pmap.c revision 211958
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 211958 2010-08-29 05:39:21Z jchandra $");
70
71#include "opt_msgbuf.h"
72#include "opt_ddb.h"
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/proc.h>
77#include <sys/msgbuf.h>
78#include <sys/vmmeter.h>
79#include <sys/mman.h>
80#include <sys/smp.h>
81#ifdef DDB
82#include <ddb/ddb.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_phys.h>
88#include <sys/lock.h>
89#include <sys/mutex.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_page.h>
92#include <vm/vm_map.h>
93#include <vm/vm_object.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pageout.h>
96#include <vm/vm_pager.h>
97#include <vm/uma.h>
98#include <sys/pcpu.h>
99#include <sys/sched.h>
100#ifdef SMP
101#include <sys/smp.h>
102#endif
103
104#include <machine/cache.h>
105#include <machine/md_var.h>
106#include <machine/tlb.h>
107
108#undef PMAP_DEBUG
109
110#ifndef PMAP_SHPGPERPROC
111#define	PMAP_SHPGPERPROC 200
112#endif
113
114#if !defined(DIAGNOSTIC)
115#define	PMAP_INLINE __inline
116#else
117#define	PMAP_INLINE
118#endif
119
120/*
121 * Get PDEs and PTEs for user/kernel address space
122 *
123 * XXX The & for pmap_segshift() is wrong, as is the fact that it doesn't
124 *     trim off gratuitous bits of the address space.  By having the &
125 *     there, we break defining NUSERPGTBLS below because the address space
126 *     is defined such that it ends immediately after NPDEPG*NPTEPG*PAGE_SIZE,
127 *     so we end up getting NUSERPGTBLS of 0.
128 */
129#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
130#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
131#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
132#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
133
134#ifdef __mips_n64
135#define	NUPDE			(NPDEPG * NPDEPG)
136#define	NUSERPGTBLS		(NUPDE + NPDEPG)
137#else
138#define	NUPDE			(NPDEPG)
139#define	NUSERPGTBLS		(NUPDE)
140#endif
141
142#define	is_kernel_pmap(x)	((x) == kernel_pmap)
143
144struct pmap kernel_pmap_store;
145pd_entry_t *kernel_segmap;
146
147vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
148vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
149
150static int nkpt;
151unsigned pmap_max_asid;		/* max ASID supported by the system */
152
153#define	PMAP_ASID_RESERVED	0
154
155vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
156
157static void pmap_asid_alloc(pmap_t pmap);
158
159/*
160 * Data for the pv entry allocation mechanism
161 */
162static uma_zone_t pvzone;
163static struct vm_object pvzone_obj;
164static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
165
166static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
167static pv_entry_t get_pv_entry(pmap_t locked_pmap);
168static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
169static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
170    vm_offset_t va);
171static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
172static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
173    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
174static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
175static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
176static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
180static void pmap_invalidate_all(pmap_t pmap);
181static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
182static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
183
184static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
185static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
186static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
187static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
188static vm_page_t pmap_alloc_pte_page(unsigned int index, int req);
189static void pmap_grow_pte_page_cache(void);
190
191#ifdef SMP
192static void pmap_invalidate_page_action(void *arg);
193static void pmap_invalidate_all_action(void *arg);
194static void pmap_update_page_action(void *arg);
195#endif
196
197#ifndef __mips_n64
198/*
199 * This structure is for high memory (memory above 512Meg in 32 bit)
200 * This memory area does not have direct mapping, so we a mechanism to do
201 * temporary per-CPU mapping to access these addresses.
202 *
203 * At bootup we reserve 2 virtual pages per CPU for mapping highmem pages, to
204 * access a highmem physical address on a CPU, we will disable interrupts and
205 * add the mapping from the reserved virtual address for the CPU to the physical
206 * address in the kernel pagetable.
207 */
208struct local_sysmaps {
209	vm_offset_t	base;
210	uint32_t	saved_intr;
211	uint16_t	valid1, valid2;
212};
213static struct local_sysmaps sysmap_lmem[MAXCPU];
214
215static __inline void
216pmap_alloc_lmem_map(void)
217{
218	int i;
219
220	for (i = 0; i < MAXCPU; i++) {
221		sysmap_lmem[i].base = virtual_avail;
222		virtual_avail += PAGE_SIZE * 2;
223		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
224	}
225}
226
227static __inline vm_offset_t
228pmap_lmem_map1(vm_paddr_t phys)
229{
230	struct local_sysmaps *sysm;
231	pt_entry_t *pte, npte;
232	vm_offset_t va;
233	uint32_t intr;
234	int cpu;
235
236	intr = intr_disable();
237	cpu = PCPU_GET(cpuid);
238	sysm = &sysmap_lmem[cpu];
239	sysm->saved_intr = intr;
240	va = sysm->base;
241	npte = TLBLO_PA_TO_PFN(phys) |
242	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
243	pte = pmap_pte(kernel_pmap, va);
244	*pte = npte;
245	sysm->valid1 = 1;
246	return (va);
247}
248
249static __inline vm_offset_t
250pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
251{
252	struct local_sysmaps *sysm;
253	pt_entry_t *pte, npte;
254	vm_offset_t va1, va2;
255	uint32_t intr;
256	int cpu;
257
258	intr = intr_disable();
259	cpu = PCPU_GET(cpuid);
260	sysm = &sysmap_lmem[cpu];
261	sysm->saved_intr = intr;
262	va1 = sysm->base;
263	va2 = sysm->base + PAGE_SIZE;
264	npte = TLBLO_PA_TO_PFN(phys1) |
265	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
266	pte = pmap_pte(kernel_pmap, va1);
267	*pte = npte;
268	npte =  TLBLO_PA_TO_PFN(phys2) |
269	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
270	pte = pmap_pte(kernel_pmap, va2);
271	*pte = npte;
272	sysm->valid1 = 1;
273	sysm->valid2 = 1;
274	return (va1);
275}
276
277static __inline void
278pmap_lmem_unmap(void)
279{
280	struct local_sysmaps *sysm;
281	pt_entry_t *pte;
282	int cpu;
283
284	cpu = PCPU_GET(cpuid);
285	sysm = &sysmap_lmem[cpu];
286	pte = pmap_pte(kernel_pmap, sysm->base);
287	*pte = PTE_G;
288	tlb_invalidate_address(kernel_pmap, sysm->base);
289	sysm->valid1 = 0;
290	if (sysm->valid2) {
291		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
292		*pte = PTE_G;
293		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
294		sysm->valid2 = 0;
295	}
296	intr_restore(sysm->saved_intr);
297}
298#else  /* __mips_n64 */
299
300static __inline void
301pmap_alloc_lmem_map(void)
302{
303}
304
305static __inline vm_offset_t
306pmap_lmem_map1(vm_paddr_t phys)
307{
308
309	return (0);
310}
311
312static __inline vm_offset_t
313pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
314{
315
316	return (0);
317}
318
319static __inline vm_offset_t
320pmap_lmem_unmap(void)
321{
322
323	return (0);
324}
325#endif /* !__mips_n64 */
326
327/*
328 * Page table entry lookup routines.
329 */
330static __inline pd_entry_t *
331pmap_segmap(pmap_t pmap, vm_offset_t va)
332{
333
334	return (&pmap->pm_segtab[pmap_seg_index(va)]);
335}
336
337#ifdef __mips_n64
338static __inline pd_entry_t *
339pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
340{
341	pd_entry_t *pde;
342
343	pde = (pd_entry_t *)*pdpe;
344	return (&pde[pmap_pde_index(va)]);
345}
346
347static __inline pd_entry_t *
348pmap_pde(pmap_t pmap, vm_offset_t va)
349{
350	pd_entry_t *pdpe;
351
352	pdpe = pmap_segmap(pmap, va);
353	if (pdpe == NULL || *pdpe == NULL)
354		return (NULL);
355
356	return (pmap_pdpe_to_pde(pdpe, va));
357}
358#else
359static __inline pd_entry_t *
360pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
361{
362
363	return (pdpe);
364}
365
366static __inline
367pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
368{
369
370	return (pmap_segmap(pmap, va));
371}
372#endif
373
374static __inline pt_entry_t *
375pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
376{
377	pt_entry_t *pte;
378
379	pte = (pt_entry_t *)*pde;
380	return (&pte[pmap_pte_index(va)]);
381}
382
383pt_entry_t *
384pmap_pte(pmap_t pmap, vm_offset_t va)
385{
386	pd_entry_t *pde;
387
388	pde = pmap_pde(pmap, va);
389	if (pde == NULL || *pde == NULL)
390		return (NULL);
391
392	return (pmap_pde_to_pte(pde, va));
393}
394
395vm_offset_t
396pmap_steal_memory(vm_size_t size)
397{
398	vm_size_t bank_size;
399	vm_offset_t pa, va;
400
401	size = round_page(size);
402
403	bank_size = phys_avail[1] - phys_avail[0];
404	while (size > bank_size) {
405		int i;
406
407		for (i = 0; phys_avail[i + 2]; i += 2) {
408			phys_avail[i] = phys_avail[i + 2];
409			phys_avail[i + 1] = phys_avail[i + 3];
410		}
411		phys_avail[i] = 0;
412		phys_avail[i + 1] = 0;
413		if (!phys_avail[0])
414			panic("pmap_steal_memory: out of memory");
415		bank_size = phys_avail[1] - phys_avail[0];
416	}
417
418	pa = phys_avail[0];
419	phys_avail[0] += size;
420	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
421		panic("Out of memory below 512Meg?");
422	va = MIPS_PHYS_TO_DIRECT(pa);
423	bzero((caddr_t)va, size);
424	return (va);
425}
426
427/*
428 * Bootstrap the system enough to run with virtual memory.  This
429 * assumes that the phys_avail array has been initialized.
430 */
431static void
432pmap_create_kernel_pagetable(void)
433{
434	int i, j;
435	vm_offset_t ptaddr;
436	pt_entry_t *pte;
437#ifdef __mips_n64
438	pd_entry_t *pde;
439	vm_offset_t pdaddr;
440	int npt, npde;
441#endif
442
443	/*
444	 * Allocate segment table for the kernel
445	 */
446	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
447
448	/*
449	 * Allocate second level page tables for the kernel
450	 */
451#ifdef __mips_n64
452	npde = howmany(NKPT, NPDEPG);
453	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
454#endif
455	nkpt = NKPT;
456	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
457
458	/*
459	 * The R[4-7]?00 stores only one copy of the Global bit in the
460	 * translation lookaside buffer for each 2 page entry. Thus invalid
461	 * entrys must have the Global bit set so when Entry LO and Entry HI
462	 * G bits are anded together they will produce a global bit to store
463	 * in the tlb.
464	 */
465	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
466		*pte = PTE_G;
467
468#ifdef __mips_n64
469	for (i = 0,  npt = nkpt; npt > 0; i++) {
470		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
471		pde = (pd_entry_t *)kernel_segmap[i];
472
473		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
474			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
475	}
476#else
477	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
478		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
479#endif
480
481	PMAP_LOCK_INIT(kernel_pmap);
482	kernel_pmap->pm_segtab = kernel_segmap;
483	kernel_pmap->pm_active = ~0;
484	TAILQ_INIT(&kernel_pmap->pm_pvlist);
485	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
486	kernel_pmap->pm_asid[0].gen = 0;
487	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
488}
489
490void
491pmap_bootstrap(void)
492{
493	int i;
494	int need_local_mappings = 0;
495
496	/* Sort. */
497again:
498	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
499		/*
500		 * Keep the memory aligned on page boundary.
