pmap.c revision 209314
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 209314 2010-06-18 20:07:30Z jchandra $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_phys.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/uma.h>
94#include <sys/pcpu.h>
95#include <sys/sched.h>
96#ifdef SMP
97#include <sys/smp.h>
98#endif
99
100#include <machine/cache.h>
101#include <machine/md_var.h>
102#include <machine/tlb.h>
103
104#if defined(DIAGNOSTIC)
105#define	PMAP_DIAGNOSTIC
106#endif
107
108#undef PMAP_DEBUG
109
110#ifndef PMAP_SHPGPERPROC
111#define	PMAP_SHPGPERPROC 200
112#endif
113
114#if !defined(PMAP_DIAGNOSTIC)
115#define	PMAP_INLINE __inline
116#else
117#define	PMAP_INLINE
118#endif
119
120/*
121 * Get PDEs and PTEs for user/kernel address space
122 */
123#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
124#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
125
126#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
127#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
128#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
129#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
130
131#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
132#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
133
134#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
135#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
136#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
137#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
138#define	is_kernel_pmap(x)	((x) == kernel_pmap)
139
140struct pmap kernel_pmap_store;
141pd_entry_t *kernel_segmap;
142
143vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
144vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
145
146static int nkpt;
147unsigned pmap_max_asid;		/* max ASID supported by the system */
148
149
150#define	PMAP_ASID_RESERVED	0
151
152vm_offset_t kernel_vm_end;
153
154static void pmap_asid_alloc(pmap_t pmap);
155
156/*
157 * Data for the pv entry allocation mechanism
158 */
159static uma_zone_t pvzone;
160static struct vm_object pvzone_obj;
161static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
162
163static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
164static pv_entry_t get_pv_entry(pmap_t locked_pmap);
165static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
166static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
167    vm_offset_t va);
168static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
169
170static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
171    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
172static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
173static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
174static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
175static boolean_t pmap_testbit(vm_page_t m, int bit);
176static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
177    vm_offset_t va, vm_page_t m);
178
179static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
180
181static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
182static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
183static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
184static vm_page_t pmap_alloc_pte_page(pmap_t, unsigned int, int, vm_offset_t *);
185static void pmap_release_pte_page(vm_page_t);
186
187#ifdef SMP
188static void pmap_invalidate_page_action(void *arg);
189static void pmap_invalidate_all_action(void *arg);
190static void pmap_update_page_action(void *arg);
191#endif
192
193static void pmap_ptpgzone_dtor(void *mem, int size, void *arg);
194static void *pmap_ptpgzone_allocf(uma_zone_t, int, u_int8_t *, int);
195static uma_zone_t ptpgzone;
196
197struct local_sysmaps {
198	vm_offset_t base;
199	uint16_t valid1, valid2;
200};
201
202/* This structure is for large memory
203 * above 512Meg. We can't (in 32 bit mode)
204 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
205 * macros since we can't see the memory and must
206 * map it in when we need to access it. In 64
207 * bit mode this goes away.
208 */
209static struct local_sysmaps sysmap_lmem[MAXCPU];
210
211#define	PMAP_LMEM_MAP1(va, phys)					\
212	int cpu;							\
213	struct local_sysmaps *sysm;					\
214	pt_entry_t *pte, npte;						\
215									\
216	intr = intr_disable();						\
217	cpu = PCPU_GET(cpuid);						\
218	sysm = &sysmap_lmem[cpu];					\
219	va = sysm->base;						\
220	npte = TLBLO_PA_TO_PFN(phys) |					\
221	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
222	pte = pmap_pte(kernel_pmap, va);				\
223	*pte = npte;							\
224	sysm->valid1 = 1;
225
226#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
227	int cpu;							\
228	struct local_sysmaps *sysm;					\
229	pt_entry_t *pte, npte;						\
230									\
231	intr = intr_disable();						\
232	cpu = PCPU_GET(cpuid);						\
233	sysm = &sysmap_lmem[cpu];					\
234	va1 = sysm->base;						\
235	va2 = sysm->base + PAGE_SIZE;					\
236	npte = TLBLO_PA_TO_PFN(phys1) |					\
237	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
238	pte = pmap_pte(kernel_pmap, va1);				\
239	*pte = npte;							\
240	npte =  TLBLO_PA_TO_PFN(phys2) |				\
241	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
242	pte = pmap_pte(kernel_pmap, va2);				\
243	*pte = npte;							\
244	sysm->valid1 = 1;						\
245	sysm->valid2 = 1;
246
247#define	PMAP_LMEM_UNMAP()						\
248	pte = pmap_pte(kernel_pmap, sysm->base);			\
249	*pte = PTE_G;							\
250	tlb_invalidate_address(kernel_pmap, sysm->base);		\
251	sysm->valid1 = 0;						\
252	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
253	*pte = PTE_G;							\
254	tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);	\
255	sysm->valid2 = 0;						\
256	intr_restore(intr)
257
258pd_entry_t
259pmap_segmap(pmap_t pmap, vm_offset_t va)
260{
261	if (pmap->pm_segtab)
262		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
263	else
264		return ((pd_entry_t)0);
265}
266
267/*
268 *	Routine:	pmap_pte
269 *	Function:
270 *		Extract the page table entry associated
271 *		with the given map/virtual_address pair.
272 */
273pt_entry_t *
274pmap_pte(pmap_t pmap, vm_offset_t va)
275{
276	pt_entry_t *pdeaddr;
277
278	if (pmap) {
279		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
280		if (pdeaddr) {
281			return pdeaddr + vad_to_pte_offset(va);
282		}
283	}
284	return ((pt_entry_t *)0);
285}
286
287
288vm_offset_t
289pmap_steal_memory(vm_size_t size)
290{
291	vm_size_t bank_size;
292	vm_offset_t pa, va;
293
294	size = round_page(size);
295
296	bank_size = phys_avail[1] - phys_avail[0];
297	while (size > bank_size) {
298		int i;
299
300		for (i = 0; phys_avail[i + 2]; i += 2) {
301			phys_avail[i] = phys_avail[i + 2];
302			phys_avail[i + 1] = phys_avail[i + 3];
303		}
304		phys_avail[i] = 0;
305		phys_avail[i + 1] = 0;
306		if (!phys_avail[0])
307			panic("pmap_steal_memory: out of memory");
308		bank_size = phys_avail[1] - phys_avail[0];
309	}
310
311	pa = phys_avail[0];
312	phys_avail[0] += size;
313	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
314		panic("Out of memory below 512Meg?");
315	}
316	va = MIPS_PHYS_TO_KSEG0(pa);
317	bzero((caddr_t)va, size);
318	return va;
319}
320
321/*
322 *	Bootstrap the system enough to run with virtual memory.  This
323 * assumes that the phys_avail array has been initialized.
324 */
325void
326pmap_bootstrap(void)
327{
328	pt_entry_t *pgtab;
329	pt_entry_t *pte;
330	int i, j;
331	int memory_larger_than_512meg = 0;
332
333	/* Sort. */
334again:
335	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
336		/*
337		 * Keep the memory aligned on page boundary.
338		 */
339		phys_avail[i] = round_page(phys_avail[i]);
340		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
341
342		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
343			memory_larger_than_512meg++;
344		if (i < 2)
345			continue;
346		if (phys_avail[i - 2] > phys_avail[i]) {
347			vm_paddr_t ptemp[2];
348
349
350			ptemp[0] = phys_avail[i + 0];
351			ptemp[1] = phys_avail[i + 1];
352
353			phys_avail[i + 0] = phys_avail[i - 2];
354			phys_avail[i + 1] = phys_avail[i - 1];
355
356			phys_avail[i - 2] = ptemp[0];
357			phys_avail[i - 1] = ptemp[1];
358			goto again;
359		}
360	}
361
362	/*
363	 * Copy the phys_avail[] array before we start stealing memory from it.
364	 */
365	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
366		physmem_desc[i] = phys_avail[i];
367		physmem_desc[i + 1] = phys_avail[i + 1];
368	}
369
370	Maxmem = atop(phys_avail[i - 1]);
371
372	if (bootverbose) {
373		printf("Physical memory chunk(s):\n");
374		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
375			vm_paddr_t size;
376
377			size = phys_avail[i + 1] - phys_avail[i];
378			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
379			    (uintmax_t) phys_avail[i],
380			    (uintmax_t) phys_avail[i + 1] - 1,
381			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
382		}
383		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
384	}
385	/*
386	 * Steal the message buffer from the beginning of memory.
387	 */
388	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
389	msgbufinit(msgbufp, MSGBUF_SIZE);
390
391	/*
392	 * Steal thread0 kstack.
393	 */
394	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
395
396
397	virtual_avail = VM_MIN_KERNEL_ADDRESS;
398	virtual_end = VM_MAX_KERNEL_ADDRESS;
399
400#ifdef SMP
401	/*
402	 * Steal some virtual address space to map the pcpu area.
403	 */
404	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
405	pcpup = (struct pcpu *)virtual_avail;
406	virtual_avail += PAGE_SIZE * 2;
407
408	/*
409	 * Initialize the wired TLB entry mapping the pcpu region for
410	 * the BSP at 'pcpup'. Up until this point we were operating
411	 * with the 'pcpup' for the BSP pointing to a virtual address
412	 * in KSEG0 so there was no need for a TLB mapping.
413	 */
414	mips_pcpu_tlb_init(PCPU_ADDR(0));
415
416	if (bootverbose)
417		printf("pcpu is available at virtual address %p.\n", pcpup);
418#endif
419
420	/*
421	 * Steal some virtual space that will not be in kernel_segmap. This
422	 * va memory space will be used to map in kernel pages that are
423	 * outside the 512Meg region. Note that we only do this steal when
424	 * we do have memory in this region, that way for systems with
425	 * smaller memory we don't "steal" any va ranges :-)
426	 */
427	if (memory_larger_than_512meg) {
428		for (i = 0; i < MAXCPU; i++) {
429			sysmap_lmem[i].base = virtual_avail;
430			virtual_avail += PAGE_SIZE * 2;
431			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
432		}
433	}
434
435	/*
436	 * Allocate segment table for the kernel
437	 */
438	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
439
440	/*
441	 * Allocate second level page tables for the kernel
442	 */
443	nkpt = NKPT;
444	if (memory_larger_than_512meg) {
445		/*
446		 * If we have a large memory system we CANNOT afford to hit
447		 * pmap_growkernel() and allocate memory. Since we MAY end
448		 * up with a page that is NOT mappable. For that reason we
449		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
450		 * this gives us 480meg of kernel virtual addresses at the
451		 * cost of 120 pages (each page gets us 4 Meg). Since the
452		 * kernel starts at virtual_avail, we can use this to
453		 * calculate how many entris are left from there to the end
454		 * of the segmap, we want to allocate all of it, which would
455		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
456		 * in about 256 entries or so instead of the 120.
