pmap.c revision 212989
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 212989 2010-09-22 02:26:07Z neel $");
70
71#include "opt_msgbuf.h"
72#include "opt_ddb.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/proc.h>
77#include <sys/msgbuf.h>
78#include <sys/vmmeter.h>
79#include <sys/mman.h>
80#include <sys/smp.h>
81#ifdef DDB
82#include <ddb/ddb.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_phys.h>
88#include <sys/lock.h>
89#include <sys/mutex.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_page.h>
92#include <vm/vm_map.h>
93#include <vm/vm_object.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pageout.h>
96#include <vm/vm_pager.h>
97#include <vm/uma.h>
98#include <sys/pcpu.h>
99#include <sys/sched.h>
100#ifdef SMP
101#include <sys/smp.h>
102#endif
103
104#include <machine/cache.h>
105#include <machine/md_var.h>
106#include <machine/tlb.h>
107
108#undef PMAP_DEBUG
109
110#ifndef PMAP_SHPGPERPROC
111#define	PMAP_SHPGPERPROC 200
112#endif
113
114#if !defined(DIAGNOSTIC)
115#define	PMAP_INLINE __inline
116#else
117#define	PMAP_INLINE
118#endif
119
120/*
121 * Get PDEs and PTEs for user/kernel address space
122 *
123 * XXX The & for pmap_segshift() is wrong, as is the fact that it doesn't
124 *     trim off gratuitous bits of the address space.  By having the &
125 *     there, we break defining NUSERPGTBLS below because the address space
126 *     is defined such that it ends immediately after NPDEPG*NPTEPG*PAGE_SIZE,
127 *     so we end up getting NUSERPGTBLS of 0.
128 */
129#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
130#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
131#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
132#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
133
134#ifdef __mips_n64
135#define	NUPDE			(NPDEPG * NPDEPG)
136#define	NUSERPGTBLS		(NUPDE + NPDEPG)
137#else
138#define	NUPDE			(NPDEPG)
139#define	NUSERPGTBLS		(NUPDE)
140#endif
141
142#define	is_kernel_pmap(x)	((x) == kernel_pmap)
143
144struct pmap kernel_pmap_store;
145pd_entry_t *kernel_segmap;
146
147vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
148vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
149
150static int nkpt;
151unsigned pmap_max_asid;		/* max ASID supported by the system */
152
153#define	PMAP_ASID_RESERVED	0
154
155vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
156
157static void pmap_asid_alloc(pmap_t pmap);
158
159/*
160 * Data for the pv entry allocation mechanism
161 */
162static uma_zone_t pvzone;
163static struct vm_object pvzone_obj;
164static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
165
166static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
167static pv_entry_t get_pv_entry(pmap_t locked_pmap);
168static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
169static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
170    vm_offset_t va);
171static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
172static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
173    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
174static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
175static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
176static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
180static void pmap_invalidate_all(pmap_t pmap);
181static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
182static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
183
184static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
185static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
186static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
187static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
188static vm_page_t pmap_alloc_pte_page(unsigned int index, int req);
189static void pmap_grow_pte_page_cache(void);
190
191#ifdef SMP
192static void pmap_invalidate_page_action(void *arg);
193static void pmap_invalidate_all_action(void *arg);
194static void pmap_update_page_action(void *arg);
195#endif
196
197#ifndef __mips_n64
198/*
199 * This structure is for high memory (memory above 512Meg in 32 bit)
200 * This memory area does not have direct mapping, so we a mechanism to do
201 * temporary per-CPU mapping to access these addresses.
202 *
203 * At bootup we reserve 2 virtual pages per CPU for mapping highmem pages, to
204 * access a highmem physical address on a CPU, we will disable interrupts and
205 * add the mapping from the reserved virtual address for the CPU to the physical
206 * address in the kernel pagetable.
207 */
208struct local_sysmaps {
209	vm_offset_t	base;
210	uint32_t	saved_intr;
211	uint16_t	valid1, valid2;
212};
213static struct local_sysmaps sysmap_lmem[MAXCPU];
214
215static __inline void
216pmap_alloc_lmem_map(void)
217{
218	int i;
219
220	for (i = 0; i < MAXCPU; i++) {
221		sysmap_lmem[i].base = virtual_avail;
222		virtual_avail += PAGE_SIZE * 2;
223		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
224	}
225}
226
227static __inline vm_offset_t
228pmap_lmem_map1(vm_paddr_t phys)
229{
230	struct local_sysmaps *sysm;
231	pt_entry_t *pte, npte;
232	vm_offset_t va;
233	uint32_t intr;
234	int cpu;
235
236	intr = intr_disable();
237	cpu = PCPU_GET(cpuid);
238	sysm = &sysmap_lmem[cpu];
239	sysm->saved_intr = intr;
240	va = sysm->base;
241	npte = TLBLO_PA_TO_PFN(phys) |
242	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
243	pte = pmap_pte(kernel_pmap, va);
244	*pte = npte;
245	sysm->valid1 = 1;
246	return (va);
247}
248
249static __inline vm_offset_t
250pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
251{
252	struct local_sysmaps *sysm;
253	pt_entry_t *pte, npte;
254	vm_offset_t va1, va2;
255	uint32_t intr;
256	int cpu;
257
258	intr = intr_disable();
259	cpu = PCPU_GET(cpuid);
260	sysm = &sysmap_lmem[cpu];
261	sysm->saved_intr = intr;
262	va1 = sysm->base;
263	va2 = sysm->base + PAGE_SIZE;
264	npte = TLBLO_PA_TO_PFN(phys1) |
265	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
266	pte = pmap_pte(kernel_pmap, va1);
267	*pte = npte;
268	npte =  TLBLO_PA_TO_PFN(phys2) |
269	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
270	pte = pmap_pte(kernel_pmap, va2);
271	*pte = npte;
272	sysm->valid1 = 1;
273	sysm->valid2 = 1;
274	return (va1);
275}
276
277static __inline void
278pmap_lmem_unmap(void)
279{
280	struct local_sysmaps *sysm;
281	pt_entry_t *pte;
282	int cpu;
283
284	cpu = PCPU_GET(cpuid);
285	sysm = &sysmap_lmem[cpu];
286	pte = pmap_pte(kernel_pmap, sysm->base);
287	*pte = PTE_G;
288	tlb_invalidate_address(kernel_pmap, sysm->base);
289	sysm->valid1 = 0;
290	if (sysm->valid2) {
291		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
292		*pte = PTE_G;
293		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
294		sysm->valid2 = 0;
295	}
296	intr_restore(sysm->saved_intr);
297}
298#else  /* __mips_n64 */
299
300static __inline void
301pmap_alloc_lmem_map(void)
302{
303}
304
305static __inline vm_offset_t
306pmap_lmem_map1(vm_paddr_t phys)
307{
308
309	return (0);
310}
311
312static __inline vm_offset_t
313pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
314{
315
316	return (0);
317}
318
319static __inline vm_offset_t
320pmap_lmem_unmap(void)
321{
322
323	return (0);
324}
325#endif /* !__mips_n64 */
326
327/*
328 * Page table entry lookup routines.
329 */
330static __inline pd_entry_t *
331pmap_segmap(pmap_t pmap, vm_offset_t va)
332{
333
334	return (&pmap->pm_segtab[pmap_seg_index(va)]);
335}
336
337#ifdef __mips_n64
338static __inline pd_entry_t *
339pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
340{
341	pd_entry_t *pde;
342
343	pde = (pd_entry_t *)*pdpe;
344	return (&pde[pmap_pde_index(va)]);
345}
346
347static __inline pd_entry_t *
348pmap_pde(pmap_t pmap, vm_offset_t va)
349{
350	pd_entry_t *pdpe;
351
352	pdpe = pmap_segmap(pmap, va);
353	if (pdpe == NULL || *pdpe == NULL)
354		return (NULL);
355
356	return (pmap_pdpe_to_pde(pdpe, va));
357}
358#else
359static __inline pd_entry_t *
360pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
361{
362
363	return (pdpe);
364}
365
366static __inline
367pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
368{
369
370	return (pmap_segmap(pmap, va));
371}
372#endif
373
374static __inline pt_entry_t *
375pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
376{
377	pt_entry_t *pte;
378
379	pte = (pt_entry_t *)*pde;
380	return (&pte[pmap_pte_index(va)]);
381}
382
383pt_entry_t *
384pmap_pte(pmap_t pmap, vm_offset_t va)
385{
386	pd_entry_t *pde;
387
388	pde = pmap_pde(pmap, va);
389	if (pde == NULL || *pde == NULL)
390		return (NULL);
391
392	return (pmap_pde_to_pte(pde, va));
393}
394
395vm_offset_t
396pmap_steal_memory(vm_size_t size)
397{
398	vm_size_t bank_size;
399	vm_offset_t pa, va;
400
401	size = round_page(size);
402
403	bank_size = phys_avail[1] - phys_avail[0];
404	while (size > bank_size) {
405		int i;
406
407		for (i = 0; phys_avail[i + 2]; i += 2) {
408			phys_avail[i] = phys_avail[i + 2];
409			phys_avail[i + 1] = phys_avail[i + 3];
410		}
411		phys_avail[i] = 0;
412		phys_avail[i + 1] = 0;
413		if (!phys_avail[0])
414			panic("pmap_steal_memory: out of memory");
415		bank_size = phys_avail[1] - phys_avail[0];
416	}
417
418	pa = phys_avail[0];
419	phys_avail[0] += size;
420	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
421		panic("Out of memory below 512Meg?");
422	va = MIPS_PHYS_TO_DIRECT(pa);
423	bzero((caddr_t)va, size);
424	return (va);
425}
426
427/*
428 * Bootstrap the system enough to run with virtual memory.  This
429 * assumes that the phys_avail array has been initialized.
430 */
431static void
432pmap_create_kernel_pagetable(void)
433{
434	int i, j;
435	vm_offset_t ptaddr;
436	pt_entry_t *pte;
437#ifdef __mips_n64
438	pd_entry_t *pde;
439	vm_offset_t pdaddr;
440	int npt, npde;
441#endif
442
443	/*
444	 * Allocate segment table for the kernel
445	 */
446	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
447
448	/*
449	 * Allocate second level page tables for the kernel
450	 */
451#ifdef __mips_n64
452	npde = howmany(NKPT, NPDEPG);
453	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
454#endif
455	nkpt = NKPT;
456	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
457
458	/*
459	 * The R[4-7]?00 stores only one copy of the Global bit in the
460	 * translation lookaside buffer for each 2 page entry. Thus invalid
461	 * entrys must have the Global bit set so when Entry LO and Entry HI
462	 * G bits are anded together they will produce a global bit to store
463	 * in the tlb.
464	 */
465	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
466		*pte = PTE_G;
467
468#ifdef __mips_n64
469	for (i = 0,  npt = nkpt; npt > 0; i++) {
470		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
471		pde = (pd_entry_t *)kernel_segmap[i];
472
473		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
474			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
475	}
476#else
477	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
478		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
479#endif
480
481	PMAP_LOCK_INIT(kernel_pmap);
482	kernel_pmap->pm_segtab = kernel_segmap;
483	kernel_pmap->pm_active = ~0;
484	TAILQ_INIT(&kernel_pmap->pm_pvlist);
485	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
486	kernel_pmap->pm_asid[0].gen = 0;
487	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
488}
489
490void
491pmap_bootstrap(void)
492{
493	int i;
494	int need_local_mappings = 0;
495
496	/* Sort. */
497again:
498	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
499		/*
500		 * Keep the memory aligned on page boundary.