501		 */
502		phys_avail[i] = round_page(phys_avail[i]);
503		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
504
505		if (i < 2)
506			continue;
507		if (phys_avail[i - 2] > phys_avail[i]) {
508			vm_paddr_t ptemp[2];
509
510			ptemp[0] = phys_avail[i + 0];
511			ptemp[1] = phys_avail[i + 1];
512
513			phys_avail[i + 0] = phys_avail[i - 2];
514			phys_avail[i + 1] = phys_avail[i - 1];
515
516			phys_avail[i - 2] = ptemp[0];
517			phys_avail[i - 1] = ptemp[1];
518			goto again;
519		}
520	}
521
522       	/*
523	 * In 32 bit, we may have memory which cannot be mapped directly
524	 * this memory will need temporary mapping before it can be
525	 * accessed.
526	 */
527	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1]))
528		need_local_mappings = 1;
529
530	/*
531	 * Copy the phys_avail[] array before we start stealing memory from it.
532	 */
533	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
534		physmem_desc[i] = phys_avail[i];
535		physmem_desc[i + 1] = phys_avail[i + 1];
536	}
537
538	Maxmem = atop(phys_avail[i - 1]);
539
540	if (bootverbose) {
541		printf("Physical memory chunk(s):\n");
542		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
543			vm_paddr_t size;
544
545			size = phys_avail[i + 1] - phys_avail[i];
546			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
547			    (uintmax_t) phys_avail[i],
548			    (uintmax_t) phys_avail[i + 1] - 1,
549			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
550		}
551		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
552	}
553	/*
554	 * Steal the message buffer from the beginning of memory.
555	 */
556	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
557	msgbufinit(msgbufp, MSGBUF_SIZE);
558
559	/*
560	 * Steal thread0 kstack.
561	 */
562	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
563
564	virtual_avail = VM_MIN_KERNEL_ADDRESS;
565	virtual_end = VM_MAX_KERNEL_ADDRESS;
566
567#ifdef SMP
568	/*
569	 * Steal some virtual address space to map the pcpu area.
570	 */
571	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
572	pcpup = (struct pcpu *)virtual_avail;
573	virtual_avail += PAGE_SIZE * 2;
574
575	/*
576	 * Initialize the wired TLB entry mapping the pcpu region for
577	 * the BSP at 'pcpup'. Up until this point we were operating
578	 * with the 'pcpup' for the BSP pointing to a virtual address
579	 * in KSEG0 so there was no need for a TLB mapping.
580	 */
581	mips_pcpu_tlb_init(PCPU_ADDR(0));
582
583	if (bootverbose)
584		printf("pcpu is available at virtual address %p.\n", pcpup);
585#endif
586
587	if (need_local_mappings)
588		pmap_alloc_lmem_map();
589	pmap_create_kernel_pagetable();
590	pmap_max_asid = VMNUM_PIDS;
591	mips_wr_entryhi(0);
592	mips_wr_pagemask(0);
593}
594
595/*
596 * Initialize a vm_page's machine-dependent fields.
597 */
598void
599pmap_page_init(vm_page_t m)
600{
601
602	TAILQ_INIT(&m->md.pv_list);
603	m->md.pv_list_count = 0;
604	m->md.pv_flags = 0;
605}
606
607/*
608 *	Initialize the pmap module.
609 *	Called by vm_init, to initialize any structures that the pmap
610 *	system needs to map virtual memory.
611 *	pmap_init has been enhanced to support in a fairly consistant
612 *	way, discontiguous physical memory.
613 */
614void
615pmap_init(void)
616{
617
618	/*
619	 * Initialize the address space (zone) for the pv entries.  Set a
620	 * high water mark so that the system can recover from excessive
621	 * numbers of pv entries.
622	 */
623	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
624	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
625	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
626	pv_entry_high_water = 9 * (pv_entry_max / 10);
627	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
628}
629
630/***************************************************
631 * Low level helper routines.....
632 ***************************************************/
633
634static __inline void
635pmap_invalidate_all_local(pmap_t pmap)
636{
637
638	if (pmap == kernel_pmap) {
639		tlb_invalidate_all();
640		return;
641	}
642	if (pmap->pm_active & PCPU_GET(cpumask))
643		tlb_invalidate_all_user(pmap);
644	else
645		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
646}
647
648#ifdef SMP
649static void
650pmap_invalidate_all(pmap_t pmap)
651{
652
653	smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap);
654}
655
656static void
657pmap_invalidate_all_action(void *arg)
658{
659
660	pmap_invalidate_all_local((pmap_t)arg);
661}
662#else
663static void
664pmap_invalidate_all(pmap_t pmap)
665{
666
667	pmap_invalidate_all_local(pmap);
668}
669#endif
670
671static __inline void
672pmap_invalidate_page_local(pmap_t pmap, vm_offset_t va)
673{
674
675	if (is_kernel_pmap(pmap)) {
676		tlb_invalidate_address(pmap, va);
677		return;
678	}
679	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
680		return;
681	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
682		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
683		return;
684	}
685	tlb_invalidate_address(pmap, va);
686}
687
688#ifdef SMP
689struct pmap_invalidate_page_arg {
690	pmap_t pmap;
691	vm_offset_t va;
692};
693
694static void
695pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
696{
697	struct pmap_invalidate_page_arg arg;
698
699	arg.pmap = pmap;
700	arg.va = va;
701	smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg);
702}
703
704static void
705pmap_invalidate_page_action(void *arg)
706{
707	struct pmap_invalidate_page_arg *p = arg;
708
709	pmap_invalidate_page_local(p->pmap, p->va);
710}
711#else
712static void
713pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
714{
715
716	pmap_invalidate_page_local(pmap, va);
717}
718#endif
719
720static __inline void
721pmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
722{
723
724	if (is_kernel_pmap(pmap)) {
725		tlb_update(pmap, va, pte);
726		return;
727	}
728	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
729		return;
730	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
731		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
732		return;
733	}
734	tlb_update(pmap, va, pte);
735}
736
737#ifdef SMP
738struct pmap_update_page_arg {
739	pmap_t pmap;
740	vm_offset_t va;
741	pt_entry_t pte;
742};
743
744static void
745pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
746{
747	struct pmap_update_page_arg arg;
748
749	arg.pmap = pmap;
750	arg.va = va;
751	arg.pte = pte;
752	smp_rendezvous(0, pmap_update_page_action, 0, &arg);
753}
754
755static void
756pmap_update_page_action(void *arg)
757{
758	struct pmap_update_page_arg *p = arg;
759
760	pmap_update_page_local(p->pmap, p->va, p->pte);
761}
762#else
763static void
764pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
765{
766
767	pmap_update_page_local(pmap, va, pte);
768}
769#endif
770
771/*
772 *	Routine:	pmap_extract
773 *	Function:
774 *		Extract the physical page address associated
775 *		with the given map/virtual_address pair.
776 */
777vm_paddr_t
778pmap_extract(pmap_t pmap, vm_offset_t va)
779{
780	pt_entry_t *pte;
781	vm_offset_t retval = 0;
782
783	PMAP_LOCK(pmap);
784	pte = pmap_pte(pmap, va);
785	if (pte) {
786		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
787	}
788	PMAP_UNLOCK(pmap);
789	return (retval);
790}
791
792/*
793 *	Routine:	pmap_extract_and_hold
794 *	Function:
795 *		Atomically extract and hold the physical page
796 *		with the given pmap and virtual address pair
797 *		if that mapping permits the given protection.
798 */
799vm_page_t
800pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
801{
802	pt_entry_t pte;
803	vm_page_t m;
804	vm_paddr_t pa;
805
806	m = NULL;
807	pa = 0;
808	PMAP_LOCK(pmap);
809retry:
810	pte = *pmap_pte(pmap, va);
811	if (pte != 0 && pte_test(&pte, PTE_V) &&
812	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
813		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
814			goto retry;
815
816		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
817		vm_page_hold(m);
818	}
819	PA_UNLOCK_COND(pa);
820	PMAP_UNLOCK(pmap);
821	return (m);
822}
823
824/***************************************************
825 * Low level mapping routines.....
826 ***************************************************/
827
828/*
829 * add a wired page to the kva
830 */
831 /* PMAP_INLINE */ void
832pmap_kenter(vm_offset_t va, vm_paddr_t pa)
833{
834	pt_entry_t *pte;
835	pt_entry_t opte, npte;
836
837#ifdef PMAP_DEBUG
838	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
839#endif
840	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W;
841
842	if (is_cacheable_mem(pa))
843		npte |= PTE_C_CACHE;
844	else
845		npte |= PTE_C_UNCACHED;
846
847	pte = pmap_pte(kernel_pmap, va);
848	opte = *pte;
849	*pte = npte;
850	if (pte_test(&opte, PTE_V) && opte != npte)
851		pmap_update_page(kernel_pmap, va, npte);
852}
853
854/*
855 * remove a page from the kernel pagetables
856 */
857 /* PMAP_INLINE */ void
858pmap_kremove(vm_offset_t va)
859{
860	pt_entry_t *pte;
861
862	/*
863	 * Write back all caches from the page being destroyed
864	 */
865	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
866
867	pte = pmap_pte(kernel_pmap, va);
868	*pte = PTE_G;
869	pmap_invalidate_page(kernel_pmap, va);
870}
871
872/*
873 *	Used to map a range of physical addresses into kernel
874 *	virtual address space.
875 *
876 *	The value passed in '*virt' is a suggested virtual address for
877 *	the mapping. Architectures which can support a direct-mapped
878 *	physical to virtual region can return the appropriate address
879 *	within that region, leaving '*virt' unchanged. Other
880 *	architectures should map the pages starting at '*virt' and
881 *	update '*virt' with the first usable address after the mapped
882 *	region.
883 *
884 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
885 */
886vm_offset_t
887pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
888{
889	vm_offset_t va, sva;
890
891	if (MIPS_DIRECT_MAPPABLE(end))
892		return (MIPS_PHYS_TO_DIRECT(start));
893
894	va = sva = *virt;
895	while (start < end) {
896		pmap_kenter(va, start);
897		va += PAGE_SIZE;
898		start += PAGE_SIZE;
899	}
900	*virt = va;
901	return (sva);
902}
903
904/*
905 * Add a list of wired pages to the kva
906 * this routine is only used for temporary
907 * kernel mappings that do not need to have
908 * page modification or references recorded.
909 * Note that old mappings are simply written
910 * over.  The page *must* be wired.
911 */
912void
913pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
914{
915	int i;
916	vm_offset_t origva = va;
917
918	for (i = 0; i < count; i++) {
919		pmap_flush_pvcache(m[i]);
920		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
921		va += PAGE_SIZE;
922	}
923
924	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
925}
926
927/*
928 * this routine jerks page mappings from the
929 * kernel -- it is meant only for temporary mappings.
930 */
931void
932pmap_qremove(vm_offset_t va, int count)
933{
934	/*
935	 * No need to wb/inv caches here,
936	 *   pmap_kremove will do it for us
937	 */
938
939	while (count-- > 0) {
940		pmap_kremove(va);
941		va += PAGE_SIZE;
942	}
943}
944
945/***************************************************
946 * Page table page management routines.....
947 ***************************************************/
948
949/*  Revision 1.507
950 *
951 * Simplify the reference counting of page table pages.	 Specifically, use
952 * the page table page's wired count rather than its hold count to contain
953 * the reference count.
954 */
955
956/*
957 * This routine unholds page table pages, and if the hold count
958 * drops to zero, then it decrements the wire count.