457		 */
458		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
459	}
460	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
461
462	/*
463	 * The R[4-7]?00 stores only one copy of the Global bit in the
464	 * translation lookaside buffer for each 2 page entry. Thus invalid
465	 * entrys must have the Global bit set so when Entry LO and Entry HI
466	 * G bits are anded together they will produce a global bit to store
467	 * in the tlb.
468	 */
469	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
470		*pte = PTE_G;
471
472	/*
473	 * The segment table contains the KVA of the pages in the second
474	 * level page table.
475	 */
476	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
477		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
478
479	/*
480	 * The kernel's pmap is statically allocated so we don't have to use
481	 * pmap_create, which is unlikely to work correctly at this part of
482	 * the boot sequence (XXX and which no longer exists).
483	 */
484	PMAP_LOCK_INIT(kernel_pmap);
485	kernel_pmap->pm_segtab = kernel_segmap;
486	kernel_pmap->pm_active = ~0;
487	TAILQ_INIT(&kernel_pmap->pm_pvlist);
488	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
489	kernel_pmap->pm_asid[0].gen = 0;
490	pmap_max_asid = VMNUM_PIDS;
491	mips_wr_entryhi(0);
492}
493
494/*
495 * Initialize a vm_page's machine-dependent fields.
496 */
497void
498pmap_page_init(vm_page_t m)
499{
500
501	TAILQ_INIT(&m->md.pv_list);
502	m->md.pv_list_count = 0;
503	m->md.pv_flags = 0;
504}
505
506/*
507 *	Initialize the pmap module.
508 *	Called by vm_init, to initialize any structures that the pmap
509 *	system needs to map virtual memory.
510 *	pmap_init has been enhanced to support in a fairly consistant
511 *	way, discontiguous physical memory.
512 */
513void
514pmap_init(void)
515{
516
517	/*
518	 * Initialize the address space (zone) for the pv entries.  Set a
519	 * high water mark so that the system can recover from excessive
520	 * numbers of pv entries.
521	 */
522	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
523	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
524	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
525	pv_entry_high_water = 9 * (pv_entry_max / 10);
526	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
527
528	ptpgzone = uma_zcreate("PT ENTRY", PAGE_SIZE, NULL, pmap_ptpgzone_dtor,
529	    NULL, NULL, PAGE_SIZE - 1, UMA_ZONE_NOFREE | UMA_ZONE_ZINIT);
530	uma_zone_set_allocf(ptpgzone, pmap_ptpgzone_allocf);
531}
532
533/***************************************************
534 * Low level helper routines.....
535 ***************************************************/
536
537#if defined(PMAP_DIAGNOSTIC)
538
539/*
540 * This code checks for non-writeable/modified pages.
541 * This should be an invalid condition.
542 */
543static int
544pmap_nw_modified(pt_entry_t pte)
545{
546	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
547		return (1);
548	else
549		return (0);
550}
551
552#endif
553
554static void
555pmap_invalidate_all(pmap_t pmap)
556{
557#ifdef SMP
558	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
559}
560
561static void
562pmap_invalidate_all_action(void *arg)
563{
564	pmap_t pmap = (pmap_t)arg;
565
566#endif
567
568	if (pmap == kernel_pmap) {
569		tlb_invalidate_all();
570		return;
571	}
572
573	if (pmap->pm_active & PCPU_GET(cpumask))
574		tlb_invalidate_all_user(pmap);
575	else
576		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
577}
578
579struct pmap_invalidate_page_arg {
580	pmap_t pmap;
581	vm_offset_t va;
582};
583
584static __inline void
585pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
586{
587#ifdef SMP
588	struct pmap_invalidate_page_arg arg;
589
590	arg.pmap = pmap;
591	arg.va = va;
592
593	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
594}
595
596static void
597pmap_invalidate_page_action(void *arg)
598{
599	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
600	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
601
602#endif
603
604	if (is_kernel_pmap(pmap)) {
605		tlb_invalidate_address(pmap, va);
606		return;
607	}
608	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
609		return;
610	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
611		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
612		return;
613	}
614	tlb_invalidate_address(pmap, va);
615}
616
617struct pmap_update_page_arg {
618	pmap_t pmap;
619	vm_offset_t va;
620	pt_entry_t pte;
621};
622
623void
624pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
625{
626#ifdef SMP
627	struct pmap_update_page_arg arg;
628
629	arg.pmap = pmap;
630	arg.va = va;
631	arg.pte = pte;
632
633	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
634}
635
636static void
637pmap_update_page_action(void *arg)
638{
639	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
640	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
641	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
642
643#endif
644	if (is_kernel_pmap(pmap)) {
645		tlb_update(pmap, va, pte);
646		return;
647	}
648	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
649		return;
650	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
651		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
652		return;
653	}
654	tlb_update(pmap, va, pte);
655}
656
657/*
658 *	Routine:	pmap_extract
659 *	Function:
660 *		Extract the physical page address associated
661 *		with the given map/virtual_address pair.
662 */
663vm_paddr_t
664pmap_extract(pmap_t pmap, vm_offset_t va)
665{
666	pt_entry_t *pte;
667	vm_offset_t retval = 0;
668
669	PMAP_LOCK(pmap);
670	pte = pmap_pte(pmap, va);
671	if (pte) {
672		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
673	}
674	PMAP_UNLOCK(pmap);
675	return retval;
676}
677
678/*
679 *	Routine:	pmap_extract_and_hold
680 *	Function:
681 *		Atomically extract and hold the physical page
682 *		with the given pmap and virtual address pair
683 *		if that mapping permits the given protection.
684 */
685vm_page_t
686pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
687{
688	pt_entry_t pte;
689	vm_page_t m;
690	vm_paddr_t pa;
691
692	m = NULL;
693	pa = 0;
694	PMAP_LOCK(pmap);
695retry:
696	pte = *pmap_pte(pmap, va);
697	if (pte != 0 && pmap_pte_v(&pte) &&
698	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
699		if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa))
700			goto retry;
701
702		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte));
703		vm_page_hold(m);
704	}
705	PA_UNLOCK_COND(pa);
706	PMAP_UNLOCK(pmap);
707	return (m);
708}
709
710/***************************************************
711 * Low level mapping routines.....
712 ***************************************************/
713
714/*
715 * add a wired page to the kva
716 */
717 /* PMAP_INLINE */ void
718pmap_kenter(vm_offset_t va, vm_paddr_t pa)
719{
720	register pt_entry_t *pte;
721	pt_entry_t npte, opte;
722
723#ifdef PMAP_DEBUG
724	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
725#endif
726	npte = TLBLO_PA_TO_PFN(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
727
728	if (is_cacheable_mem(pa))
729		npte |= PTE_CACHE;
730	else
731		npte |= PTE_UNCACHED;
732
733	pte = pmap_pte(kernel_pmap, va);
734	opte = *pte;
735	*pte = npte;
736
737	pmap_update_page(kernel_pmap, va, npte);
738}
739
740/*
741 * remove a page from the kernel pagetables
742 */
743 /* PMAP_INLINE */ void
744pmap_kremove(vm_offset_t va)
745{
746	register pt_entry_t *pte;
747
748	/*
749	 * Write back all caches from the page being destroyed
750	 */
751	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
752
753	pte = pmap_pte(kernel_pmap, va);
754	*pte = PTE_G;
755	pmap_invalidate_page(kernel_pmap, va);
756}
757
758/*
759 *	Used to map a range of physical addresses into kernel
760 *	virtual address space.
761 *
762 *	The value passed in '*virt' is a suggested virtual address for
763 *	the mapping. Architectures which can support a direct-mapped
764 *	physical to virtual region can return the appropriate address
765 *	within that region, leaving '*virt' unchanged. Other
766 *	architectures should map the pages starting at '*virt' and
767 *	update '*virt' with the first usable address after the mapped
768 *	region.
769 */
770vm_offset_t
771pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
772{
773	vm_offset_t va, sva;
774
775	va = sva = *virt;
776	while (start < end) {
777		pmap_kenter(va, start);
778		va += PAGE_SIZE;
779		start += PAGE_SIZE;
780	}
781	*virt = va;
782	return (sva);
783}
784
785/*
786 * Add a list of wired pages to the kva
787 * this routine is only used for temporary
788 * kernel mappings that do not need to have
789 * page modification or references recorded.
790 * Note that old mappings are simply written
791 * over.  The page *must* be wired.
792 */
793void
794pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
795{
796	int i;
797	vm_offset_t origva = va;
798
799	for (i = 0; i < count; i++) {
800		pmap_flush_pvcache(m[i]);
801		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
802		va += PAGE_SIZE;
803	}
804
805	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
806}
807
808/*
809 * this routine jerks page mappings from the
810 * kernel -- it is meant only for temporary mappings.
811 */
812void
813pmap_qremove(vm_offset_t va, int count)
814{
815	/*
816	 * No need to wb/inv caches here,
817	 *   pmap_kremove will do it for us
818	 */
819
820	while (count-- > 0) {
821		pmap_kremove(va);
822		va += PAGE_SIZE;
823	}
824}
825
826/***************************************************
827 * Page table page management routines.....
828 ***************************************************/
829
830/*  Revision 1.507
831 *
832 * Simplify the reference counting of page table pages.	 Specifically, use
833 * the page table page's wired count rather than its hold count to contain
834 * the reference count.
835 */
836
837/*
838 * This routine unholds page table pages, and if the hold count
839 * drops to zero, then it decrements the wire count.
840 */
841static int
842_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
843{
844
845	/*
846	 * unmap the page table page
847	 */
848	pmap->pm_segtab[m->pindex] = 0;
849	--pmap->pm_stats.resident_count;
850
851	if (pmap->pm_ptphint == m)
852		pmap->pm_ptphint = NULL;
853
854	/*
855	 * If the page is finally unwired, simply free it.
856	 */
857	atomic_subtract_int(&cnt.v_wire_count, 1);
858	PMAP_UNLOCK(pmap);
859	vm_page_unlock_queues();
860	pmap_release_pte_page(m);
861	vm_page_lock_queues();
862	PMAP_LOCK(pmap);
863	return (1);
864}
865
866static PMAP_INLINE int
867pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
868{
869	--m->wire_count;
870	if (m->wire_count == 0)
871		return (_pmap_unwire_pte_hold(pmap, m));
872	else
873		return (0);
874}
875
876/*
877 * After removing a page table entry, this routine is used to
878 * conditionally free the page, and manage the hold/wire counts.
