pmap.c revision 210627
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 210627 2010-07-29 20:02:56Z jchandra $");
70
71#include "opt_msgbuf.h"
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/proc.h>
75#include <sys/msgbuf.h>
76#include <sys/vmmeter.h>
77#include <sys/mman.h>
78#include <sys/smp.h>
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_phys.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_extern.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/uma.h>
93#include <sys/pcpu.h>
94#include <sys/sched.h>
95#ifdef SMP
96#include <sys/smp.h>
97#endif
98
99#include <machine/cache.h>
100#include <machine/md_var.h>
101#include <machine/tlb.h>
102
103#if defined(DIAGNOSTIC)
104#define	PMAP_DIAGNOSTIC
105#endif
106
107#undef PMAP_DEBUG
108
109#ifndef PMAP_SHPGPERPROC
110#define	PMAP_SHPGPERPROC 200
111#endif
112
113#if !defined(PMAP_DIAGNOSTIC)
114#define	PMAP_INLINE __inline
115#else
116#define	PMAP_INLINE
117#endif
118
119/*
120 * Get PDEs and PTEs for user/kernel address space
121 *
122 * XXX The & for pmap_segshift() is wrong, as is the fact that it doesn't
123 *     trim off gratuitous bits of the address space.  By having the &
124 *     there, we break defining NUSERPGTBLS below because the address space
125 *     is defined such that it ends immediately after NPDEPG*NPTEPG*PAGE_SIZE,
126 *     so we end up getting NUSERPGTBLS of 0.
127 */
128#define	pmap_segshift(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
129#define	segtab_pde(m, v)	((m)[pmap_segshift((v))])
130
131#if defined(__mips_n64)
132#define	NUSERPGTBLS		(NPDEPG)
133#else
134#define	NUSERPGTBLS		(pmap_segshift(VM_MAXUSER_ADDRESS))
135#endif
136#define	mips_segtrunc(va)	((va) & ~SEGMASK)
137#define	is_kernel_pmap(x)	((x) == kernel_pmap)
138
139/*
140 * Given a virtual address, get the offset of its PTE within its page
141 * directory page.
142 */
143#define	PDE_OFFSET(va)	(((vm_offset_t)(va) >> PAGE_SHIFT) & (NPTEPG - 1))
144
145struct pmap kernel_pmap_store;
146pd_entry_t *kernel_segmap;
147
148vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
149vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
150
151static int nkpt;
152unsigned pmap_max_asid;		/* max ASID supported by the system */
153
154
155#define	PMAP_ASID_RESERVED	0
156
157vm_offset_t kernel_vm_end;
158
159static void pmap_asid_alloc(pmap_t pmap);
160
161/*
162 * Data for the pv entry allocation mechanism
163 */
164static uma_zone_t pvzone;
165static struct vm_object pvzone_obj;
166static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
167
168static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
169static pv_entry_t get_pv_entry(pmap_t locked_pmap);
170static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
171static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
172    vm_offset_t va);
173static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
174
175static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
176    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
177static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
178static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
179static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
180static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
181    vm_offset_t va, vm_page_t m);
182static __inline void
183pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
184
185static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
186
187static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
188static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
189static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
190static vm_page_t pmap_alloc_pte_page(unsigned int index, int req);
191static void pmap_grow_pte_page_cache(void);
192
193#ifdef SMP
194static void pmap_invalidate_page_action(void *arg);
195static void pmap_invalidate_all_action(void *arg);
196static void pmap_update_page_action(void *arg);
197#endif
198
199#if !defined(__mips_n64)
200struct local_sysmaps {
201	vm_offset_t base;
202	uint16_t valid1, valid2;
203};
204
205/* This structure is for large memory
206 * above 512Meg. We can't (in 32 bit mode)
207 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
208 * macros since we can't see the memory and must
209 * map it in when we need to access it. In 64
210 * bit mode this goes away.
211 */
212static struct local_sysmaps sysmap_lmem[MAXCPU];
213
214#define	PMAP_LMEM_MAP1(va, phys)					\
215	int cpu;							\
216	struct local_sysmaps *sysm;					\
217	pt_entry_t *pte, npte;						\
218									\
219	intr = intr_disable();						\
220	cpu = PCPU_GET(cpuid);						\
221	sysm = &sysmap_lmem[cpu];					\
222	va = sysm->base;						\
223	npte = TLBLO_PA_TO_PFN(phys) |					\
224	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;		\
225	pte = pmap_pte(kernel_pmap, va);				\
226	*pte = npte;							\
227	sysm->valid1 = 1
228
229#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
230	int cpu;							\
231	struct local_sysmaps *sysm;					\
232	pt_entry_t *pte, npte;						\
233									\
234	intr = intr_disable();						\
235	cpu = PCPU_GET(cpuid);						\
236	sysm = &sysmap_lmem[cpu];					\
237	va1 = sysm->base;						\
238	va2 = sysm->base + PAGE_SIZE;					\
239	npte = TLBLO_PA_TO_PFN(phys1) |					\
240	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;		\
241	pte = pmap_pte(kernel_pmap, va1);				\
242	*pte = npte;							\
243	npte =  TLBLO_PA_TO_PFN(phys2) |				\
244	    PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;		\
245	pte = pmap_pte(kernel_pmap, va2);				\
246	*pte = npte;							\
247	sysm->valid1 = 1;						\
248	sysm->valid2 = 1;
249
250#define	PMAP_LMEM_UNMAP()						\
251	pte = pmap_pte(kernel_pmap, sysm->base);			\
252	*pte = PTE_G;							\
253	tlb_invalidate_address(kernel_pmap, sysm->base);		\
254	sysm->valid1 = 0;						\
255	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
256	*pte = PTE_G;							\
257	tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);	\
258	sysm->valid2 = 0;						\
259	intr_restore(intr)
260#endif
261
262static inline pt_entry_t *
263pmap_segmap(pmap_t pmap, vm_offset_t va)
264{
265	if (pmap->pm_segtab != NULL)
266		return (segtab_pde(pmap->pm_segtab, va));
267	else
268		return (NULL);
269}
270
271/*
272 *	Routine:	pmap_pte
273 *	Function:
274 *		Extract the page table entry associated
275 *		with the given map/virtual_address pair.
276 */
277pt_entry_t *
278pmap_pte(pmap_t pmap, vm_offset_t va)
279{
280	pt_entry_t *pdeaddr;
281
282	if (pmap) {
283		pdeaddr = pmap_segmap(pmap, va);
284		if (pdeaddr) {
285			return pdeaddr + PDE_OFFSET(va);
286		}
287	}
288	return ((pt_entry_t *)0);
289}
290
291
292vm_offset_t
293pmap_steal_memory(vm_size_t size)
294{
295	vm_size_t bank_size;
296	vm_offset_t pa, va;
297
298	size = round_page(size);
299
300	bank_size = phys_avail[1] - phys_avail[0];
301	while (size > bank_size) {
302		int i;
303
304		for (i = 0; phys_avail[i + 2]; i += 2) {
305			phys_avail[i] = phys_avail[i + 2];
306			phys_avail[i + 1] = phys_avail[i + 3];
307		}
308		phys_avail[i] = 0;
309		phys_avail[i + 1] = 0;
310		if (!phys_avail[0])
311			panic("pmap_steal_memory: out of memory");
312		bank_size = phys_avail[1] - phys_avail[0];
313	}
314
315	pa = phys_avail[0];
316	phys_avail[0] += size;
317	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
318		panic("Out of memory below 512Meg?");
319	}
320	va = MIPS_PHYS_TO_KSEG0(pa);
321	bzero((caddr_t)va, size);
322	return va;
323}
324
325/*
326 * Bootstrap the system enough to run with virtual memory.  This
327 * assumes that the phys_avail array has been initialized.
328 */
329void
330pmap_bootstrap(void)
331{
332	pt_entry_t *pgtab;
333	pt_entry_t *pte;
334	int i, j;
335#if !defined(__mips_n64)
336	int memory_larger_than_512meg = 0;
337#endif
338
339	/* Sort. */
340again:
341	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
342		/*
343		 * Keep the memory aligned on page boundary.
344		 */
345		phys_avail[i] = round_page(phys_avail[i]);
346		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
347
348		if (i < 2)
349			continue;
350		if (phys_avail[i - 2] > phys_avail[i]) {
351			vm_paddr_t ptemp[2];
352
353			ptemp[0] = phys_avail[i + 0];
354			ptemp[1] = phys_avail[i + 1];
355
356			phys_avail[i + 0] = phys_avail[i - 2];
357			phys_avail[i + 1] = phys_avail[i - 1];
358
359			phys_avail[i - 2] = ptemp[0];
360			phys_avail[i - 1] = ptemp[1];
361			goto again;
362		}
363	}
364
365#if !defined(__mips_n64)
366	if (phys_avail[i - 1] >= MIPS_KSEG0_LARGEST_PHYS)
367		memory_larger_than_512meg = 1;
368#endif
369
370	/*
371	 * Copy the phys_avail[] array before we start stealing memory from it.
372	 */
373	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
374		physmem_desc[i] = phys_avail[i];
375		physmem_desc[i + 1] = phys_avail[i + 1];
376	}
377
378	Maxmem = atop(phys_avail[i - 1]);
379
380	if (bootverbose) {
381		printf("Physical memory chunk(s):\n");
382		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
383			vm_paddr_t size;
384
385			size = phys_avail[i + 1] - phys_avail[i];
386			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
387			    (uintmax_t) phys_avail[i],
388			    (uintmax_t) phys_avail[i + 1] - 1,
389			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
390		}
391		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
392	}
393	/*
394	 * Steal the message buffer from the beginning of memory.
395	 */
396	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
397	msgbufinit(msgbufp, MSGBUF_SIZE);
398
399	/*
400	 * Steal thread0 kstack.
401	 */
402	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
403
404	virtual_avail = VM_MIN_KERNEL_ADDRESS;
405	virtual_end = VM_MAX_KERNEL_ADDRESS;
406
407#ifdef SMP
408	/*
409	 * Steal some virtual address space to map the pcpu area.
410	 */
411	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
412	pcpup = (struct pcpu *)virtual_avail;
413	virtual_avail += PAGE_SIZE * 2;
414
415	/*
416	 * Initialize the wired TLB entry mapping the pcpu region for
417	 * the BSP at 'pcpup'. Up until this point we were operating
418	 * with the 'pcpup' for the BSP pointing to a virtual address
419	 * in KSEG0 so there was no need for a TLB mapping.