959 */
960static PMAP_INLINE int
961pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
962{
963	--m->wire_count;
964	if (m->wire_count == 0)
965		return (_pmap_unwire_pte_hold(pmap, va, m));
966	else
967		return (0);
968}
969
970static int
971_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
972{
973	pd_entry_t *pde;
974
975	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
976	/*
977	 * unmap the page table page
978	 */
979#ifdef __mips_n64
980	if (m->pindex < NUPDE)
981		pde = pmap_pde(pmap, va);
982	else
983		pde = pmap_segmap(pmap, va);
984#else
985	pde = pmap_pde(pmap, va);
986#endif
987	*pde = 0;
988	pmap->pm_stats.resident_count--;
989
990#ifdef __mips_n64
991	if (m->pindex < NUPDE) {
992		pd_entry_t *pdp;
993		vm_page_t pdpg;
994
995		/*
996		 * Recursively decrement next level pagetable refcount
997		 */
998		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
999		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
1000		pmap_unwire_pte_hold(pmap, va, pdpg);
1001	}
1002#endif
1003	if (pmap->pm_ptphint == m)
1004		pmap->pm_ptphint = NULL;
1005
1006	/*
1007	 * If the page is finally unwired, simply free it.
1008	 */
1009	vm_page_free_zero(m);
1010	atomic_subtract_int(&cnt.v_wire_count, 1);
1011	return (1);
1012}
1013
1014/*
1015 * After removing a page table entry, this routine is used to
1016 * conditionally free the page, and manage the hold/wire counts.
1017 */
1018static int
1019pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1020{
1021	unsigned ptepindex;
1022	pd_entry_t pteva;
1023
1024	if (va >= VM_MAXUSER_ADDRESS)
1025		return (0);
1026
1027	if (mpte == NULL) {
1028		ptepindex = pmap_pde_pindex(va);
1029		if (pmap->pm_ptphint &&
1030		    (pmap->pm_ptphint->pindex == ptepindex)) {
1031			mpte = pmap->pm_ptphint;
1032		} else {
1033			pteva = *pmap_pde(pmap, va);
1034			mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva));
1035			pmap->pm_ptphint = mpte;
1036		}
1037	}
1038	return (pmap_unwire_pte_hold(pmap, va, mpte));
1039}
1040
1041void
1042pmap_pinit0(pmap_t pmap)
1043{
1044	int i;
1045
1046	PMAP_LOCK_INIT(pmap);
1047	pmap->pm_segtab = kernel_segmap;
1048	pmap->pm_active = 0;
1049	pmap->pm_ptphint = NULL;
1050	for (i = 0; i < MAXCPU; i++) {
1051		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1052		pmap->pm_asid[i].gen = 0;
1053	}
1054	PCPU_SET(curpmap, pmap);
1055	TAILQ_INIT(&pmap->pm_pvlist);
1056	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1057}
1058
1059static void
1060pmap_grow_pte_page_cache()
1061{
1062
1063#ifdef __mips_n64
1064	vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1065#else
1066	vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1067#endif
1068}
1069
1070static vm_page_t
1071pmap_alloc_pte_page(unsigned int index, int req)
1072{
1073	vm_page_t m;
1074
1075	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, 0, req);
1076	if (m == NULL)
1077		return (NULL);
1078
1079	if ((m->flags & PG_ZERO) == 0)
1080		pmap_zero_page(m);
1081
1082	m->pindex = index;
1083	atomic_add_int(&cnt.v_wire_count, 1);
1084	m->wire_count = 1;
1085	return (m);
1086}
1087
1088/*
1089 * Initialize a preallocated and zeroed pmap structure,
1090 * such as one in a vmspace structure.
1091 */
1092int
1093pmap_pinit(pmap_t pmap)
1094{
1095	vm_offset_t ptdva;
1096	vm_page_t ptdpg;
1097	int i;
1098
1099	PMAP_LOCK_INIT(pmap);
1100
1101	/*
1102	 * allocate the page directory page
1103	 */
1104	while ((ptdpg = pmap_alloc_pte_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1105	       pmap_grow_pte_page_cache();
1106
1107	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1108	pmap->pm_segtab = (pd_entry_t *)ptdva;
1109	pmap->pm_active = 0;
1110	pmap->pm_ptphint = NULL;
1111	for (i = 0; i < MAXCPU; i++) {
1112		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1113		pmap->pm_asid[i].gen = 0;
1114	}
1115	TAILQ_INIT(&pmap->pm_pvlist);
1116	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1117
1118	return (1);
1119}
1120
1121/*
1122 * this routine is called if the page table page is not
1123 * mapped correctly.
1124 */
1125static vm_page_t
1126_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1127{
1128	vm_offset_t pageva;
1129	vm_page_t m;
1130
1131	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1132	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1133	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1134
1135	/*
1136	 * Find or fabricate a new pagetable page
1137	 */
1138	if ((m = pmap_alloc_pte_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1139		if (flags & M_WAITOK) {
1140			PMAP_UNLOCK(pmap);
1141			vm_page_unlock_queues();
1142			pmap_grow_pte_page_cache();
1143			vm_page_lock_queues();
1144			PMAP_LOCK(pmap);
1145		}
1146
1147		/*
1148		 * Indicate the need to retry.	While waiting, the page
1149		 * table page may have been allocated.
1150		 */
1151		return (NULL);
1152	}
1153
1154	/*
1155	 * Map the pagetable page into the process address space, if it
1156	 * isn't already there.
1157	 */
1158	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1159
1160#ifdef __mips_n64
1161	if (ptepindex >= NUPDE) {
1162		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1163	} else {
1164		pd_entry_t *pdep, *pde;
1165		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1166		int pdeindex = ptepindex & (NPDEPG - 1);
1167		vm_page_t pg;
1168
1169		pdep = &pmap->pm_segtab[segindex];
1170		if (*pdep == NULL) {
1171			/* recurse for allocating page dir */
1172			if (_pmap_allocpte(pmap, NUPDE + segindex,
1173			    flags) == NULL) {
1174				/* alloc failed, release current */
1175				--m->wire_count;
1176				atomic_subtract_int(&cnt.v_wire_count, 1);
1177				vm_page_free_zero(m);
1178				return (NULL);
1179			}
1180		} else {
1181			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1182			pg->wire_count++;
1183		}
1184		/* Next level entry */
1185		pde = (pd_entry_t *)*pdep;
1186		pde[pdeindex] = (pd_entry_t)pageva;
1187		pmap->pm_ptphint = m;
1188	}
1189#else
1190	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1191#endif
1192	pmap->pm_stats.resident_count++;
1193
1194	/*
1195	 * Set the page table hint
1196	 */
1197	pmap->pm_ptphint = m;
1198	return (m);
1199}
1200
1201static vm_page_t
1202pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1203{
1204	unsigned ptepindex;
1205	pd_entry_t *pde;
1206	vm_page_t m;
1207
1208	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1209	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1210	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1211
1212	/*
1213	 * Calculate pagetable page index
1214	 */
1215	ptepindex = pmap_pde_pindex(va);
1216retry:
1217	/*
1218	 * Get the page directory entry
1219	 */
1220	pde = pmap_pde(pmap, va);
1221
1222	/*
1223	 * If the page table page is mapped, we just increment the hold
1224	 * count, and activate it.
1225	 */
1226	if (pde != NULL && *pde != NULL) {
1227		/*
1228		 * In order to get the page table page, try the hint first.
1229		 */
1230		if (pmap->pm_ptphint &&
1231		    (pmap->pm_ptphint->pindex == ptepindex)) {
1232			m = pmap->pm_ptphint;
1233		} else {
1234			m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1235			pmap->pm_ptphint = m;
1236		}
1237		m->wire_count++;
1238	} else {
1239		/*
1240		 * Here if the pte page isn't mapped, or if it has been
1241		 * deallocated.
1242		 */
1243		m = _pmap_allocpte(pmap, ptepindex, flags);
1244		if (m == NULL && (flags & M_WAITOK))
1245			goto retry;
1246	}
1247	return (m);
1248}
1249
1250
1251/***************************************************
1252* Pmap allocation/deallocation routines.
1253 ***************************************************/
1254/*
1255 *  Revision 1.397
1256 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1257 *    called only the page directory page(s) can be left in the pmap pte
1258 *    object, since all page table pages will have been freed by
1259 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1260 *    reference to the pmap and the page directory is wired, so the page(s)
1261 *    can never be busy.  So all there is to do is clear the magic mappings
1262 *    from the page directory and free the page(s).
1263 */
1264
1265
1266/*
1267 * Release any resources held by the given physical map.
1268 * Called when a pmap initialized by pmap_pinit is being released.
1269 * Should only be called if the map contains no valid mappings.
1270 */
1271void
1272pmap_release(pmap_t pmap)
1273{
1274	vm_offset_t ptdva;
1275	vm_page_t ptdpg;
1276
1277	KASSERT(pmap->pm_stats.resident_count == 0,
1278	    ("pmap_release: pmap resident count %ld != 0",
1279	    pmap->pm_stats.resident_count));
1280
1281	ptdva = (vm_offset_t)pmap->pm_segtab;
1282	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1283
1284	ptdpg->wire_count--;
1285	atomic_subtract_int(&cnt.v_wire_count, 1);
1286	vm_page_free_zero(ptdpg);
1287	PMAP_LOCK_DESTROY(pmap);
1288}
1289
1290/*
1291 * grow the number of kernel page table entries, if needed
1292 */
1293void
1294pmap_growkernel(vm_offset_t addr)
1295{
1296	vm_page_t nkpg;
1297	pd_entry_t *pde, *pdpe;
1298	pt_entry_t *pte;
1299	int i;
1300
1301	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1302	addr = roundup2(addr, NBSEG);
1303	if (addr - 1 >= kernel_map->max_offset)
1304		addr = kernel_map->max_offset;
1305	while (kernel_vm_end < addr) {
1306		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1307#ifdef __mips_n64
1308		if (*pdpe == 0) {
1309			/* new intermediate page table entry */
1310			nkpg = pmap_alloc_pte_page(nkpt, VM_ALLOC_INTERRUPT);
1311			if (nkpg == NULL)
1312				panic("pmap_growkernel: no memory to grow kernel");
1313			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1314			continue; /* try again */
1315		}
1316#endif
1317		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1318		if (*pde != 0) {
1319			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1320			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1321				kernel_vm_end = kernel_map->max_offset;
1322				break;
1323			}
1324			continue;
1325		}
1326
1327		/*
1328		 * This index is bogus, but out of the way
1329		 */
1330		nkpg = pmap_alloc_pte_page(nkpt, VM_ALLOC_INTERRUPT);
1331		if (!nkpg)
1332			panic("pmap_growkernel: no memory to grow kernel");
1333		nkpt++;
1334		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1335
1336		/*
1337		 * The R[4-7]?00 stores only one copy of the Global bit in
1338		 * the translation lookaside buffer for each 2 page entry.
1339		 * Thus invalid entrys must have the Global bit set so when
1340		 * Entry LO and Entry HI G bits are anded together they will
1341		 * produce a global bit to store in the tlb.
1342		 */
1343		pte = (pt_entry_t *)*pde;
1344		for (i = 0; i < NPTEPG; i++)
1345			pte[i] = PTE_G;
1346
1347		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1348		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1349			kernel_vm_end = kernel_map->max_offset;
1350			break;
1351		}
1352	}
1353}
1354
1355/***************************************************
1356* page management routines.
1357 ***************************************************/
1358
1359/*
1360 * free the pv_entry back to the free list
1361 */
1362static PMAP_INLINE void
1363free_pv_entry(pv_entry_t pv)
1364{
1365
1366	pv_entry_count--;
1367	uma_zfree(pvzone, pv);
1368}
1369
1370/*
1371 * get a new pv_entry, allocating a block from the system
1372 * when needed.