879 */
880static int
881pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
882{
883	unsigned ptepindex;
884	pd_entry_t pteva;
885
886	if (va >= VM_MAXUSER_ADDRESS)
887		return (0);
888
889	if (mpte == NULL) {
890		ptepindex = (va >> SEGSHIFT);
891		if (pmap->pm_ptphint &&
892		    (pmap->pm_ptphint->pindex == ptepindex)) {
893			mpte = pmap->pm_ptphint;
894		} else {
895			pteva = *pmap_pde(pmap, va);
896			mpte = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
897			pmap->pm_ptphint = mpte;
898		}
899	}
900	return pmap_unwire_pte_hold(pmap, mpte);
901}
902
903void
904pmap_pinit0(pmap_t pmap)
905{
906	int i;
907
908	PMAP_LOCK_INIT(pmap);
909	pmap->pm_segtab = kernel_segmap;
910	pmap->pm_active = 0;
911	pmap->pm_ptphint = NULL;
912	for (i = 0; i < MAXCPU; i++) {
913		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
914		pmap->pm_asid[i].gen = 0;
915	}
916	PCPU_SET(curpmap, pmap);
917	TAILQ_INIT(&pmap->pm_pvlist);
918	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
919}
920
921static void
922pmap_ptpgzone_dtor(void *mem, int size, void *arg)
923{
924#ifdef INVARIANTS
925	static char zeropage[PAGE_SIZE];
926
927	KASSERT(size == PAGE_SIZE,
928		("pmap_ptpgzone_dtor: invalid size %d", size));
929	KASSERT(bcmp(mem, zeropage, PAGE_SIZE) == 0,
930		("pmap_ptpgzone_dtor: freeing a non-zeroed page"));
931#endif
932}
933
934static void *
935pmap_ptpgzone_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
936{
937	vm_page_t m;
938	vm_paddr_t paddr;
939	int tries;
940
941	KASSERT(bytes == PAGE_SIZE,
942		("pmap_ptpgzone_allocf: invalid allocation size %d", bytes));
943
944	*flags = UMA_SLAB_PRIV;
945	tries = 0;
946retry:
947	m = vm_phys_alloc_contig(1, 0, MIPS_KSEG0_LARGEST_PHYS,
948	    PAGE_SIZE, PAGE_SIZE);
949	if (m == NULL) {
950                if (tries < ((wait & M_NOWAIT) != 0 ? 1 : 3)) {
951			vm_contig_grow_cache(tries, 0, MIPS_KSEG0_LARGEST_PHYS);
952			tries++;
953			goto retry;
954		} else
955			return (NULL);
956	}
957
958	paddr = VM_PAGE_TO_PHYS(m);
959	return ((void *)MIPS_PHYS_TO_KSEG0(paddr));
960}
961
962static vm_page_t
963pmap_alloc_pte_page(pmap_t pmap, unsigned int index, int wait, vm_offset_t *vap)
964{
965	vm_paddr_t paddr;
966	void *va;
967	vm_page_t m;
968	int locked;
969
970	locked = mtx_owned(&pmap->pm_mtx);
971	if (locked) {
972		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
973		PMAP_UNLOCK(pmap);
974		vm_page_unlock_queues();
975	}
976	va = uma_zalloc(ptpgzone, wait);
977	if (locked) {
978		vm_page_lock_queues();
979		PMAP_LOCK(pmap);
980	}
981	if (va == NULL)
982		return (NULL);
983
984	paddr = MIPS_KSEG0_TO_PHYS(va);
985	m = PHYS_TO_VM_PAGE(paddr);
986
987	if (!locked)
988		vm_page_lock_queues();
989	m->pindex = index;
990	m->valid = VM_PAGE_BITS_ALL;
991	m->wire_count = 1;
992	if (!locked)
993		vm_page_unlock_queues();
994
995	atomic_add_int(&cnt.v_wire_count, 1);
996	*vap = (vm_offset_t)va;
997	return (m);
998}
999
1000static void
1001pmap_release_pte_page(vm_page_t m)
1002{
1003	void *va;
1004	vm_paddr_t paddr;
1005
1006	paddr = VM_PAGE_TO_PHYS(m);
1007	va = (void *)MIPS_PHYS_TO_KSEG0(paddr);
1008	uma_zfree(ptpgzone, va);
1009}
1010
1011/*
1012 * Initialize a preallocated and zeroed pmap structure,
1013 * such as one in a vmspace structure.
1014 */
1015int
1016pmap_pinit(pmap_t pmap)
1017{
1018	vm_offset_t ptdva;
1019	vm_page_t ptdpg;
1020	int i;
1021
1022	PMAP_LOCK_INIT(pmap);
1023
1024	/*
1025	 * allocate the page directory page
1026	 */
1027	ptdpg = pmap_alloc_pte_page(pmap, NUSERPGTBLS, M_WAITOK, &ptdva);
1028	if (ptdpg == NULL)
1029		return (0);
1030
1031	pmap->pm_segtab = (pd_entry_t *)ptdva;
1032	pmap->pm_active = 0;
1033	pmap->pm_ptphint = NULL;
1034	for (i = 0; i < MAXCPU; i++) {
1035		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1036		pmap->pm_asid[i].gen = 0;
1037	}
1038	TAILQ_INIT(&pmap->pm_pvlist);
1039	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1040
1041	return (1);
1042}
1043
1044/*
1045 * this routine is called if the page table page is not
1046 * mapped correctly.
1047 */
1048static vm_page_t
1049_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1050{
1051	vm_offset_t pteva;
1052	vm_page_t m;
1053
1054	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1055	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1056	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1057
1058	/*
1059	 * Find or fabricate a new pagetable page
1060	 */
1061	m = pmap_alloc_pte_page(pmap, ptepindex, flags, &pteva);
1062	if (m == NULL)
1063		return (NULL);
1064
1065	/*
1066	 * Map the pagetable page into the process address space, if it
1067	 * isn't already there.
1068	 */
1069
1070	pmap->pm_stats.resident_count++;
1071	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1072
1073	/*
1074	 * Set the page table hint
1075	 */
1076	pmap->pm_ptphint = m;
1077	return (m);
1078}
1079
1080static vm_page_t
1081pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1082{
1083	unsigned ptepindex;
1084	vm_offset_t pteva;
1085	vm_page_t m;
1086
1087	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1088	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1089	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1090
1091	/*
1092	 * Calculate pagetable page index
1093	 */
1094	ptepindex = va >> SEGSHIFT;
1095retry:
1096	/*
1097	 * Get the page directory entry
1098	 */
1099	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1100
1101	/*
1102	 * If the page table page is mapped, we just increment the hold
1103	 * count, and activate it.
1104	 */
1105	if (pteva) {
1106		/*
1107		 * In order to get the page table page, try the hint first.
1108		 */
1109		if (pmap->pm_ptphint &&
1110		    (pmap->pm_ptphint->pindex == ptepindex)) {
1111			m = pmap->pm_ptphint;
1112		} else {
1113			m = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
1114			pmap->pm_ptphint = m;
1115		}
1116		m->wire_count++;
1117	} else {
1118		/*
1119		 * Here if the pte page isn't mapped, or if it has been
1120		 * deallocated.
1121		 */
1122		m = _pmap_allocpte(pmap, ptepindex, flags);
1123		if (m == NULL && (flags & M_WAITOK))
1124			goto retry;
1125	}
1126	return m;
1127}
1128
1129
1130/***************************************************
1131* Pmap allocation/deallocation routines.
1132 ***************************************************/
1133/*
1134 *  Revision 1.397
1135 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1136 *    called only the page directory page(s) can be left in the pmap pte
1137 *    object, since all page table pages will have been freed by
1138 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1139 *    reference to the pmap and the page directory is wired, so the page(s)
1140 *    can never be busy.  So all there is to do is clear the magic mappings
1141 *    from the page directory and free the page(s).
1142 */
1143
1144
1145/*
1146 * Release any resources held by the given physical map.
1147 * Called when a pmap initialized by pmap_pinit is being released.
1148 * Should only be called if the map contains no valid mappings.
1149 */
1150void
1151pmap_release(pmap_t pmap)
1152{
1153	vm_offset_t ptdva;
1154	vm_page_t ptdpg;
1155
1156	KASSERT(pmap->pm_stats.resident_count == 0,
1157	    ("pmap_release: pmap resident count %ld != 0",
1158	    pmap->pm_stats.resident_count));
1159
1160	ptdva = (vm_offset_t)pmap->pm_segtab;
1161	ptdpg = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(ptdva));
1162
1163	ptdpg->wire_count--;
1164	atomic_subtract_int(&cnt.v_wire_count, 1);
1165	pmap_release_pte_page(ptdpg);
1166	PMAP_LOCK_DESTROY(pmap);
1167}
1168
1169/*
1170 * grow the number of kernel page table entries, if needed
1171 */
1172void
1173pmap_growkernel(vm_offset_t addr)
1174{
1175	vm_offset_t pageva;
1176	vm_page_t nkpg;
1177	pt_entry_t *pte;
1178	int i;
1179
1180	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1181	if (kernel_vm_end == 0) {
1182		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1183		nkpt = 0;
1184		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1185			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1186			    ~(PAGE_SIZE * NPTEPG - 1);
1187			nkpt++;
1188			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1189				kernel_vm_end = kernel_map->max_offset;
1190				break;
1191			}
1192		}
1193	}
1194	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1195	if (addr - 1 >= kernel_map->max_offset)
1196		addr = kernel_map->max_offset;
1197	while (kernel_vm_end < addr) {
1198		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1199			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1200			    ~(PAGE_SIZE * NPTEPG - 1);
1201			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1202				kernel_vm_end = kernel_map->max_offset;
1203				break;
1204			}
1205			continue;
1206		}
1207		/*
1208		 * This index is bogus, but out of the way
1209		 */
1210		nkpg = pmap_alloc_pte_page(kernel_pmap, nkpt, M_NOWAIT, &pageva);
1211
1212		if (!nkpg)
1213			panic("pmap_growkernel: no memory to grow kernel");
1214
1215		nkpt++;
1216		pte = (pt_entry_t *)pageva;
1217		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1218
1219		/*
1220		 * The R[4-7]?00 stores only one copy of the Global bit in
1221		 * the translation lookaside buffer for each 2 page entry.
1222		 * Thus invalid entrys must have the Global bit set so when
1223		 * Entry LO and Entry HI G bits are anded together they will
1224		 * produce a global bit to store in the tlb.
1225		 */
1226		for (i = 0; i < NPTEPG; i++, pte++)
1227			*pte = PTE_G;
1228
1229		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1230		    ~(PAGE_SIZE * NPTEPG - 1);
1231		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1232			kernel_vm_end = kernel_map->max_offset;
1233			break;
1234		}
1235	}
1236}
1237
1238/***************************************************
1239* page management routines.
1240 ***************************************************/
1241
1242/*
1243 * free the pv_entry back to the free list
1244 */
1245static PMAP_INLINE void
1246free_pv_entry(pv_entry_t pv)
1247{
1248
1249	pv_entry_count--;
1250	uma_zfree(pvzone, pv);
1251}
1252
1253/*
1254 * get a new pv_entry, allocating a block from the system
1255 * when needed.
1256 * the memory allocation is performed bypassing the malloc code
1257 * because of the possibility of allocations at interrupt time.