501		 */
502		phys_avail[i] = round_page(phys_avail[i]);
503		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
504
505		if (i < 2)
506			continue;
507		if (phys_avail[i - 2] > phys_avail[i]) {
508			vm_paddr_t ptemp[2];
509
510			ptemp[0] = phys_avail[i + 0];
511			ptemp[1] = phys_avail[i + 1];
512
513			phys_avail[i + 0] = phys_avail[i - 2];
514			phys_avail[i + 1] = phys_avail[i - 1];
515
516			phys_avail[i - 2] = ptemp[0];
517			phys_avail[i - 1] = ptemp[1];
518			goto again;
519		}
520	}
521
522       	/*
523	 * In 32 bit, we may have memory which cannot be mapped directly
524	 * this memory will need temporary mapping before it can be
525	 * accessed.
526	 */
527	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1]))
528		need_local_mappings = 1;
529
530	/*
531	 * Copy the phys_avail[] array before we start stealing memory from it.
532	 */
533	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
534		physmem_desc[i] = phys_avail[i];
535		physmem_desc[i + 1] = phys_avail[i + 1];
536	}
537
538	Maxmem = atop(phys_avail[i - 1]);
539
540	if (bootverbose) {
541		printf("Physical memory chunk(s):\n");
542		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
543			vm_paddr_t size;
544
545			size = phys_avail[i + 1] - phys_avail[i];
546			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
547			    (uintmax_t) phys_avail[i],
548			    (uintmax_t) phys_avail[i + 1] - 1,
549			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
550		}
551		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
552	}
553	/*
554	 * Steal the message buffer from the beginning of memory.
555	 */
556	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
557	msgbufinit(msgbufp, MSGBUF_SIZE);
558
559	/*
560	 * Steal thread0 kstack.
561	 */
562	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
563
564	virtual_avail = VM_MIN_KERNEL_ADDRESS;
565	virtual_end = VM_MAX_KERNEL_ADDRESS;
566
567#ifdef SMP
568	/*
569	 * Steal some virtual address space to map the pcpu area.
570	 */
571	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
572	pcpup = (struct pcpu *)virtual_avail;
573	virtual_avail += PAGE_SIZE * 2;
574
575	/*
576	 * Initialize the wired TLB entry mapping the pcpu region for
577	 * the BSP at 'pcpup'. Up until this point we were operating
578	 * with the 'pcpup' for the BSP pointing to a virtual address
579	 * in KSEG0 so there was no need for a TLB mapping.
580	 */
581	mips_pcpu_tlb_init(PCPU_ADDR(0));
582
583	if (bootverbose)
584		printf("pcpu is available at virtual address %p.\n", pcpup);
585#endif
586
587	if (need_local_mappings)
588		pmap_alloc_lmem_map();
589	pmap_create_kernel_pagetable();
590	pmap_max_asid = VMNUM_PIDS;
591	mips_wr_entryhi(0);
592	mips_wr_pagemask(0);
593}
594
595/*
596 * Initialize a vm_page's machine-dependent fields.
597 */
598void
599pmap_page_init(vm_page_t m)
600{
601
602	TAILQ_INIT(&m->md.pv_list);
603	m->md.pv_list_count = 0;
604	m->md.pv_flags = 0;
605}
606
607/*
608 *	Initialize the pmap module.
609 *	Called by vm_init, to initialize any structures that the pmap
610 *	system needs to map virtual memory.
611 *	pmap_init has been enhanced to support in a fairly consistant
612 *	way, discontiguous physical memory.
613 */
614void
615pmap_init(void)
616{
617
618	/*
619	 * Initialize the address space (zone) for the pv entries.  Set a
620	 * high water mark so that the system can recover from excessive
621	 * numbers of pv entries.
622	 */
623	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
624	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
625	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
626	pv_entry_high_water = 9 * (pv_entry_max / 10);
627	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
628}
629
630/***************************************************
631 * Low level helper routines.....
632 ***************************************************/
633
634static __inline void
635pmap_invalidate_all_local(pmap_t pmap)
636{
637
638	if (pmap == kernel_pmap) {
639		tlb_invalidate_all();
640		return;
641	}
642	if (pmap->pm_active & PCPU_GET(cpumask))
643		tlb_invalidate_all_user(pmap);
644	else
645		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
646}
647
648#ifdef SMP
649static void
650pmap_invalidate_all(pmap_t pmap)
651{
652
653	smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap);
654}
655
656static void
657pmap_invalidate_all_action(void *arg)
658{
659
660	pmap_invalidate_all_local((pmap_t)arg);
661}
662#else
663static void
664pmap_invalidate_all(pmap_t pmap)
665{
666
667	pmap_invalidate_all_local(pmap);
668}
669#endif
670
671static __inline void
672pmap_invalidate_page_local(pmap_t pmap, vm_offset_t va)
673{
674
675	if (is_kernel_pmap(pmap)) {
676		tlb_invalidate_address(pmap, va);
677		return;
678	}
679	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
680		return;
681	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
682		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
683		return;
684	}
685	tlb_invalidate_address(pmap, va);
686}
687
688#ifdef SMP
689struct pmap_invalidate_page_arg {
690	pmap_t pmap;
691	vm_offset_t va;
692};
693
694static void
695pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
696{
697	struct pmap_invalidate_page_arg arg;
698
699	arg.pmap = pmap;
700	arg.va = va;
701	smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg);
702}
703
704static void
705pmap_invalidate_page_action(void *arg)
706{
707	struct pmap_invalidate_page_arg *p = arg;
708
709	pmap_invalidate_page_local(p->pmap, p->va);
710}
711#else
712static void
713pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
714{
715
716	pmap_invalidate_page_local(pmap, va);
717}
718#endif
719
720static __inline void
721pmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
722{
723
724	if (is_kernel_pmap(pmap)) {
725		tlb_update(pmap, va, pte);
726		return;
727	}
728	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
729		return;
730	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
731		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
732		return;
733	}
734	tlb_update(pmap, va, pte);
735}
736
737#ifdef SMP
738struct pmap_update_page_arg {
739	pmap_t pmap;
740	vm_offset_t va;
741	pt_entry_t pte;
742};
743
744static void
745pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
746{
747	struct pmap_update_page_arg arg;
748
749	arg.pmap = pmap;
750	arg.va = va;
751	arg.pte = pte;
752	smp_rendezvous(0, pmap_update_page_action, 0, &arg);
753}
754
755static void
756pmap_update_page_action(void *arg)
757{
758	struct pmap_update_page_arg *p = arg;
759
760	pmap_update_page_local(p->pmap, p->va, p->pte);
761}
762#else
763static void
764pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
765{
766
767	pmap_update_page_local(pmap, va, pte);
768}
769#endif
770
771/*
772 *	Routine:	pmap_extract
773 *	Function:
774 *		Extract the physical page address associated
775 *		with the given map/virtual_address pair.
776 */
777vm_paddr_t
778pmap_extract(pmap_t pmap, vm_offset_t va)
779{
780	pt_entry_t *pte;
781	vm_offset_t retval = 0;
782
783	PMAP_LOCK(pmap);
784	pte = pmap_pte(pmap, va);
785	if (pte) {
786		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
787	}
788	PMAP_UNLOCK(pmap);
789	return (retval);
790}
791
792/*
793 *	Routine:	pmap_extract_and_hold
794 *	Function:
795 *		Atomically extract and hold the physical page
796 *		with the given pmap and virtual address pair
797 *		if that mapping permits the given protection.
798 */
799vm_page_t
800pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
801{
802	pt_entry_t pte;
803	vm_page_t m;
804	vm_paddr_t pa;
805
806	m = NULL;
807	pa = 0;
808	PMAP_LOCK(pmap);
809retry:
810	pte = *pmap_pte(pmap, va);
811	if (pte != 0 && pte_test(&pte, PTE_V) &&
812	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
813		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
814			goto retry;
815
816		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
817		vm_page_hold(m);
818	}
819	PA_UNLOCK_COND(pa);
820	PMAP_UNLOCK(pmap);
821	return (m);
822}
823
824/***************************************************
825 * Low level mapping routines.....
826 ***************************************************/
827
828/*
829 * add a wired page to the kva
830 */
831void
832pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
833{
834	pt_entry_t *pte;
835	pt_entry_t opte, npte;
836
837#ifdef PMAP_DEBUG
838	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
839#endif
840	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr;
841
842	pte = pmap_pte(kernel_pmap, va);
843	opte = *pte;
844	*pte = npte;
845	if (pte_test(&opte, PTE_V) && opte != npte)
846		pmap_update_page(kernel_pmap, va, npte);
847}
848
849void
850pmap_kenter(vm_offset_t va, vm_paddr_t pa)
851{
852
853	KASSERT(is_cacheable_mem(pa),
854		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
855
856	pmap_kenter_attr(va, pa, PTE_C_CACHE);
857}
858
859/*
860 * remove a page from the kernel pagetables
861 */
862 /* PMAP_INLINE */ void
863pmap_kremove(vm_offset_t va)
864{
865	pt_entry_t *pte;
866
867	/*
868	 * Write back all caches from the page being destroyed
869	 */
870	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
871
872	pte = pmap_pte(kernel_pmap, va);
873	*pte = PTE_G;
874	pmap_invalidate_page(kernel_pmap, va);
875}
876
877/*
878 *	Used to map a range of physical addresses into kernel
879 *	virtual address space.
880 *
881 *	The value passed in '*virt' is a suggested virtual address for
882 *	the mapping. Architectures which can support a direct-mapped
883 *	physical to virtual region can return the appropriate address
884 *	within that region, leaving '*virt' unchanged. Other
885 *	architectures should map the pages starting at '*virt' and
886 *	update '*virt' with the first usable address after the mapped
887 *	region.
888 *
889 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
890 */
891vm_offset_t
892pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
893{
894	vm_offset_t va, sva;
895
896	if (MIPS_DIRECT_MAPPABLE(end))
897		return (MIPS_PHYS_TO_DIRECT(start));
898
899	va = sva = *virt;
900	while (start < end) {
901		pmap_kenter(va, start);
902		va += PAGE_SIZE;
903		start += PAGE_SIZE;
904	}
905	*virt = va;
906	return (sva);
907}
908
909/*
910 * Add a list of wired pages to the kva
911 * this routine is only used for temporary
912 * kernel mappings that do not need to have
913 * page modification or references recorded.
914 * Note that old mappings are simply written
915 * over.  The page *must* be wired.
916 */
917void
918pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
919{
920	int i;
921	vm_offset_t origva = va;
922
923	for (i = 0; i < count; i++) {
924		pmap_flush_pvcache(m[i]);
925		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
926		va += PAGE_SIZE;
927	}
928
929	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
930}
931
932/*
933 * this routine jerks page mappings from the
934 * kernel -- it is meant only for temporary mappings.
935 */
936void
937pmap_qremove(vm_offset_t va, int count)
938{
939	/*
940	 * No need to wb/inv caches here,
941	 *   pmap_kremove will do it for us
942	 */
943
944	while (count-- > 0) {
945		pmap_kremove(va);
946		va += PAGE_SIZE;
947	}
948}
949
950/***************************************************
951 * Page table page management routines.....
952 ***************************************************/
953
954/*  Revision 1.507
955 *
956 * Simplify the reference counting of page table pages.	 Specifically, use
957 * the page table page's wired count rather than its hold count to contain
958 * the reference count.
959 */
960
961/*
962 * This routine unholds page table pages, and if the hold count
963 * drops to zero, then it decrements the wire count.