420	 */
421	mips_pcpu_tlb_init(PCPU_ADDR(0));
422
423	if (bootverbose)
424		printf("pcpu is available at virtual address %p.\n", pcpup);
425#endif
426
427#if !defined(__mips_n64)
428	/*
429	 * Steal some virtual space that will not be in kernel_segmap. This
430	 * va memory space will be used to map in kernel pages that are
431	 * outside the 512Meg region. Note that we only do this steal when
432	 * we do have memory in this region, that way for systems with
433	 * smaller memory we don't "steal" any va ranges :-)
434	 */
435	if (memory_larger_than_512meg) {
436		for (i = 0; i < MAXCPU; i++) {
437			sysmap_lmem[i].base = virtual_avail;
438			virtual_avail += PAGE_SIZE * 2;
439			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
440		}
441	}
442#endif
443
444	/*
445	 * Allocate segment table for the kernel
446	 */
447	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
448
449	/*
450	 * Allocate second level page tables for the kernel
451	 */
452	nkpt = NKPT;
453#if !defined(__mips_n64)
454	if (memory_larger_than_512meg) {
455		/*
456		 * If we have a large memory system we CANNOT afford to hit
457		 * pmap_growkernel() and allocate memory. Since we MAY end
458		 * up with a page that is NOT mappable. For that reason we
459		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
460		 * this gives us 480meg of kernel virtual addresses at the
461		 * cost of 120 pages (each page gets us 4 Meg). Since the
462		 * kernel starts at virtual_avail, we can use this to
463		 * calculate how many entris are left from there to the end
464		 * of the segmap, we want to allocate all of it, which would
465		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
466		 * in about 256 entries or so instead of the 120.
467		 */
468		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
469	}
470#endif
471	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
472
473	/*
474	 * The R[4-7]?00 stores only one copy of the Global bit in the
475	 * translation lookaside buffer for each 2 page entry. Thus invalid
476	 * entrys must have the Global bit set so when Entry LO and Entry HI
477	 * G bits are anded together they will produce a global bit to store
478	 * in the tlb.
479	 */
480	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
481		*pte = PTE_G;
482
483	/*
484	 * The segment table contains the KVA of the pages in the second
485	 * level page table.
486	 */
487	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
488		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
489
490	/*
491	 * The kernel's pmap is statically allocated so we don't have to use
492	 * pmap_create, which is unlikely to work correctly at this part of
493	 * the boot sequence (XXX and which no longer exists).
494	 */
495	PMAP_LOCK_INIT(kernel_pmap);
496	kernel_pmap->pm_segtab = kernel_segmap;
497	kernel_pmap->pm_active = ~0;
498	TAILQ_INIT(&kernel_pmap->pm_pvlist);
499	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
500	kernel_pmap->pm_asid[0].gen = 0;
501	pmap_max_asid = VMNUM_PIDS;
502	mips_wr_entryhi(0);
503}
504
505/*
506 * Initialize a vm_page's machine-dependent fields.
507 */
508void
509pmap_page_init(vm_page_t m)
510{
511
512	TAILQ_INIT(&m->md.pv_list);
513	m->md.pv_list_count = 0;
514	m->md.pv_flags = 0;
515}
516
517/*
518 *	Initialize the pmap module.
519 *	Called by vm_init, to initialize any structures that the pmap
520 *	system needs to map virtual memory.
521 *	pmap_init has been enhanced to support in a fairly consistant
522 *	way, discontiguous physical memory.
523 */
524void
525pmap_init(void)
526{
527
528	/*
529	 * Initialize the address space (zone) for the pv entries.  Set a
530	 * high water mark so that the system can recover from excessive
531	 * numbers of pv entries.
532	 */
533	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
534	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
535	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
536	pv_entry_high_water = 9 * (pv_entry_max / 10);
537	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
538}
539
540/***************************************************
541 * Low level helper routines.....
542 ***************************************************/
543
544#if defined(PMAP_DIAGNOSTIC)
545
546/*
547 * This code checks for non-writeable/modified pages.
548 * This should be an invalid condition.
549 */
550static int
551pmap_nw_modified(pt_entry_t pte)
552{
553	if ((pte & (PTE_D | PTE_RO)) == (PTE_D | PTE_RO))
554		return (1);
555	else
556		return (0);
557}
558
559#endif
560
561static void
562pmap_invalidate_all(pmap_t pmap)
563{
564#ifdef SMP
565	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
566}
567
568static void
569pmap_invalidate_all_action(void *arg)
570{
571	pmap_t pmap = (pmap_t)arg;
572
573#endif
574
575	if (pmap == kernel_pmap) {
576		tlb_invalidate_all();
577		return;
578	}
579
580	if (pmap->pm_active & PCPU_GET(cpumask))
581		tlb_invalidate_all_user(pmap);
582	else
583		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
584}
585
586struct pmap_invalidate_page_arg {
587	pmap_t pmap;
588	vm_offset_t va;
589};
590
591static __inline void
592pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
593{
594#ifdef SMP
595	struct pmap_invalidate_page_arg arg;
596
597	arg.pmap = pmap;
598	arg.va = va;
599
600	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
601}
602
603static void
604pmap_invalidate_page_action(void *arg)
605{
606	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
607	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
608
609#endif
610
611	if (is_kernel_pmap(pmap)) {
612		tlb_invalidate_address(pmap, va);
613		return;
614	}
615	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
616		return;
617	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
618		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
619		return;
620	}
621	tlb_invalidate_address(pmap, va);
622}
623
624struct pmap_update_page_arg {
625	pmap_t pmap;
626	vm_offset_t va;
627	pt_entry_t pte;
628};
629
630void
631pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
632{
633#ifdef SMP
634	struct pmap_update_page_arg arg;
635
636	arg.pmap = pmap;
637	arg.va = va;
638	arg.pte = pte;
639
640	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
641}
642
643static void
644pmap_update_page_action(void *arg)
645{
646	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
647	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
648	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
649
650#endif
651	if (is_kernel_pmap(pmap)) {
652		tlb_update(pmap, va, pte);
653		return;
654	}
655	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
656		return;
657	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
658		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
659		return;
660	}
661	tlb_update(pmap, va, pte);
662}
663
664/*
665 *	Routine:	pmap_extract
666 *	Function:
667 *		Extract the physical page address associated
668 *		with the given map/virtual_address pair.
669 */
670vm_paddr_t
671pmap_extract(pmap_t pmap, vm_offset_t va)
672{
673	pt_entry_t *pte;
674	vm_offset_t retval = 0;
675
676	PMAP_LOCK(pmap);
677	pte = pmap_pte(pmap, va);
678	if (pte) {
679		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
680	}
681	PMAP_UNLOCK(pmap);
682	return retval;
683}
684
685/*
686 *	Routine:	pmap_extract_and_hold
687 *	Function:
688 *		Atomically extract and hold the physical page
689 *		with the given pmap and virtual address pair
690 *		if that mapping permits the given protection.
691 */
692vm_page_t
693pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
694{
695	pt_entry_t pte;
696	vm_page_t m;
697	vm_paddr_t pa;
698
699	m = NULL;
700	pa = 0;
701	PMAP_LOCK(pmap);
702retry:
703	pte = *pmap_pte(pmap, va);
704	if (pte != 0 && pte_test(&pte, PTE_V) &&
705	    (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) {
706		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
707			goto retry;
708
709		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
710		vm_page_hold(m);
711	}
712	PA_UNLOCK_COND(pa);
713	PMAP_UNLOCK(pmap);
714	return (m);
715}
716
717/***************************************************
718 * Low level mapping routines.....
719 ***************************************************/
720
721/*
722 * add a wired page to the kva
723 */
724 /* PMAP_INLINE */ void
725pmap_kenter(vm_offset_t va, vm_paddr_t pa)
726{
727	pt_entry_t *pte;
728	pt_entry_t opte, npte;
729
730#ifdef PMAP_DEBUG
731	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
732#endif
733	npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W;
734
735	if (is_cacheable_mem(pa))
736		npte |= PTE_C_CACHE;
737	else
738		npte |= PTE_C_UNCACHED;
739
740	pte = pmap_pte(kernel_pmap, va);
741	opte = *pte;
742	*pte = npte;
743
744	pmap_update_page(kernel_pmap, va, npte);
745}
746
747/*
748 * remove a page from the kernel pagetables
749 */
750 /* PMAP_INLINE */ void
751pmap_kremove(vm_offset_t va)
752{
753	pt_entry_t *pte;
754
755	/*
756	 * Write back all caches from the page being destroyed
757	 */
758	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
759
760	pte = pmap_pte(kernel_pmap, va);
761	*pte = PTE_G;
762	pmap_invalidate_page(kernel_pmap, va);
763}
764
765/*
766 *	Used to map a range of physical addresses into kernel
767 *	virtual address space.
768 *
769 *	The value passed in '*virt' is a suggested virtual address for
770 *	the mapping. Architectures which can support a direct-mapped
771 *	physical to virtual region can return the appropriate address
772 *	within that region, leaving '*virt' unchanged. Other
773 *	architectures should map the pages starting at '*virt' and
774 *	update '*virt' with the first usable address after the mapped
775 *	region.
776 *
777 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
778 */
779#if defined(__mips_n64)
780vm_offset_t
781pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
782{
783	return (MIPS_PHYS_TO_XKPHYS_CACHED(start));
784}
785#else
786vm_offset_t
787pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
788{
789	vm_offset_t va, sva;
790
791	if (end <= MIPS_KSEG0_LARGEST_PHYS)
792		return (MIPS_PHYS_TO_KSEG0(start));
793
794	va = sva = *virt;
795	while (start < end) {
796		pmap_kenter(va, start);
797		va += PAGE_SIZE;
798		start += PAGE_SIZE;
799	}
800	*virt = va;
801	return (sva);
802}
803#endif
804
805/*
806 * Add a list of wired pages to the kva
807 * this routine is only used for temporary
808 * kernel mappings that do not need to have
809 * page modification or references recorded.
810 * Note that old mappings are simply written
811 * over.  The page *must* be wired.
812 */
813void
814pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
815{
816	int i;
817	vm_offset_t origva = va;
818
819	for (i = 0; i < count; i++) {
820		pmap_flush_pvcache(m[i]);
821		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
822		va += PAGE_SIZE;
823	}
824
825	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
826}
827
828/*
829 * this routine jerks page mappings from the
830 * kernel -- it is meant only for temporary mappings.
831 */
832void
833pmap_qremove(vm_offset_t va, int count)
834{
835	/*
836	 * No need to wb/inv caches here,
837	 *   pmap_kremove will do it for us
838	 */
839
840	while (count-- > 0) {
841		pmap_kremove(va);
842		va += PAGE_SIZE;
843	}
844}
845
846/***************************************************
847 * Page table page management routines.....
848 ***************************************************/
849
850/*  Revision 1.507
851 *
852 * Simplify the reference counting of page table pages.	 Specifically, use
853 * the page table page's wired count rather than its hold count to contain
854 * the reference count.
855 */
856
857/*
858 * This routine unholds page table pages, and if the hold count
859 * drops to zero, then it decrements the wire count.
860 */
861static int
862_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
863{
864
865	/*
866	 * unmap the page table page
867	 */
868	pmap->pm_segtab[m->pindex] = 0;
869	--pmap->pm_stats.resident_count;
870
871	if (pmap->pm_ptphint == m)
872		pmap->pm_ptphint = NULL;
873
874	/*
875	 * If the page is finally unwired, simply free it.
876	 */
877	vm_page_free_zero(m);
878	atomic_subtract_int(&cnt.v_wire_count, 1);
879	return (1);
880}
881
882static PMAP_INLINE int
883pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
884{
885	--m->wire_count;
886	if (m->wire_count == 0)
887		return (_pmap_unwire_pte_hold(pmap, m));
888	else
889		return (0);
890}
891
892/*
893 * After removing a page table entry, this routine is used to
894 * conditionally free the page, and manage the hold/wire counts.