1258 */
1259static pv_entry_t
1260get_pv_entry(pmap_t locked_pmap)
1261{
1262	static const struct timeval printinterval = { 60, 0 };
1263	static struct timeval lastprint;
1264	struct vpgqueues *vpq;
1265	pt_entry_t *pte, oldpte;
1266	pmap_t pmap;
1267	pv_entry_t allocated_pv, next_pv, pv;
1268	vm_offset_t va;
1269	vm_page_t m;
1270
1271	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1272	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1273	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1274	if (allocated_pv != NULL) {
1275		pv_entry_count++;
1276		if (pv_entry_count > pv_entry_high_water)
1277			pagedaemon_wakeup();
1278		else
1279			return (allocated_pv);
1280	}
1281	/*
1282	 * Reclaim pv entries: At first, destroy mappings to inactive
1283	 * pages.  After that, if a pv entry is still needed, destroy
1284	 * mappings to active pages.
1285	 */
1286	if (ratecheck(&lastprint, &printinterval))
1287		printf("Approaching the limit on PV entries, "
1288		    "increase the vm.pmap.shpgperproc tunable.\n");
1289	vpq = &vm_page_queues[PQ_INACTIVE];
1290retry:
1291	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1292		if (m->hold_count || m->busy)
1293			continue;
1294		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1295			va = pv->pv_va;
1296			pmap = pv->pv_pmap;
1297			/* Avoid deadlock and lock recursion. */
1298			if (pmap > locked_pmap)
1299				PMAP_LOCK(pmap);
1300			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1301				continue;
1302			pmap->pm_stats.resident_count--;
1303			pte = pmap_pte(pmap, va);
1304			KASSERT(pte != NULL, ("pte"));
1305			oldpte = loadandclear((u_int *)pte);
1306			if (is_kernel_pmap(pmap))
1307				*pte = PTE_G;
1308			KASSERT((oldpte & PTE_W) == 0,
1309			    ("wired pte for unwired page"));
1310			if (m->md.pv_flags & PV_TABLE_REF)
1311				vm_page_flag_set(m, PG_REFERENCED);
1312			if (oldpte & PTE_M)
1313				vm_page_dirty(m);
1314			pmap_invalidate_page(pmap, va);
1315			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1316			m->md.pv_list_count--;
1317			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1318			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1319			if (pmap != locked_pmap)
1320				PMAP_UNLOCK(pmap);
1321			if (allocated_pv == NULL)
1322				allocated_pv = pv;
1323			else
1324				free_pv_entry(pv);
1325		}
1326		if (TAILQ_EMPTY(&m->md.pv_list)) {
1327			vm_page_flag_clear(m, PG_WRITEABLE);
1328			m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1329		}
1330	}
1331	if (allocated_pv == NULL) {
1332		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1333			vpq = &vm_page_queues[PQ_ACTIVE];
1334			goto retry;
1335		}
1336		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1337	}
1338	return (allocated_pv);
1339}
1340
1341/*
1342 *  Revision 1.370
1343 *
1344 *  Move pmap_collect() out of the machine-dependent code, rename it
1345 *  to reflect its new location, and add page queue and flag locking.
1346 *
1347 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1348 *  of pmap_collect() in terms of machine-independent interfaces;
1349 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1350 *
1351 *  MIPS implementation was identical to alpha [Junos 8.2]
1352 */
1353
1354/*
1355 * If it is the first entry on the list, it is actually
1356 * in the header and we must copy the following entry up
1357 * to the header.  Otherwise we must search the list for
1358 * the entry.  In either case we free the now unused entry.
1359 */
1360
1361static pv_entry_t
1362pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1363{
1364	pv_entry_t pv;
1365
1366	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1367	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1368	if (pvh->pv_list_count < pmap->pm_stats.resident_count) {
1369		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1370			if (pmap == pv->pv_pmap && va == pv->pv_va)
1371				break;
1372		}
1373	} else {
1374		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1375			if (va == pv->pv_va)
1376				break;
1377		}
1378	}
1379	if (pv != NULL) {
1380		TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1381		pvh->pv_list_count--;
1382		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1383	}
1384	return (pv);
1385}
1386
1387static void
1388pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1389{
1390	pv_entry_t pv;
1391
1392	pv = pmap_pvh_remove(pvh, pmap, va);
1393	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1394	     (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)),
1395	     (u_long)va));
1396	free_pv_entry(pv);
1397}
1398
1399static void
1400pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1401{
1402
1403	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1404	pmap_pvh_free(&m->md, pmap, va);
1405	if (TAILQ_EMPTY(&m->md.pv_list))
1406		vm_page_flag_clear(m, PG_WRITEABLE);
1407}
1408
1409/*
1410 * Conditionally create a pv entry.
1411 */
1412static boolean_t
1413pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1414    vm_page_t m)
1415{
1416	pv_entry_t pv;
1417
1418	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1420	if (pv_entry_count < pv_entry_high_water &&
1421	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1422		pv_entry_count++;
1423		pv->pv_va = va;
1424		pv->pv_pmap = pmap;
1425		pv->pv_ptem = mpte;
1426		pv->pv_wired = FALSE;
1427		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1428		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1429		m->md.pv_list_count++;
1430		return (TRUE);
1431	} else
1432		return (FALSE);
1433}
1434
1435/*
1436 * pmap_remove_pte: do the things to unmap a page in a process
1437 */
1438static int
1439pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1440{
1441	pt_entry_t oldpte;
1442	vm_page_t m;
1443	vm_offset_t pa;
1444
1445	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1446	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1447
1448	oldpte = loadandclear((u_int *)ptq);
1449	if (is_kernel_pmap(pmap))
1450		*ptq = PTE_G;
1451
1452	if (oldpte & PTE_W)
1453		pmap->pm_stats.wired_count -= 1;
1454
1455	pmap->pm_stats.resident_count -= 1;
1456	pa = TLBLO_PTE_TO_PA(oldpte);
1457
1458	if (page_is_managed(pa)) {
1459		m = PHYS_TO_VM_PAGE(pa);
1460		if (oldpte & PTE_M) {
1461#if defined(PMAP_DIAGNOSTIC)
1462			if (pmap_nw_modified(oldpte)) {
1463				printf(
1464				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1465				    va, oldpte);
1466			}
1467#endif
1468			vm_page_dirty(m);
1469		}
1470		if (m->md.pv_flags & PV_TABLE_REF)
1471			vm_page_flag_set(m, PG_REFERENCED);
1472		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1473
1474		pmap_remove_entry(pmap, m, va);
1475	}
1476	return pmap_unuse_pt(pmap, va, NULL);
1477}
1478
1479/*
1480 * Remove a single page from a process address space
1481 */
1482static void
1483pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1484{
1485	register pt_entry_t *ptq;
1486
1487	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1488	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1489	ptq = pmap_pte(pmap, va);
1490
1491	/*
1492	 * if there is no pte for this address, just skip it!!!
1493	 */
1494	if (!ptq || !pmap_pte_v(ptq)) {
1495		return;
1496	}
1497
1498	/*
1499	 * Write back all caches from the page being destroyed
1500	 */
1501	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1502
1503	/*
1504	 * get a local va for mappings for this pmap.
1505	 */
1506	(void)pmap_remove_pte(pmap, ptq, va);
1507	pmap_invalidate_page(pmap, va);
1508
1509	return;
1510}
1511
1512/*
1513 *	Remove the given range of addresses from the specified map.
1514 *
1515 *	It is assumed that the start and end are properly
1516 *	rounded to the page size.
1517 */
1518void
1519pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1520{
1521	vm_offset_t va, nva;
1522
1523	if (pmap == NULL)
1524		return;
1525
1526	if (pmap->pm_stats.resident_count == 0)
1527		return;
1528
1529	vm_page_lock_queues();
1530	PMAP_LOCK(pmap);
1531
1532	/*
1533	 * special handling of removing one page.  a very common operation
1534	 * and easy to short circuit some code.
1535	 */
1536	if ((sva + PAGE_SIZE) == eva) {
1537		pmap_remove_page(pmap, sva);
1538		goto out;
1539	}
1540	for (va = sva; va < eva; va = nva) {
1541		if (!*pmap_pde(pmap, va)) {
1542			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1543			continue;
1544		}
1545		pmap_remove_page(pmap, va);
1546		nva = va + PAGE_SIZE;
1547	}
1548
1549out:
1550	vm_page_unlock_queues();
1551	PMAP_UNLOCK(pmap);
1552}
1553
1554/*
1555 *	Routine:	pmap_remove_all
1556 *	Function:
1557 *		Removes this physical page from
1558 *		all physical maps in which it resides.
1559 *		Reflects back modify bits to the pager.
1560 *
1561 *	Notes:
1562 *		Original versions of this routine were very
1563 *		inefficient because they iteratively called
1564 *		pmap_remove (slow...)
1565 */
1566
1567void
1568pmap_remove_all(vm_page_t m)
1569{
1570	register pv_entry_t pv;
1571	register pt_entry_t *pte, tpte;
1572
1573	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1574	    ("pmap_remove_all: page %p is fictitious", m));
1575	vm_page_lock_queues();
1576
1577	if (m->md.pv_flags & PV_TABLE_REF)
1578		vm_page_flag_set(m, PG_REFERENCED);
1579
1580	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1581		PMAP_LOCK(pv->pv_pmap);
1582
1583		/*
1584		 * If it's last mapping writeback all caches from
1585		 * the page being destroyed
1586	 	 */
1587		if (m->md.pv_list_count == 1)
1588			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1589
1590		pv->pv_pmap->pm_stats.resident_count--;
1591
1592		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1593
1594		tpte = loadandclear((u_int *)pte);
1595		if (is_kernel_pmap(pv->pv_pmap))
1596			*pte = PTE_G;
1597
1598		if (tpte & PTE_W)
1599			pv->pv_pmap->pm_stats.wired_count--;
1600
1601		/*
1602		 * Update the vm_page_t clean and reference bits.
1603		 */
1604		if (tpte & PTE_M) {
1605#if defined(PMAP_DIAGNOSTIC)
1606			if (pmap_nw_modified(tpte)) {
1607				printf(
1608				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1609				    pv->pv_va, tpte);
1610			}
1611#endif
1612			vm_page_dirty(m);
1613		}
1614		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1615
1616		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1617		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1618		m->md.pv_list_count--;
1619		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1620		PMAP_UNLOCK(pv->pv_pmap);
1621		free_pv_entry(pv);
1622	}
1623
1624	vm_page_flag_clear(m, PG_WRITEABLE);
1625	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1626	vm_page_unlock_queues();
1627}
1628
1629/*
1630 *	Set the physical protection on the
1631 *	specified range of this map as requested.
1632 */
1633void
1634pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1635{
1636	pt_entry_t *pte;
1637
1638	if (pmap == NULL)
1639		return;
1640
1641	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1642		pmap_remove(pmap, sva, eva);
1643		return;
1644	}
1645	if (prot & VM_PROT_WRITE)
1646		return;
1647
1648	vm_page_lock_queues();
1649	PMAP_LOCK(pmap);
1650	while (sva < eva) {
1651		pt_entry_t pbits, obits;
1652		vm_page_t m;
1653		vm_offset_t pa;
1654
1655		/*
1656		 * If segment table entry is empty, skip this segment.