964 */
965static PMAP_INLINE int
966pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
967{
968	--m->wire_count;
969	if (m->wire_count == 0)
970		return (_pmap_unwire_pte_hold(pmap, va, m));
971	else
972		return (0);
973}
974
975static int
976_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
977{
978	pd_entry_t *pde;
979
980	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
981	/*
982	 * unmap the page table page
983	 */
984#ifdef __mips_n64
985	if (m->pindex < NUPDE)
986		pde = pmap_pde(pmap, va);
987	else
988		pde = pmap_segmap(pmap, va);
989#else
990	pde = pmap_pde(pmap, va);
991#endif
992	*pde = 0;
993	pmap->pm_stats.resident_count--;
994
995#ifdef __mips_n64
996	if (m->pindex < NUPDE) {
997		pd_entry_t *pdp;
998		vm_page_t pdpg;
999
1000		/*
1001		 * Recursively decrement next level pagetable refcount
1002		 */
1003		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
1004		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
1005		pmap_unwire_pte_hold(pmap, va, pdpg);
1006	}
1007#endif
1008	if (pmap->pm_ptphint == m)
1009		pmap->pm_ptphint = NULL;
1010
1011	/*
1012	 * If the page is finally unwired, simply free it.
1013	 */
1014	vm_page_free_zero(m);
1015	atomic_subtract_int(&cnt.v_wire_count, 1);
1016	return (1);
1017}
1018
1019/*
1020 * After removing a page table entry, this routine is used to
1021 * conditionally free the page, and manage the hold/wire counts.
1022 */
1023static int
1024pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1025{
1026	unsigned ptepindex;
1027	pd_entry_t pteva;
1028
1029	if (va >= VM_MAXUSER_ADDRESS)
1030		return (0);
1031
1032	if (mpte == NULL) {
1033		ptepindex = pmap_pde_pindex(va);
1034		if (pmap->pm_ptphint &&
1035		    (pmap->pm_ptphint->pindex == ptepindex)) {
1036			mpte = pmap->pm_ptphint;
1037		} else {
1038			pteva = *pmap_pde(pmap, va);
1039			mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
1040			pmap->pm_ptphint = mpte;
1041		}
1042	}
1043	return (pmap_unwire_pte_hold(pmap, va, mpte));
1044}
1045
1046void
1047pmap_pinit0(pmap_t pmap)
1048{
1049	int i;
1050
1051	PMAP_LOCK_INIT(pmap);
1052	pmap->pm_segtab = kernel_segmap;
1053	pmap->pm_active = 0;
1054	pmap->pm_ptphint = NULL;
1055	for (i = 0; i < MAXCPU; i++) {
1056		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1057		pmap->pm_asid[i].gen = 0;
1058	}
1059	PCPU_SET(curpmap, pmap);
1060	TAILQ_INIT(&pmap->pm_pvlist);
1061	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1062}
1063
1064static void
1065pmap_grow_pte_page_cache()
1066{
1067
1068#ifdef __mips_n64
1069	vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1070#else
1071	vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1072#endif
1073}
1074
1075static vm_page_t
1076pmap_alloc_pte_page(unsigned int index, int req)
1077{
1078	vm_page_t m;
1079
1080	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, 0, req);
1081	if (m == NULL)
1082		return (NULL);
1083
1084	if ((m->flags & PG_ZERO) == 0)
1085		pmap_zero_page(m);
1086
1087	m->pindex = index;
1088	atomic_add_int(&cnt.v_wire_count, 1);
1089	m->wire_count = 1;
1090	return (m);
1091}
1092
1093/*
1094 * Initialize a preallocated and zeroed pmap structure,
1095 * such as one in a vmspace structure.
1096 */
1097int
1098pmap_pinit(pmap_t pmap)
1099{
1100	vm_offset_t ptdva;
1101	vm_page_t ptdpg;
1102	int i;
1103
1104	PMAP_LOCK_INIT(pmap);
1105
1106	/*
1107	 * allocate the page directory page
1108	 */
1109	while ((ptdpg = pmap_alloc_pte_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1110	       pmap_grow_pte_page_cache();
1111
1112	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1113	pmap->pm_segtab = (pd_entry_t *)ptdva;
1114	pmap->pm_active = 0;
1115	pmap->pm_ptphint = NULL;
1116	for (i = 0; i < MAXCPU; i++) {
1117		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1118		pmap->pm_asid[i].gen = 0;
1119	}
1120	TAILQ_INIT(&pmap->pm_pvlist);
1121	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1122
1123	return (1);
1124}
1125
1126/*
1127 * this routine is called if the page table page is not
1128 * mapped correctly.
1129 */
1130static vm_page_t
1131_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1132{
1133	vm_offset_t pageva;
1134	vm_page_t m;
1135
1136	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1137	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1138	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1139
1140	/*
1141	 * Find or fabricate a new pagetable page
1142	 */
1143	if ((m = pmap_alloc_pte_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1144		if (flags & M_WAITOK) {
1145			PMAP_UNLOCK(pmap);
1146			vm_page_unlock_queues();
1147			pmap_grow_pte_page_cache();
1148			vm_page_lock_queues();
1149			PMAP_LOCK(pmap);
1150		}
1151
1152		/*
1153		 * Indicate the need to retry.	While waiting, the page
1154		 * table page may have been allocated.
1155		 */
1156		return (NULL);
1157	}
1158
1159	/*
1160	 * Map the pagetable page into the process address space, if it
1161	 * isn't already there.
1162	 */
1163	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1164
1165#ifdef __mips_n64
1166	if (ptepindex >= NUPDE) {
1167		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1168	} else {
1169		pd_entry_t *pdep, *pde;
1170		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1171		int pdeindex = ptepindex & (NPDEPG - 1);
1172		vm_page_t pg;
1173
1174		pdep = &pmap->pm_segtab[segindex];
1175		if (*pdep == NULL) {
1176			/* recurse for allocating page dir */
1177			if (_pmap_allocpte(pmap, NUPDE + segindex,
1178			    flags) == NULL) {
1179				/* alloc failed, release current */
1180				--m->wire_count;
1181				atomic_subtract_int(&cnt.v_wire_count, 1);
1182				vm_page_free_zero(m);
1183				return (NULL);
1184			}
1185		} else {
1186			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1187			pg->wire_count++;
1188		}
1189		/* Next level entry */
1190		pde = (pd_entry_t *)*pdep;
1191		pde[pdeindex] = (pd_entry_t)pageva;
1192		pmap->pm_ptphint = m;
1193	}
1194#else
1195	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1196#endif
1197	pmap->pm_stats.resident_count++;
1198
1199	/*
1200	 * Set the page table hint
1201	 */
1202	pmap->pm_ptphint = m;
1203	return (m);
1204}
1205
1206static vm_page_t
1207pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1208{
1209	unsigned ptepindex;
1210	pd_entry_t *pde;
1211	vm_page_t m;
1212
1213	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1214	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1215	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1216
1217	/*
1218	 * Calculate pagetable page index
1219	 */
1220	ptepindex = pmap_pde_pindex(va);
1221retry:
1222	/*
1223	 * Get the page directory entry
1224	 */
1225	pde = pmap_pde(pmap, va);
1226
1227	/*
1228	 * If the page table page is mapped, we just increment the hold
1229	 * count, and activate it.
1230	 */
1231	if (pde != NULL && *pde != NULL) {
1232		/*
1233		 * In order to get the page table page, try the hint first.
1234		 */
1235		if (pmap->pm_ptphint &&
1236		    (pmap->pm_ptphint->pindex == ptepindex)) {
1237			m = pmap->pm_ptphint;
1238		} else {
1239			m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1240			pmap->pm_ptphint = m;
1241		}
1242		m->wire_count++;
1243	} else {
1244		/*
1245		 * Here if the pte page isn't mapped, or if it has been
1246		 * deallocated.
1247		 */
1248		m = _pmap_allocpte(pmap, ptepindex, flags);
1249		if (m == NULL && (flags & M_WAITOK))
1250			goto retry;
1251	}
1252	return (m);
1253}
1254
1255
1256/***************************************************
1257* Pmap allocation/deallocation routines.
1258 ***************************************************/
1259/*
1260 *  Revision 1.397
1261 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1262 *    called only the page directory page(s) can be left in the pmap pte
1263 *    object, since all page table pages will have been freed by
1264 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1265 *    reference to the pmap and the page directory is wired, so the page(s)
1266 *    can never be busy.  So all there is to do is clear the magic mappings
1267 *    from the page directory and free the page(s).
1268 */
1269
1270
1271/*
1272 * Release any resources held by the given physical map.
1273 * Called when a pmap initialized by pmap_pinit is being released.
1274 * Should only be called if the map contains no valid mappings.
1275 */
1276void
1277pmap_release(pmap_t pmap)
1278{
1279	vm_offset_t ptdva;
1280	vm_page_t ptdpg;
1281
1282	KASSERT(pmap->pm_stats.resident_count == 0,
1283	    ("pmap_release: pmap resident count %ld != 0",
1284	    pmap->pm_stats.resident_count));
1285
1286	ptdva = (vm_offset_t)pmap->pm_segtab;
1287	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1288
1289	ptdpg->wire_count--;
1290	atomic_subtract_int(&cnt.v_wire_count, 1);
1291	vm_page_free_zero(ptdpg);
1292	PMAP_LOCK_DESTROY(pmap);
1293}
1294
1295/*
1296 * grow the number of kernel page table entries, if needed
1297 */
1298void
1299pmap_growkernel(vm_offset_t addr)
1300{
1301	vm_page_t nkpg;
1302	pd_entry_t *pde, *pdpe;
1303	pt_entry_t *pte;
1304	int i;
1305
1306	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1307	addr = roundup2(addr, NBSEG);
1308	if (addr - 1 >= kernel_map->max_offset)
1309		addr = kernel_map->max_offset;
1310	while (kernel_vm_end < addr) {
1311		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1312#ifdef __mips_n64
1313		if (*pdpe == 0) {
1314			/* new intermediate page table entry */
1315			nkpg = pmap_alloc_pte_page(nkpt, VM_ALLOC_INTERRUPT);
1316			if (nkpg == NULL)
1317				panic("pmap_growkernel: no memory to grow kernel");
1318			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1319			continue; /* try again */
1320		}
1321#endif
1322		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1323		if (*pde != 0) {
1324			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1325			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1326				kernel_vm_end = kernel_map->max_offset;
1327				break;
1328			}
1329			continue;
1330		}
1331
1332		/*
1333		 * This index is bogus, but out of the way
1334		 */
1335		nkpg = pmap_alloc_pte_page(nkpt, VM_ALLOC_INTERRUPT);
1336		if (!nkpg)
1337			panic("pmap_growkernel: no memory to grow kernel");
1338		nkpt++;
1339		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1340
1341		/*
1342		 * The R[4-7]?00 stores only one copy of the Global bit in
1343		 * the translation lookaside buffer for each 2 page entry.
1344		 * Thus invalid entrys must have the Global bit set so when
1345		 * Entry LO and Entry HI G bits are anded together they will
1346		 * produce a global bit to store in the tlb.
1347		 */
1348		pte = (pt_entry_t *)*pde;
1349		for (i = 0; i < NPTEPG; i++)
1350			pte[i] = PTE_G;
1351
1352		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1353		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1354			kernel_vm_end = kernel_map->max_offset;
1355			break;
1356		}
1357	}
1358}
1359
1360/***************************************************
1361* page management routines.
1362 ***************************************************/
1363
1364/*
1365 * free the pv_entry back to the free list
1366 */
1367static PMAP_INLINE void
1368free_pv_entry(pv_entry_t pv)
1369{
1370
1371	pv_entry_count--;
1372	uma_zfree(pvzone, pv);
1373}
1374
1375/*
1376 * get a new pv_entry, allocating a block from the system
1377 * when needed.