895 */
896static int
897pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
898{
899	unsigned ptepindex;
900	pd_entry_t pteva;
901
902	if (va >= VM_MAXUSER_ADDRESS)
903		return (0);
904
905	if (mpte == NULL) {
906		ptepindex = pmap_segshift(va);
907		if (pmap->pm_ptphint &&
908		    (pmap->pm_ptphint->pindex == ptepindex)) {
909			mpte = pmap->pm_ptphint;
910		} else {
911			pteva = pmap_segmap(pmap, va);
912			mpte = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
913			pmap->pm_ptphint = mpte;
914		}
915	}
916	return pmap_unwire_pte_hold(pmap, mpte);
917}
918
919void
920pmap_pinit0(pmap_t pmap)
921{
922	int i;
923
924	PMAP_LOCK_INIT(pmap);
925	pmap->pm_segtab = kernel_segmap;
926	pmap->pm_active = 0;
927	pmap->pm_ptphint = NULL;
928	for (i = 0; i < MAXCPU; i++) {
929		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
930		pmap->pm_asid[i].gen = 0;
931	}
932	PCPU_SET(curpmap, pmap);
933	TAILQ_INIT(&pmap->pm_pvlist);
934	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
935}
936
937static void
938pmap_grow_pte_page_cache()
939{
940
941	vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
942}
943
944static vm_page_t
945pmap_alloc_pte_page(unsigned int index, int req)
946{
947	vm_page_t m;
948
949	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, 0, req);
950	if (m == NULL)
951		return (NULL);
952
953	if ((m->flags & PG_ZERO) == 0)
954		pmap_zero_page(m);
955
956	m->pindex = index;
957	atomic_add_int(&cnt.v_wire_count, 1);
958	m->wire_count = 1;
959	return (m);
960}
961
962/*
963 * Initialize a preallocated and zeroed pmap structure,
964 * such as one in a vmspace structure.
965 */
966int
967pmap_pinit(pmap_t pmap)
968{
969	vm_offset_t ptdva;
970	vm_page_t ptdpg;
971	int i;
972
973	PMAP_LOCK_INIT(pmap);
974
975	/*
976	 * allocate the page directory page
977	 */
978	while ((ptdpg = pmap_alloc_pte_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
979	       pmap_grow_pte_page_cache();
980
981	ptdva = MIPS_PHYS_TO_KSEG0(VM_PAGE_TO_PHYS(ptdpg));
982	pmap->pm_segtab = (pd_entry_t *)ptdva;
983	pmap->pm_active = 0;
984	pmap->pm_ptphint = NULL;
985	for (i = 0; i < MAXCPU; i++) {
986		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
987		pmap->pm_asid[i].gen = 0;
988	}
989	TAILQ_INIT(&pmap->pm_pvlist);
990	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
991
992	return (1);
993}
994
995/*
996 * this routine is called if the page table page is not
997 * mapped correctly.
998 */
999static vm_page_t
1000_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1001{
1002	vm_offset_t pteva;
1003	vm_page_t m;
1004
1005	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1006	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1007	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1008
1009	/*
1010	 * Find or fabricate a new pagetable page
1011	 */
1012	if ((m = pmap_alloc_pte_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1013		if (flags & M_WAITOK) {
1014			PMAP_UNLOCK(pmap);
1015			vm_page_unlock_queues();
1016			pmap_grow_pte_page_cache();
1017			vm_page_lock_queues();
1018			PMAP_LOCK(pmap);
1019		}
1020
1021		/*
1022		 * Indicate the need to retry.	While waiting, the page
1023		 * table page may have been allocated.
1024		 */
1025		return (NULL);
1026	}
1027
1028	/*
1029	 * Map the pagetable page into the process address space, if it
1030	 * isn't already there.
1031	 */
1032
1033	pteva = MIPS_PHYS_TO_KSEG0(VM_PAGE_TO_PHYS(m));
1034	pmap->pm_stats.resident_count++;
1035	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1036
1037	/*
1038	 * Set the page table hint
1039	 */
1040	pmap->pm_ptphint = m;
1041	return (m);
1042}
1043
1044static vm_page_t
1045pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1046{
1047	unsigned ptepindex;
1048	vm_offset_t pteva;
1049	vm_page_t m;
1050
1051	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1052	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1053	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1054
1055	/*
1056	 * Calculate pagetable page index
1057	 */
1058	ptepindex = pmap_segshift(va);
1059retry:
1060	/*
1061	 * Get the page directory entry
1062	 */
1063	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1064
1065	/*
1066	 * If the page table page is mapped, we just increment the hold
1067	 * count, and activate it.
1068	 */
1069	if (pteva) {
1070		/*
1071		 * In order to get the page table page, try the hint first.
1072		 */
1073		if (pmap->pm_ptphint &&
1074		    (pmap->pm_ptphint->pindex == ptepindex)) {
1075			m = pmap->pm_ptphint;
1076		} else {
1077			m = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
1078			pmap->pm_ptphint = m;
1079		}
1080		m->wire_count++;
1081	} else {
1082		/*
1083		 * Here if the pte page isn't mapped, or if it has been
1084		 * deallocated.
1085		 */
1086		m = _pmap_allocpte(pmap, ptepindex, flags);
1087		if (m == NULL && (flags & M_WAITOK))
1088			goto retry;
1089	}
1090	return m;
1091}
1092
1093
1094/***************************************************
1095* Pmap allocation/deallocation routines.
1096 ***************************************************/
1097/*
1098 *  Revision 1.397
1099 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1100 *    called only the page directory page(s) can be left in the pmap pte
1101 *    object, since all page table pages will have been freed by
1102 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1103 *    reference to the pmap and the page directory is wired, so the page(s)
1104 *    can never be busy.  So all there is to do is clear the magic mappings
1105 *    from the page directory and free the page(s).
1106 */
1107
1108
1109/*
1110 * Release any resources held by the given physical map.
1111 * Called when a pmap initialized by pmap_pinit is being released.
1112 * Should only be called if the map contains no valid mappings.
1113 */
1114void
1115pmap_release(pmap_t pmap)
1116{
1117	vm_offset_t ptdva;
1118	vm_page_t ptdpg;
1119
1120	KASSERT(pmap->pm_stats.resident_count == 0,
1121	    ("pmap_release: pmap resident count %ld != 0",
1122	    pmap->pm_stats.resident_count));
1123
1124	ptdva = (vm_offset_t)pmap->pm_segtab;
1125	ptdpg = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(ptdva));
1126
1127	ptdpg->wire_count--;
1128	atomic_subtract_int(&cnt.v_wire_count, 1);
1129	vm_page_free_zero(ptdpg);
1130	PMAP_LOCK_DESTROY(pmap);
1131}
1132
1133/*
1134 * grow the number of kernel page table entries, if needed
1135 */
1136void
1137pmap_growkernel(vm_offset_t addr)
1138{
1139	vm_page_t nkpg;
1140	pt_entry_t *pte;
1141	int i;
1142
1143	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1144	if (kernel_vm_end == 0) {
1145		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1146		nkpt = 0;
1147		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1148			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1149			    ~(PAGE_SIZE * NPTEPG - 1);
1150			nkpt++;
1151			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1152				kernel_vm_end = kernel_map->max_offset;
1153				break;
1154			}
1155		}
1156	}
1157	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1158	if (addr - 1 >= kernel_map->max_offset)
1159		addr = kernel_map->max_offset;
1160	while (kernel_vm_end < addr) {
1161		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1162			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1163			    ~(PAGE_SIZE * NPTEPG - 1);
1164			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1165				kernel_vm_end = kernel_map->max_offset;
1166				break;
1167			}
1168			continue;
1169		}
1170		/*
1171		 * This index is bogus, but out of the way
1172		 */
1173 		nkpg = pmap_alloc_pte_page(nkpt, VM_ALLOC_INTERRUPT);
1174		if (!nkpg)
1175			panic("pmap_growkernel: no memory to grow kernel");
1176
1177		nkpt++;
1178 		pte = (pt_entry_t *)MIPS_PHYS_TO_KSEG0(VM_PAGE_TO_PHYS(nkpg));
1179  		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1180
1181		/*
1182		 * The R[4-7]?00 stores only one copy of the Global bit in
1183		 * the translation lookaside buffer for each 2 page entry.
1184		 * Thus invalid entrys must have the Global bit set so when
1185		 * Entry LO and Entry HI G bits are anded together they will
1186		 * produce a global bit to store in the tlb.
1187		 */
1188		for (i = 0; i < NPTEPG; i++, pte++)
1189			*pte = PTE_G;
1190
1191		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1192		    ~(PAGE_SIZE * NPTEPG - 1);
1193		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1194			kernel_vm_end = kernel_map->max_offset;
1195			break;
1196		}
1197	}
1198}
1199
1200/***************************************************
1201* page management routines.
1202 ***************************************************/
1203
1204/*
1205 * free the pv_entry back to the free list
1206 */
1207static PMAP_INLINE void
1208free_pv_entry(pv_entry_t pv)
1209{
1210
1211	pv_entry_count--;
1212	uma_zfree(pvzone, pv);
1213}
1214
1215/*
1216 * get a new pv_entry, allocating a block from the system
1217 * when needed.
1218 * the memory allocation is performed bypassing the malloc code
1219 * because of the possibility of allocations at interrupt time.
1220 */
1221static pv_entry_t
1222get_pv_entry(pmap_t locked_pmap)
1223{
1224	static const struct timeval printinterval = { 60, 0 };
1225	static struct timeval lastprint;
1226	struct vpgqueues *vpq;
1227	pt_entry_t *pte, oldpte;
1228	pmap_t pmap;
1229	pv_entry_t allocated_pv, next_pv, pv;
1230	vm_offset_t va;
1231	vm_page_t m;
1232
1233	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1234	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1235	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1236	if (allocated_pv != NULL) {
1237		pv_entry_count++;
1238		if (pv_entry_count > pv_entry_high_water)
1239			pagedaemon_wakeup();
1240		else
1241			return (allocated_pv);
1242	}
1243	/*
1244	 * Reclaim pv entries: At first, destroy mappings to inactive
1245	 * pages.  After that, if a pv entry is still needed, destroy
1246	 * mappings to active pages.
1247	 */
1248	if (ratecheck(&lastprint, &printinterval))
1249		printf("Approaching the limit on PV entries, "
1250		    "increase the vm.pmap.shpgperproc tunable.\n");
1251	vpq = &vm_page_queues[PQ_INACTIVE];
1252retry:
1253	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1254		if (m->hold_count || m->busy)
1255			continue;
1256		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1257			va = pv->pv_va;
1258			pmap = pv->pv_pmap;
1259			/* Avoid deadlock and lock recursion. */
1260			if (pmap > locked_pmap)
1261				PMAP_LOCK(pmap);
1262			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1263				continue;
1264			pmap->pm_stats.resident_count--;
1265			pte = pmap_pte(pmap, va);
1266			KASSERT(pte != NULL, ("pte"));
1267			oldpte = loadandclear((u_int *)pte);
1268			if (is_kernel_pmap(pmap))
1269				*pte = PTE_G;
1270			KASSERT(!pte_test(&oldpte, PTE_W),
1271			    ("wired pte for unwired page"));
1272			if (m->md.pv_flags & PV_TABLE_REF)
1273				vm_page_flag_set(m, PG_REFERENCED);
1274			if (pte_test(&oldpte, PTE_D))
1275				vm_page_dirty(m);
1276			pmap_invalidate_page(pmap, va);
1277			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1278			m->md.pv_list_count--;
1279			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1280			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1281			if (pmap != locked_pmap)
1282				PMAP_UNLOCK(pmap);
1283			if (allocated_pv == NULL)
1284				allocated_pv = pv;
1285			else
1286				free_pv_entry(pv);
1287		}
1288		if (TAILQ_EMPTY(&m->md.pv_list)) {
1289			vm_page_flag_clear(m, PG_WRITEABLE);
1290			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1291		}
1292	}
1293	if (allocated_pv == NULL) {
1294		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1295			vpq = &vm_page_queues[PQ_ACTIVE];
1296			goto retry;
1297		}
1298		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1299	}
1300	return (allocated_pv);
1301}
1302
1303/*
1304 *  Revision 1.370
1305 *
1306 *  Move pmap_collect() out of the machine-dependent code, rename it
1307 *  to reflect its new location, and add page queue and flag locking.