1657		 */
1658		if (!*pmap_pde(pmap, sva)) {
1659			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1660			continue;
1661		}
1662		/*
1663		 * If pte is invalid, skip this page
1664		 */
1665		pte = pmap_pte(pmap, sva);
1666		if (!pmap_pte_v(pte)) {
1667			sva += PAGE_SIZE;
1668			continue;
1669		}
1670retry:
1671		obits = pbits = *pte;
1672		pa = TLBLO_PTE_TO_PA(pbits);
1673
1674		if (page_is_managed(pa) && (pbits & PTE_M) != 0) {
1675			m = PHYS_TO_VM_PAGE(pa);
1676			vm_page_dirty(m);
1677			m->md.pv_flags &= ~PV_TABLE_MOD;
1678		}
1679		pbits = (pbits & ~PTE_M) | PTE_RO;
1680
1681		if (pbits != *pte) {
1682			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1683				goto retry;
1684			pmap_update_page(pmap, sva, pbits);
1685		}
1686		sva += PAGE_SIZE;
1687	}
1688	vm_page_unlock_queues();
1689	PMAP_UNLOCK(pmap);
1690}
1691
1692/*
1693 *	Insert the given physical page (p) at
1694 *	the specified virtual address (v) in the
1695 *	target physical map with the protection requested.
1696 *
1697 *	If specified, the page will be wired down, meaning
1698 *	that the related pte can not be reclaimed.
1699 *
1700 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1701 *	or lose information.  That is, this routine must actually
1702 *	insert this page into the given map NOW.
1703 */
1704void
1705pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1706    vm_prot_t prot, boolean_t wired)
1707{
1708	vm_offset_t pa, opa;
1709	register pt_entry_t *pte;
1710	pt_entry_t origpte, newpte;
1711	pv_entry_t pv;
1712	vm_page_t mpte, om;
1713	int rw = 0;
1714
1715	if (pmap == NULL)
1716		return;
1717
1718	va &= ~PAGE_MASK;
1719 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1720	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1721	    (m->oflags & VPO_BUSY) != 0,
1722	    ("pmap_enter: page %p is not busy", m));
1723
1724	mpte = NULL;
1725
1726	vm_page_lock_queues();
1727	PMAP_LOCK(pmap);
1728
1729	/*
1730	 * In the case that a page table page is not resident, we are
1731	 * creating it here.
1732	 */
1733	if (va < VM_MAXUSER_ADDRESS) {
1734		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1735	}
1736	pte = pmap_pte(pmap, va);
1737
1738	/*
1739	 * Page Directory table entry not valid, we need a new PT page
1740	 */
1741	if (pte == NULL) {
1742		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1743		    (void *)pmap->pm_segtab, (void *)va);
1744	}
1745	pa = VM_PAGE_TO_PHYS(m);
1746	om = NULL;
1747	origpte = *pte;
1748	opa = TLBLO_PTE_TO_PA(origpte);
1749
1750	/*
1751	 * Mapping has not changed, must be protection or wiring change.
1752	 */
1753	if ((origpte & PTE_V) && (opa == pa)) {
1754		/*
1755		 * Wiring change, just update stats. We don't worry about
1756		 * wiring PT pages as they remain resident as long as there
1757		 * are valid mappings in them. Hence, if a user page is
1758		 * wired, the PT page will be also.
1759		 */
1760		if (wired && ((origpte & PTE_W) == 0))
1761			pmap->pm_stats.wired_count++;
1762		else if (!wired && (origpte & PTE_W))
1763			pmap->pm_stats.wired_count--;
1764
1765#if defined(PMAP_DIAGNOSTIC)
1766		if (pmap_nw_modified(origpte)) {
1767			printf(
1768			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1769			    va, origpte);
1770		}
1771#endif
1772
1773		/*
1774		 * Remove extra pte reference
1775		 */
1776		if (mpte)
1777			mpte->wire_count--;
1778
1779		if (page_is_managed(opa)) {
1780			om = m;
1781		}
1782		goto validate;
1783	}
1784
1785	pv = NULL;
1786
1787	/*
1788	 * Mapping has changed, invalidate old range and fall through to
1789	 * handle validating new mapping.
1790	 */
1791	if (opa) {
1792		if (origpte & PTE_W)
1793			pmap->pm_stats.wired_count--;
1794
1795		if (page_is_managed(opa)) {
1796			om = PHYS_TO_VM_PAGE(opa);
1797			pv = pmap_pvh_remove(&om->md, pmap, va);
1798		}
1799		if (mpte != NULL) {
1800			mpte->wire_count--;
1801			KASSERT(mpte->wire_count > 0,
1802			    ("pmap_enter: missing reference to page table page,"
1803			    " va: %p", (void *)va));
1804		}
1805	} else
1806		pmap->pm_stats.resident_count++;
1807
1808	/*
1809	 * Enter on the PV list if part of our managed memory. Note that we
1810	 * raise IPL while manipulating pv_table since pmap_enter can be
1811	 * called at interrupt time.
1812	 */
1813	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1814		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1815		    ("pmap_enter: managed mapping within the clean submap"));
1816		if (pv == NULL)
1817			pv = get_pv_entry(pmap);
1818		pv->pv_va = va;
1819		pv->pv_pmap = pmap;
1820		pv->pv_ptem = mpte;
1821		pv->pv_wired = wired;
1822		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1823		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1824		m->md.pv_list_count++;
1825	} else if (pv != NULL)
1826		free_pv_entry(pv);
1827
1828	/*
1829	 * Increment counters
1830	 */
1831	if (wired)
1832		pmap->pm_stats.wired_count++;
1833
1834validate:
1835	if ((access & VM_PROT_WRITE) != 0)
1836		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1837	rw = init_pte_prot(va, m, prot);
1838
1839#ifdef PMAP_DEBUG
1840	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1841#endif
1842	/*
1843	 * Now validate mapping with desired protection/wiring.
1844	 */
1845	newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V;
1846
1847	if (is_cacheable_mem(pa))
1848		newpte |= PTE_CACHE;
1849	else
1850		newpte |= PTE_UNCACHED;
1851
1852	if (wired)
1853		newpte |= PTE_W;
1854
1855	if (is_kernel_pmap(pmap)) {
1856	         newpte |= PTE_G;
1857	}
1858
1859	/*
1860	 * if the mapping or permission bits are different, we need to
1861	 * update the pte.
1862	 */
1863	if (origpte != newpte) {
1864		if (origpte & PTE_V) {
1865			*pte = newpte;
1866			if (page_is_managed(opa) && (opa != pa)) {
1867				if (om->md.pv_flags & PV_TABLE_REF)
1868					vm_page_flag_set(om, PG_REFERENCED);
1869				om->md.pv_flags &=
1870				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1871			}
1872			if (origpte & PTE_M) {
1873				KASSERT((origpte & PTE_RW),
1874				    ("pmap_enter: modified page not writable:"
1875				    " va: %p, pte: 0x%x", (void *)va, origpte));
1876				if (page_is_managed(opa))
1877					vm_page_dirty(om);
1878			}
1879			if (page_is_managed(opa) &&
1880			    TAILQ_EMPTY(&om->md.pv_list))
1881				vm_page_flag_clear(om, PG_WRITEABLE);
1882		} else {
1883			*pte = newpte;
1884		}
1885	}
1886	pmap_update_page(pmap, va, newpte);
1887
1888	/*
1889	 * Sync I & D caches for executable pages.  Do this only if the the
1890	 * target pmap belongs to the current process.  Otherwise, an
1891	 * unresolvable TLB miss may occur.
1892	 */
1893	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1894	    (prot & VM_PROT_EXECUTE)) {
1895		mips_icache_sync_range(va, PAGE_SIZE);
1896		mips_dcache_wbinv_range(va, PAGE_SIZE);
1897	}
1898	vm_page_unlock_queues();
1899	PMAP_UNLOCK(pmap);
1900}
1901
1902/*
1903 * this code makes some *MAJOR* assumptions:
1904 * 1. Current pmap & pmap exists.
1905 * 2. Not wired.
1906 * 3. Read access.
1907 * 4. No page table pages.
1908 * but is *MUCH* faster than pmap_enter...
1909 */
1910
1911void
1912pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1913{
1914
1915	vm_page_lock_queues();
1916	PMAP_LOCK(pmap);
1917	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1918	vm_page_unlock_queues();
1919	PMAP_UNLOCK(pmap);
1920}
1921
1922static vm_page_t
1923pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1924    vm_prot_t prot, vm_page_t mpte)
1925{
1926	pt_entry_t *pte;
1927	vm_offset_t pa;
1928
1929	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1930	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1931	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1932	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1933	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1934
1935	/*
1936	 * In the case that a page table page is not resident, we are
1937	 * creating it here.
1938	 */
1939	if (va < VM_MAXUSER_ADDRESS) {
1940		unsigned ptepindex;
1941		vm_offset_t pteva;
1942
1943		/*
1944		 * Calculate pagetable page index
1945		 */
1946		ptepindex = va >> SEGSHIFT;
1947		if (mpte && (mpte->pindex == ptepindex)) {
1948			mpte->wire_count++;
1949		} else {
1950			/*
1951			 * Get the page directory entry
1952			 */
1953			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1954
1955			/*
1956			 * If the page table page is mapped, we just
1957			 * increment the hold count, and activate it.
1958			 */
1959			if (pteva) {
1960				if (pmap->pm_ptphint &&
1961				    (pmap->pm_ptphint->pindex == ptepindex)) {
1962					mpte = pmap->pm_ptphint;
1963				} else {
1964					mpte = PHYS_TO_VM_PAGE(
1965						MIPS_KSEG0_TO_PHYS(pteva));
1966					pmap->pm_ptphint = mpte;
1967				}
1968				mpte->wire_count++;
1969			} else {
1970				mpte = _pmap_allocpte(pmap, ptepindex,
1971				    M_NOWAIT);
1972				if (mpte == NULL)
1973					return (mpte);
1974			}
1975		}
1976	} else {
1977		mpte = NULL;
1978	}
1979
1980	pte = pmap_pte(pmap, va);
1981	if (pmap_pte_v(pte)) {
1982		if (mpte != NULL) {
1983			mpte->wire_count--;
1984			mpte = NULL;
1985		}
1986		return (mpte);
1987	}
1988
1989	/*
1990	 * Enter on the PV list if part of our managed memory.
