(m, PG_WRITEABLE);
2689	vm_page_unlock_queues();
2690}
2691
2692/*
2693 *	pmap_ts_referenced:
2694 *
2695 *	Return the count of reference bits for a page, clearing all of them.
2696 */
2697int
2698pmap_ts_referenced(vm_page_t m)
2699{
2700
2701	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2702	    ("pmap_ts_referenced: page %p is not managed", m));
2703	if (m->md.pv_flags & PV_TABLE_REF) {
2704		vm_page_lock_queues();
2705		m->md.pv_flags &= ~PV_TABLE_REF;
2706		vm_page_unlock_queues();
2707		return (1);
2708	}
2709	return (0);
2710}
2711
2712/*
2713 *	pmap_is_modified:
2714 *
2715 *	Return whether or not the specified physical page was modified
2716 *	in any physical maps.
2717 */
2718boolean_t
2719pmap_is_modified(vm_page_t m)
2720{
2721	boolean_t rv;
2722
2723	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2724	    ("pmap_is_modified: page %p is not managed", m));
2725
2726	/*
2727	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2728	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2729	 * is clear, no PTEs can have PTE_D set.
2730	 */
2731	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2732	if ((m->oflags & VPO_BUSY) == 0 &&
2733	    (m->flags & PG_WRITEABLE) == 0)
2734		return (FALSE);
2735	vm_page_lock_queues();
2736	if (m->md.pv_flags & PV_TABLE_MOD)
2737		rv = TRUE;
2738	else
2739		rv = pmap_testbit(m, PTE_D);
2740	vm_page_unlock_queues();
2741	return (rv);
2742}
2743
2744/* N/C */
2745
2746/*
2747 *	pmap_is_prefaultable:
2748 *
2749 *	Return whether or not the specified virtual address is elgible
2750 *	for prefault.
2751 */
2752boolean_t
2753pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2754{
2755	pd_entry_t *pde;
2756	pt_entry_t *pte;
2757	boolean_t rv;
2758
2759	rv = FALSE;
2760	PMAP_LOCK(pmap);
2761	pde = pmap_pde(pmap, addr);
2762	if (pde != NULL && *pde != 0) {
2763		pte = pmap_pde_to_pte(pde, addr);
2764		rv = (*pte == 0);
2765	}
2766	PMAP_UNLOCK(pmap);
2767	return (rv);
2768}
2769
2770/*
2771 *	Clear the modify bits on the specified physical page.
2772 */
2773void
2774pmap_clear_modify(vm_page_t m)
2775{
2776
2777	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2778	    ("pmap_clear_modify: page %p is not managed", m));
2779	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2780	KASSERT((m->oflags & VPO_BUSY) == 0,
2781	    ("pmap_clear_modify: page %p is busy", m));
2782
2783	/*
2784	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_D set.
2785	 * If the object containing the page is locked and the page is not
2786	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2787	 */
2788	if ((m->flags & PG_WRITEABLE) == 0)
2789		return;
2790	vm_page_lock_queues();
2791	if (m->md.pv_flags & PV_TABLE_MOD) {
2792		pmap_changebit(m, PTE_D, FALSE);
2793		m->md.pv_flags &= ~PV_TABLE_MOD;
2794	}
2795	vm_page_unlock_queues();
2796}
2797
2798/*
2799 *	pmap_is_referenced:
2800 *
2801 *	Return whether or not the specified physical page was referenced
2802 *	in any physical maps.
2803 */
2804boolean_t
2805pmap_is_referenced(vm_page_t m)
2806{
2807
2808	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2809	    ("pmap_is_referenced: page %p is not managed", m));
2810	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2811}
2812
2813/*
2814 *	pmap_clear_reference:
2815 *
2816 *	Clear the reference bit on the specified physical page.
2817 */
2818void
2819pmap_clear_reference(vm_page_t m)
2820{
2821
2822	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2823	    ("pmap_clear_reference: page %p is not managed", m));
2824	vm_page_lock_queues();
2825	if (m->md.pv_flags & PV_TABLE_REF) {
2826		m->md.pv_flags &= ~PV_TABLE_REF;
2827	}
2828	vm_page_unlock_queues();
2829}
2830
2831/*
2832 * Miscellaneous support routines follow
2833 */
2834
2835/*
2836 * Map a set of physical memory pages into the kernel virtual
2837 * address space. Return a pointer to where it is mapped. This
2838 * routine is intended to be used for mapping device memory,
2839 * NOT real memory.
2840 */
2841
2842/*
2843 * Map a set of physical memory pages into the kernel virtual
2844 * address space. Return a pointer to where it is mapped. This
2845 * routine is intended to be used for mapping device memory,
2846 * NOT real memory.