1308 *
1309 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1310 *  of pmap_collect() in terms of machine-independent interfaces;
1311 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1312 *
1313 *  MIPS implementation was identical to alpha [Junos 8.2]
1314 */
1315
1316/*
1317 * If it is the first entry on the list, it is actually
1318 * in the header and we must copy the following entry up
1319 * to the header.  Otherwise we must search the list for
1320 * the entry.  In either case we free the now unused entry.
1321 */
1322
1323static pv_entry_t
1324pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1325{
1326	pv_entry_t pv;
1327
1328	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1329	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1330	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1331		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1332			if (pmap == pv->pv_pmap && va == pv->pv_va)
1333				break;
1334		}
1335	} else {
1336		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1337			if (va == pv->pv_va)
1338				break;
1339		}
1340	}
1341	if (pv != NULL) {
1342		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1343		pvh->pv_list_count--;
1344		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1345	}
1346	return (pv);
1347}
1348
1349static void
1350pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1351{
1352	pv_entry_t pv;
1353
1354	pv = pmap_pvh_remove(pvh, pmap, va);
1355	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1356	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1357	     (u_long)va));
1358	free_pv_entry(pv);
1359}
1360
1361static void
1362pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1363{
1364
1365	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1366	pmap_pvh_free(&m->md, pmap, va);
1367	if (TAILQ_EMPTY(&m->md.pv_list))
1368		vm_page_flag_clear(m, PG_WRITEABLE);
1369}
1370
1371/*
1372 * Conditionally create a pv entry.
1373 */
1374static boolean_t
1375pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1376    vm_page_t m)
1377{
1378	pv_entry_t pv;
1379
1380	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1381	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1382	if (pv_entry_count < pv_entry_high_water &&
1383	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1384		pv_entry_count++;
1385		pv->pv_va = va;
1386		pv->pv_pmap = pmap;
1387		pv->pv_ptem = mpte;
1388		pv->pv_wired = FALSE;
1389		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1390		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1391		m->md.pv_list_count++;
1392		return (TRUE);
1393	} else
1394		return (FALSE);
1395}
1396
1397/*
1398 * pmap_remove_pte: do the things to unmap a page in a process
1399 */
1400static int
1401pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1402{
1403	pt_entry_t oldpte;
1404	vm_page_t m;
1405	vm_offset_t pa;
1406
1407	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1408	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1409
1410	oldpte = loadandclear((u_int *)ptq);
1411	if (is_kernel_pmap(pmap))
1412		*ptq = PTE_G;
1413
1414	if (pte_test(&oldpte, PTE_W))
1415		pmap->pm_stats.wired_count -= 1;
1416
1417	pmap->pm_stats.resident_count -= 1;
1418	pa = TLBLO_PTE_TO_PA(oldpte);
1419
1420	if (page_is_managed(pa)) {
1421		m = PHYS_TO_VM_PAGE(pa);
1422		if (pte_test(&oldpte, PTE_D)) {
1423#if defined(PMAP_DIAGNOSTIC)
1424			if (pmap_nw_modified(oldpte)) {
1425				printf(
1426				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1427				    va, oldpte);
1428			}
1429#endif
1430			vm_page_dirty(m);
1431		}
1432		if (m->md.pv_flags & PV_TABLE_REF)
1433			vm_page_flag_set(m, PG_REFERENCED);
1434		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1435
1436		pmap_remove_entry(pmap, m, va);
1437	}
1438	return pmap_unuse_pt(pmap, va, NULL);
1439}
1440
1441/*
1442 * Remove a single page from a process address space
1443 */
1444static void
1445pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1446{
1447	pt_entry_t *ptq;
1448
1449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1450	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1451	ptq = pmap_pte(pmap, va);
1452
1453	/*
1454	 * if there is no pte for this address, just skip it!!!
1455	 */
1456	if (!ptq || !pte_test(ptq, PTE_V)) {
1457		return;
1458	}
1459
1460	/*
1461	 * Write back all caches from the page being destroyed
1462	 */
1463	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1464
1465	/*
1466	 * get a local va for mappings for this pmap.
1467	 */
1468	(void)pmap_remove_pte(pmap, ptq, va);
1469	pmap_invalidate_page(pmap, va);
1470
1471	return;
1472}
1473
1474/*
1475 *	Remove the given range of addresses from the specified map.
1476 *
1477 *	It is assumed that the start and end are properly
1478 *	rounded to the page size.
1479 */
1480void
1481pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1482{
1483	vm_offset_t va, nva;
1484
1485	if (pmap == NULL)
1486		return;
1487
1488	if (pmap->pm_stats.resident_count == 0)
1489		return;
1490
1491	vm_page_lock_queues();
1492	PMAP_LOCK(pmap);
1493
1494	/*
1495	 * special handling of removing one page.  a very common operation
1496	 * and easy to short circuit some code.
1497	 */
1498	if ((sva + PAGE_SIZE) == eva) {
1499		pmap_remove_page(pmap, sva);
1500		goto out;
1501	}
1502	for (va = sva; va < eva; va = nva) {
1503		if (pmap_segmap(pmap, va) == NULL) {
1504			nva = mips_segtrunc(va + NBSEG);
1505			continue;
1506		}
1507		pmap_remove_page(pmap, va);
1508		nva = va + PAGE_SIZE;
1509	}
1510
1511out:
1512	vm_page_unlock_queues();
1513	PMAP_UNLOCK(pmap);
1514}
1515
1516/*
1517 *	Routine:	pmap_remove_all
1518 *	Function:
1519 *		Removes this physical page from
1520 *		all physical maps in which it resides.
1521 *		Reflects back modify bits to the pager.
1522 *
1523 *	Notes:
1524 *		Original versions of this routine were very
1525 *		inefficient because they iteratively called
1526 *		pmap_remove (slow...)
1527 */
1528
1529void
1530pmap_remove_all(vm_page_t m)
1531{
1532	pv_entry_t pv;
1533	pt_entry_t *pte, tpte;
1534
1535	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1536	    ("pmap_remove_all: page %p is fictitious", m));
1537	vm_page_lock_queues();
1538
1539	if (m->md.pv_flags & PV_TABLE_REF)
1540		vm_page_flag_set(m, PG_REFERENCED);
1541
1542	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1543		PMAP_LOCK(pv->pv_pmap);
1544
1545		/*
1546		 * If it's last mapping writeback all caches from
1547		 * the page being destroyed
1548	 	 */
1549		if (m->md.pv_list_count == 1)
1550			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1551
1552		pv->pv_pmap->pm_stats.resident_count--;
1553
1554		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1555
1556		tpte = loadandclear((u_int *)pte);
1557		if (is_kernel_pmap(pv->pv_pmap))
1558			*pte = PTE_G;
1559
1560		if (pte_test(&tpte, PTE_W))
1561			pv->pv_pmap->pm_stats.wired_count--;
1562
1563		/*
1564		 * Update the vm_page_t clean and reference bits.
1565		 */
1566		if (pte_test(&tpte, PTE_D)) {
1567#if defined(PMAP_DIAGNOSTIC)
1568			if (pmap_nw_modified(tpte)) {
1569				printf(
1570				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1571				    pv->pv_va, tpte);
1572			}
1573#endif
1574			vm_page_dirty(m);
1575		}
1576		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1577
1578		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1579		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1580		m->md.pv_list_count--;
1581		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1582		PMAP_UNLOCK(pv->pv_pmap);
1583		free_pv_entry(pv);
1584	}
1585
1586	vm_page_flag_clear(m, PG_WRITEABLE);
1587	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1588	vm_page_unlock_queues();
1589}
1590
1591/*
1592 *	Set the physical protection on the
1593 *	specified range of this map as requested.
1594 */
1595void
1596pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1597{
1598	pt_entry_t *pte;
1599
1600	if (pmap == NULL)
1601		return;
1602
1603	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1604		pmap_remove(pmap, sva, eva);
1605		return;
1606	}
1607	if (prot & VM_PROT_WRITE)
1608		return;
1609
1610	vm_page_lock_queues();
1611	PMAP_LOCK(pmap);
1612	while (sva < eva) {
1613		pt_entry_t pbits, obits;
1614		vm_page_t m;
1615		vm_offset_t pa;
1616
1617		/*
1618		 * If segment table entry is empty, skip this segment.
1619		 */
1620		if (pmap_segmap(pmap, sva) == NULL) {
1621			sva = mips_segtrunc(sva + NBSEG);
1622			continue;
1623		}
1624		/*
1625		 * If pte is invalid, skip this page
1626		 */
1627		pte = pmap_pte(pmap, sva);
1628		if (!pte_test(pte, PTE_V)) {
1629			sva += PAGE_SIZE;
1630			continue;
1631		}
1632retry:
1633		obits = pbits = *pte;
1634		pa = TLBLO_PTE_TO_PA(pbits);
1635
1636		if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) {
1637			m = PHYS_TO_VM_PAGE(pa);
1638			vm_page_dirty(m);
1639			m->md.pv_flags &= ~PV_TABLE_MOD;
1640		}
1641		pte_clear(&pbits, PTE_D);
1642		pte_set(&pbits, PTE_RO);
1643
1644		if (pbits != *pte) {
1645			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1646				goto retry;
1647			pmap_update_page(pmap, sva, pbits);
1648		}
1649		sva += PAGE_SIZE;
1650	}
1651	vm_page_unlock_queues();
1652	PMAP_UNLOCK(pmap);
1653}
1654
1655/*
1656 *	Insert the given physical page (p) at
1657 *	the specified virtual address (v) in the
1658 *	target physical map with the protection requested.
1659 *
1660 *	If specified, the page will be wired down, meaning
1661 *	that the related pte can not be reclaimed.
1662 *
1663 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1664 *	or lose information.  That is, this routine must actually
1665 *	insert this page into the given map NOW.
1666 */
1667void
1668pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1669    vm_prot_t prot, boolean_t wired)
1670{
1671	vm_offset_t pa, opa;
1672	pt_entry_t *pte;
1673	pt_entry_t origpte, newpte;
1674	pv_entry_t pv;
1675	vm_page_t mpte, om;
1676	int rw = 0;
1677
1678	if (pmap == NULL)
1679		return;
1680
1681	va &= ~PAGE_MASK;
1682 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1683	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1684	    (m->oflags & VPO_BUSY) != 0,
1685	    ("pmap_enter: page %p is not busy", m));
1686
1687	mpte = NULL;
1688
1689	vm_page_lock_queues();
1690	PMAP_LOCK(pmap);
1691
1692	/*
1693	 * In the case that a page table page is not resident, we are
1694	 * creating it here.