1373 * the memory allocation is performed bypassing the malloc code
1374 * because of the possibility of allocations at interrupt time.
1375 */
1376static pv_entry_t
1377get_pv_entry(pmap_t locked_pmap)
1378{
1379	static const struct timeval printinterval = { 60, 0 };
1380	static struct timeval lastprint;
1381	struct vpgqueues *vpq;
1382	pt_entry_t *pte, oldpte;
1383	pmap_t pmap;
1384	pv_entry_t allocated_pv, next_pv, pv;
1385	vm_offset_t va;
1386	vm_page_t m;
1387
1388	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1389	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1390	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1391	if (allocated_pv != NULL) {
1392		pv_entry_count++;
1393		if (pv_entry_count > pv_entry_high_water)
1394			pagedaemon_wakeup();
1395		else
1396			return (allocated_pv);
1397	}
1398	/*
1399	 * Reclaim pv entries: At first, destroy mappings to inactive
1400	 * pages.  After that, if a pv entry is still needed, destroy
1401	 * mappings to active pages.
1402	 */
1403	if (ratecheck(&lastprint, &printinterval))
1404		printf("Approaching the limit on PV entries, "
1405		    "increase the vm.pmap.shpgperproc tunable.\n");
1406	vpq = &vm_page_queues[PQ_INACTIVE];
1407retry:
1408	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1409		if (m->hold_count || m->busy)
1410			continue;
1411		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1412			va = pv->pv_va;
1413			pmap = pv->pv_pmap;
1414			/* Avoid deadlock and lock recursion. */
1415			if (pmap > locked_pmap)
1416				PMAP_LOCK(pmap);
1417			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1418				continue;
1419			pmap->pm_stats.resident_count--;
1420			pte = pmap_pte(pmap, va);
1421			KASSERT(pte != NULL, ("pte"));
1422			oldpte = *pte;
1423			if (is_kernel_pmap(pmap))
1424				*pte = PTE_G;
1425			else
1426				*pte = 0;
1427			KASSERT(!pte_test(&oldpte, PTE_W),
1428			    ("wired pte for unwired page"));
1429			if (m->md.pv_flags & PV_TABLE_REF)
1430				vm_page_flag_set(m, PG_REFERENCED);
1431			if (pte_test(&oldpte, PTE_D))
1432				vm_page_dirty(m);
1433			pmap_invalidate_page(pmap, va);
1434			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1435			m->md.pv_list_count--;
1436			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1437			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1438			if (pmap != locked_pmap)
1439				PMAP_UNLOCK(pmap);
1440			if (allocated_pv == NULL)
1441				allocated_pv = pv;
1442			else
1443				free_pv_entry(pv);
1444		}
1445		if (TAILQ_EMPTY(&m->md.pv_list)) {
1446			vm_page_flag_clear(m, PG_WRITEABLE);
1447			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1448		}
1449	}
1450	if (allocated_pv == NULL) {
1451		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1452			vpq = &vm_page_queues[PQ_ACTIVE];
1453			goto retry;
1454		}
1455		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1456	}
1457	return (allocated_pv);
1458}
1459
1460/*
1461 *  Revision 1.370
1462 *
1463 *  Move pmap_collect() out of the machine-dependent code, rename it
1464 *  to reflect its new location, and add page queue and flag locking.
1465 *
1466 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1467 *  of pmap_collect() in terms of machine-independent interfaces;
1468 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1469 *
1470 *  MIPS implementation was identical to alpha [Junos 8.2]
1471 */
1472
1473/*
1474 * If it is the first entry on the list, it is actually
1475 * in the header and we must copy the following entry up
1476 * to the header.  Otherwise we must search the list for
1477 * the entry.  In either case we free the now unused entry.
1478 */
1479
1480static pv_entry_t
1481pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1482{
1483	pv_entry_t pv;
1484
1485	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1486	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1487	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1488		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1489			if (pmap == pv->pv_pmap && va == pv->pv_va)
1490				break;
1491		}
1492	} else {
1493		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1494			if (va == pv->pv_va)
1495				break;
1496		}
1497	}
1498	if (pv != NULL) {
1499		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1500		pvh->pv_list_count--;
1501		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1502	}
1503	return (pv);
1504}
1505
1506static void
1507pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1508{
1509	pv_entry_t pv;
1510
1511	pv = pmap_pvh_remove(pvh, pmap, va);
1512	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1513	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1514	     (u_long)va));
1515	free_pv_entry(pv);
1516}
1517
1518static void
1519pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1520{
1521
1522	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1523	pmap_pvh_free(&m->md, pmap, va);
1524	if (TAILQ_EMPTY(&m->md.pv_list))
1525		vm_page_flag_clear(m, PG_WRITEABLE);
1526}
1527
1528/*
1529 * Conditionally create a pv entry.
1530 */
1531static boolean_t
1532pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1533    vm_page_t m)
1534{
1535	pv_entry_t pv;
1536
1537	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1538	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1539	if (pv_entry_count < pv_entry_high_water &&
1540	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1541		pv_entry_count++;
1542		pv->pv_va = va;
1543		pv->pv_pmap = pmap;
1544		pv->pv_ptem = mpte;
1545		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1546		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1547		m->md.pv_list_count++;
1548		return (TRUE);
1549	} else
1550		return (FALSE);
1551}
1552
1553/*
1554 * pmap_remove_pte: do the things to unmap a page in a process
1555 */
1556static int
1557pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1558{
1559	pt_entry_t oldpte;
1560	vm_page_t m;
1561	vm_offset_t pa;
1562
1563	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1564	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1565
1566	oldpte = *ptq;
1567	if (is_kernel_pmap(pmap))
1568		*ptq = PTE_G;
1569	else
1570		*ptq = 0;
1571
1572	if (pte_test(&oldpte, PTE_W))
1573		pmap->pm_stats.wired_count -= 1;
1574
1575	pmap->pm_stats.resident_count -= 1;
1576	pa = TLBLO_PTE_TO_PA(oldpte);
1577
1578	if (page_is_managed(pa)) {
1579		m = PHYS_TO_VM_PAGE(pa);
1580		if (pte_test(&oldpte, PTE_D)) {
1581			KASSERT(!pte_test(&oldpte, PTE_RO),
1582			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1583			    __func__, (void *)va, oldpte));
1584			vm_page_dirty(m);
1585		}
1586		if (m->md.pv_flags & PV_TABLE_REF)
1587			vm_page_flag_set(m, PG_REFERENCED);
1588		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1589
1590		pmap_remove_entry(pmap, m, va);
1591	}
1592	return (pmap_unuse_pt(pmap, va, NULL));
1593}
1594
1595/*
1596 * Remove a single page from a process address space
1597 */
1598static void
1599pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1600{
1601	pt_entry_t *ptq;
1602
1603	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1604	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1605	ptq = pmap_pte(pmap, va);
1606
1607	/*
1608	 * if there is no pte for this address, just skip it!!!
1609	 */
1610	if (!ptq || !pte_test(ptq, PTE_V)) {
1611		return;
1612	}
1613
1614	/*
1615	 * Write back all caches from the page being destroyed
1616	 */
1617	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1618
1619	/*
1620	 * get a local va for mappings for this pmap.
1621	 */
1622	(void)pmap_remove_pte(pmap, ptq, va);
1623	pmap_invalidate_page(pmap, va);
1624
1625	return;
1626}
1627
1628/*
1629 *	Remove the given range of addresses from the specified map.
1630 *
1631 *	It is assumed that the start and end are properly
1632 *	rounded to the page size.
1633 */
1634void
1635pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1636{
1637	vm_offset_t va_next;
1638	pd_entry_t *pde, *pdpe;
1639	pt_entry_t *pte;
1640
1641	if (pmap == NULL)
1642		return;
1643
1644	if (pmap->pm_stats.resident_count == 0)
1645		return;
1646
1647	vm_page_lock_queues();
1648	PMAP_LOCK(pmap);
1649
1650	/*
1651	 * special handling of removing one page.  a very common operation
1652	 * and easy to short circuit some code.
1653	 */
1654	if ((sva + PAGE_SIZE) == eva) {
1655		pmap_remove_page(pmap, sva);
1656		goto out;
1657	}
1658	for (; sva < eva; sva = va_next) {
1659		pdpe = pmap_segmap(pmap, sva);
1660#ifdef __mips_n64
1661		if (*pdpe == 0) {
1662			va_next = (sva + NBSEG) & ~SEGMASK;
1663			if (va_next < sva)
1664				va_next = eva;
1665			continue;
1666		}
1667#endif
1668		va_next = (sva + NBPDR) & ~PDRMASK;
1669		if (va_next < sva)
1670			va_next = eva;
1671
1672		pde = pmap_pdpe_to_pde(pdpe, sva);
1673		if (*pde == 0)
1674			continue;
1675		if (va_next > eva)
1676			va_next = eva;
1677		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next;
1678		    pte++, sva += PAGE_SIZE) {
1679			pmap_remove_page(pmap, sva);
1680		}
1681	}
1682out:
1683	vm_page_unlock_queues();
1684	PMAP_UNLOCK(pmap);
1685}
1686
1687/*
1688 *	Routine:	pmap_remove_all
1689 *	Function:
1690 *		Removes this physical page from
1691 *		all physical maps in which it resides.
1692 *		Reflects back modify bits to the pager.
1693 *
1694 *	Notes:
1695 *		Original versions of this routine were very
1696 *		inefficient because they iteratively called
1697 *		pmap_remove (slow...)
1698 */
1699
1700void
1701pmap_remove_all(vm_page_t m)
1702{
1703	pv_entry_t pv;
1704	pt_entry_t *pte, tpte;
1705
1706	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1707	    ("pmap_remove_all: page %p is fictitious", m));
1708	vm_page_lock_queues();
1709
1710	if (m->md.pv_flags & PV_TABLE_REF)
1711		vm_page_flag_set(m, PG_REFERENCED);
1712
1713	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1714		PMAP_LOCK(pv->pv_pmap);
1715
1716		/*
1717		 * If it's last mapping writeback all caches from
1718		 * the page being destroyed
1719	 	 */
1720		if (m->md.pv_list_count == 1)
1721			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1722
1723		pv->pv_pmap->pm_stats.resident_count--;
1724
1725		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1726
1727		tpte = *pte;
1728		if (is_kernel_pmap(pv->pv_pmap))
1729			*pte = PTE_G;
1730		else
1731			*pte = 0;
1732
1733		if (pte_test(&tpte, PTE_W))
1734			pv->pv_pmap->pm_stats.wired_count--;
1735
1736		/*
1737		 * Update the vm_page_t clean and reference bits.
1738		 */
1739		if (pte_test(&tpte, PTE_D)) {
1740			KASSERT(!pte_test(&tpte, PTE_RO),
1741			    ("%s: modified page not writable: va: %p, pte: 0x%x",
1742			    __func__, (void *)pv->pv_va, tpte));
1743			vm_page_dirty(m);
1744		}
1745		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1746
1747		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1748		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1749		m->md.pv_list_count--;
1750		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1751		PMAP_UNLOCK(pv->pv_pmap);
1752		free_pv_entry(pv);
1753	}
1754
1755	vm_page_flag_clear(m, PG_WRITEABLE);
1756	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1757	vm_page_unlock_queues();
1758}
1759
1760/*
1761 *	Set the physical protection on the
1762 *	specified range of this map as requested.