1378 * the memory allocation is performed bypassing the malloc code
1379 * because of the possibility of allocations at interrupt time.
1380 */
1381static pv_entry_t
1382get_pv_entry(pmap_t locked_pmap)
1383{
1384	static const struct timeval printinterval = { 60, 0 };
1385	static struct timeval lastprint;
1386	struct vpgqueues *vpq;
1387	pt_entry_t *pte, oldpte;
1388	pmap_t pmap;
1389	pv_entry_t allocated_pv, next_pv, pv;
1390	vm_offset_t va;
1391	vm_page_t m;
1392
1393	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1394	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1395	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1396	if (allocated_pv != NULL) {
1397		pv_entry_count++;
1398		if (pv_entry_count > pv_entry_high_water)
1399			pagedaemon_wakeup();
1400		else
1401			return (allocated_pv);
1402	}
1403	/*
1404	 * Reclaim pv entries: At first, destroy mappings to inactive
1405	 * pages.  After that, if a pv entry is still needed, destroy
1406	 * mappings to active pages.
1407	 */
1408	if (ratecheck(&lastprint, &printinterval))
1409		printf("Approaching the limit on PV entries, "
1410		    "increase the vm.pmap.shpgperproc tunable.\n");
1411	vpq = &vm_page_queues[PQ_INACTIVE];
1412retry:
1413	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1414		if (m->hold_count || m->busy)
1415			continue;
1416		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1417			va = pv->pv_va;
1418			pmap = pv->pv_pmap;
1419			/* Avoid deadlock and lock recursion. */
1420			if (pmap > locked_pmap)
1421				PMAP_LOCK(pmap);
1422			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1423				continue;
1424			pmap->pm_stats.resident_count--;
1425			pte = pmap_pte(pmap, va);
1426			KASSERT(pte != NULL, ("pte"));
1427			oldpte = *pte;
1428			if (is_kernel_pmap(pmap))
1429				*pte = PTE_G;
1430			else
1431				*pte = 0;
1432			KASSERT(!pte_test(&oldpte, PTE_W),
1433			    ("wired pte for unwired page"));
1434			if (m->md.pv_flags & PV_TABLE_REF)
1435				vm_page_flag_set(m, PG_REFERENCED);
1436			if (pte_test(&oldpte, PTE_D))
1437				vm_page_dirty(m);
1438			pmap_invalidate_page(pmap, va);
1439			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1440			m->md.pv_list_count--;
1441			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1442			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1443			if (pmap != locked_pmap)
1444				PMAP_UNLOCK(pmap);
1445			if (allocated_pv == NULL)
1446				allocated_pv = pv;
1447			else
1448				free_pv_entry(pv);
1449		}
1450		if (TAILQ_EMPTY(&m->md.pv_list)) {
1451			vm_page_flag_clear(m, PG_WRITEABLE);
1452			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1453		}
1454	}
1455	if (allocated_pv == NULL) {
1456		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1457			vpq = &vm_page_queues[PQ_ACTIVE];
1458			goto retry;
1459		}
1460		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1461	}
1462	return (allocated_pv);
1463}
1464
1465/*
1466 *  Revision 1.370
1467 *
1468 *  Move pmap_collect() out of the machine-dependent code, rename it
1469 *  to reflect its new location, and add page queue and flag locking.
1470 *
1471 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1472 *  of pmap_collect() in terms of machine-independent interfaces;
1473 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1474 *
1475 *  MIPS implementation was identical to alpha [Junos 8.2]
1476 */
1477
1478/*
1479 * If it is the first entry on the list, it is actually
1480 * in the header and we must copy the following entry up
1481 * to the header.  Otherwise we must search the list for
1482 * the entry.  In either case we free the now unused entry.
1483 */
1484
1485static pv_entry_t
1486pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1487{
1488	pv_entry_t pv;
1489
1490	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1491	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1492	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1493		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1494			if (pmap == pv->pv_pmap && va == pv->pv_va)
1495				break;
1496		}
1497	} else {
1498		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1499			if (va == pv->pv_va)
1500				break;
1501		}
1502	}
1503	if (pv != NULL) {
1504		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1505		pvh->pv_list_count--;
1506		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1507	}
1508	return (pv);
1509}
1510
1511static void
1512pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1513{
1514	pv_entry_t pv;
1515
1516	pv = pmap_pvh_remove(pvh, pmap, va);
1517	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1518	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1519	     (u_long)va));
1520	free_pv_entry(pv);
1521}
1522
1523static void
1524pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1525{
1526
1527	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1528	pmap_pvh_free(&m->md, pmap, va);
1529	if (TAILQ_EMPTY(&m->md.pv_list))
1530		vm_page_flag_clear(m, PG_WRITEABLE);
1531}
1532
1533/*
1534 * Conditionally create a pv entry.
1535 */
1536static boolean_t
1537pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1538    vm_page_t m)
1539{
1540	pv_entry_t pv;
1541
1542	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1543	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1544	if (pv_entry_count < pv_entry_high_water &&
1545	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1546		pv_entry_count++;
1547		pv->pv_va = va;
1548		pv->pv_pmap = pmap;
1549		pv->pv_ptem = mpte;
1550		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1551		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1552		m->md.pv_list_count++;
1553		return (TRUE);
1554	} else
1555		return (FALSE);
1556}
1557
1558/*
1559 * pmap_remove_pte: do the things to unmap a page in a process
1560 */
1561static int
1562pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1563{
1564	pt_entry_t oldpte;
1565	vm_page_t m;
1566	vm_offset_t pa;
1567
1568	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1570
1571	oldpte = *ptq;
1572	if (is_kernel_pmap(pmap))
1573		*ptq = PTE_G;
1574	else
1575		*ptq = 0;
1576
1577	if (pte_test(&oldpte, PTE_W))
1578		pmap->pm_stats.wired_count -= 1;
1579
1580	pmap->pm_stats.resident_count -= 1;
1581	pa = TLBLO_PTE_TO_PA(oldpte);
1582
1583	if (page_is_managed(pa)) {
1584		m = PHYS_TO_VM_PAGE(pa);
1585		if (pte_test(&oldpte, PTE_D)) {
1586			KASSERT(!pte_test(&oldpte, PTE_RO),
1587			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1588			    __func__, (void *)va, oldpte));
1589			vm_page_dirty(m);
1590		}
1591		if (m->md.pv_flags & PV_TABLE_REF)
1592			vm_page_flag_set(m, PG_REFERENCED);
1593		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1594
1595		pmap_remove_entry(pmap, m, va);
1596	}
1597	return (pmap_unuse_pt(pmap, va, NULL));
1598}
1599
1600/*
1601 * Remove a single page from a process address space
1602 */
1603static void
1604pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1605{
1606	pt_entry_t *ptq;
1607
1608	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1609	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1610	ptq = pmap_pte(pmap, va);
1611
1612	/*
1613	 * if there is no pte for this address, just skip it!!!
1614	 */
1615	if (!ptq || !pte_test(ptq, PTE_V)) {
1616		return;
1617	}
1618
1619	/*
1620	 * Write back all caches from the page being destroyed
1621	 */
1622	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1623
1624	/*
1625	 * get a local va for mappings for this pmap.
1626	 */
1627	(void)pmap_remove_pte(pmap, ptq, va);
1628	pmap_invalidate_page(pmap, va);
1629
1630	return;
1631}
1632
1633/*
1634 *	Remove the given range of addresses from the specified map.
1635 *
1636 *	It is assumed that the start and end are properly
1637 *	rounded to the page size.
1638 */
1639void
1640pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1641{
1642	vm_offset_t va_next;
1643	pd_entry_t *pde, *pdpe;
1644	pt_entry_t *pte;
1645
1646	if (pmap == NULL)
1647		return;
1648
1649	if (pmap->pm_stats.resident_count == 0)
1650		return;
1651
1652	vm_page_lock_queues();
1653	PMAP_LOCK(pmap);
1654
1655	/*
1656	 * special handling of removing one page.  a very common operation
1657	 * and easy to short circuit some code.
1658	 */
1659	if ((sva + PAGE_SIZE) == eva) {
1660		pmap_remove_page(pmap, sva);
1661		goto out;
1662	}
1663	for (; sva < eva; sva = va_next) {
1664		pdpe = pmap_segmap(pmap, sva);
1665#ifdef __mips_n64
1666		if (*pdpe == 0) {
1667			va_next = (sva + NBSEG) & ~SEGMASK;
1668			if (va_next < sva)
1669				va_next = eva;
1670			continue;
1671		}
1672#endif
1673		va_next = (sva + NBPDR) & ~PDRMASK;
1674		if (va_next < sva)
1675			va_next = eva;
1676
1677		pde = pmap_pdpe_to_pde(pdpe, sva);
1678		if (*pde == 0)
1679			continue;
1680		if (va_next > eva)
1681			va_next = eva;
1682		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1683		    pte++, sva += PAGE_SIZE) {
1684			pmap_remove_page(pmap, sva);
1685		}
1686	}
1687out:
1688	vm_page_unlock_queues();
1689	PMAP_UNLOCK(pmap);
1690}
1691
1692/*
1693 *	Routine:	pmap_remove_all
1694 *	Function:
1695 *		Removes this physical page from
1696 *		all physical maps in which it resides.
1697 *		Reflects back modify bits to the pager.
1698 *
1699 *	Notes:
1700 *		Original versions of this routine were very
1701 *		inefficient because they iteratively called
1702 *		pmap_remove (slow...)
1703 */
1704
1705void
1706pmap_remove_all(vm_page_t m)
1707{
1708	pv_entry_t pv;
1709	pt_entry_t *pte, tpte;
1710
1711	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1712	    ("pmap_remove_all: page %p is fictitious", m));
1713	vm_page_lock_queues();
1714
1715	if (m->md.pv_flags & PV_TABLE_REF)
1716		vm_page_flag_set(m, PG_REFERENCED);
1717
1718	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1719		PMAP_LOCK(pv->pv_pmap);
1720
1721		/*
1722		 * If it's last mapping writeback all caches from
1723		 * the page being destroyed
1724	 	 */
1725		if (m->md.pv_list_count == 1)
1726			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1727
1728		pv->pv_pmap->pm_stats.resident_count--;
1729
1730		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1731
1732		tpte = *pte;
1733		if (is_kernel_pmap(pv->pv_pmap))
1734			*pte = PTE_G;
1735		else
1736			*pte = 0;
1737
1738		if (pte_test(&tpte, PTE_W))
1739			pv->pv_pmap->pm_stats.wired_count--;
1740
1741		/*
1742		 * Update the vm_page_t clean and reference bits.
1743		 */
1744		if (pte_test(&tpte, PTE_D)) {
1745			KASSERT(!pte_test(&tpte, PTE_RO),
1746			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1747			    __func__, (void *)pv->pv_va, tpte));
1748			vm_page_dirty(m);
1749		}
1750		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1751
1752		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1753		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1754		m->md.pv_list_count--;
1755		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1756		PMAP_UNLOCK(pv->pv_pmap);
1757		free_pv_entry(pv);
1758	}
1759
1760	vm_page_flag_clear(m, PG_WRITEABLE);
1761	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1762	vm_page_unlock_queues();
1763}
1764
1765/*
1766 *	Set the physical protection on the
1767 *	specified range of this map as requested.