1695	 */
1696	if (va < VM_MAXUSER_ADDRESS) {
1697		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1698	}
1699	pte = pmap_pte(pmap, va);
1700
1701	/*
1702	 * Page Directory table entry not valid, we need a new PT page
1703	 */
1704	if (pte == NULL) {
1705		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1706		    (void *)pmap->pm_segtab, (void *)va);
1707	}
1708	pa = VM_PAGE_TO_PHYS(m);
1709	om = NULL;
1710	origpte = *pte;
1711	opa = TLBLO_PTE_TO_PA(origpte);
1712
1713	/*
1714	 * Mapping has not changed, must be protection or wiring change.
1715	 */
1716	if (pte_test(&origpte, PTE_V) && opa == pa) {
1717		/*
1718		 * Wiring change, just update stats. We don't worry about
1719		 * wiring PT pages as they remain resident as long as there
1720		 * are valid mappings in them. Hence, if a user page is
1721		 * wired, the PT page will be also.
1722		 */
1723		if (wired && !pte_test(&origpte, PTE_W))
1724			pmap->pm_stats.wired_count++;
1725		else if (!wired && pte_test(&origpte, PTE_W))
1726			pmap->pm_stats.wired_count--;
1727
1728#if defined(PMAP_DIAGNOSTIC)
1729		if (pmap_nw_modified(origpte)) {
1730			printf(
1731			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1732			    va, origpte);
1733		}
1734#endif
1735
1736		/*
1737		 * Remove extra pte reference
1738		 */
1739		if (mpte)
1740			mpte->wire_count--;
1741
1742		if (page_is_managed(opa)) {
1743			om = m;
1744		}
1745		goto validate;
1746	}
1747
1748	pv = NULL;
1749
1750	/*
1751	 * Mapping has changed, invalidate old range and fall through to
1752	 * handle validating new mapping.
1753	 */
1754	if (opa) {
1755		if (pte_test(&origpte, PTE_W))
1756			pmap->pm_stats.wired_count--;
1757
1758		if (page_is_managed(opa)) {
1759			om = PHYS_TO_VM_PAGE(opa);
1760			pv = pmap_pvh_remove(&om->md, pmap, va);
1761		}
1762		if (mpte != NULL) {
1763			mpte->wire_count--;
1764			KASSERT(mpte->wire_count > 0,
1765			    ("pmap_enter: missing reference to page table page,"
1766			    " va: %p", (void *)va));
1767		}
1768	} else
1769		pmap->pm_stats.resident_count++;
1770
1771	/*
1772	 * Enter on the PV list if part of our managed memory. Note that we
1773	 * raise IPL while manipulating pv_table since pmap_enter can be
1774	 * called at interrupt time.
1775	 */
1776	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1777		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1778		    ("pmap_enter: managed mapping within the clean submap"));
1779		if (pv == NULL)
1780			pv = get_pv_entry(pmap);
1781		pv->pv_va = va;
1782		pv->pv_pmap = pmap;
1783		pv->pv_ptem = mpte;
1784		pv->pv_wired = wired;
1785		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1786		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1787		m->md.pv_list_count++;
1788	} else if (pv != NULL)
1789		free_pv_entry(pv);
1790
1791	/*
1792	 * Increment counters
1793	 */
1794	if (wired)
1795		pmap->pm_stats.wired_count++;
1796
1797validate:
1798	if ((access & VM_PROT_WRITE) != 0)
1799		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1800	rw = init_pte_prot(va, m, prot);
1801
1802#ifdef PMAP_DEBUG
1803	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
1804#endif
1805	/*
1806	 * Now validate mapping with desired protection/wiring.
1807	 */
1808	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1809
1810	if (is_cacheable_mem(pa))
1811		newpte |= PTE_C_CACHE;
1812	else
1813		newpte |= PTE_C_UNCACHED;
1814
1815	if (wired)
1816		newpte |= PTE_W;
1817
1818	if (is_kernel_pmap(pmap))
1819	         newpte |= PTE_G;
1820
1821	/*
1822	 * if the mapping or permission bits are different, we need to
1823	 * update the pte.
1824	 */
1825	if (origpte != newpte) {
1826		if (pte_test(&origpte, PTE_V)) {
1827			*pte = newpte;
1828			if (page_is_managed(opa) && (opa != pa)) {
1829				if (om->md.pv_flags & PV_TABLE_REF)
1830					vm_page_flag_set(om, PG_REFERENCED);
1831				om->md.pv_flags &=
1832				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1833			}
1834			if (pte_test(&origpte, PTE_D)) {
1835				KASSERT(!pte_test(&origpte, PTE_RO),
1836				    ("pmap_enter: modified page not writable:"
1837				    " va: %p, pte: 0x%x", (void *)va, origpte));
1838				if (page_is_managed(opa))
1839					vm_page_dirty(om);
1840			}
1841			if (page_is_managed(opa) &&
1842			    TAILQ_EMPTY(&om->md.pv_list))
1843				vm_page_flag_clear(om, PG_WRITEABLE);
1844		} else {
1845			*pte = newpte;
1846		}
1847	}
1848	pmap_update_page(pmap, va, newpte);
1849
1850	/*
1851	 * Sync I & D caches for executable pages.  Do this only if the the
1852	 * target pmap belongs to the current process.  Otherwise, an
1853	 * unresolvable TLB miss may occur.
1854	 */
1855	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1856	    (prot & VM_PROT_EXECUTE)) {
1857		mips_icache_sync_range(va, PAGE_SIZE);
1858		mips_dcache_wbinv_range(va, PAGE_SIZE);
1859	}
1860	vm_page_unlock_queues();
1861	PMAP_UNLOCK(pmap);
1862}
1863
1864/*
1865 * this code makes some *MAJOR* assumptions:
1866 * 1. Current pmap & pmap exists.
1867 * 2. Not wired.
1868 * 3. Read access.
1869 * 4. No page table pages.
1870 * but is *MUCH* faster than pmap_enter...
1871 */
1872
1873void
1874pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1875{
1876
1877	vm_page_lock_queues();
1878	PMAP_LOCK(pmap);
1879	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1880	vm_page_unlock_queues();
1881	PMAP_UNLOCK(pmap);
1882}
1883
1884static vm_page_t
1885pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1886    vm_prot_t prot, vm_page_t mpte)
1887{
1888	pt_entry_t *pte;
1889	vm_offset_t pa;
1890
1891	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1892	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1893	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1894	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1895	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1896
1897	/*
1898	 * In the case that a page table page is not resident, we are
1899	 * creating it here.
1900	 */
1901	if (va < VM_MAXUSER_ADDRESS) {
1902		unsigned ptepindex;
1903		vm_offset_t pteva;
1904
1905		/*
1906		 * Calculate pagetable page index
1907		 */
1908		ptepindex = pmap_segshift(va);
1909		if (mpte && (mpte->pindex == ptepindex)) {
1910			mpte->wire_count++;
1911		} else {
1912			/*
1913			 * Get the page directory entry
1914			 */
1915			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1916
1917			/*
1918			 * If the page table page is mapped, we just
1919			 * increment the hold count, and activate it.
1920			 */
1921			if (pteva) {
1922				if (pmap->pm_ptphint &&
1923				    (pmap->pm_ptphint->pindex == ptepindex)) {
1924					mpte = pmap->pm_ptphint;
1925				} else {
1926					mpte = PHYS_TO_VM_PAGE(
1927						MIPS_KSEG0_TO_PHYS(pteva));
1928					pmap->pm_ptphint = mpte;
1929				}
1930				mpte->wire_count++;
1931			} else {
1932				mpte = _pmap_allocpte(pmap, ptepindex,
1933				    M_NOWAIT);
1934				if (mpte == NULL)
1935					return (mpte);
1936			}
1937		}
1938	} else {
1939		mpte = NULL;
1940	}
1941
1942	pte = pmap_pte(pmap, va);
1943	if (pte_test(pte, PTE_V)) {
1944		if (mpte != NULL) {
1945			mpte->wire_count--;
1946			mpte = NULL;
1947		}
1948		return (mpte);
1949	}
1950
1951	/*
1952	 * Enter on the PV list if part of our managed memory.
1953	 */
1954	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
1955	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
1956		if (mpte != NULL) {
1957			pmap_unwire_pte_hold(pmap, mpte);
1958			mpte = NULL;
1959		}
1960		return (mpte);
1961	}
1962
1963	/*
1964	 * Increment counters
1965	 */
1966	pmap->pm_stats.resident_count++;
1967
1968	pa = VM_PAGE_TO_PHYS(m);
1969
1970	/*
1971	 * Now validate mapping with RO protection
1972	 */
1973	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
1974
1975	if (is_cacheable_mem(pa))
1976		*pte |= PTE_C_CACHE;
1977	else
1978		*pte |= PTE_C_UNCACHED;
1979
1980	if (is_kernel_pmap(pmap))
1981		*pte |= PTE_G;
1982	else {
1983		*pte |= PTE_RO;
1984		/*
1985		 * Sync I & D caches.  Do this only if the the target pmap
1986		 * belongs to the current process.  Otherwise, an
1987		 * unresolvable TLB miss may occur. */
1988		if (pmap == &curproc->p_vmspace->vm_pmap) {
1989			va &= ~PAGE_MASK;
1990			mips_icache_sync_range(va, PAGE_SIZE);
1991			mips_dcache_wbinv_range(va, PAGE_SIZE);
1992		}
1993	}
1994	return (mpte);
1995}
1996
1997/*
1998 * Make a temporary mapping for a physical address.  This is only intended
1999 * to be used for panic dumps.
2000 *
2001 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2002 */
2003#if defined(__mips_n64)
2004void *
2005pmap_kenter_temporary(vm_paddr_t pa, int i)
2006{
2007	return ((void *)MIPS_PHYS_TO_XKPHYS_CACHED(pa));
2008}
2009void
2010pmap_kenter_temporary_free(vm_paddr_t pa)
2011{
2012}
2013#else
2014void *
2015pmap_kenter_temporary(vm_paddr_t pa, int i)
2016{
2017	vm_offset_t va;
2018	register_t intr;
2019	if (i != 0)
2020		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2021		    __func__);
2022
2023	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2024		va = MIPS_PHYS_TO_KSEG0(pa);
2025	} else {
2026		int cpu;
2027		struct local_sysmaps *sysm;
2028		pt_entry_t *pte, npte;
2029
2030		/* If this is used other than for dumps, we may need to leave
2031		 * interrupts disasbled on return. If crash dumps don't work when
2032		 * we get to this point, we might want to consider this (leaving things
2033		 * disabled as a starting point ;-)
2034	 	 */
2035		intr = intr_disable();
2036		cpu = PCPU_GET(cpuid);
2037		sysm = &sysmap_lmem[cpu];
2038		/* Since this is for the debugger, no locks or any other fun */
2039		npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE;
2040		pte = pmap_pte(kernel_pmap, sysm->base);
2041		*pte = npte;
2042		sysm->valid1 = 1;
2043		pmap_update_page(kernel_pmap, sysm->base, npte);
2044		va = sysm->base;
2045		intr_restore(intr);
2046	}
2047	return ((void *)va);
2048}
2049
2050void
2051pmap_kenter_temporary_free(vm_paddr_t pa)
2052{
2053	int cpu;
2054	register_t intr;
2055	struct local_sysmaps *sysm;
2056
2057	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2058		/* nothing to do for this case */
2059		return;
2060	}
2061	cpu = PCPU_GET(cpuid);
2062	sysm = &sysmap_lmem[cpu];
2063	if (sysm->valid1) {
2064		pt_entry_t *pte;
2065
2066		intr = intr_disable();
2067		pte = pmap_pte(kernel_pmap, sysm->base);
2068		*pte = PTE_G;
2069		pmap_invalidate_page(kernel_pmap, sysm->base);
2070		intr_restore(intr);
2071		sysm->valid1 = 0;
2072	}
2073}
2074#endif
2075
2076/*
2077 * Moved the code to Machine Independent
2078 *	 vm_map_pmap_enter()
2079 */
2080
2081/*
2082 * Maps a sequence of resident pages belonging to the same object.