2847 *
2848 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2849 */
2850void *
2851pmap_mapdev(vm_offset_t pa, vm_size_t size)
2852{
2853        vm_offset_t va, tmpva, offset;
2854
2855	/*
2856	 * KSEG1 maps only first 512M of phys address space. For
2857	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2858	 */
2859	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2860		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2861	else {
2862		offset = pa & PAGE_MASK;
2863		size = roundup(size + offset, PAGE_SIZE);
2864
2865		va = kmem_alloc_nofault(kernel_map, size);
2866		if (!va)
2867			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2868		pa = trunc_page(pa);
2869		for (tmpva = va; size > 0;) {
2870			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2871			size -= PAGE_SIZE;
2872			tmpva += PAGE_SIZE;
2873			pa += PAGE_SIZE;
2874		}
2875	}
2876
2877	return ((void *)(va + offset));
2878}
2879
2880void
2881pmap_unmapdev(vm_offset_t va, vm_size_t size)
2882{
2883#ifndef __mips_n64
2884	vm_offset_t base, offset, tmpva;
2885
2886	/* If the address is within KSEG1 then there is nothing to do */
2887	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2888		return;
2889
2890	base = trunc_page(va);
2891	offset = va & PAGE_MASK;
2892	size = roundup(size + offset, PAGE_SIZE);
2893	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2894		pmap_kremove(tmpva);
2895	kmem_free(kernel_map, base, size);
2896#endif
2897}
2898
2899/*
2900 * perform the pmap work for mincore
2901 */
2902int
2903pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2904{
2905	pt_entry_t *ptep, pte;
2906	vm_offset_t pa;
2907	vm_page_t m;
2908	int val;
2909	boolean_t managed;
2910
2911	PMAP_LOCK(pmap);
2912retry:
2913	ptep = pmap_pte(pmap, addr);
2914	pte = (ptep != NULL) ? *ptep : 0;
2915	if (!pte_test(&pte, PTE_V)) {
2916		val = 0;
2917		goto out;
2918	}
2919	val = MINCORE_INCORE;
2920	if (pte_test(&pte, PTE_D))
2921		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2922	pa = TLBLO_PTE_TO_PA(pte);
2923	managed = page_is_managed(pa);
2924	if (managed) {
2925		/*
2926		 * This may falsely report the given address as
2927		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2928		 * per-PTE reference information, it is impossible to
2929		 * determine if the address is MINCORE_REFERENCED.
2930		 */
2931		m = PHYS_TO_VM_PAGE(pa);
2932		if ((m->flags & PG_REFERENCED) != 0)
2933			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2934	}
2935	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2936	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2937		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2938		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2939			goto retry;
2940	} else
2941out:
2942		PA_UNLOCK_COND(*locked_pa);
2943	PMAP_UNLOCK(pmap);
2944	return (val);
2945}
2946
2947void
2948pmap_activate(struct thread *td)
2949{
2950	pmap_t pmap, oldpmap;
2951	struct proc *p = td->td_proc;
2952
2953	critical_enter();
2954
2955	pmap = vmspace_pmap(p->p_vmspace);
2956	oldpmap = PCPU_GET(curpmap);
2957
2958	if (oldpmap)
2959		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2960	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2961	pmap_asid_alloc(pmap);
2962	if (td == curthread) {
2963		PCPU_SET(segbase, pmap->pm_segtab);
2964		mips_wr_entryhi(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2965	}
2966
2967	PCPU_SET(curpmap, pmap);
2968	critical_exit();
2969}
2970
2971void
2972pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2973{
2974}
2975
2976/*
2977 *	Increase the starting virtual address of the given mapping if a
2978 *	different alignment might result in more superpage mappings.
2979 */
2980void
2981pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2982    vm_offset_t *addr, vm_size_t size)
2983{
2984	vm_offset_t superpage_offset;
2985
2986	if (size < NBSEG)
2987		return;
2988	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2989		offset += ptoa(object->pg_color);
2990	superpage_offset = offset & SEGMASK;
2991	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2992	    (*addr & SEGMASK) == superpage_offset)
2993		return;
2994	if ((*addr & SEGMASK) < superpage_offset)
2995		*addr = (*addr & ~SEGMASK) + superpage_offset;
2996	else
2997		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2998}
2999
3000/*
3001 * 	Increase the starting virtual address of the given mapping so
3002 * 	that it is aligned to not be the second page in a TLB entry.
3003 * 	This routine assumes that the length is appropriately-sized so
3004 * 	that the allocation does not share a TLB entry at all if required.