1768 */
1769void
1770pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1771{
1772	pt_entry_t *pte;
1773	pd_entry_t *pde, *pdpe;
1774	vm_offset_t va_next;
1775
1776	if (pmap == NULL)
1777		return;
1778
1779	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1780		pmap_remove(pmap, sva, eva);
1781		return;
1782	}
1783	if (prot & VM_PROT_WRITE)
1784		return;
1785
1786	vm_page_lock_queues();
1787	PMAP_LOCK(pmap);
1788	for (; sva < eva; sva = va_next) {
1789		pt_entry_t pbits;
1790		vm_page_t m;
1791		vm_paddr_t pa;
1792
1793		pdpe = pmap_segmap(pmap, sva);
1794#ifdef __mips_n64
1795		if (*pdpe == 0) {
1796			va_next = (sva + NBSEG) & ~SEGMASK;
1797			if (va_next < sva)
1798				va_next = eva;
1799			continue;
1800		}
1801#endif
1802		va_next = (sva + NBPDR) & ~PDRMASK;
1803		if (va_next < sva)
1804			va_next = eva;
1805
1806		pde = pmap_pdpe_to_pde(pdpe, sva);
1807		if (pde == NULL || *pde == NULL)
1808			continue;
1809		if (va_next > eva)
1810			va_next = eva;
1811
1812		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1813		     sva += PAGE_SIZE) {
1814
1815			/* Skip invalid PTEs */
1816			if (!pte_test(pte, PTE_V))
1817				continue;
1818			pbits = *pte;
1819			pa = TLBLO_PTE_TO_PA(pbits);
1820			if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1821				m = PHYS_TO_VM_PAGE(pa);
1822				vm_page_dirty(m);
1823				m->md.pv_flags &= ~PV_TABLE_MOD;
1824			}
1825			pte_clear(&pbits, PTE_D);
1826			pte_set(&pbits, PTE_RO);
1827
1828			if (pbits != *pte) {
1829				*pte = pbits;
1830				pmap_update_page(pmap, sva, pbits);
1831			}
1832		}
1833	}
1834	vm_page_unlock_queues();
1835	PMAP_UNLOCK(pmap);
1836}
1837
1838/*
1839 *	Insert the given physical page (p) at
1840 *	the specified virtual address (v) in the
1841 *	target physical map with the protection requested.
1842 *
1843 *	If specified, the page will be wired down, meaning
1844 *	that the related pte can not be reclaimed.
1845 *
1846 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1847 *	or lose information.  That is, this routine must actually
1848 *	insert this page into the given map NOW.
1849 */
1850void
1851pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1852    vm_prot_t prot, boolean_t wired)
1853{
1854	vm_offset_t pa, opa;
1855	pt_entry_t *pte;
1856	pt_entry_t origpte, newpte;
1857	pv_entry_t pv;
1858	vm_page_t mpte, om;
1859	int rw = 0;
1860
1861	if (pmap == NULL)
1862		return;
1863
1864	va &= ~PAGE_MASK;
1865 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1866	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1867	    (m->oflags & VPO_BUSY) != 0,
1868	    ("pmap_enter: page %p is not busy", m));
1869
1870	mpte = NULL;
1871
1872	vm_page_lock_queues();
1873	PMAP_LOCK(pmap);
1874
1875	/*
1876	 * In the case that a page table page is not resident, we are
1877	 * creating it here.
1878	 */
1879	if (va < VM_MAXUSER_ADDRESS) {
1880		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1881	}
1882	pte = pmap_pte(pmap, va);
1883
1884	/*
1885	 * Page Directory table entry not valid, we need a new PT page
1886	 */
1887	if (pte == NULL) {
1888		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
1889		    (void *)pmap->pm_segtab, (void *)va);
1890	}
1891	pa = VM_PAGE_TO_PHYS(m);
1892	om = NULL;
1893	origpte = *pte;
1894	opa = TLBLO_PTE_TO_PA(origpte);
1895
1896	/*
1897	 * Mapping has not changed, must be protection or wiring change.
1898	 */
1899	if (pte_test(&origpte, PTE_V) && opa == pa) {
1900		/*
1901		 * Wiring change, just update stats. We don't worry about
1902		 * wiring PT pages as they remain resident as long as there
1903		 * are valid mappings in them. Hence, if a user page is
1904		 * wired, the PT page will be also.
1905		 */
1906		if (wired && !pte_test(&origpte, PTE_W))
1907			pmap->pm_stats.wired_count++;
1908		else if (!wired && pte_test(&origpte, PTE_W))
1909			pmap->pm_stats.wired_count--;
1910
1911		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
1912		    ("%s: modified page not writable: va: %p, pte: 0x%x",
1913		    __func__, (void *)va, origpte));
1914
1915		/*
1916		 * Remove extra pte reference
1917		 */
1918		if (mpte)
1919			mpte->wire_count--;
1920
1921		if (page_is_managed(opa)) {
1922			om = m;
1923		}
1924		goto validate;
1925	}
1926
1927	pv = NULL;
1928
1929	/*
1930	 * Mapping has changed, invalidate old range and fall through to
1931	 * handle validating new mapping.
1932	 */
1933	if (opa) {
1934		if (pte_test(&origpte, PTE_W))
1935			pmap->pm_stats.wired_count--;
1936
1937		if (page_is_managed(opa)) {
1938			om = PHYS_TO_VM_PAGE(opa);
1939			pv = pmap_pvh_remove(&om->md, pmap, va);
1940		}
1941		if (mpte != NULL) {
1942			mpte->wire_count--;
1943			KASSERT(mpte->wire_count > 0,
1944			    ("pmap_enter: missing reference to page table page,"
1945			    " va: %p", (void *)va));
1946		}
1947	} else
1948		pmap->pm_stats.resident_count++;
1949
1950	/*
1951	 * Enter on the PV list if part of our managed memory. Note that we
1952	 * raise IPL while manipulating pv_table since pmap_enter can be
1953	 * called at interrupt time.
1954	 */
1955	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1956		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1957		    ("pmap_enter: managed mapping within the clean submap"));
1958		if (pv == NULL)
1959			pv = get_pv_entry(pmap);
1960		pv->pv_va = va;
1961		pv->pv_pmap = pmap;
1962		pv->pv_ptem = mpte;
1963		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1964		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1965		m->md.pv_list_count++;
1966	} else if (pv != NULL)
1967		free_pv_entry(pv);
1968
1969	/*
1970	 * Increment counters
1971	 */
1972	if (wired)
1973		pmap->pm_stats.wired_count++;
1974
1975validate:
1976	if ((access & VM_PROT_WRITE) != 0)
1977		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1978	rw = init_pte_prot(va, m, prot);
1979
1980#ifdef PMAP_DEBUG
1981	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1982#endif
1983	/*
1984	 * Now validate mapping with desired protection/wiring.
1985	 */
1986	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1987
1988	if (is_cacheable_mem(pa))
1989		newpte |= PTE_C_CACHE;
1990	else
1991		newpte |= PTE_C_UNCACHED;
1992
1993	if (wired)
1994		newpte |= PTE_W;
1995
1996	if (is_kernel_pmap(pmap))
1997	         newpte |= PTE_G;
1998
1999	/*
2000	 * if the mapping or permission bits are different, we need to
2001	 * update the pte.
2002	 */
2003	if (origpte != newpte) {
2004		if (pte_test(&origpte, PTE_V)) {
2005			*pte = newpte;
2006			if (page_is_managed(opa) && (opa != pa)) {
2007				if (om->md.pv_flags & PV_TABLE_REF)
2008					vm_page_flag_set(om, PG_REFERENCED);
2009				om->md.pv_flags &=
2010				    ~(PV_TABLE_REF | PV_TABLE_MOD);
2011			}
2012			if (pte_test(&origpte, PTE_D)) {
2013				KASSERT(!pte_test(&origpte, PTE_RO),
2014				    ("pmap_enter: modified page not writable:"
2015				    " va: %p, pte: 0x%x", (void *)va, origpte));
2016				if (page_is_managed(opa))
2017					vm_page_dirty(om);
2018			}
2019			if (page_is_managed(opa) &&
2020			    TAILQ_EMPTY(&om->md.pv_list))
2021				vm_page_flag_clear(om, PG_WRITEABLE);
2022		} else {
2023			*pte = newpte;
2024		}
2025	}
2026	pmap_update_page(pmap, va, newpte);
2027
2028	/*
2029	 * Sync I & D caches for executable pages.  Do this only if the the
2030	 * target pmap belongs to the current process.  Otherwise, an
2031	 * unresolvable TLB miss may occur.
2032	 */
2033	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2034	    (prot & VM_PROT_EXECUTE)) {
2035		mips_icache_sync_range(va, PAGE_SIZE);
2036		mips_dcache_wbinv_range(va, PAGE_SIZE);
2037	}
2038	vm_page_unlock_queues();
2039	PMAP_UNLOCK(pmap);
2040}
2041
2042/*
2043 * this code makes some *MAJOR* assumptions:
2044 * 1. Current pmap & pmap exists.
2045 * 2. Not wired.
2046 * 3. Read access.
2047 * 4. No page table pages.
2048 * but is *MUCH* faster than pmap_enter...
2049 */
2050
2051void
2052pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2053{
2054
2055	vm_page_lock_queues();
2056	PMAP_LOCK(pmap);
2057	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2058	vm_page_unlock_queues();
2059	PMAP_UNLOCK(pmap);
2060}
2061
2062static vm_page_t
2063pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2064    vm_prot_t prot, vm_page_t mpte)
2065{
2066	pt_entry_t *pte;
2067	vm_offset_t pa;
2068
2069	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2070	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2071	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2072	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2073	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2074
2075	/*
2076	 * In the case that a page table page is not resident, we are
2077	 * creating it here.
2078	 */
2079	if (va < VM_MAXUSER_ADDRESS) {
2080		pd_entry_t *pde;
2081		unsigned ptepindex;
2082
2083		/*
2084		 * Calculate pagetable page index
2085		 */
2086		ptepindex = pmap_pde_pindex(va);
2087		if (mpte && (mpte->pindex == ptepindex)) {
2088			mpte->wire_count++;
2089		} else {
2090			/*
2091			 * Get the page directory entry
2092			 */
2093			pde = pmap_pde(pmap, va);
2094
2095			/*
2096			 * If the page table page is mapped, we just
2097			 * increment the hold count, and activate it.
2098			 */
2099			if (pde && *pde != 0) {
2100				if (pmap->pm_ptphint &&
2101				    (pmap->pm_ptphint->pindex == ptepindex)) {
2102					mpte = pmap->pm_ptphint;
2103				} else {
2104					mpte = PHYS_TO_VM_PAGE(
2105						MIPS_DIRECT_TO_PHYS(*pde));
2106					pmap->pm_ptphint = mpte;
2107				}
2108				mpte->wire_count++;
2109			} else {
2110				mpte = _pmap_allocpte(pmap, ptepindex,
2111				    M_NOWAIT);
2112				if (mpte == NULL)
2113					return (mpte);
2114			}
2115		}
2116	} else {
2117		mpte = NULL;
2118	}
2119
2120	pte = pmap_pte(pmap, va);
2121	if (pte_test(pte, PTE_V)) {
2122		if (mpte != NULL) {
2123			mpte->wire_count--;
2124			mpte = NULL;
2125		}
2126		return (mpte);
2127	}
2128
2129	/*
2130	 * Enter on the PV list if part of our managed memory.