2083 * The sequence begins with the given page m_start.  This page is
2084 * mapped at the given virtual address start.  Each subsequent page is
2085 * mapped at a virtual address that is offset from start by the same
2086 * amount as the page is offset from m_start within the object.  The
2087 * last page in the sequence is the page with the largest offset from
2088 * m_start that can be mapped at a virtual address less than the given
2089 * virtual address end.  Not every virtual page between start and end
2090 * is mapped; only those for which a resident page exists with the
2091 * corresponding offset from m_start are mapped.
2092 */
2093void
2094pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2095    vm_page_t m_start, vm_prot_t prot)
2096{
2097	vm_page_t m, mpte;
2098	vm_pindex_t diff, psize;
2099
2100	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2101	psize = atop(end - start);
2102	mpte = NULL;
2103	m = m_start;
2104	vm_page_lock_queues();
2105	PMAP_LOCK(pmap);
2106	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2107		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2108		    prot, mpte);
2109		m = TAILQ_NEXT(m, listq);
2110	}
2111	vm_page_unlock_queues();
2112 	PMAP_UNLOCK(pmap);
2113}
2114
2115/*
2116 * pmap_object_init_pt preloads the ptes for a given object
2117 * into the specified pmap.  This eliminates the blast of soft
2118 * faults on process startup and immediately after an mmap.
2119 */
2120void
2121pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2122    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2123{
2124	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2125	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2126	    ("pmap_object_init_pt: non-device object"));
2127}
2128
2129/*
2130 *	Routine:	pmap_change_wiring
2131 *	Function:	Change the wiring attribute for a map/virtual-address
2132 *			pair.
2133 *	In/out conditions:
2134 *			The mapping must already exist in the pmap.
2135 */
2136void
2137pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2138{
2139	pt_entry_t *pte;
2140
2141	if (pmap == NULL)
2142		return;
2143
2144	PMAP_LOCK(pmap);
2145	pte = pmap_pte(pmap, va);
2146
2147	if (wired && !pte_test(pte, PTE_W))
2148		pmap->pm_stats.wired_count++;
2149	else if (!wired && pte_test(pte, PTE_W))
2150		pmap->pm_stats.wired_count--;
2151
2152	/*
2153	 * Wiring is not a hardware characteristic so there is no need to
2154	 * invalidate TLB.
2155	 */
2156	if (wired)
2157		pte_set(pte, PTE_W);
2158	else
2159		pte_clear(pte, PTE_W);
2160	PMAP_UNLOCK(pmap);
2161}
2162
2163/*
2164 *	Copy the range specified by src_addr/len
2165 *	from the source map to the range dst_addr/len
2166 *	in the destination map.
2167 *
2168 *	This routine is only advisory and need not do anything.
2169 */
2170
2171void
2172pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2173    vm_size_t len, vm_offset_t src_addr)
2174{
2175}
2176
2177/*
2178 *	pmap_zero_page zeros the specified hardware page by mapping
2179 *	the page into KVM and using bzero to clear its contents.
2180 *
2181 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2182 */
2183#if defined (__mips_n64)
2184void
2185pmap_zero_page(vm_page_t m)
2186{
2187	vm_offset_t va;
2188	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2189
2190	va = MIPS_PHYS_TO_XKPHYS_CACHED(phys);
2191	bzero((caddr_t)va, PAGE_SIZE);
2192	mips_dcache_wbinv_range(va, PAGE_SIZE);
2193}
2194#else
2195void
2196pmap_zero_page(vm_page_t m)
2197{
2198	vm_offset_t va;
2199	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2200	register_t intr;
2201
2202	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2203		va = MIPS_PHYS_TO_KSEG0(phys);
2204
2205		bzero((caddr_t)va, PAGE_SIZE);
2206		mips_dcache_wbinv_range(va, PAGE_SIZE);
2207	} else {
2208		PMAP_LMEM_MAP1(va, phys);
2209
2210		bzero((caddr_t)va, PAGE_SIZE);
2211		mips_dcache_wbinv_range(va, PAGE_SIZE);
2212
2213		PMAP_LMEM_UNMAP();
2214	}
2215}
2216#endif
2217/*
2218 *	pmap_zero_page_area zeros the specified hardware page by mapping
2219 *	the page into KVM and using bzero to clear its contents.
2220 *
2221 *	off and size may not cover an area beyond a single hardware page.
2222 */
2223#if defined (__mips_n64)
2224void
2225pmap_zero_page_area(vm_page_t m, int off, int size)
2226{
2227	vm_offset_t va;
2228	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2229
2230	va = MIPS_PHYS_TO_XKPHYS_CACHED(phys);
2231	bzero((char *)(caddr_t)va + off, size);
2232	mips_dcache_wbinv_range(va + off, size);
2233}
2234#else
2235void
2236pmap_zero_page_area(vm_page_t m, int off, int size)
2237{
2238	vm_offset_t va;
2239	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2240	register_t intr;
2241
2242	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2243		va = MIPS_PHYS_TO_KSEG0(phys);
2244		bzero((char *)(caddr_t)va + off, size);
2245		mips_dcache_wbinv_range(va + off, size);
2246	} else {
2247		PMAP_LMEM_MAP1(va, phys);
2248
2249		bzero((char *)va + off, size);
2250		mips_dcache_wbinv_range(va + off, size);
2251
2252		PMAP_LMEM_UNMAP();
2253	}
2254}
2255#endif
2256
2257#if defined (__mips_n64)
2258void
2259pmap_zero_page_idle(vm_page_t m)
2260{
2261	vm_offset_t va;
2262	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2263
2264	va = MIPS_PHYS_TO_XKPHYS_CACHED(phys);
2265	bzero((caddr_t)va, PAGE_SIZE);
2266	mips_dcache_wbinv_range(va, PAGE_SIZE);
2267}
2268#else
2269void
2270pmap_zero_page_idle(vm_page_t m)
2271{
2272	vm_offset_t va;
2273	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2274	register_t intr;
2275
2276	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2277		va = MIPS_PHYS_TO_KSEG0(phys);
2278		bzero((caddr_t)va, PAGE_SIZE);
2279		mips_dcache_wbinv_range(va, PAGE_SIZE);
2280	} else {
2281		PMAP_LMEM_MAP1(va, phys);
2282
2283		bzero((caddr_t)va, PAGE_SIZE);
2284		mips_dcache_wbinv_range(va, PAGE_SIZE);
2285
2286		PMAP_LMEM_UNMAP();
2287	}
2288}
2289#endif
2290
2291/*
2292 *	pmap_copy_page copies the specified (machine independent)
2293 *	page by mapping the page into virtual memory and using
2294 *	bcopy to copy the page, one machine dependent page at a
2295 *	time.
2296 *
2297 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2298 */
2299#if defined (__mips_n64)
2300void
2301pmap_copy_page(vm_page_t src, vm_page_t dst)
2302{
2303	vm_offset_t va_src, va_dst;
2304	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2305	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2306
2307	pmap_flush_pvcache(src);
2308	mips_dcache_wbinv_range_index(MIPS_PHYS_TO_XKPHYS_CACHED(phy_dst), PAGE_SIZE);
2309	va_src = MIPS_PHYS_TO_XKPHYS_CACHED(phy_src);
2310	va_dst = MIPS_PHYS_TO_XKPHYS_CACHED(phy_dst);
2311	bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2312	mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2313}
2314#else
2315void
2316pmap_copy_page(vm_page_t src, vm_page_t dst)
2317{
2318	vm_offset_t va_src, va_dst;
2319	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2320	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2321	register_t intr;
2322
2323	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2324		/* easy case, all can be accessed via KSEG0 */
2325		/*
2326		 * Flush all caches for VA that are mapped to this page
2327		 * to make sure that data in SDRAM is up to date
2328		 */
2329		pmap_flush_pvcache(src);
2330		mips_dcache_wbinv_range_index(
2331		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2332		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2333		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2334		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2335		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2336	} else {
2337		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2338
2339		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2340		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2341
2342		PMAP_LMEM_UNMAP();
2343	}
2344}
2345#endif
2346
2347/*
2348 * Returns true if the pmap's pv is one of the first
2349 * 16 pvs linked to from this page.  This count may
2350 * be changed upwards or downwards in the future; it
2351 * is only necessary that true be returned for a small
2352 * subset of pmaps for proper page aging.
2353 */
2354boolean_t
2355pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2356{
2357	pv_entry_t pv;
2358	int loops = 0;
2359	boolean_t rv;
2360
2361	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2362	    ("pmap_page_exists_quick: page %p is not managed", m));
2363	rv = FALSE;
2364	vm_page_lock_queues();
2365	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2366		if (pv->pv_pmap == pmap) {
2367			rv = TRUE;
2368			break;
2369		}
2370		loops++;
2371		if (loops >= 16)
2372			break;
2373	}
2374	vm_page_unlock_queues();
2375	return (rv);
2376}
2377
2378/*
2379 * Remove all pages from specified address space
2380 * this aids process exit speeds.  Also, this code
2381 * is special cased for current process only, but
2382 * can have the more generic (and slightly slower)
2383 * mode enabled.  This is much faster than pmap_remove
2384 * in the case of running down an entire address space.
2385 */
2386void
2387pmap_remove_pages(pmap_t pmap)
2388{
2389	pt_entry_t *pte, tpte;
2390	pv_entry_t pv, npv;
2391	vm_page_t m;
2392
2393	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2394		printf("warning: pmap_remove_pages called with non-current pmap\n");
2395		return;
2396	}
2397	vm_page_lock_queues();
2398	PMAP_LOCK(pmap);
2399	sched_pin();
2400	//XXX need to be TAILQ_FOREACH_SAFE ?