1763 */
1764void
1765pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1766{
1767	pt_entry_t *pte;
1768	pd_entry_t *pde, *pdpe;
1769	vm_offset_t va_next;
1770
1771	if (pmap == NULL)
1772		return;
1773
1774	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1775		pmap_remove(pmap, sva, eva);
1776		return;
1777	}
1778	if (prot & VM_PROT_WRITE)
1779		return;
1780
1781	vm_page_lock_queues();
1782	PMAP_LOCK(pmap);
1783	for (; sva < eva; sva = va_next) {
1784		pt_entry_t pbits;
1785		vm_page_t m;
1786		vm_paddr_t pa;
1787
1788		pdpe = pmap_segmap(pmap, sva);
1789#ifdef __mips_n64
1790		if (*pdpe == 0) {
1791			va_next = (sva + NBSEG) & ~SEGMASK;
1792			if (va_next < sva)
1793				va_next = eva;
1794			continue;
1795		}
1796#endif
1797		va_next = (sva + NBPDR) & ~PDRMASK;
1798		if (va_next < sva)
1799			va_next = eva;
1800
1801		pde = pmap_pdpe_to_pde(pdpe, sva);
1802		if (pde == NULL || *pde == NULL)
1803			continue;
1804		if (va_next > eva)
1805			va_next = eva;
1806
1807		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1808		     sva += PAGE_SIZE) {
1809
1810			/* Skip invalid PTEs */
1811			if (!pte_test(pte, PTE_V))
1812				continue;
1813			pbits = *pte;
1814			pa = TLBLO_PTE_TO_PA(pbits);
1815			if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1816				m = PHYS_TO_VM_PAGE(pa);
1817				vm_page_dirty(m);
1818				m->md.pv_flags &= ~PV_TABLE_MOD;
1819			}
1820			pte_clear(&pbits, PTE_D);
1821			pte_set(&pbits, PTE_RO);
1822
1823			if (pbits != *pte) {
1824				*pte = pbits;
1825				pmap_update_page(pmap, sva, pbits);
1826			}
1827		}
1828	}
1829	vm_page_unlock_queues();
1830	PMAP_UNLOCK(pmap);
1831}
1832
1833/*
1834 *	Insert the given physical page (p) at
1835 *	the specified virtual address (v) in the
1836 *	target physical map with the protection requested.
1837 *
1838 *	If specified, the page will be wired down, meaning
1839 *	that the related pte can not be reclaimed.
1840 *
1841 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1842 *	or lose information.  That is, this routine must actually
1843 *	insert this page into the given map NOW.
1844 */
1845void
1846pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1847    vm_prot_t prot, boolean_t wired)
1848{
1849	vm_offset_t pa, opa;
1850	pt_entry_t *pte;
1851	pt_entry_t origpte, newpte;
1852	pv_entry_t pv;
1853	vm_page_t mpte, om;
1854	int rw = 0;
1855
1856	if (pmap == NULL)
1857		return;
1858
1859	va &= ~PAGE_MASK;
1860 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1861	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1862	    (m->oflags & VPO_BUSY) != 0,
1863	    ("pmap_enter: page %p is not busy", m));
1864
1865	mpte = NULL;
1866
1867	vm_page_lock_queues();
1868	PMAP_LOCK(pmap);
1869
1870	/*
1871	 * In the case that a page table page is not resident, we are
1872	 * creating it here.
1873	 */
1874	if (va < VM_MAXUSER_ADDRESS) {
1875		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1876	}
1877	pte = pmap_pte(pmap, va);
1878
1879	/*
1880	 * Page Directory table entry not valid, we need a new PT page
1881	 */
1882	if (pte == NULL) {
1883		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
1884		    (void *)pmap->pm_segtab, (void *)va);
1885	}
1886	pa = VM_PAGE_TO_PHYS(m);
1887	om = NULL;
1888	origpte = *pte;
1889	opa = TLBLO_PTE_TO_PA(origpte);
1890
1891	/*
1892	 * Mapping has not changed, must be protection or wiring change.
1893	 */
1894	if (pte_test(&origpte, PTE_V) && opa == pa) {
1895		/*
1896		 * Wiring change, just update stats. We don't worry about
1897		 * wiring PT pages as they remain resident as long as there
1898		 * are valid mappings in them. Hence, if a user page is
1899		 * wired, the PT page will be also.
1900		 */
1901		if (wired && !pte_test(&origpte, PTE_W))
1902			pmap->pm_stats.wired_count++;
1903		else if (!wired && pte_test(&origpte, PTE_W))
1904			pmap->pm_stats.wired_count--;
1905
1906		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
1907		    ("%s: modified page not writable: va: %p, pte: 0x%x",
1908		    __func__, (void *)va, origpte));
1909
1910		/*
1911		 * Remove extra pte reference
1912		 */
1913		if (mpte)
1914			mpte->wire_count--;
1915
1916		if (page_is_managed(opa)) {
1917			om = m;
1918		}
1919		goto validate;
1920	}
1921
1922	pv = NULL;
1923
1924	/*
1925	 * Mapping has changed, invalidate old range and fall through to
1926	 * handle validating new mapping.
1927	 */
1928	if (opa) {
1929		if (pte_test(&origpte, PTE_W))
1930			pmap->pm_stats.wired_count--;
1931
1932		if (page_is_managed(opa)) {
1933			om = PHYS_TO_VM_PAGE(opa);
1934			pv = pmap_pvh_remove(&om->md, pmap, va);
1935		}
1936		if (mpte != NULL) {
1937			mpte->wire_count--;
1938			KASSERT(mpte->wire_count > 0,
1939			    ("pmap_enter: missing reference to page table page,"
1940			    " va: %p", (void *)va));
1941		}
1942	} else
1943		pmap->pm_stats.resident_count++;
1944
1945	/*
1946	 * Enter on the PV list if part of our managed memory. Note that we
1947	 * raise IPL while manipulating pv_table since pmap_enter can be
1948	 * called at interrupt time.
1949	 */
1950	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1951		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1952		    ("pmap_enter: managed mapping within the clean submap"));
1953		if (pv == NULL)
1954			pv = get_pv_entry(pmap);
1955		pv->pv_va = va;
1956		pv->pv_pmap = pmap;
1957		pv->pv_ptem = mpte;
1958		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1959		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1960		m->md.pv_list_count++;
1961	} else if (pv != NULL)
1962		free_pv_entry(pv);
1963
1964	/*
1965	 * Increment counters
1966	 */
1967	if (wired)
1968		pmap->pm_stats.wired_count++;
1969
1970validate:
1971	if ((access & VM_PROT_WRITE) != 0)
1972		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1973	rw = init_pte_prot(va, m, prot);
1974
1975#ifdef PMAP_DEBUG
1976	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1977#endif
1978	/*
1979	 * Now validate mapping with desired protection/wiring.
1980	 */
1981	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1982
1983	if (is_cacheable_mem(pa))
1984		newpte |= PTE_C_CACHE;
1985	else
1986		newpte |= PTE_C_UNCACHED;
1987
1988	if (wired)
1989		newpte |= PTE_W;
1990
1991	if (is_kernel_pmap(pmap))
1992	         newpte |= PTE_G;
1993
1994	/*
1995	 * if the mapping or permission bits are different, we need to
1996	 * update the pte.
1997	 */
1998	if (origpte != newpte) {
1999		if (pte_test(&origpte, PTE_V)) {
2000			*pte = newpte;
2001			if (page_is_managed(opa) && (opa != pa)) {
2002				if (om->md.pv_flags & PV_TABLE_REF)
2003					vm_page_flag_set(om, PG_REFERENCED);
2004				om->md.pv_flags &=
2005				    ~(PV_TABLE_REF | PV_TABLE_MOD);
2006			}
2007			if (pte_test(&origpte, PTE_D)) {
2008				KASSERT(!pte_test(&origpte, PTE_RO),
2009				    ("pmap_enter: modified page not writable:"
2010				    " va: %p, pte: 0x%x", (void *)va, origpte));
2011				if (page_is_managed(opa))
2012					vm_page_dirty(om);
2013			}
2014			if (page_is_managed(opa) &&
2015			    TAILQ_EMPTY(&om->md.pv_list))
2016				vm_page_flag_clear(om, PG_WRITEABLE);
2017		} else {
2018			*pte = newpte;
2019		}
2020	}
2021	pmap_update_page(pmap, va, newpte);
2022
2023	/*
2024	 * Sync I & D caches for executable pages.  Do this only if the the
2025	 * target pmap belongs to the current process.  Otherwise, an
2026	 * unresolvable TLB miss may occur.
2027	 */
2028	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2029	    (prot & VM_PROT_EXECUTE)) {
2030		mips_icache_sync_range(va, PAGE_SIZE);
2031		mips_dcache_wbinv_range(va, PAGE_SIZE);
2032	}
2033	vm_page_unlock_queues();
2034	PMAP_UNLOCK(pmap);
2035}
2036
2037/*
2038 * this code makes some *MAJOR* assumptions:
2039 * 1. Current pmap & pmap exists.
2040 * 2. Not wired.
2041 * 3. Read access.
2042 * 4. No page table pages.
2043 * but is *MUCH* faster than pmap_enter...
2044 */
2045
2046void
2047pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2048{
2049
2050	vm_page_lock_queues();
2051	PMAP_LOCK(pmap);
2052	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2053	vm_page_unlock_queues();
2054	PMAP_UNLOCK(pmap);
2055}
2056
2057static vm_page_t
2058pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2059    vm_prot_t prot, vm_page_t mpte)
2060{
2061	pt_entry_t *pte;
2062	vm_offset_t pa;
2063
2064	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2065	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2066	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2067	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2068	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2069
2070	/*
2071	 * In the case that a page table page is not resident, we are
2072	 * creating it here.
2073	 */
2074	if (va < VM_MAXUSER_ADDRESS) {
2075		pd_entry_t *pde;
2076		unsigned ptepindex;
2077
2078		/*
2079		 * Calculate pagetable page index
2080		 */
2081		ptepindex = pmap_pde_pindex(va);
2082		if (mpte && (mpte->pindex == ptepindex)) {
2083			mpte->wire_count++;
2084		} else {
2085			/*
2086			 * Get the page directory entry
2087			 */
2088			pde = pmap_pde(pmap, va);
2089
2090			/*
2091			 * If the page table page is mapped, we just
2092			 * increment the hold count, and activate it.
2093			 */
2094			if (pde && *pde != 0) {
2095				if (pmap->pm_ptphint &&
2096				    (pmap->pm_ptphint->pindex == ptepindex)) {
2097					mpte = pmap->pm_ptphint;
2098				} else {
2099					mpte = PHYS_TO_VM_PAGE(
2100						MIPS_DIRECT_TO_PHYS(*pde));
2101					pmap->pm_ptphint = mpte;
2102				}
2103				mpte->wire_count++;
2104			} else {
2105				mpte = _pmap_allocpte(pmap, ptepindex,
2106				    M_NOWAIT);
2107				if (mpte == NULL)
2108					return (mpte);
2109			}
2110		}
2111	} else {
2112		mpte = NULL;
2113	}
2114
2115	pte = pmap_pte(pmap, va);
2116	if (pte_test(pte, PTE_V)) {
2117		if (mpte != NULL) {
2118			mpte->wire_count--;
2119			mpte = NULL;
2120		}
2121		return (mpte);
2122	}
2123
2124	/*
2125	 * Enter on the PV list if part of our managed memory.