1991	 */
1992	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
1993	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
1994		if (mpte != NULL) {
1995			pmap_unwire_pte_hold(pmap, mpte);
1996			mpte = NULL;
1997		}
1998		return (mpte);
1999	}
2000
2001	/*
2002	 * Increment counters
2003	 */
2004	pmap->pm_stats.resident_count++;
2005
2006	pa = VM_PAGE_TO_PHYS(m);
2007
2008	/*
2009	 * Now validate mapping with RO protection
2010	 */
2011	*pte = TLBLO_PA_TO_PFN(pa) | PTE_V;
2012
2013	if (is_cacheable_mem(pa))
2014		*pte |= PTE_CACHE;
2015	else
2016		*pte |= PTE_UNCACHED;
2017
2018	if (is_kernel_pmap(pmap))
2019		*pte |= PTE_G;
2020	else {
2021		*pte |= PTE_RO;
2022		/*
2023		 * Sync I & D caches.  Do this only if the the target pmap
2024		 * belongs to the current process.  Otherwise, an
2025		 * unresolvable TLB miss may occur. */
2026		if (pmap == &curproc->p_vmspace->vm_pmap) {
2027			va &= ~PAGE_MASK;
2028			mips_icache_sync_range(va, PAGE_SIZE);
2029			mips_dcache_wbinv_range(va, PAGE_SIZE);
2030		}
2031	}
2032	return (mpte);
2033}
2034
2035/*
2036 * Make a temporary mapping for a physical address.  This is only intended
2037 * to be used for panic dumps.
2038 */
2039void *
2040pmap_kenter_temporary(vm_paddr_t pa, int i)
2041{
2042	vm_offset_t va;
2043	register_t intr;
2044	if (i != 0)
2045		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2046		    __func__);
2047
2048	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2049		va = MIPS_PHYS_TO_KSEG0(pa);
2050	} else {
2051		int cpu;
2052		struct local_sysmaps *sysm;
2053		pt_entry_t *pte, npte;
2054
2055		/* If this is used other than for dumps, we may need to leave
2056		 * interrupts disasbled on return. If crash dumps don't work when
2057		 * we get to this point, we might want to consider this (leaving things
2058		 * disabled as a starting point ;-)
2059	 	 */
2060		intr = intr_disable();
2061		cpu = PCPU_GET(cpuid);
2062		sysm = &sysmap_lmem[cpu];
2063		/* Since this is for the debugger, no locks or any other fun */
2064		npte = TLBLO_PA_TO_PFN(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2065		pte = pmap_pte(kernel_pmap, sysm->base);
2066		*pte = npte;
2067		sysm->valid1 = 1;
2068		pmap_update_page(kernel_pmap, sysm->base, npte);
2069		va = sysm->base;
2070		intr_restore(intr);
2071	}
2072	return ((void *)va);
2073}
2074
2075void
2076pmap_kenter_temporary_free(vm_paddr_t pa)
2077{
2078	int cpu;
2079	register_t intr;
2080	struct local_sysmaps *sysm;
2081
2082	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2083		/* nothing to do for this case */
2084		return;
2085	}
2086	cpu = PCPU_GET(cpuid);
2087	sysm = &sysmap_lmem[cpu];
2088	if (sysm->valid1) {
2089		pt_entry_t *pte;
2090
2091		intr = intr_disable();
2092		pte = pmap_pte(kernel_pmap, sysm->base);
2093		*pte = PTE_G;
2094		pmap_invalidate_page(kernel_pmap, sysm->base);
2095		intr_restore(intr);
2096		sysm->valid1 = 0;
2097	}
2098}
2099
2100/*
2101 * Moved the code to Machine Independent
2102 *	 vm_map_pmap_enter()
2103 */
2104
2105/*
2106 * Maps a sequence of resident pages belonging to the same object.
2107 * The sequence begins with the given page m_start.  This page is
2108 * mapped at the given virtual address start.  Each subsequent page is
2109 * mapped at a virtual address that is offset from start by the same
2110 * amount as the page is offset from m_start within the object.  The
2111 * last page in the sequence is the page with the largest offset from
2112 * m_start that can be mapped at a virtual address less than the given
2113 * virtual address end.  Not every virtual page between start and end
2114 * is mapped; only those for which a resident page exists with the
2115 * corresponding offset from m_start are mapped.
2116 */
2117void
2118pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2119    vm_page_t m_start, vm_prot_t prot)
2120{
2121	vm_page_t m, mpte;
2122	vm_pindex_t diff, psize;
2123
2124	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2125	psize = atop(end - start);
2126	mpte = NULL;
2127	m = m_start;
2128	vm_page_lock_queues();
2129	PMAP_LOCK(pmap);
2130	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2131		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2132		    prot, mpte);
2133		m = TAILQ_NEXT(m, listq);
2134	}
2135	vm_page_unlock_queues();
2136 	PMAP_UNLOCK(pmap);
2137}
2138
2139/*
2140 * pmap_object_init_pt preloads the ptes for a given object
2141 * into the specified pmap.  This eliminates the blast of soft
2142 * faults on process startup and immediately after an mmap.
2143 */
2144void
2145pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2146    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2147{
2148	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2149	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2150	    ("pmap_object_init_pt: non-device object"));
2151}
2152
2153/*
2154 *	Routine:	pmap_change_wiring
2155 *	Function:	Change the wiring attribute for a map/virtual-address
2156 *			pair.
2157 *	In/out conditions:
2158 *			The mapping must already exist in the pmap.
2159 */
2160void
2161pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2162{
2163	register pt_entry_t *pte;
2164
2165	if (pmap == NULL)
2166		return;
2167
2168	PMAP_LOCK(pmap);
2169	pte = pmap_pte(pmap, va);
2170
2171	if (wired && !pmap_pte_w(pte))
2172		pmap->pm_stats.wired_count++;
2173	else if (!wired && pmap_pte_w(pte))
2174		pmap->pm_stats.wired_count--;
2175
2176	/*
2177	 * Wiring is not a hardware characteristic so there is no need to
2178	 * invalidate TLB.
2179	 */
2180	pmap_pte_set_w(pte, wired);
2181	PMAP_UNLOCK(pmap);
2182}
2183
2184/*
2185 *	Copy the range specified by src_addr/len
2186 *	from the source map to the range dst_addr/len
2187 *	in the destination map.
2188 *
2189 *	This routine is only advisory and need not do anything.
2190 */
2191
2192void
2193pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2194    vm_size_t len, vm_offset_t src_addr)
2195{
2196}
2197
2198/*
2199 *	pmap_zero_page zeros the specified hardware page by mapping
2200 *	the page into KVM and using bzero to clear its contents.
2201 */
2202void
2203pmap_zero_page(vm_page_t m)
2204{
2205	vm_offset_t va;
2206	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2207	register_t intr;
2208
2209	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2210		va = MIPS_PHYS_TO_KSEG0(phys);
2211
2212		bzero((caddr_t)va, PAGE_SIZE);
2213		mips_dcache_wbinv_range(va, PAGE_SIZE);
2214	} else {
2215		PMAP_LMEM_MAP1(va, phys);
2216
2217		bzero((caddr_t)va, PAGE_SIZE);
2218		mips_dcache_wbinv_range(va, PAGE_SIZE);
2219
2220		PMAP_LMEM_UNMAP();
2221	}
2222}
2223
2224/*
2225 *	pmap_zero_page_area zeros the specified hardware page by mapping
2226 *	the page into KVM and using bzero to clear its contents.
2227 *
2228 *	off and size may not cover an area beyond a single hardware page.
2229 */
2230void
2231pmap_zero_page_area(vm_page_t m, int off, int size)
2232{
2233	vm_offset_t va;
2234	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2235	register_t intr;
2236
2237	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2238		va = MIPS_PHYS_TO_KSEG0(phys);
2239		bzero((char *)(caddr_t)va + off, size);
2240		mips_dcache_wbinv_range(va + off, size);
2241	} else {
2242		PMAP_LMEM_MAP1(va, phys);
2243
2244		bzero((char *)va + off, size);
2245		mips_dcache_wbinv_range(va + off, size);
2246
2247		PMAP_LMEM_UNMAP();
2248	}
2249}
2250
2251void
2252pmap_zero_page_idle(vm_page_t m)
2253{
2254	vm_offset_t va;
2255	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2256	register_t intr;
2257
2258	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2259		va = MIPS_PHYS_TO_KSEG0(phys);
2260		bzero((caddr_t)va, PAGE_SIZE);
2261		mips_dcache_wbinv_range(va, PAGE_SIZE);
2262	} else {
2263		PMAP_LMEM_MAP1(va, phys);
2264
2265		bzero((caddr_t)va, PAGE_SIZE);
2266		mips_dcache_wbinv_range(va, PAGE_SIZE);
2267
2268		PMAP_LMEM_UNMAP();
2269	}
2270}
2271
2272/*
2273 *	pmap_copy_page copies the specified (machine independent)
2274 *	page by mapping the page into virtual memory and using
2275 *	bcopy to copy the page, one machine dependent page at a
2276 *	time.
2277 */
2278void
2279pmap_copy_page(vm_page_t src, vm_page_t dst)
2280{
2281	vm_offset_t va_src, va_dst;
2282	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2283	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2284	register_t intr;
2285
2286	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2287		/* easy case, all can be accessed via KSEG0 */
2288		/*
2289		 * Flush all caches for VA that are mapped to this page
2290		 * to make sure that data in SDRAM is up to date
2291		 */
2292		pmap_flush_pvcache(src);
2293		mips_dcache_wbinv_range_index(
2294		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2295		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2296		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2297		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2298		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2299	} else {
2300		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2301
2302		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2303		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2304
2305		PMAP_LMEM_UNMAP();
2306	}
2307}
2308
2309/*
2310 * Returns true if the pmap's pv is one of the first
2311 * 16 pvs linked to from this page.  This count may
2312 * be changed upwards or downwards in the future; it
2313 * is only necessary that true be returned for a small
2314 * subset of pmaps for proper page aging.
2315 */
2316boolean_t
2317pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2318{
2319	pv_entry_t pv;
2320	int loops = 0;
2321	boolean_t rv;
2322
2323	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2324	    ("pmap_page_exists_quick: page %p is not managed", m));
2325	rv = FALSE;
2326	vm_page_lock_queues();
2327	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2328		if (pv->pv_pmap == pmap) {
2329			rv = TRUE;
2330			break;
2331		}
2332		loops++;
2333		if (loops >= 16)
2334			break;
2335	}
2336	vm_page_unlock_queues();
2337	return (rv);
2338}
2339
2340/*
2341 * Remove all pages from specified address space
2342 * this aids process exit speeds.  Also, this code
2343 * is special cased for current process only, but
2344 * can have the more generic (and slightly slower)
2345 * mode enabled.  This is much faster than pmap_remove
2346 * in the case of running down an entire address space.
2347 */
2348void
2349pmap_remove_pages(pmap_t pmap)
2350{
2351	pt_entry_t *pte, tpte;
2352	pv_entry_t pv, npv;
2353	vm_page_t m;
2354
2355	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2356		printf("warning: pmap_remove_pages called with non-current pmap\n");
2357		return;
2358	}
2359	vm_page_lock_queues();
2360	PMAP_LOCK(pmap);
2361	sched_pin();
2362	//XXX need to be TAILQ_FOREACH_SAFE ?
