pmap.c revision 208589
1139735Simp/*
2129198Scognet * Copyright (c) 1991 Regents of the University of California.
3129198Scognet * All rights reserved.
4129198Scognet * Copyright (c) 1994 John S. Dyson
5129198Scognet * All rights reserved.
6129198Scognet * Copyright (c) 1994 David Greenman
7129198Scognet * All rights reserved.
8129198Scognet *
9129198Scognet * This code is derived from software contributed to Berkeley by
10129198Scognet * the Systems Programming Group of the University of Utah Computer
11129198Scognet * Science Department and William Jolitz of UUNET Technologies Inc.
12129198Scognet *
13129198Scognet * Redistribution and use in source and binary forms, with or without
14129198Scognet * modification, are permitted provided that the following conditions
15129198Scognet * are met:
16129198Scognet * 1. Redistributions of source code must retain the above copyright
17129198Scognet *    notice, this list of conditions and the following disclaimer.
18129198Scognet * 2. Redistributions in binary form must reproduce the above copyright
19129198Scognet *    notice, this list of conditions and the following disclaimer in the
20129198Scognet *    documentation and/or other materials provided with the distribution.
21129198Scognet * 4. Neither the name of the University nor the names of its contributors
22129198Scognet *    may be used to endorse or promote products derived from this software
23129198Scognet *    without specific prior written permission.
24129198Scognet *
25129198Scognet * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26129198Scognet * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27129198Scognet * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28129198Scognet * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29129198Scognet * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30129198Scognet * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31129198Scognet * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32217290Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33217290Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34129198Scognet * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35129198Scognet * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 208589 2010-05-27 10:05:40Z jchandra $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_phys.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/uma.h>
94#include <sys/pcpu.h>
95#include <sys/sched.h>
96#ifdef SMP
97#include <sys/smp.h>
98#endif
99
100#include <machine/cache.h>
101#include <machine/md_var.h>
102
103#if defined(DIAGNOSTIC)
104#define	PMAP_DIAGNOSTIC
105#endif
106
107#undef PMAP_DEBUG
108
109#ifndef PMAP_SHPGPERPROC
110#define	PMAP_SHPGPERPROC 200
111#endif
112
113#if !defined(PMAP_DIAGNOSTIC)
114#define	PMAP_INLINE __inline
115#else
116#define	PMAP_INLINE
117#endif
118
119/*
120 * Get PDEs and PTEs for user/kernel address space
121 */
122#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
123#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
124
125#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
126#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
127#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
128#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
129
130#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
131#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
132
133#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
134#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
135#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
136#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
137#define	is_kernel_pmap(x)	((x) == kernel_pmap)
138
139struct pmap kernel_pmap_store;
140pd_entry_t *kernel_segmap;
141
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144
145static int nkpt;
146unsigned pmap_max_asid;		/* max ASID supported by the system */
147
148
149#define	PMAP_ASID_RESERVED	0
150
151vm_offset_t kernel_vm_end;
152
153static struct tlb tlbstash[MAXCPU][MIPS_MAX_TLB_ENTRIES];
154
155static void pmap_asid_alloc(pmap_t pmap);
156
157/*
158 * Data for the pv entry allocation mechanism
159 */
160static uma_zone_t pvzone;
161static struct vm_object pvzone_obj;
162static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
163
164static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
165static pv_entry_t get_pv_entry(pmap_t locked_pmap);
166static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
167
168static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
169    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
170static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
171static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
172static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
173static boolean_t pmap_testbit(vm_page_t m, int bit);
174static void
175pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
176    vm_page_t m, boolean_t wired);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179
180static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
181
182static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
183static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
184static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
185static void pmap_TLB_invalidate_kernel(vm_offset_t);
186static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
187static vm_page_t pmap_alloc_pte_page(pmap_t, unsigned int, int, vm_offset_t *);
188static void pmap_release_pte_page(vm_page_t);
189
190#ifdef SMP
191static void pmap_invalidate_page_action(void *arg);
192static void pmap_invalidate_all_action(void *arg);
193static void pmap_update_page_action(void *arg);
194#endif
195
196static void pmap_ptpgzone_dtor(void *mem, int size, void *arg);
197static void *pmap_ptpgzone_allocf(uma_zone_t, int, u_int8_t *, int);
198static uma_zone_t ptpgzone;
199
200struct local_sysmaps {
201	struct mtx lock;
202	vm_offset_t base;
203	uint16_t valid1, valid2;
204};
205
206/* This structure is for large memory
207 * above 512Meg. We can't (in 32 bit mode)
208 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
209 * macros since we can't see the memory and must
210 * map it in when we need to access it. In 64
211 * bit mode this goes away.