2126	 */
2127	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2128	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2129		if (mpte != NULL) {
2130			pmap_unwire_pte_hold(pmap, va, mpte);
2131			mpte = NULL;
2132		}
2133		return (mpte);
2134	}
2135
2136	/*
2137	 * Increment counters
2138	 */
2139	pmap->pm_stats.resident_count++;
2140
2141	pa = VM_PAGE_TO_PHYS(m);
2142
2143	/*
2144	 * Now validate mapping with RO protection
2145	 */
2146	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2147
2148	if (is_cacheable_mem(pa))
2149		*pte |= PTE_C_CACHE;
2150	else
2151		*pte |= PTE_C_UNCACHED;
2152
2153	if (is_kernel_pmap(pmap))
2154		*pte |= PTE_G;
2155	else {
2156		*pte |= PTE_RO;
2157		/*
2158		 * Sync I & D caches.  Do this only if the the target pmap
2159		 * belongs to the current process.  Otherwise, an
2160		 * unresolvable TLB miss may occur. */
2161		if (pmap == &curproc->p_vmspace->vm_pmap) {
2162			va &= ~PAGE_MASK;
2163			mips_icache_sync_range(va, PAGE_SIZE);
2164			mips_dcache_wbinv_range(va, PAGE_SIZE);
2165		}
2166	}
2167	return (mpte);
2168}
2169
2170/*
2171 * Make a temporary mapping for a physical address.  This is only intended
2172 * to be used for panic dumps.
2173 *
2174 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2175 */
2176void *
2177pmap_kenter_temporary(vm_paddr_t pa, int i)
2178{
2179	vm_offset_t va;
2180
2181	if (i != 0)
2182		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2183		    __func__);
2184
2185	if (MIPS_DIRECT_MAPPABLE(pa)) {
2186		va = MIPS_PHYS_TO_DIRECT(pa);
2187	} else {
2188#ifndef __mips_n64    /* XXX : to be converted to new style */
2189		int cpu;
2190		register_t intr;
2191		struct local_sysmaps *sysm;
2192		pt_entry_t *pte, npte;
2193
2194		/* If this is used other than for dumps, we may need to leave
2195		 * interrupts disasbled on return. If crash dumps don't work when
2196		 * we get to this point, we might want to consider this (leaving things
2197		 * disabled as a starting point ;-)
2198	 	 */
2199		intr = intr_disable();
2200		cpu = PCPU_GET(cpuid);
2201		sysm = &sysmap_lmem[cpu];
2202		/* Since this is for the debugger, no locks or any other fun */
2203		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2204		pte = pmap_pte(kernel_pmap, sysm->base);
2205		*pte = npte;
2206		sysm->valid1 = 1;
2207		pmap_update_page(kernel_pmap, sysm->base, npte);
2208		va = sysm->base;
2209		intr_restore(intr);
2210#endif
2211	}
2212	return ((void *)va);
2213}
2214
2215void
2216pmap_kenter_temporary_free(vm_paddr_t pa)
2217{
2218#ifndef __mips_n64    /* XXX : to be converted to new style */
2219	int cpu;
2220	register_t intr;
2221	struct local_sysmaps *sysm;
2222#endif
2223
2224	if (MIPS_DIRECT_MAPPABLE(pa)) {
2225		/* nothing to do for this case */
2226		return;
2227	}
2228#ifndef __mips_n64    /* XXX : to be converted to new style */
2229	cpu = PCPU_GET(cpuid);
2230	sysm = &sysmap_lmem[cpu];
2231	if (sysm->valid1) {
2232		pt_entry_t *pte;
2233
2234		intr = intr_disable();
2235		pte = pmap_pte(kernel_pmap, sysm->base);
2236		*pte = PTE_G;
2237		pmap_invalidate_page(kernel_pmap, sysm->base);
2238		intr_restore(intr);
2239		sysm->valid1 = 0;
2240	}
2241#endif
2242}
2243
2244/*
2245 * Moved the code to Machine Independent
2246 *	 vm_map_pmap_enter()
2247 */
2248
2249/*
2250 * Maps a sequence of resident pages belonging to the same object.
2251 * The sequence begins with the given page m_start.  This page is
2252 * mapped at the given virtual address start.  Each subsequent page is
2253 * mapped at a virtual address that is offset from start by the same
2254 * amount as the page is offset from m_start within the object.  The
2255 * last page in the sequence is the page with the largest offset from
2256 * m_start that can be mapped at a virtual address less than the given
2257 * virtual address end.  Not every virtual page between start and end
2258 * is mapped; only those for which a resident page exists with the
2259 * corresponding offset from m_start are mapped.
2260 */
2261void
2262pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2263    vm_page_t m_start, vm_prot_t prot)
2264{
2265	vm_page_t m, mpte;
2266	vm_pindex_t diff, psize;
2267
2268	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2269	psize = atop(end - start);
2270	mpte = NULL;
2271	m = m_start;
2272	vm_page_lock_queues();
2273	PMAP_LOCK(pmap);
2274	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2275		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2276		    prot, mpte);
2277		m = TAILQ_NEXT(m, listq);
2278	}
2279	vm_page_unlock_queues();
2280 	PMAP_UNLOCK(pmap);
2281}
2282
2283/*
2284 * pmap_object_init_pt preloads the ptes for a given object
2285 * into the specified pmap.  This eliminates the blast of soft
2286 * faults on process startup and immediately after an mmap.
2287 */
2288void
2289pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2290    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2291{
2292	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2293	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2294	    ("pmap_object_init_pt: non-device object"));
2295}
2296
2297/*
2298 *	Routine:	pmap_change_wiring
2299 *	Function:	Change the wiring attribute for a map/virtual-address
2300 *			pair.
2301 *	In/out conditions:
2302 *			The mapping must already exist in the pmap.
2303 */
2304void
2305pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2306{
2307	pt_entry_t *pte;
2308
2309	if (pmap == NULL)
2310		return;
2311
2312	PMAP_LOCK(pmap);
2313	pte = pmap_pte(pmap, va);
2314
2315	if (wired && !pte_test(pte, PTE_W))
2316		pmap->pm_stats.wired_count++;
2317	else if (!wired && pte_test(pte, PTE_W))
2318		pmap->pm_stats.wired_count--;
2319
2320	/*
2321	 * Wiring is not a hardware characteristic so there is no need to
2322	 * invalidate TLB.
2323	 */
2324	if (wired)
2325		pte_set(pte, PTE_W);
2326	else
2327		pte_clear(pte, PTE_W);
2328	PMAP_UNLOCK(pmap);
2329}
2330
2331/*
2332 *	Copy the range specified by src_addr/len
2333 *	from the source map to the range dst_addr/len
2334 *	in the destination map.
2335 *
2336 *	This routine is only advisory and need not do anything.
2337 */
2338
2339void
2340pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2341    vm_size_t len, vm_offset_t src_addr)
2342{
2343}
2344
2345/*
2346 *	pmap_zero_page zeros the specified hardware page by mapping
2347 *	the page into KVM and using bzero to clear its contents.
2348 *
2349 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2350 */
2351void
2352pmap_zero_page(vm_page_t m)
2353{
2354	vm_offset_t va;
2355	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2356
2357	if (MIPS_DIRECT_MAPPABLE(phys)) {
2358		va = MIPS_PHYS_TO_DIRECT(phys);
2359		bzero((caddr_t)va, PAGE_SIZE);
2360		mips_dcache_wbinv_range(va, PAGE_SIZE);
2361	} else {
2362		va = pmap_lmem_map1(phys);
2363		bzero((caddr_t)va, PAGE_SIZE);
2364		mips_dcache_wbinv_range(va, PAGE_SIZE);
2365		pmap_lmem_unmap();
2366	}
2367}
2368
2369/*
2370 *	pmap_zero_page_area zeros the specified hardware page by mapping
2371 *	the page into KVM and using bzero to clear its contents.
2372 *
2373 *	off and size may not cover an area beyond a single hardware page.
2374 */
2375void
2376pmap_zero_page_area(vm_page_t m, int off, int size)
2377{
2378	vm_offset_t va;
2379	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2380
2381	if (MIPS_DIRECT_MAPPABLE(phys)) {
2382		va = MIPS_PHYS_TO_DIRECT(phys);
2383		bzero((char *)(caddr_t)va + off, size);
2384		mips_dcache_wbinv_range(va + off, size);
2385	} else {
2386		va = pmap_lmem_map1(phys);
2387		bzero((char *)va + off, size);
2388		mips_dcache_wbinv_range(va + off, size);
2389		pmap_lmem_unmap();
2390	}
2391}
2392
2393void
2394pmap_zero_page_idle(vm_page_t m)
2395{
2396	vm_offset_t va;
2397	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2398
2399	if (MIPS_DIRECT_MAPPABLE(phys)) {
2400		va = MIPS_PHYS_TO_DIRECT(phys);
2401		bzero((caddr_t)va, PAGE_SIZE);
2402		mips_dcache_wbinv_range(va, PAGE_SIZE);
2403	} else {
2404		va = pmap_lmem_map1(phys);
2405		bzero((caddr_t)va, PAGE_SIZE);
2406		mips_dcache_wbinv_range(va, PAGE_SIZE);
2407		pmap_lmem_unmap();
2408	}
2409}
2410
2411/*
2412 *	pmap_copy_page copies the specified (machine independent)
2413 *	page by mapping the page into virtual memory and using
2414 *	bcopy to copy the page, one machine dependent page at a
2415 *	time.
2416 *
2417 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2418 */
2419void
2420pmap_copy_page(vm_page_t src, vm_page_t dst)
2421{
2422	vm_offset_t va_src, va_dst;
2423	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2424	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2425
2426	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2427		/* easy case, all can be accessed via KSEG0 */
2428		/*
2429		 * Flush all caches for VA that are mapped to this page
2430		 * to make sure that data in SDRAM is up to date
2431		 */
2432		pmap_flush_pvcache(src);
2433		mips_dcache_wbinv_range_index(
2434		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2435		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2436		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2437		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2438		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2439	} else {
2440		va_src = pmap_lmem_map2(phys_src, phys_dst);
2441		va_dst = va_src + PAGE_SIZE;
2442		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2443		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2444		pmap_lmem_unmap();
2445	}
2446}
2447
2448/*
2449 * Returns true if the pmap's pv is one of the first
2450 * 16 pvs linked to from this page.  This count may
2451 * be changed upwards or downwards in the future; it
2452 * is only necessary that true be returned for a small
2453 * subset of pmaps for proper page aging.
2454 */
2455boolean_t
2456pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2457{
2458	pv_entry_t pv;
2459	int loops = 0;
2460	boolean_t rv;
2461
2462	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2463	    ("pmap_page_exists_quick: page %p is not managed", m));
2464	rv = FALSE;
2465	vm_page_lock_queues();
2466	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2467		if (pv->pv_pmap == pmap) {
2468			rv = TRUE;
2469			break;
2470		}
2471		loops++;
2472		if (loops >= 16)
2473			break;
2474	}
2475	vm_page_unlock_queues();
2476	return (rv);
2477}
2478
2479/*
2480 * Remove all pages from specified address space
2481 * this aids process exit speeds.  Also, this code
2482 * is special cased for current process only, but
2483 * can have the more generic (and slightly slower)
2484 * mode enabled.  This is much faster than pmap_remove
2485 * in the case of running down an entire address space.
2486 */
2487void
2488pmap_remove_pages(pmap_t pmap)
2489{
2490	pt_entry_t *pte, tpte;
2491	pv_entry_t pv, npv;
2492	vm_page_t m;
2493
2494	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2495		printf("warning: pmap_remove_pages called with non-current pmap\n");
2496		return;
2497	}
2498	vm_page_lock_queues();
2499	PMAP_LOCK(pmap);
2500	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) {
2501
2502		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2503		if (!pte_test(pte, PTE_V))
2504			panic("pmap_remove_pages: page on pm_pvlist has no pte");
2505		tpte = *pte;
2506
2507/*
2508 * We cannot remove wired pages from a process' mapping at this time
2509 */
2510		if (pte_test(&tpte, PTE_W)) {
2511			npv = TAILQ_NEXT(pv, pv_plist);
2512			continue;
2513		}
2514		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2515
2516		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2517		KASSERT(m != NULL,
2518		    ("pmap_remove_pages: bad tpte %x", tpte));
2519
2520		pv->pv_pmap->pm_stats.resident_count--;
2521
2522		/*
2523		 * Update the vm_page_t clean and reference bits.