2363	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2364
2365		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2366		if (!pmap_pte_v(pte))
2367			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2368		tpte = *pte;
2369
2370/*
2371 * We cannot remove wired pages from a process' mapping at this time
2372 */
2373		if (tpte & PTE_W) {
2374			npv = TAILQ_NEXT(pv, pv_plist);
2375			continue;
2376		}
2377		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2378
2379		m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2380		KASSERT(m != NULL,
2381		    ("pmap_remove_pages: bad tpte %x", tpte));
2382
2383		pv->pv_pmap->pm_stats.resident_count--;
2384
2385		/*
2386		 * Update the vm_page_t clean and reference bits.
2387		 */
2388		if (tpte & PTE_M) {
2389			vm_page_dirty(m);
2390		}
2391		npv = TAILQ_NEXT(pv, pv_plist);
2392		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2393
2394		m->md.pv_list_count--;
2395		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2396		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2397			vm_page_flag_clear(m, PG_WRITEABLE);
2398		}
2399		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2400		free_pv_entry(pv);
2401	}
2402	sched_unpin();
2403	pmap_invalidate_all(pmap);
2404	PMAP_UNLOCK(pmap);
2405	vm_page_unlock_queues();
2406}
2407
2408/*
2409 * pmap_testbit tests bits in pte's
2410 * note that the testbit/changebit routines are inline,
2411 * and a lot of things compile-time evaluate.
2412 */
2413static boolean_t
2414pmap_testbit(vm_page_t m, int bit)
2415{
2416	pv_entry_t pv;
2417	pt_entry_t *pte;
2418	boolean_t rv = FALSE;
2419
2420	if (m->flags & PG_FICTITIOUS)
2421		return rv;
2422
2423	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2424		return rv;
2425
2426	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2427	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2428#if defined(PMAP_DIAGNOSTIC)
2429		if (!pv->pv_pmap) {
2430			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2431			continue;
2432		}
2433#endif
2434		PMAP_LOCK(pv->pv_pmap);
2435		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2436		rv = (*pte & bit) != 0;
2437		PMAP_UNLOCK(pv->pv_pmap);
2438		if (rv)
2439			break;
2440	}
2441	return (rv);
2442}
2443
2444/*
2445 * this routine is used to modify bits in ptes
2446 */
2447static __inline void
2448pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2449{
2450	register pv_entry_t pv;
2451	register pt_entry_t *pte;
2452
2453	if (m->flags & PG_FICTITIOUS)
2454		return;
2455
2456	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2457	/*
2458	 * Loop over all current mappings setting/clearing as appropos If
2459	 * setting RO do we need to clear the VAC?
2460	 */
2461	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2462#if defined(PMAP_DIAGNOSTIC)
2463		if (!pv->pv_pmap) {
2464			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2465			continue;
2466		}
2467#endif
2468
2469		PMAP_LOCK(pv->pv_pmap);
2470		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2471
2472		if (setem) {
2473			*(int *)pte |= bit;
2474			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2475		} else {
2476			vm_offset_t pbits = *(vm_offset_t *)pte;
2477
2478			if (pbits & bit) {
2479				if (bit == PTE_RW) {
2480					if (pbits & PTE_M) {
2481						vm_page_dirty(m);
2482					}
2483					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2484					    PTE_RO;
2485				} else {
2486					*(int *)pte = pbits & ~bit;
2487				}
2488				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2489			}
2490		}
2491		PMAP_UNLOCK(pv->pv_pmap);
2492	}
2493	if (!setem && bit == PTE_RW)
2494		vm_page_flag_clear(m, PG_WRITEABLE);
2495}
2496
2497/*
2498 *	pmap_page_wired_mappings:
2499 *
2500 *	Return the number of managed mappings to the given physical page
2501 *	that are wired.
2502 */
2503int
2504pmap_page_wired_mappings(vm_page_t m)
2505{
2506	pv_entry_t pv;
2507	int count;
2508
2509	count = 0;
2510	if ((m->flags & PG_FICTITIOUS) != 0)
2511		return (count);
2512	vm_page_lock_queues();
2513	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2514	    if (pv->pv_wired)
2515		count++;
2516	vm_page_unlock_queues();
2517	return (count);
2518}
2519
2520/*
2521 * Clear the write and modified bits in each of the given page's mappings.
2522 */
2523void
2524pmap_remove_write(vm_page_t m)
2525{
2526	pv_entry_t pv, npv;
2527	vm_offset_t va;
2528	pt_entry_t *pte;
2529
2530	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2531	    ("pmap_remove_write: page %p is not managed", m));
2532
2533	/*
2534	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2535	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2536	 * is clear, no page table entries need updating.
2537	 */
2538	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2539	if ((m->oflags & VPO_BUSY) == 0 &&
2540	    (m->flags & PG_WRITEABLE) == 0)
2541		return;
2542
2543	/*
2544	 * Loop over all current mappings setting/clearing as appropos.
2545	 */
2546	vm_page_lock_queues();
2547	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2548		npv = TAILQ_NEXT(pv, pv_plist);
2549		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2550
2551		if ((pte == NULL) || !mips_pg_v(*pte))
2552			panic("page on pm_pvlist has no pte\n");
2553
2554		va = pv->pv_va;
2555		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2556		    VM_PROT_READ | VM_PROT_EXECUTE);
2557	}
2558	vm_page_flag_clear(m, PG_WRITEABLE);
2559	vm_page_unlock_queues();
2560}
2561
2562/*
2563 *	pmap_ts_referenced:
2564 *
2565 *	Return the count of reference bits for a page, clearing all of them.
2566 */
2567int
2568pmap_ts_referenced(vm_page_t m)
2569{
2570
2571	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2572	    ("pmap_ts_referenced: page %p is not managed", m));
2573	if (m->md.pv_flags & PV_TABLE_REF) {
2574		vm_page_lock_queues();
2575		m->md.pv_flags &= ~PV_TABLE_REF;
2576		vm_page_unlock_queues();
2577		return (1);
2578	}
2579	return (0);
2580}
2581
2582/*
2583 *	pmap_is_modified:
2584 *
2585 *	Return whether or not the specified physical page was modified
2586 *	in any physical maps.
2587 */
2588boolean_t
2589pmap_is_modified(vm_page_t m)
2590{
2591	boolean_t rv;
2592
2593	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2594	    ("pmap_is_modified: page %p is not managed", m));
2595
2596	/*
2597	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2598	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2599	 * is clear, no PTEs can have PTE_M set.
2600	 */
2601	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2602	if ((m->oflags & VPO_BUSY) == 0 &&
2603	    (m->flags & PG_WRITEABLE) == 0)
2604		return (FALSE);
2605	vm_page_lock_queues();
2606	if (m->md.pv_flags & PV_TABLE_MOD)
2607		rv = TRUE;
2608	else
2609		rv = pmap_testbit(m, PTE_M);
2610	vm_page_unlock_queues();
2611	return (rv);
2612}
2613
2614/* N/C */
2615
2616/*
2617 *	pmap_is_prefaultable:
2618 *
2619 *	Return whether or not the specified virtual address is elgible
2620 *	for prefault.
2621 */
2622boolean_t
2623pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2624{
2625	pt_entry_t *pte;
2626	boolean_t rv;
2627
2628	rv = FALSE;
2629	PMAP_LOCK(pmap);
2630	if (*pmap_pde(pmap, addr)) {
2631		pte = pmap_pte(pmap, addr);
2632		rv = (*pte == 0);
2633	}
2634	PMAP_UNLOCK(pmap);
2635	return (rv);
2636}
2637
2638/*
2639 *	Clear the modify bits on the specified physical page.
2640 */
2641void
2642pmap_clear_modify(vm_page_t m)
2643{
2644
2645	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2646	    ("pmap_clear_modify: page %p is not managed", m));
2647	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2648	KASSERT((m->oflags & VPO_BUSY) == 0,
2649	    ("pmap_clear_modify: page %p is busy", m));
2650
2651	/*
2652	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_M set.
2653	 * If the object containing the page is locked and the page is not
2654	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2655	 */
2656	if ((m->flags & PG_WRITEABLE) == 0)
2657		return;
2658	vm_page_lock_queues();
2659	if (m->md.pv_flags & PV_TABLE_MOD) {
2660		pmap_changebit(m, PTE_M, FALSE);
2661		m->md.pv_flags &= ~PV_TABLE_MOD;
2662	}
2663	vm_page_unlock_queues();
2664}
2665
2666/*
2667 *	pmap_is_referenced:
2668 *
2669 *	Return whether or not the specified physical page was referenced
2670 *	in any physical maps.
2671 */
2672boolean_t
2673pmap_is_referenced(vm_page_t m)
2674{
2675
2676	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2677	    ("pmap_is_referenced: page %p is not managed", m));
2678	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2679}
2680
2681/*
2682 *	pmap_clear_reference:
2683 *
2684 *	Clear the reference bit on the specified physical page.
2685 */
2686void
2687pmap_clear_reference(vm_page_t m)
2688{
2689
2690	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2691	    ("pmap_clear_reference: page %p is not managed", m));
2692	vm_page_lock_queues();
2693	if (m->md.pv_flags & PV_TABLE_REF) {
2694		m->md.pv_flags &= ~PV_TABLE_REF;
2695	}
2696	vm_page_unlock_queues();
2697}
2698
2699/*
2700 * Miscellaneous support routines follow
2701 */
2702
2703/*
2704 * Map a set of physical memory pages into the kernel virtual
2705 * address space. Return a pointer to where it is mapped. This
2706 * routine is intended to be used for mapping device memory,
2707 * NOT real memory.
2708 */
2709
2710/*
2711 * Map a set of physical memory pages into the kernel virtual
2712 * address space. Return a pointer to where it is mapped. This
2713 * routine is intended to be used for mapping device memory,
2714 * NOT real memory.