2131	 */
2132	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2133	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2134		if (mpte != NULL) {
2135			pmap_unwire_pte_hold(pmap, va, mpte);
2136			mpte = NULL;
2137		}
2138		return (mpte);
2139	}
2140
2141	/*
2142	 * Increment counters
2143	 */
2144	pmap->pm_stats.resident_count++;
2145
2146	pa = VM_PAGE_TO_PHYS(m);
2147
2148	/*
2149	 * Now validate mapping with RO protection
2150	 */
2151	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2152
2153	if (is_cacheable_mem(pa))
2154		*pte |= PTE_C_CACHE;
2155	else
2156		*pte |= PTE_C_UNCACHED;
2157
2158	if (is_kernel_pmap(pmap))
2159		*pte |= PTE_G;
2160	else {
2161		*pte |= PTE_RO;
2162		/*
2163		 * Sync I & D caches.  Do this only if the the target pmap
2164		 * belongs to the current process.  Otherwise, an
2165		 * unresolvable TLB miss may occur. */
2166		if (pmap == &curproc->p_vmspace->vm_pmap) {
2167			va &= ~PAGE_MASK;
2168			mips_icache_sync_range(va, PAGE_SIZE);
2169			mips_dcache_wbinv_range(va, PAGE_SIZE);
2170		}
2171	}
2172	return (mpte);
2173}
2174
2175/*
2176 * Make a temporary mapping for a physical address.  This is only intended
2177 * to be used for panic dumps.
2178 *
2179 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2180 */
2181void *
2182pmap_kenter_temporary(vm_paddr_t pa, int i)
2183{
2184	vm_offset_t va;
2185
2186	if (i != 0)
2187		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2188		    __func__);
2189
2190	if (MIPS_DIRECT_MAPPABLE(pa)) {
2191		va = MIPS_PHYS_TO_DIRECT(pa);
2192	} else {
2193#ifndef __mips_n64    /* XXX : to be converted to new style */
2194		int cpu;
2195		register_t intr;
2196		struct local_sysmaps *sysm;
2197		pt_entry_t *pte, npte;
2198
2199		/* If this is used other than for dumps, we may need to leave
2200		 * interrupts disasbled on return. If crash dumps don't work when
2201		 * we get to this point, we might want to consider this (leaving things
2202		 * disabled as a starting point ;-)
2203	 	 */
2204		intr = intr_disable();
2205		cpu = PCPU_GET(cpuid);
2206		sysm = &sysmap_lmem[cpu];
2207		/* Since this is for the debugger, no locks or any other fun */
2208		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2209		pte = pmap_pte(kernel_pmap, sysm->base);
2210		*pte = npte;
2211		sysm->valid1 = 1;
2212		pmap_update_page(kernel_pmap, sysm->base, npte);
2213		va = sysm->base;
2214		intr_restore(intr);
2215#endif
2216	}
2217	return ((void *)va);
2218}
2219
2220void
2221pmap_kenter_temporary_free(vm_paddr_t pa)
2222{
2223#ifndef __mips_n64    /* XXX : to be converted to new style */
2224	int cpu;
2225	register_t intr;
2226	struct local_sysmaps *sysm;
2227#endif
2228
2229	if (MIPS_DIRECT_MAPPABLE(pa)) {
2230		/* nothing to do for this case */
2231		return;
2232	}
2233#ifndef __mips_n64    /* XXX : to be converted to new style */
2234	cpu = PCPU_GET(cpuid);
2235	sysm = &sysmap_lmem[cpu];
2236	if (sysm->valid1) {
2237		pt_entry_t *pte;
2238
2239		intr = intr_disable();
2240		pte = pmap_pte(kernel_pmap, sysm->base);
2241		*pte = PTE_G;
2242		pmap_invalidate_page(kernel_pmap, sysm->base);
2243		intr_restore(intr);
2244		sysm->valid1 = 0;
2245	}
2246#endif
2247}
2248
2249/*
2250 * Moved the code to Machine Independent
2251 *	 vm_map_pmap_enter()
2252 */
2253
2254/*
2255 * Maps a sequence of resident pages belonging to the same object.
2256 * The sequence begins with the given page m_start.  This page is
2257 * mapped at the given virtual address start.  Each subsequent page is
2258 * mapped at a virtual address that is offset from start by the same
2259 * amount as the page is offset from m_start within the object.  The
2260 * last page in the sequence is the page with the largest offset from
2261 * m_start that can be mapped at a virtual address less than the given
2262 * virtual address end.  Not every virtual page between start and end
2263 * is mapped; only those for which a resident page exists with the
2264 * corresponding offset from m_start are mapped.
2265 */
2266void
2267pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2268    vm_page_t m_start, vm_prot_t prot)
2269{
2270	vm_page_t m, mpte;
2271	vm_pindex_t diff, psize;
2272
2273	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2274	psize = atop(end - start);
2275	mpte = NULL;
2276	m = m_start;
2277	vm_page_lock_queues();
2278	PMAP_LOCK(pmap);
2279	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2280		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2281		    prot, mpte);
2282		m = TAILQ_NEXT(m, listq);
2283	}
2284	vm_page_unlock_queues();
2285 	PMAP_UNLOCK(pmap);
2286}
2287
2288/*
2289 * pmap_object_init_pt preloads the ptes for a given object
2290 * into the specified pmap.  This eliminates the blast of soft
2291 * faults on process startup and immediately after an mmap.
2292 */
2293void
2294pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2295    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2296{
2297	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2298	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2299	    ("pmap_object_init_pt: non-device object"));
2300}
2301
2302/*
2303 *	Routine:	pmap_change_wiring
2304 *	Function:	Change the wiring attribute for a map/virtual-address
2305 *			pair.
2306 *	In/out conditions:
2307 *			The mapping must already exist in the pmap.
2308 */
2309void
2310pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2311{
2312	pt_entry_t *pte;
2313
2314	if (pmap == NULL)
2315		return;
2316
2317	PMAP_LOCK(pmap);
2318	pte = pmap_pte(pmap, va);
2319
2320	if (wired && !pte_test(pte, PTE_W))
2321		pmap->pm_stats.wired_count++;
2322	else if (!wired && pte_test(pte, PTE_W))
2323		pmap->pm_stats.wired_count--;
2324
2325	/*
2326	 * Wiring is not a hardware characteristic so there is no need to
2327	 * invalidate TLB.
2328	 */
2329	if (wired)
2330		pte_set(pte, PTE_W);
2331	else
2332		pte_clear(pte, PTE_W);
2333	PMAP_UNLOCK(pmap);
2334}
2335
2336/*
2337 *	Copy the range specified by src_addr/len
2338 *	from the source map to the range dst_addr/len
2339 *	in the destination map.
2340 *
2341 *	This routine is only advisory and need not do anything.
2342 */
2343
2344void
2345pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2346    vm_size_t len, vm_offset_t src_addr)
2347{
2348}
2349
2350/*
2351 *	pmap_zero_page zeros the specified hardware page by mapping
2352 *	the page into KVM and using bzero to clear its contents.
2353 *
2354 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2355 */
2356void
2357pmap_zero_page(vm_page_t m)
2358{
2359	vm_offset_t va;
2360	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2361
2362	if (MIPS_DIRECT_MAPPABLE(phys)) {
2363		va = MIPS_PHYS_TO_DIRECT(phys);
2364		bzero((caddr_t)va, PAGE_SIZE);
2365		mips_dcache_wbinv_range(va, PAGE_SIZE);
2366	} else {
2367		va = pmap_lmem_map1(phys);
2368		bzero((caddr_t)va, PAGE_SIZE);
2369		mips_dcache_wbinv_range(va, PAGE_SIZE);
2370		pmap_lmem_unmap();
2371	}
2372}
2373
2374/*
2375 *	pmap_zero_page_area zeros the specified hardware page by mapping
2376 *	the page into KVM and using bzero to clear its contents.
2377 *
2378 *	off and size may not cover an area beyond a single hardware page.
2379 */
2380void
2381pmap_zero_page_area(vm_page_t m, int off, int size)
2382{
2383	vm_offset_t va;
2384	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2385
2386	if (MIPS_DIRECT_MAPPABLE(phys)) {
2387		va = MIPS_PHYS_TO_DIRECT(phys);
2388		bzero((char *)(caddr_t)va + off, size);
2389		mips_dcache_wbinv_range(va + off, size);
2390	} else {
2391		va = pmap_lmem_map1(phys);
2392		bzero((char *)va + off, size);
2393		mips_dcache_wbinv_range(va + off, size);
2394		pmap_lmem_unmap();
2395	}
2396}
2397
2398void
2399pmap_zero_page_idle(vm_page_t m)
2400{
2401	vm_offset_t va;
2402	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2403
2404	if (MIPS_DIRECT_MAPPABLE(phys)) {
2405		va = MIPS_PHYS_TO_DIRECT(phys);
2406		bzero((caddr_t)va, PAGE_SIZE);
2407		mips_dcache_wbinv_range(va, PAGE_SIZE);
2408	} else {
2409		va = pmap_lmem_map1(phys);
2410		bzero((caddr_t)va, PAGE_SIZE);
2411		mips_dcache_wbinv_range(va, PAGE_SIZE);
2412		pmap_lmem_unmap();
2413	}
2414}
2415
2416/*
2417 *	pmap_copy_page copies the specified (machine independent)
2418 *	page by mapping the page into virtual memory and using
2419 *	bcopy to copy the page, one machine dependent page at a
2420 *	time.
2421 *
2422 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2423 */
2424void
2425pmap_copy_page(vm_page_t src, vm_page_t dst)
2426{
2427	vm_offset_t va_src, va_dst;
2428	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2429	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2430
2431	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2432		/* easy case, all can be accessed via KSEG0 */
2433		/*
2434		 * Flush all caches for VA that are mapped to this page
2435		 * to make sure that data in SDRAM is up to date
2436		 */
2437		pmap_flush_pvcache(src);
2438		mips_dcache_wbinv_range_index(
2439		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2440		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2441		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2442		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2443		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2444	} else {
2445		va_src = pmap_lmem_map2(phys_src, phys_dst);
2446		va_dst = va_src + PAGE_SIZE;
2447		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2448		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2449		pmap_lmem_unmap();
2450	}
2451}
2452
2453/*
2454 * Returns true if the pmap's pv is one of the first
2455 * 16 pvs linked to from this page.  This count may
2456 * be changed upwards or downwards in the future; it
2457 * is only necessary that true be returned for a small
2458 * subset of pmaps for proper page aging.
2459 */
2460boolean_t
2461pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2462{
2463	pv_entry_t pv;
2464	int loops = 0;
2465	boolean_t rv;
2466
2467	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2468	    ("pmap_page_exists_quick: page %p is not managed", m));
2469	rv = FALSE;
2470	vm_page_lock_queues();
2471	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2472		if (pv->pv_pmap == pmap) {
2473			rv = TRUE;
2474			break;
2475		}
2476		loops++;
2477		if (loops >= 16)
2478			break;
2479	}
2480	vm_page_unlock_queues();
2481	return (rv);
2482}
2483
2484/*
2485 * Remove all pages from specified address space
2486 * this aids process exit speeds.  Also, this code
2487 * is special cased for current process only, but
2488 * can have the more generic (and slightly slower)
2489 * mode enabled.  This is much faster than pmap_remove
2490 * in the case of running down an entire address space.
2491 */
2492void
2493pmap_remove_pages(pmap_t pmap)
2494{
2495	pt_entry_t *pte, tpte;
2496	pv_entry_t pv, npv;
2497	vm_page_t m;
2498
2499	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2500		printf("warning: pmap_remove_pages called with non-current pmap\n");
2501		return;
2502	}
2503	vm_page_lock_queues();
2504	PMAP_LOCK(pmap);
2505	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
2506
2507		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2508		if (!pte_test(pte, PTE_V))
2509			panic("pmap_remove_pages: page on pm_pvlist has no pte");
2510		tpte = *pte;
2511
2512/*
2513 * We cannot remove wired pages from a process' mapping at this time
2514 */
2515		if (pte_test(&tpte, PTE_W)) {
2516			npv = TAILQ_NEXT(pv, pv_plist);
2517			continue;
2518		}
2519		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2520
2521		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2522		KASSERT(m != NULL,
2523		    ("pmap_remove_pages: bad tpte %x", tpte));
2524
2525		pv->pv_pmap->pm_stats.resident_count--;
2526
2527		/*
2528		 * Update the vm_page_t clean and reference bits.