2524		 */
2525		if (pte_test(&tpte, PTE_D)) {
2526			vm_page_dirty(m);
2527		}
2528		npv = TAILQ_NEXT(pv, pv_plist);
2529		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2530
2531		m->md.pv_list_count--;
2532		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2533		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2534			vm_page_flag_clear(m, PG_WRITEABLE);
2535		}
2536		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2537		free_pv_entry(pv);
2538	}
2539	pmap_invalidate_all(pmap);
2540	PMAP_UNLOCK(pmap);
2541	vm_page_unlock_queues();
2542}
2543
2544/*
2545 * pmap_testbit tests bits in pte's
2546 * note that the testbit/changebit routines are inline,
2547 * and a lot of things compile-time evaluate.
2548 */
2549static boolean_t
2550pmap_testbit(vm_page_t m, int bit)
2551{
2552	pv_entry_t pv;
2553	pt_entry_t *pte;
2554	boolean_t rv = FALSE;
2555
2556	if (m->flags & PG_FICTITIOUS)
2557		return (rv);
2558
2559	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2560		return (rv);
2561
2562	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2563	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2564		PMAP_LOCK(pv->pv_pmap);
2565		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2566		rv = pte_test(pte, bit);
2567		PMAP_UNLOCK(pv->pv_pmap);
2568		if (rv)
2569			break;
2570	}
2571	return (rv);
2572}
2573
2574/*
2575 * this routine is used to clear dirty bits in ptes
2576 */
2577static __inline void
2578pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2579{
2580	pv_entry_t pv;
2581	pt_entry_t *pte;
2582
2583	if (m->flags & PG_FICTITIOUS)
2584		return;
2585
2586	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2587	/*
2588	 * Loop over all current mappings setting/clearing as appropos If
2589	 * setting RO do we need to clear the VAC?
2590	 */
2591	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2592		PMAP_LOCK(pv->pv_pmap);
2593		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2594		if (setem) {
2595			*pte |= bit;
2596			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2597		} else {
2598			pt_entry_t pbits = *pte;
2599
2600			if (pbits & bit) {
2601				if (bit == PTE_D) {
2602					if (pbits & PTE_D)
2603						vm_page_dirty(m);
2604					*pte = (pbits & ~PTE_D) | PTE_RO;
2605				} else {
2606					*pte = pbits & ~bit;
2607				}
2608				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2609			}
2610		}
2611		PMAP_UNLOCK(pv->pv_pmap);
2612	}
2613	if (!setem && bit == PTE_D)
2614		vm_page_flag_clear(m, PG_WRITEABLE);
2615}
2616
2617/*
2618 *	pmap_page_wired_mappings:
2619 *
2620 *	Return the number of managed mappings to the given physical page
2621 *	that are wired.
2622 */
2623int
2624pmap_page_wired_mappings(vm_page_t m)
2625{
2626	pv_entry_t pv;
2627	pmap_t pmap;
2628	pt_entry_t *pte;
2629	int count;
2630
2631	count = 0;
2632	if ((m->flags & PG_FICTITIOUS) != 0)
2633		return (count);
2634	vm_page_lock_queues();
2635	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2636		pmap = pv->pv_pmap;
2637		PMAP_LOCK(pmap);
2638		pte = pmap_pte(pmap, pv->pv_va);
2639		if (pte_test(pte, PTE_W))
2640			count++;
2641		PMAP_UNLOCK(pmap);
2642	}
2643	vm_page_unlock_queues();
2644	return (count);
2645}
2646
2647/*
2648 * Clear the write and modified bits in each of the given page's mappings.
2649 */
2650void
2651pmap_remove_write(vm_page_t m)
2652{
2653	pv_entry_t pv, npv;
2654	vm_offset_t va;
2655	pt_entry_t *pte;
2656
2657	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2658	    ("pmap_remove_write: page %p is not managed", m));
2659
2660	/*
2661	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2662	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2663	 * is clear, no page table entries need updating.
2664	 */
2665	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2666	if ((m->oflags & VPO_BUSY) == 0 &&
2667	    (m->flags & PG_WRITEABLE) == 0)
2668		return;
2669
2670	/*
2671	 * Loop over all current mappings setting/clearing as appropos.
2672	 */
2673	vm_page_lock_queues();
2674	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2675		npv = TAILQ_NEXT(pv, pv_plist);
2676		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2677		if (pte == NULL || !pte_test(pte, PTE_V))
2678			panic("page on pm_pvlist has no pte");
2679
2680		va = pv->pv_va;
2681		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2682		    VM_PROT_READ | VM_PROT_EXECUTE);
2683	}
2684	vm_page_flag_clear(m, PG_WRITEABLE);
2685	vm_page_unlock_queues();
2686}
2687
2688/*
2689 *	pmap_ts_referenced:
2690 *
2691 *	Return the count of reference bits for a page, clearing all of them.
2692 */
2693int
2694pmap_ts_referenced(vm_page_t m)
2695{
2696
2697	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2698	    ("pmap_ts_referenced: page %p is not managed", m));
2699	if (m->md.pv_flags & PV_TABLE_REF) {
2700		vm_page_lock_queues();
2701		m->md.pv_flags &= ~PV_TABLE_REF;
2702		vm_page_unlock_queues();
2703		return (1);
2704	}
2705	return (0);
2706}
2707
2708/*
2709 *	pmap_is_modified:
2710 *
2711 *	Return whether or not the specified physical page was modified
2712 *	in any physical maps.
2713 */
2714boolean_t
2715pmap_is_modified(vm_page_t m)
2716{
2717	boolean_t rv;
2718
2719	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2720	    ("pmap_is_modified: page %p is not managed", m));
2721
2722	/*
2723	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2724	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2725	 * is clear, no PTEs can have PTE_D set.
2726	 */
2727	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2728	if ((m->oflags & VPO_BUSY) == 0 &&
2729	    (m->flags & PG_WRITEABLE) == 0)
2730		return (FALSE);
2731	vm_page_lock_queues();
2732	if (m->md.pv_flags & PV_TABLE_MOD)
2733		rv = TRUE;
2734	else
2735		rv = pmap_testbit(m, PTE_D);
2736	vm_page_unlock_queues();
2737	return (rv);
2738}
2739
2740/* N/C */
2741
2742/*
2743 *	pmap_is_prefaultable:
2744 *
2745 *	Return whether or not the specified virtual address is elgible
2746 *	for prefault.
2747 */
2748boolean_t
2749pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2750{
2751	pd_entry_t *pde;
2752	pt_entry_t *pte;
2753	boolean_t rv;
2754
2755	rv = FALSE;
2756	PMAP_LOCK(pmap);
2757	pde = pmap_pde(pmap, addr);
2758	if (pde != NULL && *pde != 0) {
2759		pte = pmap_pde_to_pte(pde, addr);
2760		rv = (*pte == 0);
2761	}
2762	PMAP_UNLOCK(pmap);
2763	return (rv);
2764}
2765
2766/*
2767 *	Clear the modify bits on the specified physical page.
2768 */
2769void
2770pmap_clear_modify(vm_page_t m)
2771{
2772
2773	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2774	    ("pmap_clear_modify: page %p is not managed", m));
2775	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2776	KASSERT((m->oflags & VPO_BUSY) == 0,
2777	    ("pmap_clear_modify: page %p is busy", m));
2778
2779	/*
2780	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_D set.
2781	 * If the object containing the page is locked and the page is not
2782	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2783	 */
2784	if ((m->flags & PG_WRITEABLE) == 0)
2785		return;
2786	vm_page_lock_queues();
2787	if (m->md.pv_flags & PV_TABLE_MOD) {
2788		pmap_changebit(m, PTE_D, FALSE);
2789		m->md.pv_flags &= ~PV_TABLE_MOD;
2790	}
2791	vm_page_unlock_queues();
2792}
2793
2794/*
2795 *	pmap_is_referenced:
2796 *
2797 *	Return whether or not the specified physical page was referenced
2798 *	in any physical maps.
2799 */
2800boolean_t
2801pmap_is_referenced(vm_page_t m)
2802{
2803
2804	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2805	    ("pmap_is_referenced: page %p is not managed", m));
2806	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2807}
2808
2809/*
2810 *	pmap_clear_reference:
2811 *
2812 *	Clear the reference bit on the specified physical page.
2813 */
2814void
2815pmap_clear_reference(vm_page_t m)
2816{
2817
2818	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2819	    ("pmap_clear_reference: page %p is not managed", m));
2820	vm_page_lock_queues();
2821	if (m->md.pv_flags & PV_TABLE_REF) {
2822		m->md.pv_flags &= ~PV_TABLE_REF;
2823	}
2824	vm_page_unlock_queues();
2825}
2826
2827/*
2828 * Miscellaneous support routines follow
2829 */
2830
2831/*
2832 * Map a set of physical memory pages into the kernel virtual
2833 * address space. Return a pointer to where it is mapped. This
2834 * routine is intended to be used for mapping device memory,
2835 * NOT real memory.
2836 */
2837
2838/*
2839 * Map a set of physical memory pages into the kernel virtual
2840 * address space. Return a pointer to where it is mapped. This
2841 * routine is intended to be used for mapping device memory,
2842 * NOT real memory.
2843 *
2844 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2845 */
2846void *
2847pmap_mapdev(vm_offset_t pa, vm_size_t size)
2848{
2849        vm_offset_t va, tmpva, offset;
2850
2851	/*
2852	 * KSEG1 maps only first 512M of phys address space. For
2853	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2854	 */
2855	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
2856		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
2857	else {
2858		offset = pa & PAGE_MASK;
2859		size = roundup(size + offset, PAGE_SIZE);
2860
2861		va = kmem_alloc_nofault(kernel_map, size);
2862		if (!va)
2863			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2864		pa = trunc_page(pa);
2865		for (tmpva = va; size > 0;) {
2866			pmap_kenter(tmpva, pa);
2867			size -= PAGE_SIZE;
2868			tmpva += PAGE_SIZE;
2869			pa += PAGE_SIZE;
2870		}
2871	}
2872
2873	return ((void *)(va + offset));
2874}
2875
2876void
2877pmap_unmapdev(vm_offset_t va, vm_size_t size)
2878{
2879#ifndef __mips_n64
2880	vm_offset_t base, offset, tmpva;
2881
2882	/* If the address is within KSEG1 then there is nothing to do */
2883	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2884		return;
2885
2886	base = trunc_page(va);
2887	offset = va & PAGE_MASK;
2888	size = roundup(size + offset, PAGE_SIZE);
2889	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2890		pmap_kremove(tmpva);
2891	kmem_free(kernel_map, base, size);
2892#endif
2893}
2894
2895/*
2896 * perform the pmap work for mincore
2897 */
2898int
2899pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2900{
2901	pt_entry_t *ptep, pte;
2902	vm_offset_t pa;
2903	vm_page_t m;
2904	int val;
2905	boolean_t managed;
2906
2907	PMAP_LOCK(pmap);
2908retry:
2909	ptep = pmap_pte(pmap, addr);
2910	pte = (ptep != NULL) ? *ptep : 0;
2911	if (!pte_test(&pte, PTE_V)) {
2912		val = 0;
2913		goto out;
2914	}
2915	val = MINCORE_INCORE;
2916	if (pte_test(&pte, PTE_D))
2917		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2918	pa = TLBLO_PTE_TO_PA(pte);
2919	managed = page_is_managed(pa);
2920	if (managed) {
2921		/*
2922		 * This may falsely report the given address as
2923		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2924		 * per-PTE reference information, it is impossible to
2925		 * determine if the address is MINCORE_REFERENCED.