2715 */
2716void *
2717pmap_mapdev(vm_offset_t pa, vm_size_t size)
2718{
2719        vm_offset_t va, tmpva, offset;
2720
2721	/*
2722	 * KSEG1 maps only first 512M of phys address space. For
2723	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2724	 */
2725	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2726		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2727	else {
2728		offset = pa & PAGE_MASK;
2729		size = roundup(size + offset, PAGE_SIZE);
2730
2731		va = kmem_alloc_nofault(kernel_map, size);
2732		if (!va)
2733			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2734		pa = trunc_page(pa);
2735		for (tmpva = va; size > 0;) {
2736			pmap_kenter(tmpva, pa);
2737			size -= PAGE_SIZE;
2738			tmpva += PAGE_SIZE;
2739			pa += PAGE_SIZE;
2740		}
2741	}
2742
2743	return ((void *)(va + offset));
2744}
2745
2746void
2747pmap_unmapdev(vm_offset_t va, vm_size_t size)
2748{
2749	vm_offset_t base, offset, tmpva;
2750
2751	/* If the address is within KSEG1 then there is nothing to do */
2752	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2753		return;
2754
2755	base = trunc_page(va);
2756	offset = va & PAGE_MASK;
2757	size = roundup(size + offset, PAGE_SIZE);
2758	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2759		pmap_kremove(tmpva);
2760	kmem_free(kernel_map, base, size);
2761}
2762
2763/*
2764 * perform the pmap work for mincore
2765 */
2766int
2767pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2768{
2769	pt_entry_t *ptep, pte;
2770	vm_offset_t pa;
2771	vm_page_t m;
2772	int val;
2773	boolean_t managed;
2774
2775	PMAP_LOCK(pmap);
2776retry:
2777	ptep = pmap_pte(pmap, addr);
2778	pte = (ptep != NULL) ? *ptep : 0;
2779	if (!mips_pg_v(pte)) {
2780		val = 0;
2781		goto out;
2782	}
2783	val = MINCORE_INCORE;
2784	if ((pte & PTE_M) != 0)
2785		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2786	pa = TLBLO_PTE_TO_PA(pte);
2787	managed = page_is_managed(pa);
2788	if (managed) {
2789		/*
2790		 * This may falsely report the given address as
2791		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2792		 * per-PTE reference information, it is impossible to
2793		 * determine if the address is MINCORE_REFERENCED.
2794		 */
2795		m = PHYS_TO_VM_PAGE(pa);
2796		if ((m->flags & PG_REFERENCED) != 0)
2797			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2798	}
2799	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2800	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2801		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2802		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2803			goto retry;
2804	} else
2805out:
2806		PA_UNLOCK_COND(*locked_pa);
2807	PMAP_UNLOCK(pmap);
2808	return (val);
2809}
2810
2811void
2812pmap_activate(struct thread *td)
2813{
2814	pmap_t pmap, oldpmap;
2815	struct proc *p = td->td_proc;
2816
2817	critical_enter();
2818
2819	pmap = vmspace_pmap(p->p_vmspace);
2820	oldpmap = PCPU_GET(curpmap);
2821
2822	if (oldpmap)
2823		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2824	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2825	pmap_asid_alloc(pmap);
2826	if (td == curthread) {
2827		PCPU_SET(segbase, pmap->pm_segtab);
2828		mips_wr_entryhi(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2829	}
2830
2831	PCPU_SET(curpmap, pmap);
2832	critical_exit();
2833}
2834
2835void
2836pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2837{
2838}
2839
2840/*
2841 *	Increase the starting virtual address of the given mapping if a
2842 *	different alignment might result in more superpage mappings.
2843 */
2844void
2845pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2846    vm_offset_t *addr, vm_size_t size)
2847{
2848	vm_offset_t superpage_offset;
2849
2850	if (size < NBSEG)
2851		return;
2852	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2853		offset += ptoa(object->pg_color);
2854	superpage_offset = offset & SEGOFSET;
2855	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2856	    (*addr & SEGOFSET) == superpage_offset)
2857		return;
2858	if ((*addr & SEGOFSET) < superpage_offset)
2859		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2860	else
2861		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2862}
2863
2864/*
2865 * 	Increase the starting virtual address of the given mapping so
2866 * 	that it is aligned to not be the second page in a TLB entry.
2867 * 	This routine assumes that the length is appropriately-sized so
2868 * 	that the allocation does not share a TLB entry at all if required.
2869 */
2870void
2871pmap_align_tlb(vm_offset_t *addr)
2872{
2873	if ((*addr & PAGE_SIZE) == 0)
2874		return;
2875	*addr += PAGE_SIZE;
2876	return;
2877}
2878
2879int pmap_pid_dump(int pid);
2880
2881int
2882pmap_pid_dump(int pid)
2883{
2884	pmap_t pmap;
2885	struct proc *p;
2886	int npte = 0;
2887	int index;
2888
2889	sx_slock(&allproc_lock);
2890	LIST_FOREACH(p, &allproc, p_list) {
2891		if (p->p_pid != pid)
2892			continue;
2893
2894		if (p->p_vmspace) {
2895			int i, j;
2896
2897			printf("vmspace is %p\n",
2898			       p->p_vmspace);
2899			index = 0;
2900			pmap = vmspace_pmap(p->p_vmspace);
2901			printf("pmap asid:%x generation:%x\n",
2902			       pmap->pm_asid[0].asid,
2903			       pmap->pm_asid[0].gen);
2904			for (i = 0; i < NUSERPGTBLS; i++) {
2905				pd_entry_t *pde;
2906				pt_entry_t *pte;
2907				unsigned base = i << SEGSHIFT;
2908
2909				pde = &pmap->pm_segtab[i];
2910				if (pde && pmap_pde_v(pde)) {
2911					for (j = 0; j < 1024; j++) {
2912						vm_offset_t va = base +
2913						(j << PAGE_SHIFT);
2914
2915						pte = pmap_pte(pmap, va);
2916						if (pte && pmap_pte_v(pte)) {
2917							vm_offset_t pa;
2918							vm_page_t m;
2919
2920							pa = TLBLO_PFN_TO_PA(*pte);
2921							m = PHYS_TO_VM_PAGE(pa);
2922							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2923							    (void *)va,
2924							    (void *)pa,
2925							    m->hold_count,
2926							    m->wire_count,
2927							    m->flags);
2928							npte++;
2929							index++;
2930							if (index >= 2) {
2931								index = 0;
2932								printf("\n");
2933							} else {
2934								printf(" ");
2935							}
2936						}
2937					}
2938				}
2939			}
2940		} else {
2941		  printf("Process pid:%d has no vm_space\n", pid);
2942		}
2943		break;
2944	}
2945	sx_sunlock(&allproc_lock);
2946	return npte;
2947}
2948
2949
2950#if defined(DEBUG)
2951
2952static void pads(pmap_t pm);
2953void pmap_pvdump(vm_offset_t pa);
2954
2955/* print address space of pmap*/
2956static void
2957pads(pmap_t pm)
2958{
2959	unsigned va, i, j;
2960	pt_entry_t *ptep;
2961
2962	if (pm == kernel_pmap)
2963		return;
2964	for (i = 0; i < NPTEPG; i++)
2965		if (pm->pm_segtab[i])
2966			for (j = 0; j < NPTEPG; j++) {
2967				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
2968				if (pm == kernel_pmap && va < KERNBASE)
2969					continue;
2970				if (pm != kernel_pmap &&
2971				    va >= VM_MAXUSER_ADDRESS)
2972					continue;
2973				ptep = pmap_pte(pm, va);
2974				if (pmap_pte_v(ptep))
2975					printf("%x:%x ", va, *(int *)ptep);
2976			}
2977
2978}
2979
2980void
2981pmap_pvdump(vm_offset_t pa)
2982{
2983	register pv_entry_t pv;
2984	vm_page_t m;
2985
2986	printf("pa %x", pa);
2987	m = PHYS_TO_VM_PAGE(pa);
2988	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
2989	    pv = TAILQ_NEXT(pv, pv_list)) {
2990		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
2991		pads(pv->pv_pmap);
2992	}
2993	printf(" ");
2994}
2995
2996/* N/C */
2997#endif
2998
2999
3000/*
3001 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3002 * It takes almost as much or more time to search the TLB for a
3003 * specific ASID and flush those entries as it does to flush the entire TLB.
3004 * Therefore, when we allocate a new ASID, we just take the next number. When
3005 * we run out of numbers, we flush the TLB, increment the generation count
3006 * and start over. ASID zero is reserved for kernel use.
3007 */
3008static void
3009pmap_asid_alloc(pmap)
3010	pmap_t pmap;
3011{
3012	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3013	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3014	else {
3015		if (PCPU_GET(next_asid) == pmap_max_asid) {
3016			tlb_invalidate_all_user(NULL);
3017			PCPU_SET(asid_generation,
3018			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3019			if (PCPU_GET(asid_generation) == 0) {
3020				PCPU_SET(asid_generation, 1);
3021			}
3022			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3023		}
3024		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3025		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3026		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3027	}
3028}
3029
3030int
3031page_is_managed(vm_offset_t pa)
3032{
3033	vm_offset_t pgnum = mips_btop(pa);
3034
3035	if (pgnum >= first_page) {
3036		vm_page_t m;
3037
3038		m = PHYS_TO_VM_PAGE(pa);
3039		if (m == NULL)
3040			return 0;
3041		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3042			return 1;
3043	}
3044	return 0;
3045}
3046
3047static int
3048init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3049{
3050	int rw;
3051
3052	if (!(prot & VM_PROT_WRITE))
3053		rw = PTE_ROPAGE;
3054	else if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3055		if ((m->md.pv_flags & PV_TABLE_MOD) != 0)
3056			rw = PTE_RWPAGE;
3057		else
3058			rw = PTE_CWPAGE;
3059		vm_page_flag_set(m, PG_WRITEABLE);
3060	} else
3061		/* Needn't emulate a modified bit for unmanaged pages. */
3062		rw = PTE_RWPAGE;
3063	return (rw);
3064}
3065
3066/*
3067 *	pmap_set_modified:
3068 *
3069 *	Sets the page modified and reference bits for the specified page.
3070 */
3071void
3072pmap_set_modified(vm_offset_t pa)
3073{
3074
3075	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3076}
3077
3078/*
3079 *	Routine:	pmap_kextract
3080 *	Function:
3081 *		Extract the physical page address associated
3082 *		virtual address.
3083 */
3084 /* PMAP_INLINE */ vm_offset_t
3085pmap_kextract(vm_offset_t va)
3086{
3087	vm_offset_t pa = 0;
3088
3089	if (va < MIPS_KSEG0_START) {
3090		/* user virtual address */
3091		pt_entry_t *ptep;
3092
3093		if (curproc && curproc->p_vmspace) {
3094			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3095			if (ptep)
3096				pa = TLBLO_PTE_TO_PA(*ptep) |
3097				    (va & PAGE_MASK);
3098		}
3099	} else if (va >= MIPS_KSEG0_START &&
3100	    va < MIPS_KSEG1_START)
3101		pa = MIPS_KSEG0_TO_PHYS(va);
3102	else if (va >= MIPS_KSEG1_START &&
3103	    va < MIPS_KSEG2_START)
3104		pa = MIPS_KSEG1_TO_PHYS(va);
3105	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3106		pt_entry_t *ptep;
3107
3108		/* Is the kernel pmap initialized? */
3109		if (kernel_pmap->pm_active) {
3110			/* Its inside the virtual address range */
3111			ptep = pmap_pte(kernel_pmap, va);
3112			if (ptep) {
3113				return (TLBLO_PTE_TO_PA(*ptep) |
3114				    (va & PAGE_MASK));
3115			}
3116			return (0);
3117		}
3118	}
3119	return pa;
3120}
3121
3122void
3123pmap_flush_pvcache(vm_page_t m)
3124{
3125	pv_entry_t pv;
3126
3127	if (m != NULL) {
3128		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3129	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3130			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3131		}
3132	}
3133}
3134