212 */
213static struct local_sysmaps sysmap_lmem[MAXCPU];
214caddr_t virtual_sys_start = (caddr_t)0;
215
216#define	PMAP_LMEM_MAP1(va, phys)					\
217	int cpu;							\
218	struct local_sysmaps *sysm;					\
219	pt_entry_t *pte, npte;						\
220									\
221	cpu = PCPU_GET(cpuid);						\
222	sysm = &sysmap_lmem[cpu];					\
223	PMAP_LGMEM_LOCK(sysm);						\
224	intr = intr_disable();						\
225	sched_pin();							\
226	va = sysm->base;						\
227	npte = mips_paddr_to_tlbpfn(phys) |				\
228	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
229	pte = pmap_pte(kernel_pmap, va);				\
230	*pte = npte;							\
231	sysm->valid1 = 1;
232
233#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
234	int cpu;							\
235	struct local_sysmaps *sysm;					\
236	pt_entry_t *pte, npte;						\
237									\
238	cpu = PCPU_GET(cpuid);						\
239	sysm = &sysmap_lmem[cpu];					\
240	PMAP_LGMEM_LOCK(sysm);						\
241	intr = intr_disable();						\
242	sched_pin();							\
243	va1 = sysm->base;						\
244	va2 = sysm->base + PAGE_SIZE;					\
245	npte = mips_paddr_to_tlbpfn(phys1) |				\
246	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
247	pte = pmap_pte(kernel_pmap, va1);				\
248	*pte = npte;							\
249	npte = mips_paddr_to_tlbpfn(phys2) |				\
250	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
251	pte = pmap_pte(kernel_pmap, va2);				\
252	*pte = npte;							\
253	sysm->valid1 = 1;						\
254	sysm->valid2 = 1;
255
256#define	PMAP_LMEM_UNMAP()						\
257	pte = pmap_pte(kernel_pmap, sysm->base);			\
258	*pte = PTE_G;							\
259	pmap_TLB_invalidate_kernel(sysm->base);				\
260	sysm->valid1 = 0;						\
261	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
262	*pte = PTE_G;							\
263	pmap_TLB_invalidate_kernel(sysm->base + PAGE_SIZE);		\
264	sysm->valid2 = 0;						\
265	sched_unpin();							\
266	intr_restore(intr);						\
267	PMAP_LGMEM_UNLOCK(sysm);
268
269pd_entry_t
270pmap_segmap(pmap_t pmap, vm_offset_t va)
271{
272	if (pmap->pm_segtab)
273		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
274	else
275		return ((pd_entry_t)0);
276}
277
278/*
279 *	Routine:	pmap_pte
280 *	Function:
281 *		Extract the page table entry associated
282 *		with the given map/virtual_address pair.
283 */
284pt_entry_t *
285pmap_pte(pmap_t pmap, vm_offset_t va)
286{
287	pt_entry_t *pdeaddr;
288
289	if (pmap) {
290		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
291		if (pdeaddr) {
292			return pdeaddr + vad_to_pte_offset(va);
293		}
294	}
295	return ((pt_entry_t *)0);
296}
297
298
299vm_offset_t
300pmap_steal_memory(vm_size_t size)
301{
302	vm_size_t bank_size;
303	vm_offset_t pa, va;
304
305	size = round_page(size);
306
307	bank_size = phys_avail[1] - phys_avail[0];
308	while (size > bank_size) {
309		int i;
310
311		for (i = 0; phys_avail[i + 2]; i += 2) {
312			phys_avail[i] = phys_avail[i + 2];
313			phys_avail[i + 1] = phys_avail[i + 3];
314		}
315		phys_avail[i] = 0;
316		phys_avail[i + 1] = 0;
317		if (!phys_avail[0])
318			panic("pmap_steal_memory: out of memory");
319		bank_size = phys_avail[1] - phys_avail[0];
320	}
321
322	pa = phys_avail[0];
323	phys_avail[0] += size;
324	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
325		panic("Out of memory below 512Meg?");
326	}
327	va = MIPS_PHYS_TO_KSEG0(pa);
328	bzero((caddr_t)va, size);
329	return va;
330}
331
332/*
333 *	Bootstrap the system enough to run with virtual memory.  This
334 * assumes that the phys_avail array has been initialized.