2926		 */
2927		m = PHYS_TO_VM_PAGE(pa);
2928		if ((m->flags & PG_REFERENCED) != 0)
2929			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2930	}
2931	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2932	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2933		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2934		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2935			goto retry;
2936	} else
2937out:
2938		PA_UNLOCK_COND(*locked_pa);
2939	PMAP_UNLOCK(pmap);
2940	return (val);
2941}
2942
2943void
2944pmap_activate(struct thread *td)
2945{
2946	pmap_t pmap, oldpmap;
2947	struct proc *p = td->td_proc;
2948
2949	critical_enter();
2950
2951	pmap = vmspace_pmap(p->p_vmspace);
2952	oldpmap = PCPU_GET(curpmap);
2953
2954	if (oldpmap)
2955		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2956	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2957	pmap_asid_alloc(pmap);
2958	if (td == curthread) {
2959		PCPU_SET(segbase, pmap->pm_segtab);
2960		mips_wr_entryhi(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2961	}
2962
2963	PCPU_SET(curpmap, pmap);
2964	critical_exit();
2965}
2966
2967void
2968pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2969{
2970}
2971
2972/*
2973 *	Increase the starting virtual address of the given mapping if a
2974 *	different alignment might result in more superpage mappings.
2975 */
2976void
2977pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2978    vm_offset_t *addr, vm_size_t size)
2979{
2980	vm_offset_t superpage_offset;
2981
2982	if (size < NBSEG)
2983		return;
2984	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2985		offset += ptoa(object->pg_color);
2986	superpage_offset = offset & SEGMASK;
2987	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2988	    (*addr & SEGMASK) == superpage_offset)
2989		return;
2990	if ((*addr & SEGMASK) < superpage_offset)
2991		*addr = (*addr & ~SEGMASK) + superpage_offset;
2992	else
2993		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2994}
2995
2996/*
2997 * 	Increase the starting virtual address of the given mapping so
2998 * 	that it is aligned to not be the second page in a TLB entry.
2999 * 	This routine assumes that the length is appropriately-sized so
3000 * 	that the allocation does not share a TLB entry at all if required.
3001 */
3002void
3003pmap_align_tlb(vm_offset_t *addr)
3004{
3005	if ((*addr & PAGE_SIZE) == 0)
3006		return;
3007	*addr += PAGE_SIZE;
3008	return;
3009}
3010
3011#ifdef DDB
3012DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3013{
3014	pmap_t pmap;
3015	struct thread *td = NULL;
3016	struct proc *p;
3017	int i, j, k;
3018	vm_paddr_t pa;
3019	vm_offset_t va;
3020
3021	if (have_addr) {
3022		td = db_lookup_thread(addr, TRUE);
3023		if (td == NULL) {
3024			db_printf("Invalid pid or tid");
3025			return;
3026		}
3027		p = td->td_proc;
3028		if (p->p_vmspace == NULL) {
3029			db_printf("No vmspace for process");
3030			return;
3031		}
3032			pmap = vmspace_pmap(p->p_vmspace);
3033	} else
3034		pmap = kernel_pmap;
3035
3036	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3037	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3038	    pmap->pm_asid[0].gen);
3039	for (i = 0; i < NPDEPG; i++) {
3040		pd_entry_t *pdpe;
3041		pt_entry_t *pde;
3042		pt_entry_t pte;
3043
3044		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3045		if (pdpe == NULL)
3046			continue;
3047		db_printf("[%4d] %p\n", i, pdpe);
3048#ifdef __mips_n64
3049		for (j = 0; j < NPDEPG; j++) {
3050			pde = (pt_entry_t *)pdpe[j];
3051			if (pde == NULL)
3052				continue;
3053			db_printf("\t[%4d] %p\n", j, pde);
3054#else
3055		{
3056			j = 0;
3057			pde =  (pt_entry_t *)pdpe;
3058#endif
3059			for (k = 0; k < NPTEPG; k++) {
3060				pte = pde[k];
3061				if (pte == 0 || !pte_test(&pte, PTE_V))
3062					continue;
3063				pa = TLBLO_PTE_TO_PA(pte);
3064				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3065				db_printf("\t\t[%04d] va: %p pte: %8x pa:%lx\n",
3066				       k, (void *)va, pte, (u_long)pa);
3067			}
3068		}
3069	}
3070}
3071#endif
3072
3073#if defined(DEBUG)
3074
3075static void pads(pmap_t pm);
3076void pmap_pvdump(vm_offset_t pa);
3077
3078/* print address space of pmap*/
3079static void
3080pads(pmap_t pm)
3081{
3082	unsigned va, i, j;
3083	pt_entry_t *ptep;
3084
3085	if (pm == kernel_pmap)
3086		return;
3087	for (i = 0; i < NPTEPG; i++)
3088		if (pm->pm_segtab[i])
3089			for (j = 0; j < NPTEPG; j++) {
3090				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3091				if (pm == kernel_pmap && va < KERNBASE)
3092					continue;
3093				if (pm != kernel_pmap &&
3094				    va >= VM_MAXUSER_ADDRESS)
3095					continue;
3096				ptep = pmap_pte(pm, va);
3097				if (pmap_pte_v(ptep))
3098					printf("%x:%x ", va, *(int *)ptep);
3099			}
3100
3101}
3102
3103void
3104pmap_pvdump(vm_offset_t pa)
3105{
3106	register pv_entry_t pv;
3107	vm_page_t m;
3108
3109	printf("pa %x", pa);
3110	m = PHYS_TO_VM_PAGE(pa);
3111	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3112	    pv = TAILQ_NEXT(pv, pv_list)) {
3113		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3114		pads(pv->pv_pmap);
3115	}
3116	printf(" ");
3117}
3118
3119/* N/C */
3120#endif
3121
3122
3123/*
3124 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3125 * It takes almost as much or more time to search the TLB for a
3126 * specific ASID and flush those entries as it does to flush the entire TLB.
3127 * Therefore, when we allocate a new ASID, we just take the next number. When
3128 * we run out of numbers, we flush the TLB, increment the generation count
3129 * and start over. ASID zero is reserved for kernel use.
3130 */
3131static void
3132pmap_asid_alloc(pmap)
3133	pmap_t pmap;
3134{
3135	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3136	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3137	else {
3138		if (PCPU_GET(next_asid) == pmap_max_asid) {
3139			tlb_invalidate_all_user(NULL);
3140			PCPU_SET(asid_generation,
3141			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3142			if (PCPU_GET(asid_generation) == 0) {
3143				PCPU_SET(asid_generation, 1);
3144			}
3145			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3146		}
3147		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3148		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3149		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3150	}
3151}
3152
3153int
3154page_is_managed(vm_offset_t pa)
3155{
3156	vm_offset_t pgnum = mips_btop(pa);
3157
3158	if (pgnum >= first_page) {
3159		vm_page_t m;
3160
3161		m = PHYS_TO_VM_PAGE(pa);
3162		if (m == NULL)
3163			return (0);
3164		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3165			return (1);
3166	}
3167	return (0);
3168}
3169
3170static int
3171init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3172{
3173	int rw;
3174
3175	if (!(prot & VM_PROT_WRITE))
3176		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3177	else if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3178		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3179			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3180		else
3181			rw = PTE_V | PTE_C_CACHE;
3182		vm_page_flag_set(m, PG_WRITEABLE);
3183	} else
3184		/* Needn't emulate a modified bit for unmanaged pages. */
3185		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3186	return (rw);
3187}
3188
3189/*
3190 * pmap_emulate_modified : do dirty bit emulation
3191 *
3192 * On SMP, update just the local TLB, other CPUs will update their
3193 * TLBs from PTE lazily, if they get the exception.
3194 * Returns 0 in case of sucess, 1 if the page is read only and we
3195 * need to fault.
3196 */
3197int
3198pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3199{
3200	vm_page_t m;
3201	pt_entry_t *pte;
3202 	vm_offset_t pa;
3203
3204	PMAP_LOCK(pmap);
3205	pte = pmap_pte(pmap, va);
3206	if (pte == NULL)
3207		panic("pmap_emulate_modified: can't find PTE");
3208#ifdef SMP
3209	/* It is possible that some other CPU changed m-bit */
3210	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3211		pmap_update_page_local(pmap, va, *pte);
3212		PMAP_UNLOCK(pmap);
3213		return (0);
3214	}
3215#else
3216	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3217		panic("pmap_emulate_modified: invalid pte");
3218#endif
3219	if (pte_test(pte, PTE_RO)) {
3220		/* write to read only page in the kernel */
3221		PMAP_UNLOCK(pmap);
3222		return (1);
3223	}
3224	pte_set(pte, PTE_D);
3225	pmap_update_page_local(pmap, va, *pte);
3226	pa = TLBLO_PTE_TO_PA(*pte);
3227	if (!page_is_managed(pa))
3228		panic("pmap_emulate_modified: unmanaged page");
3229	m = PHYS_TO_VM_PAGE(pa);
3230	m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3231	PMAP_UNLOCK(pmap);
3232	return (0);
3233}
3234
3235/*
3236 *	Routine:	pmap_kextract
3237 *	Function:
3238 *		Extract the physical page address associated
3239 *		virtual address.
3240 */
3241 /* PMAP_INLINE */ vm_offset_t
3242pmap_kextract(vm_offset_t va)
3243{
3244	int mapped;
3245
3246	/*
3247	 * First, the direct-mapped regions.
3248	 */
3249#if defined(__mips_n64)
3250	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3251		return (MIPS_XKPHYS_TO_PHYS(va));
3252#endif
3253	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3254		return (MIPS_KSEG0_TO_PHYS(va));
3255
3256	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3257		return (MIPS_KSEG1_TO_PHYS(va));
3258
3259	/*
3260	 * User virtual addresses.
3261	 */
3262	if (va < VM_MAXUSER_ADDRESS) {
3263		pt_entry_t *ptep;
3264
3265		if (curproc && curproc->p_vmspace) {
3266			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3267			if (ptep) {
3268				return (TLBLO_PTE_TO_PA(*ptep) |
3269				    (va & PAGE_MASK));
3270			}
3271			return (0);
3272		}
3273	}
3274
3275	/*
3276	 * Should be kernel virtual here, otherwise fail
3277	 */
3278	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3279#if defined(__mips_n64)
3280	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3281#endif
3282	/*
3283	 * Kernel virtual.
3284	 */
3285
3286	if (mapped) {
3287		pt_entry_t *ptep;
3288
3289		/* Is the kernel pmap initialized? */
3290		if (kernel_pmap->pm_active) {
3291			/* It's inside the virtual address range */
3292			ptep = pmap_pte(kernel_pmap, va);
3293			if (ptep) {
3294				return (TLBLO_PTE_TO_PA(*ptep) |
3295				    (va & PAGE_MASK));
3296			}
3297		}
3298		return (0);
3299	}
3300
3301	panic("%s for unknown address space %p.", __func__, (void *)va);
3302}
3303
3304
3305void
3306pmap_flush_pvcache(vm_page_t m)
3307{
3308	pv_entry_t pv;
3309
3310	if (m != NULL) {
3311		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3312		    pv = TAILQ_NEXT(pv, pv_list)) {
3313			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3314		}
3315	}
3316}
3317