3005 */
3006void
3007pmap_align_tlb(vm_offset_t *addr)
3008{
3009	if ((*addr & PAGE_SIZE) == 0)
3010		return;
3011	*addr += PAGE_SIZE;
3012	return;
3013}
3014
3015#ifdef DDB
3016DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3017{
3018	pmap_t pmap;
3019	struct thread *td = NULL;
3020	struct proc *p;
3021	int i, j, k;
3022	vm_paddr_t pa;
3023	vm_offset_t va;
3024
3025	if (have_addr) {
3026		td = db_lookup_thread(addr, TRUE);
3027		if (td == NULL) {
3028			db_printf("Invalid pid or tid");
3029			return;
3030		}
3031		p = td->td_proc;
3032		if (p->p_vmspace == NULL) {
3033			db_printf("No vmspace for process");
3034			return;
3035		}
3036			pmap = vmspace_pmap(p->p_vmspace);
3037	} else
3038		pmap = kernel_pmap;
3039
3040	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3041	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3042	    pmap->pm_asid[0].gen);
3043	for (i = 0; i < NPDEPG; i++) {
3044		pd_entry_t *pdpe;
3045		pt_entry_t *pde;
3046		pt_entry_t pte;
3047
3048		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3049		if (pdpe == NULL)
3050			continue;
3051		db_printf("[%4d] %p\n", i, pdpe);
3052#ifdef __mips_n64
3053		for (j = 0; j < NPDEPG; j++) {
3054			pde = (pt_entry_t *)pdpe[j];
3055			if (pde == NULL)
3056				continue;
3057			db_printf("\t[%4d] %p\n", j, pde);
3058#else
3059		{
3060			j = 0;
3061			pde =  (pt_entry_t *)pdpe;
3062#endif
3063			for (k = 0; k < NPTEPG; k++) {
3064				pte = pde[k];
3065				if (pte == 0 || !pte_test(&pte, PTE_V))
3066					continue;
3067				pa = TLBLO_PTE_TO_PA(pte);
3068				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3069				db_printf("\t\t[%04d] va: %p pte: %8x pa:%lx\n",
3070				       k, (void *)va, pte, (u_long)pa);
3071			}
3072		}
3073	}
3074}
3075#endif
3076
3077#if defined(DEBUG)
3078
3079static void pads(pmap_t pm);
3080void pmap_pvdump(vm_offset_t pa);
3081
3082/* print address space of pmap*/
3083static void
3084pads(pmap_t pm)
3085{
3086	unsigned va, i, j;
3087	pt_entry_t *ptep;
3088
3089	if (pm == kernel_pmap)
3090		return;
3091	for (i = 0; i < NPTEPG; i++)
3092		if (pm->pm_segtab[i])
3093			for (j = 0; j < NPTEPG; j++) {
3094				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3095				if (pm == kernel_pmap && va < KERNBASE)
3096					continue;
3097				if (pm != kernel_pmap &&
3098				    va >= VM_MAXUSER_ADDRESS)
3099					continue;
3100				ptep = pmap_pte(pm, va);
3101				if (pmap_pte_v(ptep))
3102					printf("%x:%x ", va, *(int *)ptep);
3103			}
3104
3105}
3106
3107void
3108pmap_pvdump(vm_offset_t pa)
3109{
3110	register pv_entry_t pv;
3111	vm_page_t m;
3112
3113	printf("pa %x", pa);
3114	m = PHYS_TO_VM_PAGE(pa);
3115	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3116	    pv = TAILQ_NEXT(pv, pv_list)) {
3117		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3118		pads(pv->pv_pmap);
3119	}
3120	printf(" ");
3121}
3122
3123/* N/C */
3124#endif
3125
3126
3127/*
3128 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3129 * It takes almost as much or more time to search the TLB for a
3130 * specific ASID and flush those entries as it does to flush the entire TLB.
3131 * Therefore, when we allocate a new ASID, we just take the next number. When
3132 * we run out of numbers, we flush the TLB, increment the generation count
3133 * and start over. ASID zero is reserved for kernel use.