335 */
336void
337pmap_bootstrap(void)
338{
339	pt_entry_t *pgtab;
340	pt_entry_t *pte;
341	int i, j;
342	int memory_larger_than_512meg = 0;
343
344	/* Sort. */
345again:
346	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
347		/*
348		 * Keep the memory aligned on page boundary.
349		 */
350		phys_avail[i] = round_page(phys_avail[i]);
351		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
352
353		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
354			memory_larger_than_512meg++;
355		if (i < 2)
356			continue;
357		if (phys_avail[i - 2] > phys_avail[i]) {
358			vm_paddr_t ptemp[2];
359
360
361			ptemp[0] = phys_avail[i + 0];
362			ptemp[1] = phys_avail[i + 1];
363
364			phys_avail[i + 0] = phys_avail[i - 2];
365			phys_avail[i + 1] = phys_avail[i - 1];
366
367			phys_avail[i - 2] = ptemp[0];
368			phys_avail[i - 1] = ptemp[1];
369			goto again;
370		}
371	}
372
373	/*
374	 * Copy the phys_avail[] array before we start stealing memory from it.
375	 */
376	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
377		physmem_desc[i] = phys_avail[i];
378		physmem_desc[i + 1] = phys_avail[i + 1];
379	}
380
381	Maxmem = atop(phys_avail[i - 1]);
382
383	if (bootverbose) {
384		printf("Physical memory chunk(s):\n");
385		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
386			vm_paddr_t size;
387
388			size = phys_avail[i + 1] - phys_avail[i];
389			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
390			    (uintmax_t) phys_avail[i],
391			    (uintmax_t) phys_avail[i + 1] - 1,
392			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
393		}
394		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
395	}
396	/*
397	 * Steal the message buffer from the beginning of memory.
398	 */
399	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
400	msgbufinit(msgbufp, MSGBUF_SIZE);
401
402	/*
403	 * Steal thread0 kstack.
404	 */
405	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
406
407
408	virtual_avail = VM_MIN_KERNEL_ADDRESS;
409	virtual_end = VM_MAX_KERNEL_ADDRESS;
410
411#ifdef SMP
412	/*
413	 * Steal some virtual address space to map the pcpu area.
414	 */
415	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
416	pcpup = (struct pcpu *)virtual_avail;
417	virtual_avail += PAGE_SIZE * 2;
418
419	/*
420	 * Initialize the wired TLB entry mapping the pcpu region for
421	 * the BSP at 'pcpup'. Up until this point we were operating
422	 * with the 'pcpup' for the BSP pointing to a virtual address
423	 * in KSEG0 so there was no need for a TLB mapping.