2529		 */
2530		if (pte_test(&tpte, PTE_D)) {
2531			vm_page_dirty(m);
2532		}
2533		npv = TAILQ_NEXT(pv, pv_plist);
2534		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2535
2536		m->md.pv_list_count--;
2537		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2538		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2539			vm_page_flag_clear(m, PG_WRITEABLE);
2540		}
2541		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2542		free_pv_entry(pv);
2543	}
2544	pmap_invalidate_all(pmap);
2545	PMAP_UNLOCK(pmap);
2546	vm_page_unlock_queues();
2547}
2548
2549/*
2550 * pmap_testbit tests bits in pte's
2551 * note that the testbit/changebit routines are inline,
2552 * and a lot of things compile-time evaluate.
2553 */
2554static boolean_t
2555pmap_testbit(vm_page_t m, int bit)
2556{
2557	pv_entry_t pv;
2558	pt_entry_t *pte;
2559	boolean_t rv = FALSE;
2560
2561	if (m->flags & PG_FICTITIOUS)
2562		return (rv);
2563
2564	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2565		return (rv);
2566
2567	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2568	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2569		PMAP_LOCK(pv->pv_pmap);
2570		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2571		rv = pte_test(pte, bit);
2572		PMAP_UNLOCK(pv->pv_pmap);
2573		if (rv)
2574			break;
2575	}
2576	return (rv);
2577}
2578
2579/*
2580 * this routine is used to clear dirty bits in ptes
2581 */
2582static __inline void
2583pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2584{
2585	pv_entry_t pv;
2586	pt_entry_t *pte;
2587
2588	if (m->flags & PG_FICTITIOUS)
2589		return;
2590
2591	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2592	/*
2593	 * Loop over all current mappings setting/clearing as appropos If
2594	 * setting RO do we need to clear the VAC?
2595	 */
2596	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2597		PMAP_LOCK(pv->pv_pmap);
2598		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2599		if (setem) {
2600			*pte |= bit;
2601			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2602		} else {
2603			pt_entry_t pbits = *pte;
2604
2605			if (pbits & bit) {
2606				if (bit == PTE_D) {
2607					if (pbits & PTE_D)
2608						vm_page_dirty(m);
2609					*pte = (pbits & ~PTE_D) | PTE_RO;
2610				} else {
2611					*pte = pbits & ~bit;
2612				}
2613				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2614			}
2615		}
2616		PMAP_UNLOCK(pv->pv_pmap);
2617	}
2618	if (!setem && bit == PTE_D)
2619		vm_page_flag_clear(m, PG_WRITEABLE);
2620}
2621
2622/*
2623 *	pmap_page_wired_mappings:
2624 *
2625 *	Return the number of managed mappings to the given physical page
2626 *	that are wired.
2627 */
2628int
2629pmap_page_wired_mappings(vm_page_t m)
2630{
2631	pv_entry_t pv;
2632	pmap_t pmap;
2633	pt_entry_t *pte;
2634	int count;
2635
2636	count = 0;
2637	if ((m->flags & PG_FICTITIOUS) != 0)
2638		return (count);
2639	vm_page_lock_queues();
2640	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2641		pmap = pv->pv_pmap;
2642		PMAP_LOCK(pmap);
2643		pte = pmap_pte(pmap, pv->pv_va);
2644		if (pte_test(pte, PTE_W))
2645			count++;
2646		PMAP_UNLOCK(pmap);
2647	}
2648	vm_page_unlock_queues();
2649	return (count);
2650}
2651
2652/*
2653 * Clear the write and modified bits in each of the given page's mappings.
2654 */
2655void
2656pmap_remove_write(vm_page_t m)
2657{
2658	pv_entry_t pv, npv;
2659	vm_offset_t va;
2660	pt_entry_t *pte;
2661
2662	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2663	    ("pmap_remove_write: page %p is not managed", m));
2664
2665	/*
2666	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2667	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2668	 * is clear, no page table entries need updating.
2669	 */
2670	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2671	if ((m->oflags & VPO_BUSY) == 0 &&
2672	    (m->flags & PG_WRITEABLE) == 0)
2673		return;
2674
2675	/*
2676	 * Loop over all current mappings setting/clearing as appropos.
2677	 */
2678	vm_page_lock_queues();
2679	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2680		npv = TAILQ_NEXT(pv, pv_plist);
2681		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2682		if (pte == NULL || !pte_test(pte, PTE_V))
2683			panic("page on pm_pvlist has no pte");
2684
2685		va = pv->pv_va;
2686		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2687		    VM_PROT_READ | VM_PROT_EXECUTE);
2688	}
2689	vm_page_flag_clear(m, PG_WRITEABLE);
2690	vm_page_unlock_queues();
2691}
2692
2693/*
2694 *	pmap_ts_referenced:
2695 *
2696 *	Return the count of reference bits for a page, clearing all of them.
2697 */
2698int
2699pmap_ts_referenced(vm_page_t m)
2700{
2701
2702	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2703	    ("pmap_ts_referenced: page %p is not managed", m));
2704	if (m->md.pv_flags & PV_TABLE_REF) {
2705		vm_page_lock_queues();
2706		m->md.pv_flags &= ~PV_TABLE_REF;
2707		vm_page_unlock_queues();
2708		return (1);
2709	}
2710	return (0);
2711}
2712
2713/*
2714 *	pmap_is_modified:
2715 *
2716 *	Return whether or not the specified physical page was modified
2717 *	in any physical maps.
2718 */
2719boolean_t
2720pmap_is_modified(vm_page_t m)
2721{
2722	boolean_t rv;
2723
2724	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2725	    ("pmap_is_modified: page %p is not managed", m));
2726
2727	/*
2728	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2729	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2730	 * is clear, no PTEs can have PTE_D set.
2731	 */
2732	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2733	if ((m->oflags & VPO_BUSY) == 0 &&
2734	    (m->flags & PG_WRITEABLE) == 0)
2735		return (FALSE);
2736	vm_page_lock_queues();
2737	if (m->md.pv_flags & PV_TABLE_MOD)
2738		rv = TRUE;
2739	else
2740		rv = pmap_testbit(m, PTE_D);
2741	vm_page_unlock_queues();
2742	return (rv);
2743}
2744
2745/* N/C */
2746
2747/*
2748 *	pmap_is_prefaultable:
2749 *
2750 *	Return whether or not the specified virtual address is elgible
2751 *	for prefault.
2752 */
2753boolean_t
2754pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2755{
2756	pd_entry_t *pde;
2757	pt_entry_t *pte;
2758	boolean_t rv;
2759
2760	rv = FALSE;
2761	PMAP_LOCK(pmap);
2762	pde = pmap_pde(pmap, addr);
2763	if (pde != NULL && *pde != 0) {
2764		pte = pmap_pde_to_pte(pde, addr);
2765		rv = (*pte == 0);
2766	}
2767	PMAP_UNLOCK(pmap);
2768	return (rv);
2769}
2770
2771/*
2772 *	Clear the modify bits on the specified physical page.
2773 */
2774void
2775pmap_clear_modify(vm_page_t m)
2776{
2777
2778	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2779	    ("pmap_clear_modify: page %p is not managed", m));
2780	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2781	KASSERT((m->oflags & VPO_BUSY) == 0,
2782	    ("pmap_clear_modify: page %p is busy", m));
2783
2784	/*
2785	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_D set.
2786	 * If the object containing the page is locked and the page is not
2787	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2788	 */
2789	if ((m->flags & PG_WRITEABLE) == 0)
2790		return;
2791	vm_page_lock_queues();
2792	if (m->md.pv_flags & PV_TABLE_MOD) {
2793		pmap_changebit(m, PTE_D, FALSE);
2794		m->md.pv_flags &= ~PV_TABLE_MOD;
2795	}
2796	vm_page_unlock_queues();
2797}
2798
2799/*
2800 *	pmap_is_referenced:
2801 *
2802 *	Return whether or not the specified physical page was referenced
2803 *	in any physical maps.
2804 */
2805boolean_t
2806pmap_is_referenced(vm_page_t m)
2807{
2808
2809	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2810	    ("pmap_is_referenced: page %p is not managed", m));
2811	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2812}
2813
2814/*
2815 *	pmap_clear_reference:
2816 *
2817 *	Clear the reference bit on the specified physical page.
2818 */
2819void
2820pmap_clear_reference(vm_page_t m)
2821{
2822
2823	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2824	    ("pmap_clear_reference: page %p is not managed", m));
2825	vm_page_lock_queues();
2826	if (m->md.pv_flags & PV_TABLE_REF) {
2827		m->md.pv_flags &= ~PV_TABLE_REF;
2828	}
2829	vm_page_unlock_queues();
2830}
2831
2832/*
2833 * Miscellaneous support routines follow
2834 */
2835
2836/*
2837 * Map a set of physical memory pages into the kernel virtual
2838 * address space. Return a pointer to where it is mapped. This
2839 * routine is intended to be used for mapping device memory,
2840 * NOT real memory.
2841 */
2842
2843/*
2844 * Map a set of physical memory pages into the kernel virtual
2845 * address space. Return a pointer to where it is mapped. This
2846 * routine is intended to be used for mapping device memory,
2847 * NOT real memory.
2848 *
2849 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2850 */
2851void *
2852pmap_mapdev(vm_offset_t pa, vm_size_t size)
2853{
2854        vm_offset_t va, tmpva, offset;
2855
2856	/*
2857	 * KSEG1 maps only first 512M of phys address space. For
2858	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2859	 */
2860	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2861		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2862	else {
2863		offset = pa & PAGE_MASK;
2864		size = roundup(size + offset, PAGE_SIZE);
2865
2866		va = kmem_alloc_nofault(kernel_map, size);
2867		if (!va)
2868			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2869		pa = trunc_page(pa);
2870		for (tmpva = va; size > 0;) {
2871			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
2872			size -= PAGE_SIZE;
2873			tmpva += PAGE_SIZE;
2874			pa += PAGE_SIZE;
2875		}
2876	}
2877
2878	return ((void *)(va + offset));
2879}
2880
2881void
2882pmap_unmapdev(vm_offset_t va, vm_size_t size)
2883{
2884#ifndef __mips_n64
2885	vm_offset_t base, offset, tmpva;
2886
2887	/* If the address is within KSEG1 then there is nothing to do */
2888	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2889		return;
2890
2891	base = trunc_page(va);
2892	offset = va & PAGE_MASK;
2893	size = roundup(size + offset, PAGE_SIZE);
2894	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2895		pmap_kremove(tmpva);
2896	kmem_free(kernel_map, base, size);
2897#endif
2898}
2899
2900/*
2901 * perform the pmap work for mincore
2902 */
2903int
2904pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2905{
2906	pt_entry_t *ptep, pte;
2907	vm_offset_t pa;
2908	vm_page_t m;
2909	int val;
2910	boolean_t managed;
2911
2912	PMAP_LOCK(pmap);
2913retry:
2914	ptep = pmap_pte(pmap, addr);
2915	pte = (ptep != NULL) ? *ptep : 0;
2916	if (!pte_test(&pte, PTE_V)) {
2917		val = 0;
2918		goto out;
2919	}
2920	val = MINCORE_INCORE;
2921	if (pte_test(&pte, PTE_D))
2922		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2923	pa = TLBLO_PTE_TO_PA(pte);
2924	managed = page_is_managed(pa);
2925	if (managed) {
2926		/*
2927		 * This may falsely report the given address as
2928		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2929		 * per-PTE reference information, it is impossible to
2930		 * determine if the address is MINCORE_REFERENCED.