3134 */
3135static void
3136pmap_asid_alloc(pmap)
3137	pmap_t pmap;
3138{
3139	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3140	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3141	else {
3142		if (PCPU_GET(next_asid) == pmap_max_asid) {
3143			tlb_invalidate_all_user(NULL);
3144			PCPU_SET(asid_generation,
3145			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3146			if (PCPU_GET(asid_generation) == 0) {
3147				PCPU_SET(asid_generation, 1);
3148			}
3149			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3150		}
3151		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3152		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3153		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3154	}
3155}
3156
3157int
3158page_is_managed(vm_offset_t pa)
3159{
3160	vm_offset_t pgnum = mips_btop(pa);
3161
3162	if (pgnum >= first_page) {
3163		vm_page_t m;
3164
3165		m = PHYS_TO_VM_PAGE(pa);
3166		if (m == NULL)
3167			return (0);
3168		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3169			return (1);
3170	}
3171	return (0);
3172}
3173
3174static int
3175init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3176{
3177	int rw;
3178
3179	if (!(prot & VM_PROT_WRITE))
3180		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3181	else if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3182		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3183			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3184		else
3185			rw = PTE_V | PTE_C_CACHE;
3186		vm_page_flag_set(m, PG_WRITEABLE);
3187	} else
3188		/* Needn't emulate a modified bit for unmanaged pages. */
3189		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3190	return (rw);
3191}
3192
3193/*
3194 * pmap_emulate_modified : do dirty bit emulation
3195 *
3196 * On SMP, update just the local TLB, other CPUs will update their
3197 * TLBs from PTE lazily, if they get the exception.
3198 * Returns 0 in case of sucess, 1 if the page is read only and we
3199 * need to fault.
3200 */
3201int
3202pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3203{
3204	vm_page_t m;
3205	pt_entry_t *pte;
3206 	vm_offset_t pa;
3207
3208	PMAP_LOCK(pmap);
3209	pte = pmap_pte(pmap, va);
3210	if (pte == NULL)
3211		panic("pmap_emulate_modified: can't find PTE");
3212#ifdef SMP
3213	/* It is possible that some other CPU changed m-bit */
3214	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3215		pmap_update_page_local(pmap, va, *pte);
3216		PMAP_UNLOCK(pmap);
3217		return (0);
3218	}
3219#else
3220	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3221		panic("pmap_emulate_modified: invalid pte");
3222#endif
3223	if (pte_test(pte, PTE_RO)) {
3224		/* write to read only page in the kernel */
3225		PMAP_UNLOCK(pmap);
3226		return (1);
3227	}
3228	pte_set(pte, PTE_D);
3229	pmap_update_page_local(pmap, va, *pte);
3230	pa = TLBLO_PTE_TO_PA(*pte);
3231	if (!page_is_managed(pa))
3232		panic("pmap_emulate_modified: unmanaged page");
3233	m = PHYS_TO_VM_PAGE(pa);
3234	m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3235	PMAP_UNLOCK(pmap);
3236	return (0);
3237}
3238
3239/*
3240 *	Routine:	pmap_kextract
3241 *	Function:
3242 *		Extract the physical page address associated
3243 *		virtual address.
3244 */
3245 /* PMAP_INLINE */ vm_offset_t
3246pmap_kextract(vm_offset_t va)
3247{
3248	int mapped;
3249
3250	/*
3251	 * First, the direct-mapped regions.
3252	 */
3253#if defined(__mips_n64)
3254	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3255		return (MIPS_XKPHYS_TO_PHYS(va));
3256#endif
3257	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3258		return (MIPS_KSEG0_TO_PHYS(va));
3259
3260	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3261		return (MIPS_KSEG1_TO_PHYS(va));
3262
3263	/*
3264	 * User virtual addresses.
3265	 */
3266	if (va < VM_MAXUSER_ADDRESS) {
3267		pt_entry_t *ptep;
3268
3269		if (curproc && curproc->p_vmspace) {
3270			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3271			if (ptep) {
3272				return (TLBLO_PTE_TO_PA(*ptep) |
3273				    (va & PAGE_MASK));
3274			}
3275			return (0);
3276		}
3277	}
3278
3279	/*
3280	 * Should be kernel virtual here, otherwise fail
3281	 */
3282	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3283#if defined(__mips_n64)
3284	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3285#endif
3286	/*
3287	 * Kernel virtual.
3288	 */
3289
3290	if (mapped) {
3291		pt_entry_t *ptep;
3292
3293		/* Is the kernel pmap initialized? */
3294		if (kernel_pmap->pm_active) {
3295			/* It's inside the virtual address range */
3296			ptep = pmap_pte(kernel_pmap, va);
3297			if (ptep) {
3298				return (TLBLO_PTE_TO_PA(*ptep) |
3299				    (va & PAGE_MASK));
3300			}
3301		}
3302		return (0);
3303	}
3304
3305	panic("%s for unknown address space %p.", __func__, (void *)va);
3306}
3307
3308
3309void
3310pmap_flush_pvcache(vm_page_t m)
3311{
3312	pv_entry_t pv;
3313
3314	if (m != NULL) {
3315		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3316		    pv = TAILQ_NEXT(pv, pv_list)) {
3317			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3318		}
3319	}
3320}
3321