424	 */
425	mips_pcpu_tlb_init(PCPU_ADDR(0));
426
427	if (bootverbose)
428		printf("pcpu is available at virtual address %p.\n", pcpup);
429#endif
430
431	/*
432	 * Steal some virtual space that will not be in kernel_segmap. This
433	 * va memory space will be used to map in kernel pages that are
434	 * outside the 512Meg region. Note that we only do this steal when
435	 * we do have memory in this region, that way for systems with
436	 * smaller memory we don't "steal" any va ranges :-)
437	 */
438	if (memory_larger_than_512meg) {
439		for (i = 0; i < MAXCPU; i++) {
440			sysmap_lmem[i].base = virtual_avail;
441			virtual_avail += PAGE_SIZE * 2;
442			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
443			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
444		}
445	}
446	virtual_sys_start = (caddr_t)virtual_avail;
447	/*
448	 * Allocate segment table for the kernel
449	 */
450	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
451
452	/*
453	 * Allocate second level page tables for the kernel
454	 */
455	nkpt = NKPT;
456	if (memory_larger_than_512meg) {
457		/*
458		 * If we have a large memory system we CANNOT afford to hit
459		 * pmap_growkernel() and allocate memory. Since we MAY end
460		 * up with a page that is NOT mappable. For that reason we
461		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
462		 * this gives us 480meg of kernel virtual addresses at the
463		 * cost of 120 pages (each page gets us 4 Meg). Since the
464		 * kernel starts at virtual_avail, we can use this to
465		 * calculate how many entris are left from there to the end
466		 * of the segmap, we want to allocate all of it, which would
467		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
468		 * in about 256 entries or so instead of the 120.
469		 */
470		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
471	}
472	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
473
474	/*
475	 * The R[4-7]?00 stores only one copy of the Global bit in the
476	 * translation lookaside buffer for each 2 page entry. Thus invalid
477	 * entrys must have the Global bit set so when Entry LO and Entry HI
478	 * G bits are anded together they will produce a global bit to store
479	 * in the tlb.
480	 */
481	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
482		*pte = PTE_G;
483
484	/*
485	 * The segment table contains the KVA of the pages in the second
486	 * level page table.
487	 */
488	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
489		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
490
491	/*
492	 * The kernel's pmap is statically allocated so we don't have to use
493	 * pmap_create, which is unlikely to work correctly at this part of
494	 * the boot sequence (XXX and which no longer exists).
495	 */
496	PMAP_LOCK_INIT(kernel_pmap);
497	kernel_pmap->pm_segtab = kernel_segmap;
498	kernel_pmap->pm_active = ~0;
499	TAILQ_INIT(&kernel_pmap->pm_pvlist);
500	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
501	kernel_pmap->pm_asid[0].gen = 0;
502	pmap_max_asid = VMNUM_PIDS;
503	MachSetPID(0);
504}
505
506/*
507 * Initialize a vm_page's machine-dependent fields.
508 */
509void
510pmap_page_init(vm_page_t m)
511{
512
513	TAILQ_INIT(&m->md.pv_list);
514	m->md.pv_list_count = 0;
515	m->md.pv_flags = 0;
516}
517
518/*
519 *	Initialize the pmap module.
520 *	Called by vm_init, to initialize any structures that the pmap
521 *	system needs to map virtual memory.
522 *	pmap_init has been enhanced to support in a fairly consistant
523 *	way, discontiguous physical memory.
524 */
525void
526pmap_init(void)
527{
528
529	/*
530	 * Initialize the address space (zone) for the pv entries.  Set a
531	 * high water mark so that the system can recover from excessive
532	 * numbers of pv entries.
533	 */
534	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
535	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
536	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
537	pv_entry_high_water = 9 * (pv_entry_max / 10);
538	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
539
540	ptpgzone = uma_zcreate("PT ENTRY", PAGE_SIZE, NULL, pmap_ptpgzone_dtor,
541	    NULL, NULL, PAGE_SIZE - 1, UMA_ZONE_NOFREE | UMA_ZONE_ZINIT);
542	uma_zone_set_allocf(ptpgzone, pmap_ptpgzone_allocf);
543}
544
545/***************************************************
546 * Low level helper routines.....
547 ***************************************************/
548
549#if defined(PMAP_DIAGNOSTIC)
550
551/*
552 * This code checks for non-writeable/modified pages.
553 * This should be an invalid condition.