2401	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2402
2403		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2404		if (!pte_test(pte, PTE_V))
2405			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2406		tpte = *pte;
2407
2408/*
2409 * We cannot remove wired pages from a process' mapping at this time
2410 */
2411		if (pte_test(&tpte, PTE_W)) {
2412			npv = TAILQ_NEXT(pv, pv_plist);
2413			continue;
2414		}
2415		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2416
2417		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2418		KASSERT(m != NULL,
2419		    ("pmap_remove_pages: bad tpte %x", tpte));
2420
2421		pv->pv_pmap->pm_stats.resident_count--;
2422
2423		/*
2424		 * Update the vm_page_t clean and reference bits.
2425		 */
2426		if (pte_test(&tpte, PTE_D)) {
2427			vm_page_dirty(m);
2428		}
2429		npv = TAILQ_NEXT(pv, pv_plist);
2430		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2431
2432		m->md.pv_list_count--;
2433		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2434		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2435			vm_page_flag_clear(m, PG_WRITEABLE);
2436		}
2437		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2438		free_pv_entry(pv);
2439	}
2440	sched_unpin();
2441	pmap_invalidate_all(pmap);
2442	PMAP_UNLOCK(pmap);
2443	vm_page_unlock_queues();
2444}
2445
2446/*
2447 * pmap_testbit tests bits in pte's
2448 * note that the testbit/changebit routines are inline,
2449 * and a lot of things compile-time evaluate.
2450 */
2451static boolean_t
2452pmap_testbit(vm_page_t m, int bit)
2453{
2454	pv_entry_t pv;
2455	pt_entry_t *pte;
2456	boolean_t rv = FALSE;
2457
2458	if (m->flags & PG_FICTITIOUS)
2459		return rv;
2460
2461	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2462		return rv;
2463
2464	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2465	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2466#if defined(PMAP_DIAGNOSTIC)
2467		if (!pv->pv_pmap) {
2468			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2469			continue;
2470		}
2471#endif
2472		PMAP_LOCK(pv->pv_pmap);
2473		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2474		rv = pte_test(pte, bit);
2475		PMAP_UNLOCK(pv->pv_pmap);
2476		if (rv)
2477			break;
2478	}
2479	return (rv);
2480}
2481
2482/*
2483 * this routine is used to clear dirty bits in ptes
2484 */
2485static __inline void
2486pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2487{
2488	pv_entry_t pv;
2489	pt_entry_t *pte;
2490
2491	if (m->flags & PG_FICTITIOUS)
2492		return;
2493
2494	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2495	/*
2496	 * Loop over all current mappings setting/clearing as appropos If
2497	 * setting RO do we need to clear the VAC?
2498	 */
2499	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2500#if defined(PMAP_DIAGNOSTIC)
2501		if (!pv->pv_pmap) {
2502			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2503			continue;
2504		}
2505#endif
2506
2507		PMAP_LOCK(pv->pv_pmap);
2508		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2509
2510		if (setem) {
2511			*(int *)pte |= bit;
2512			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2513		} else {
2514			vm_offset_t pbits = *(vm_offset_t *)pte;
2515
2516			if (pbits & bit) {
2517				if (bit == PTE_D) {
2518					if (pbits & PTE_D) {
2519						vm_page_dirty(m);
2520					}
2521					*(int *)pte = (pbits & ~PTE_D) | PTE_RO;
2522				} else {
2523					*(int *)pte = pbits & ~bit;
2524				}
2525				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2526			}
2527		}
2528		PMAP_UNLOCK(pv->pv_pmap);
2529	}
2530	if (!setem && bit == PTE_D)
2531		vm_page_flag_clear(m, PG_WRITEABLE);
2532}
2533
2534/*
2535 *	pmap_page_wired_mappings:
2536 *
2537 *	Return the number of managed mappings to the given physical page
2538 *	that are wired.
2539 */
2540int
2541pmap_page_wired_mappings(vm_page_t m)
2542{
2543	pv_entry_t pv;
2544	int count;
2545
2546	count = 0;
2547	if ((m->flags & PG_FICTITIOUS) != 0)
2548		return (count);
2549	vm_page_lock_queues();
2550	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2551	    if (pv->pv_wired)
2552		count++;
2553	vm_page_unlock_queues();
2554	return (count);
2555}
2556
2557/*
2558 * Clear the write and modified bits in each of the given page's mappings.
2559 */
2560void
2561pmap_remove_write(vm_page_t m)
2562{
2563	pv_entry_t pv, npv;
2564	vm_offset_t va;
2565	pt_entry_t *pte;
2566
2567	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2568	    ("pmap_remove_write: page %p is not managed", m));
2569
2570	/*
2571	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2572	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2573	 * is clear, no page table entries need updating.
2574	 */
2575	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2576	if ((m->oflags & VPO_BUSY) == 0 &&
2577	    (m->flags & PG_WRITEABLE) == 0)
2578		return;
2579
2580	/*
2581	 * Loop over all current mappings setting/clearing as appropos.
2582	 */
2583	vm_page_lock_queues();
2584	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2585		npv = TAILQ_NEXT(pv, pv_plist);
2586		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2587		if (pte == NULL || !pte_test(pte, PTE_V))
2588			panic("page on pm_pvlist has no pte\n");
2589
2590		va = pv->pv_va;
2591		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2592		    VM_PROT_READ | VM_PROT_EXECUTE);
2593	}
2594	vm_page_flag_clear(m, PG_WRITEABLE);
2595	vm_page_unlock_queues();
2596}
2597
2598/*
2599 *	pmap_ts_referenced:
2600 *
2601 *	Return the count of reference bits for a page, clearing all of them.
2602 */
2603int
2604pmap_ts_referenced(vm_page_t m)
2605{
2606
2607	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2608	    ("pmap_ts_referenced: page %p is not managed", m));
2609	if (m->md.pv_flags & PV_TABLE_REF) {
2610		vm_page_lock_queues();
2611		m->md.pv_flags &= ~PV_TABLE_REF;
2612		vm_page_unlock_queues();
2613		return (1);
2614	}
2615	return (0);
2616}
2617
2618/*
2619 *	pmap_is_modified:
2620 *
2621 *	Return whether or not the specified physical page was modified
2622 *	in any physical maps.
2623 */
2624boolean_t
2625pmap_is_modified(vm_page_t m)
2626{
2627	boolean_t rv;
2628
2629	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2630	    ("pmap_is_modified: page %p is not managed", m));
2631
2632	/*
2633	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2634	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2635	 * is clear, no PTEs can have PTE_D set.
2636	 */
2637	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2638	if ((m->oflags & VPO_BUSY) == 0 &&
2639	    (m->flags & PG_WRITEABLE) == 0)
2640		return (FALSE);
2641	vm_page_lock_queues();
2642	if (m->md.pv_flags & PV_TABLE_MOD)
2643		rv = TRUE;
2644	else
2645		rv = pmap_testbit(m, PTE_D);
2646	vm_page_unlock_queues();
2647	return (rv);
2648}
2649
2650/* N/C */
2651
2652/*
2653 *	pmap_is_prefaultable:
2654 *
2655 *	Return whether or not the specified virtual address is elgible
2656 *	for prefault.
2657 */
2658boolean_t
2659pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2660{
2661	pt_entry_t *pte;
2662	boolean_t rv;
2663
2664	rv = FALSE;
2665	PMAP_LOCK(pmap);
2666	if (pmap_segmap(pmap, addr) != NULL) {
2667		pte = pmap_pte(pmap, addr);
2668		rv = (*pte == 0);
2669	}
2670	PMAP_UNLOCK(pmap);
2671	return (rv);
2672}
2673
2674/*
2675 *	Clear the modify bits on the specified physical page.
2676 */
2677void
2678pmap_clear_modify(vm_page_t m)
2679{
2680
2681	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2682	    ("pmap_clear_modify: page %p is not managed", m));
2683	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2684	KASSERT((m->oflags & VPO_BUSY) == 0,
2685	    ("pmap_clear_modify: page %p is busy", m));
2686
2687	/*
2688	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_D set.
2689	 * If the object containing the page is locked and the page is not
2690	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2691	 */
2692	if ((m->flags & PG_WRITEABLE) == 0)
2693		return;
2694	vm_page_lock_queues();
2695	if (m->md.pv_flags & PV_TABLE_MOD) {
2696		pmap_changebit(m, PTE_D, FALSE);
2697		m->md.pv_flags &= ~PV_TABLE_MOD;
2698	}
2699	vm_page_unlock_queues();
2700}
2701
2702/*
2703 *	pmap_is_referenced:
2704 *
2705 *	Return whether or not the specified physical page was referenced
2706 *	in any physical maps.
2707 */
2708boolean_t
2709pmap_is_referenced(vm_page_t m)
2710{
2711
2712	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2713	    ("pmap_is_referenced: page %p is not managed", m));
2714	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2715}
2716
2717/*
2718 *	pmap_clear_reference:
2719 *
2720 *	Clear the reference bit on the specified physical page.
2721 */
2722void
2723pmap_clear_reference(vm_page_t m)
2724{
2725
2726	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2727	    ("pmap_clear_reference: page %p is not managed", m));
2728	vm_page_lock_queues();
2729	if (m->md.pv_flags & PV_TABLE_REF) {
2730		m->md.pv_flags &= ~PV_TABLE_REF;
2731	}
2732	vm_page_unlock_queues();
2733}
2734
2735/*
2736 * Miscellaneous support routines follow
2737 */
2738
2739/*
2740 * Map a set of physical memory pages into the kernel virtual
2741 * address space. Return a pointer to where it is mapped. This
2742 * routine is intended to be used for mapping device memory,
2743 * NOT real memory.
2744 */
2745
2746/*
2747 * Map a set of physical memory pages into the kernel virtual
2748 * address space. Return a pointer to where it is mapped. This
2749 * routine is intended to be used for mapping device memory,
2750 * NOT real memory.
2751 *
2752 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
2753 */
2754#if defined(__mips_n64)
2755void *
2756pmap_mapdev(vm_offset_t pa, vm_size_t size)
2757{
2758	return ((void *)MIPS_PHYS_TO_XKPHYS_UNCACHED(pa));
2759}
2760
2761void
2762pmap_unmapdev(vm_offset_t va, vm_size_t size)
2763{
2764}
2765#else
2766void *
2767pmap_mapdev(vm_offset_t pa, vm_size_t size)
2768{
2769        vm_offset_t va, tmpva, offset;
2770
2771	/*
2772	 * KSEG1 maps only first 512M of phys address space. For
2773	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2774	 */
2775	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2776		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2777	else {
2778		offset = pa & PAGE_MASK;
2779		size = roundup(size + offset, PAGE_SIZE);
2780
2781		va = kmem_alloc_nofault(kernel_map, size);
2782		if (!va)
2783			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2784		pa = trunc_page(pa);
2785		for (tmpva = va; size > 0;) {
2786			pmap_kenter(tmpva, pa);
2787			size -= PAGE_SIZE;
2788			tmpva += PAGE_SIZE;
2789			pa += PAGE_SIZE;
2790		}
2791	}
2792
2793	return ((void *)(va + offset));
2794}
2795
2796void
2797pmap_unmapdev(vm_offset_t va, vm_size_t size)
2798{
2799	vm_offset_t base, offset, tmpva;
2800
2801	/* If the address is within KSEG1 then there is nothing to do */
2802	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2803		return;
2804
2805	base = trunc_page(va);
2806	offset = va & PAGE_MASK;
2807	size = roundup(size + offset, PAGE_SIZE);
2808	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2809		pmap_kremove(tmpva);
2810	kmem_free(kernel_map, base, size);
2811}
2812#endif
2813
2814/*
2815 * perform the pmap work for mincore
2816 */
2817int
2818pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2819{
2820	pt_entry_t *ptep, pte;
2821	vm_offset_t pa;
2822	vm_page_t m;
2823	int val;
2824	boolean_t managed;
2825
2826	PMAP_LOCK(pmap);
2827retry:
2828	ptep = pmap_pte(pmap, addr);
2829	pte = (ptep != NULL) ? *ptep : 0;
2830	if (!pte_test(&pte, PTE_V)) {
2831		val = 0;
2832		goto out;
2833	}
2834	val = MINCORE_INCORE;
2835	if (pte_test(&pte, PTE_D))
2836		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2837	pa = TLBLO_PTE_TO_PA(pte);
2838	managed = page_is_managed(pa);
2839	if (managed) {
2840		/*
2841		 * This may falsely report the given address as
2842		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2843		 * per-PTE reference information, it is impossible to
2844		 * determine if the address is MINCORE_REFERENCED.