2931		 */
2932		m = PHYS_TO_VM_PAGE(pa);
2933		if ((m->flags & PG_REFERENCED) != 0)
2934			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2935	}
2936	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2937	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2938		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2939		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2940			goto retry;
2941	} else
2942out:
2943		PA_UNLOCK_COND(*locked_pa);
2944	PMAP_UNLOCK(pmap);
2945	return (val);
2946}
2947
2948void
2949pmap_activate(struct thread *td)
2950{
2951	pmap_t pmap, oldpmap;
2952	struct proc *p = td->td_proc;
2953
2954	critical_enter();
2955
2956	pmap = vmspace_pmap(p->p_vmspace);
2957	oldpmap = PCPU_GET(curpmap);
2958
2959	if (oldpmap)
2960		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2961	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2962	pmap_asid_alloc(pmap);
2963	if (td == curthread) {
2964		PCPU_SET(segbase, pmap->pm_segtab);
2965		mips_wr_entryhi(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2966	}
2967
2968	PCPU_SET(curpmap, pmap);
2969	critical_exit();
2970}
2971
2972void
2973pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2974{
2975}
2976
2977/*
2978 *	Increase the starting virtual address of the given mapping if a
2979 *	different alignment might result in more superpage mappings.
2980 */
2981void
2982pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2983    vm_offset_t *addr, vm_size_t size)
2984{
2985	vm_offset_t superpage_offset;
2986
2987	if (size < NBSEG)
2988		return;
2989	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2990		offset += ptoa(object->pg_color);
2991	superpage_offset = offset & SEGMASK;
2992	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2993	    (*addr & SEGMASK) == superpage_offset)
2994		return;
2995	if ((*addr & SEGMASK) < superpage_offset)
2996		*addr = (*addr & ~SEGMASK) + superpage_offset;
2997	else
2998		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2999}
3000
3001/*
3002 * 	Increase the starting virtual address of the given mapping so
3003 * 	that it is aligned to not be the second page in a TLB entry.
3004 * 	This routine assumes that the length is appropriately-sized so
3005 * 	that the allocation does not share a TLB entry at all if required.
3006 */
3007void
3008pmap_align_tlb(vm_offset_t *addr)
3009{
3010	if ((*addr & PAGE_SIZE) == 0)
3011		return;
3012	*addr += PAGE_SIZE;
3013	return;
3014}
3015
3016#ifdef DDB
3017DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3018{
3019	pmap_t pmap;
3020	struct thread *td = NULL;
3021	struct proc *p;
3022	int i, j, k;
3023	vm_paddr_t pa;
3024	vm_offset_t va;
3025
3026	if (have_addr) {
3027		td = db_lookup_thread(addr, TRUE);
3028		if (td == NULL) {
3029			db_printf("Invalid pid or tid");
3030			return;
3031		}
3032		p = td->td_proc;
3033		if (p->p_vmspace == NULL) {
3034			db_printf("No vmspace for process");
3035			return;
3036		}
3037			pmap = vmspace_pmap(p->p_vmspace);
3038	} else
3039		pmap = kernel_pmap;
3040
3041	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3042	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3043	    pmap->pm_asid[0].gen);
3044	for (i = 0; i < NPDEPG; i++) {
3045		pd_entry_t *pdpe;
3046		pt_entry_t *pde;
3047		pt_entry_t pte;
3048
3049		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3050		if (pdpe == NULL)
3051			continue;
3052		db_printf("[%4d] %p\n", i, pdpe);
3053#ifdef __mips_n64
3054		for (j = 0; j < NPDEPG; j++) {
3055			pde = (pt_entry_t *)pdpe[j];
3056			if (pde == NULL)
3057				continue;
3058			db_printf("\t[%4d] %p\n", j, pde);
3059#else
3060		{
3061			j = 0;
3062			pde =  (pt_entry_t *)pdpe;
3063#endif
3064			for (k = 0; k < NPTEPG; k++) {
3065				pte = pde[k];
3066				if (pte == 0 || !pte_test(&pte, PTE_V))
3067					continue;
3068				pa = TLBLO_PTE_TO_PA(pte);
3069				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3070				db_printf("\t\t[%04d] va: %p pte: %8x pa:%lx\n",
3071				       k, (void *)va, pte, (u_long)pa);
3072			}
3073		}
3074	}
3075}
3076#endif
3077
3078#if defined(DEBUG)
3079
3080static void pads(pmap_t pm);
3081void pmap_pvdump(vm_offset_t pa);
3082
3083/* print address space of pmap*/
3084static void
3085pads(pmap_t pm)
3086{
3087	unsigned va, i, j;
3088	pt_entry_t *ptep;
3089
3090	if (pm == kernel_pmap)
3091		return;
3092	for (i = 0; i < NPTEPG; i++)
3093		if (pm->pm_segtab[i])
3094			for (j = 0; j < NPTEPG; j++) {
3095				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3096				if (pm == kernel_pmap && va < KERNBASE)
3097					continue;
3098				if (pm != kernel_pmap &&
3099				    va >= VM_MAXUSER_ADDRESS)
3100					continue;
3101				ptep = pmap_pte(pm, va);
3102				if (pmap_pte_v(ptep))
3103					printf("%x:%x ", va, *(int *)ptep);
3104			}
3105
3106}
3107
3108void
3109pmap_pvdump(vm_offset_t pa)
3110{
3111	register pv_entry_t pv;
3112	vm_page_t m;
3113
3114	printf("pa %x", pa);
3115	m = PHYS_TO_VM_PAGE(pa);
3116	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3117	    pv = TAILQ_NEXT(pv, pv_list)) {
3118		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3119		pads(pv->pv_pmap);
3120	}
3121	printf(" ");
3122}
3123
3124/* N/C */
3125#endif
3126
3127
3128/*
3129 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3130 * It takes almost as much or more time to search the TLB for a
3131 * specific ASID and flush those entries as it does to flush the entire TLB.
3132 * Therefore, when we allocate a new ASID, we just take the next number. When
3133 * we run out of numbers, we flush the TLB, increment the generation count
3134 * and start over. ASID zero is reserved for kernel use.
3135 */
3136static void
3137pmap_asid_alloc(pmap)
3138	pmap_t pmap;
3139{
3140	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3141	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3142	else {
3143		if (PCPU_GET(next_asid) == pmap_max_asid) {
3144			tlb_invalidate_all_user(NULL);
3145			PCPU_SET(asid_generation,
3146			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3147			if (PCPU_GET(asid_generation) == 0) {
3148				PCPU_SET(asid_generation, 1);
3149			}
3150			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3151		}
3152		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3153		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3154		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3155	}
3156}
3157
3158int
3159page_is_managed(vm_offset_t pa)
3160{
3161	vm_offset_t pgnum = mips_btop(pa);
3162
3163	if (pgnum >= first_page) {
3164		vm_page_t m;
3165
3166		m = PHYS_TO_VM_PAGE(pa);
3167		if (m == NULL)
3168			return (0);
3169		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3170			return (1);
3171	}
3172	return (0);
3173}
3174
3175static int
3176init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3177{
3178	int rw;
3179
3180	if (!(prot & VM_PROT_WRITE))
3181		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3182	else if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3183		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3184			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3185		else
3186			rw = PTE_V | PTE_C_CACHE;
3187		vm_page_flag_set(m, PG_WRITEABLE);
3188	} else
3189		/* Needn't emulate a modified bit for unmanaged pages. */
3190		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3191	return (rw);
3192}
3193
3194/*
3195 * pmap_emulate_modified : do dirty bit emulation
3196 *
3197 * On SMP, update just the local TLB, other CPUs will update their
3198 * TLBs from PTE lazily, if they get the exception.
3199 * Returns 0 in case of sucess, 1 if the page is read only and we
3200 * need to fault.
3201 */
3202int
3203pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3204{
3205	vm_page_t m;
3206	pt_entry_t *pte;
3207 	vm_offset_t pa;
3208
3209	PMAP_LOCK(pmap);
3210	pte = pmap_pte(pmap, va);
3211	if (pte == NULL)
3212		panic("pmap_emulate_modified: can't find PTE");
3213#ifdef SMP
3214	/* It is possible that some other CPU changed m-bit */
3215	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3216		pmap_update_page_local(pmap, va, *pte);
3217		PMAP_UNLOCK(pmap);
3218		return (0);
3219	}
3220#else
3221	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3222		panic("pmap_emulate_modified: invalid pte");
3223#endif
3224	if (pte_test(pte, PTE_RO)) {
3225		/* write to read only page in the kernel */
3226		PMAP_UNLOCK(pmap);
3227		return (1);
3228	}
3229	pte_set(pte, PTE_D);
3230	pmap_update_page_local(pmap, va, *pte);
3231	pa = TLBLO_PTE_TO_PA(*pte);
3232	if (!page_is_managed(pa))
3233		panic("pmap_emulate_modified: unmanaged page");
3234	m = PHYS_TO_VM_PAGE(pa);
3235	m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3236	PMAP_UNLOCK(pmap);
3237	return (0);
3238}
3239
3240/*
3241 *	Routine:	pmap_kextract
3242 *	Function:
3243 *		Extract the physical page address associated
3244 *		virtual address.
3245 */
3246 /* PMAP_INLINE */ vm_offset_t
3247pmap_kextract(vm_offset_t va)
3248{
3249	int mapped;
3250
3251	/*
3252	 * First, the direct-mapped regions.
3253	 */
3254#if defined(__mips_n64)
3255	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3256		return (MIPS_XKPHYS_TO_PHYS(va));
3257#endif
3258	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3259		return (MIPS_KSEG0_TO_PHYS(va));
3260
3261	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3262		return (MIPS_KSEG1_TO_PHYS(va));
3263
3264	/*
3265	 * User virtual addresses.
3266	 */
3267	if (va < VM_MAXUSER_ADDRESS) {
3268		pt_entry_t *ptep;
3269
3270		if (curproc && curproc->p_vmspace) {
3271			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3272			if (ptep) {
3273				return (TLBLO_PTE_TO_PA(*ptep) |
3274				    (va & PAGE_MASK));
3275			}
3276			return (0);
3277		}
3278	}
3279
3280	/*
3281	 * Should be kernel virtual here, otherwise fail
3282	 */
3283	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3284#if defined(__mips_n64)
3285	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3286#endif
3287	/*
3288	 * Kernel virtual.
3289	 */
3290
3291	if (mapped) {
3292		pt_entry_t *ptep;
3293
3294		/* Is the kernel pmap initialized? */
3295		if (kernel_pmap->pm_active) {
3296			/* It's inside the virtual address range */
3297			ptep = pmap_pte(kernel_pmap, va);
3298			if (ptep) {
3299				return (TLBLO_PTE_TO_PA(*ptep) |
3300				    (va & PAGE_MASK));
3301			}
3302		}
3303		return (0);
3304	}
3305
3306	panic("%s for unknown address space %p.", __func__, (void *)va);
3307}
3308
3309
3310void
3311pmap_flush_pvcache(vm_page_t m)
3312{
3313	pv_entry_t pv;
3314
3315	if (m != NULL) {
3316		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3317		    pv = TAILQ_NEXT(pv, pv_list)) {
3318			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3319		}
3320	}
3321}
3322