554 */
555static int
556pmap_nw_modified(pt_entry_t pte)
557{
558	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
559		return (1);
560	else
561		return (0);
562}
563
564#endif
565
566static void
567pmap_invalidate_all(pmap_t pmap)
568{
569#ifdef SMP
570	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
571}
572
573static void
574pmap_invalidate_all_action(void *arg)
575{
576	pmap_t pmap = (pmap_t)arg;
577
578#endif
579
580	if (pmap->pm_active & PCPU_GET(cpumask)) {
581		pmap_TLB_invalidate_all();
582	} else
583		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
584}
585
586struct pmap_invalidate_page_arg {
587	pmap_t pmap;
588	vm_offset_t va;
589};
590
591static __inline void
592pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
593{
594#ifdef SMP
595	struct pmap_invalidate_page_arg arg;
596
597	arg.pmap = pmap;
598	arg.va = va;
599
600	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
601}
602
603static void
604pmap_invalidate_page_action(void *arg)
605{
606	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
607	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
608
609#endif
610
611	if (is_kernel_pmap(pmap)) {
612		pmap_TLB_invalidate_kernel(va);
613		return;
614	}
615	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
616		return;
617	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
618		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
619		return;
620	}
621	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
622	mips_TBIS(va);
623}
624
625static void
626pmap_TLB_invalidate_kernel(vm_offset_t va)
627{
628	u_int32_t pid;
629
630	MachTLBGetPID(pid);
631	va = va | (pid << VMTLB_PID_SHIFT);
632	mips_TBIS(va);
633}
634
635struct pmap_update_page_arg {
636	pmap_t pmap;
637	vm_offset_t va;
638	pt_entry_t pte;
639};
640
641void
642pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
643{
644#ifdef SMP
645	struct pmap_update_page_arg arg;
646
647	arg.pmap = pmap;
648	arg.va = va;
649	arg.pte = pte;
650
651	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
652}
653
654static void
655pmap_update_page_action(void *arg)
656{
657	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
658	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
659	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
660
661#endif
662	if (is_kernel_pmap(pmap)) {
663		pmap_TLB_update_kernel(va, pte);
664		return;
665	}
666	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
667		return;
668	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
669		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
670		return;
671	}
672	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
673	MachTLBUpdate(va, pte);
674}
675
676static void
677pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
678{
679	u_int32_t pid;
680
681	va &= ~PAGE_MASK;
682
683	MachTLBGetPID(pid);
684	va = va | (pid << VMTLB_PID_SHIFT);
685
686	MachTLBUpdate(va, pte);
687}
688
689/*
690 *	Routine:	pmap_extract
691 *	Function:
692 *		Extract the physical page address associated
693 *		with the given map/virtual_address pair.
694 */
695vm_paddr_t
696pmap_extract(pmap_t pmap, vm_offset_t va)
697{
698	pt_entry_t *pte;
699	vm_offset_t retval = 0;
700
701	PMAP_LOCK(pmap);
702	pte = pmap_pte(pmap, va);
703	if (pte) {
704		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
705	}
706	PMAP_UNLOCK(pmap);
707	return retval;
708}
709
710/*
711 *	Routine:	pmap_extract_and_hold
712 *	Function:
713 *		Atomically extract and hold the physical page
714 *		with the given pmap and virtual address pair
715 *		if that mapping permits the given protection.
716 */
717vm_page_t
718pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
719{
720	pt_entry_t pte;
721	vm_page_t m;
722	vm_paddr_t pa;
723
724	m = NULL;
725	pa = 0;
726	PMAP_LOCK(pmap);
727retry:
728	pte = *pmap_pte(pmap, va);
729	if (pte != 0 && pmap_pte_v(&pte) &&
730	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
731		if (vm_page_pa_tryrelock(pmap, mips_tlbpfn_to_paddr(pte), &pa))
732			goto retry;
733
734		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
735		vm_page_hold(m);
736	}
737	PA_UNLOCK_COND(pa);
738	PMAP_UNLOCK(pmap);
739	return (m);
740}
741
742/***************************************************
743 * Low level mapping routines.....