2845		 */
2846		m = PHYS_TO_VM_PAGE(pa);
2847		if ((m->flags & PG_REFERENCED) != 0)
2848			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2849	}
2850	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2851	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2852		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2853		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2854			goto retry;
2855	} else
2856out:
2857		PA_UNLOCK_COND(*locked_pa);
2858	PMAP_UNLOCK(pmap);
2859	return (val);
2860}
2861
2862void
2863pmap_activate(struct thread *td)
2864{
2865	pmap_t pmap, oldpmap;
2866	struct proc *p = td->td_proc;
2867
2868	critical_enter();
2869
2870	pmap = vmspace_pmap(p->p_vmspace);
2871	oldpmap = PCPU_GET(curpmap);
2872
2873	if (oldpmap)
2874		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2875	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2876	pmap_asid_alloc(pmap);
2877	if (td == curthread) {
2878		PCPU_SET(segbase, pmap->pm_segtab);
2879		mips_wr_entryhi(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2880	}
2881
2882	PCPU_SET(curpmap, pmap);
2883	critical_exit();
2884}
2885
2886void
2887pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2888{
2889}
2890
2891/*
2892 *	Increase the starting virtual address of the given mapping if a
2893 *	different alignment might result in more superpage mappings.
2894 */
2895void
2896pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2897    vm_offset_t *addr, vm_size_t size)
2898{
2899	vm_offset_t superpage_offset;
2900
2901	if (size < NBSEG)
2902		return;
2903	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2904		offset += ptoa(object->pg_color);
2905	superpage_offset = offset & SEGMASK;
2906	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
2907	    (*addr & SEGMASK) == superpage_offset)
2908		return;
2909	if ((*addr & SEGMASK) < superpage_offset)
2910		*addr = (*addr & ~SEGMASK) + superpage_offset;
2911	else
2912		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
2913}
2914
2915/*
2916 * 	Increase the starting virtual address of the given mapping so
2917 * 	that it is aligned to not be the second page in a TLB entry.
2918 * 	This routine assumes that the length is appropriately-sized so
2919 * 	that the allocation does not share a TLB entry at all if required.
2920 */
2921void
2922pmap_align_tlb(vm_offset_t *addr)
2923{
2924	if ((*addr & PAGE_SIZE) == 0)
2925		return;
2926	*addr += PAGE_SIZE;
2927	return;
2928}
2929
2930int pmap_pid_dump(int pid);
2931
2932int
2933pmap_pid_dump(int pid)
2934{
2935	pmap_t pmap;
2936	struct proc *p;
2937	int npte = 0;
2938	int index;
2939
2940	sx_slock(&allproc_lock);
2941	LIST_FOREACH(p, &allproc, p_list) {
2942		if (p->p_pid != pid)
2943			continue;
2944
2945		if (p->p_vmspace) {
2946			int i, j;
2947
2948			printf("vmspace is %p\n",
2949			       p->p_vmspace);
2950			index = 0;
2951			pmap = vmspace_pmap(p->p_vmspace);
2952			printf("pmap asid:%x generation:%x\n",
2953			       pmap->pm_asid[0].asid,
2954			       pmap->pm_asid[0].gen);
2955			for (i = 0; i < NUSERPGTBLS; i++) {
2956				pd_entry_t *pde;
2957				pt_entry_t *pte;
2958				unsigned base = i << SEGSHIFT;
2959
2960				pde = &pmap->pm_segtab[i];
2961				if (pde && *pde != 0) {
2962					for (j = 0; j < 1024; j++) {
2963						vm_offset_t va = base +
2964						(j << PAGE_SHIFT);
2965
2966						pte = pmap_pte(pmap, va);
2967						if (pte && pte_test(pte, PTE_V)) {
2968							vm_offset_t pa;
2969							vm_page_t m;
2970
2971							pa = TLBLO_PFN_TO_PA(*pte);
2972							m = PHYS_TO_VM_PAGE(pa);
2973							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2974							    (void *)va,
2975							    (void *)pa,
2976							    m->hold_count,
2977							    m->wire_count,
2978							    m->flags);
2979							npte++;
2980							index++;
2981							if (index >= 2) {
2982								index = 0;
2983								printf("\n");
2984							} else {
2985								printf(" ");
2986							}
2987						}
2988					}
2989				}
2990			}
2991		} else {
2992		  printf("Process pid:%d has no vm_space\n", pid);
2993		}
2994		break;
2995	}
2996	sx_sunlock(&allproc_lock);
2997	return npte;
2998}
2999
3000
3001#if defined(DEBUG)
3002
3003static void pads(pmap_t pm);
3004void pmap_pvdump(vm_offset_t pa);
3005
3006/* print address space of pmap*/
3007static void
3008pads(pmap_t pm)
3009{
3010	unsigned va, i, j;
3011	pt_entry_t *ptep;
3012
3013	if (pm == kernel_pmap)
3014		return;
3015	for (i = 0; i < NPTEPG; i++)
3016		if (pm->pm_segtab[i])
3017			for (j = 0; j < NPTEPG; j++) {
3018				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3019				if (pm == kernel_pmap && va < KERNBASE)
3020					continue;
3021				if (pm != kernel_pmap &&
3022				    va >= VM_MAXUSER_ADDRESS)
3023					continue;
3024				ptep = pmap_pte(pm, va);
3025				if (pmap_pte_v(ptep))
3026					printf("%x:%x ", va, *(int *)ptep);
3027			}
3028
3029}
3030
3031void
3032pmap_pvdump(vm_offset_t pa)
3033{
3034	register pv_entry_t pv;
3035	vm_page_t m;
3036
3037	printf("pa %x", pa);
3038	m = PHYS_TO_VM_PAGE(pa);
3039	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3040	    pv = TAILQ_NEXT(pv, pv_list)) {
3041		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3042		pads(pv->pv_pmap);
3043	}
3044	printf(" ");
3045}
3046
3047/* N/C */
3048#endif
3049
3050
3051/*
3052 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3053 * It takes almost as much or more time to search the TLB for a
3054 * specific ASID and flush those entries as it does to flush the entire TLB.
3055 * Therefore, when we allocate a new ASID, we just take the next number. When
3056 * we run out of numbers, we flush the TLB, increment the generation count
3057 * and start over. ASID zero is reserved for kernel use.
3058 */
3059static void
3060pmap_asid_alloc(pmap)
3061	pmap_t pmap;
3062{
3063	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3064	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3065	else {
3066		if (PCPU_GET(next_asid) == pmap_max_asid) {
3067			tlb_invalidate_all_user(NULL);
3068			PCPU_SET(asid_generation,
3069			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3070			if (PCPU_GET(asid_generation) == 0) {
3071				PCPU_SET(asid_generation, 1);
3072			}
3073			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3074		}
3075		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3076		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3077		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3078	}
3079}
3080
3081int
3082page_is_managed(vm_offset_t pa)
3083{
3084	vm_offset_t pgnum = mips_btop(pa);
3085
3086	if (pgnum >= first_page) {
3087		vm_page_t m;
3088
3089		m = PHYS_TO_VM_PAGE(pa);
3090		if (m == NULL)
3091			return 0;
3092		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3093			return 1;
3094	}
3095	return 0;
3096}
3097
3098static int
3099init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3100{
3101	int rw;
3102
3103	if (!(prot & VM_PROT_WRITE))
3104		rw =  PTE_V | PTE_RO | PTE_C_CACHE;
3105	else if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3106		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3107			rw =  PTE_V | PTE_D | PTE_C_CACHE;
3108		else
3109			rw = PTE_V | PTE_C_CACHE;
3110		vm_page_flag_set(m, PG_WRITEABLE);
3111	} else
3112		/* Needn't emulate a modified bit for unmanaged pages. */
3113		rw =  PTE_V | PTE_D | PTE_C_CACHE;
3114	return (rw);
3115}
3116
3117/*
3118 *	pmap_set_modified:
3119 *
3120 *	Sets the page modified and reference bits for the specified page.
3121 */
3122void
3123pmap_set_modified(vm_offset_t pa)
3124{
3125
3126	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3127}
3128
3129
3130/*
3131 *	Routine:	pmap_kextract
3132 *	Function:
3133 *		Extract the physical page address associated
3134 *		virtual address.
3135 */
3136 /* PMAP_INLINE */ vm_offset_t
3137pmap_kextract(vm_offset_t va)
3138{
3139	int mapped;
3140
3141	/*
3142	 * First, the direct-mapped regions.
3143	 */
3144#if defined(__mips_n64)
3145	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3146		return (MIPS_XKPHYS_TO_PHYS(va));
3147#endif
3148
3149	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3150		return (MIPS_KSEG0_TO_PHYS(va));
3151
3152	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3153		return (MIPS_KSEG1_TO_PHYS(va));
3154
3155	/*
3156	 * User virtual addresses.
3157	 */
3158	if (va < VM_MAXUSER_ADDRESS) {
3159		pt_entry_t *ptep;
3160
3161		if (curproc && curproc->p_vmspace) {
3162			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3163			if (ptep) {
3164				return (TLBLO_PTE_TO_PA(*ptep) |
3165				    (va & PAGE_MASK));
3166			}
3167			return (0);
3168		}
3169	}
3170
3171	/*
3172	 * Should be kernel virtual here, otherwise fail
3173	 */
3174	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3175#if defined(__mips_n64)
3176	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3177#endif
3178	/*
3179	 * Kernel virtual.
3180	 */
3181
3182	if (mapped) {
3183		pt_entry_t *ptep;
3184
3185		/* Is the kernel pmap initialized? */
3186		if (kernel_pmap->pm_active) {
3187			/* It's inside the virtual address range */
3188			ptep = pmap_pte(kernel_pmap, va);
3189			if (ptep) {
3190				return (TLBLO_PTE_TO_PA(*ptep) |
3191				    (va & PAGE_MASK));
3192			}
3193		}
3194		return (0);
3195	}
3196
3197	panic("%s for unknown address space %p.", __func__, (void *)va);
3198}
3199
3200
3201void
3202pmap_flush_pvcache(vm_page_t m)
3203{
3204	pv_entry_t pv;
3205
3206	if (m != NULL) {
3207		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3208	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3209			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3210		}
3211	}
3212}
3213