744 ***************************************************/
745
746/*
747 * add a wired page to the kva
748 */
749 /* PMAP_INLINE */ void
750pmap_kenter(vm_offset_t va, vm_paddr_t pa)
751{
752	register pt_entry_t *pte;
753	pt_entry_t npte, opte;
754
755#ifdef PMAP_DEBUG
756	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
757#endif
758	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
759
760	if (is_cacheable_mem(pa))
761		npte |= PTE_CACHE;
762	else
763		npte |= PTE_UNCACHED;
764
765	pte = pmap_pte(kernel_pmap, va);
766	opte = *pte;
767	*pte = npte;
768
769	pmap_update_page(kernel_pmap, va, npte);
770}
771
772/*
773 * remove a page from the kernel pagetables
774 */
775 /* PMAP_INLINE */ void
776pmap_kremove(vm_offset_t va)
777{
778	register pt_entry_t *pte;
779
780	/*
781	 * Write back all caches from the page being destroyed
782	 */
783	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
784
785	pte = pmap_pte(kernel_pmap, va);
786	*pte = PTE_G;
787	pmap_invalidate_page(kernel_pmap, va);
788}
789
790/*
791 *	Used to map a range of physical addresses into kernel
792 *	virtual address space.
793 *
794 *	The value passed in '*virt' is a suggested virtual address for
795 *	the mapping. Architectures which can support a direct-mapped
796 *	physical to virtual region can return the appropriate address
797 *	within that region, leaving '*virt' unchanged. Other
798 *	architectures should map the pages starting at '*virt' and
799 *	update '*virt' with the first usable address after the mapped
800 *	region.
801 */
802vm_offset_t
803pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
804{
805	vm_offset_t va, sva;
806
807	va = sva = *virt;
808	while (start < end) {
809		pmap_kenter(va, start);
810		va += PAGE_SIZE;
811		start += PAGE_SIZE;
812	}
813	*virt = va;
814	return (sva);
815}
816
817/*
818 * Add a list of wired pages to the kva
819 * this routine is only used for temporary
820 * kernel mappings that do not need to have
821 * page modification or references recorded.
822 * Note that old mappings are simply written
823 * over.  The page *must* be wired.
824 */
825void
826pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
827{
828	int i;
829	vm_offset_t origva = va;
830
831	for (i = 0; i < count; i++) {
832		pmap_flush_pvcache(m[i]);
833		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
834		va += PAGE_SIZE;
835	}
836
837	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
838}
839
840/*
841 * this routine jerks page mappings from the
842 * kernel -- it is meant only for temporary mappings.
843 */
844void
845pmap_qremove(vm_offset_t va, int count)
846{
847	/*
848	 * No need to wb/inv caches here,
849	 *   pmap_kremove will do it for us
850	 */
851
852	while (count-- > 0) {
853		pmap_kremove(va);
854		va += PAGE_SIZE;
855	}
856}
857
858/***************************************************
859 * Page table page management routines.....
860 ***************************************************/
861
862/*  Revision 1.507
863 *
864 * Simplify the reference counting of page table pages.	 Specifically, use
865 * the page table page's wired count rather than its hold count to contain
866 * the reference count.
867 */
868
869/*
870 * This routine unholds page table pages, and if the hold count
871 * drops to zero, then it decrements the wire count.
872 */
873static int
874_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
875{
876
877	/*
878	 * unmap the page table page
879	 */
880	pmap->pm_segtab[m->pindex] = 0;
881	--pmap->pm_stats.resident_count;
882
883	if (pmap->pm_ptphint == m)
884		pmap->pm_ptphint = NULL;
885
886	/*
887	 * If the page is finally unwired, simply free it.
888	 */
889	pmap_release_pte_page(m);
890	atomic_subtract_int(&cnt.v_wire_count, 1);
891	return (1);
892}
893
894static PMAP_INLINE int
895pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
896{
897	--m->wire_count;
898	if (m->wire_count == 0)
899		return (_pmap_unwire_pte_hold(pmap, m));
900	else
901		return (0);
902}
903
904/*
905 * After removing a page table entry, this routine is used to
906 * conditionally free the page, and manage the hold/wire counts.
907 */
908static int
909pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
910{
911	unsigned ptepindex;
912	pd_entry_t pteva;
913
914	if (va >= VM_MAXUSER_ADDRESS)
915		return (0);
916
917	if (mpte == NULL) {
918		ptepindex = (va >> SEGSHIFT);
919		if (pmap->pm_ptphint &&
920		    (pmap->pm_ptphint->pindex == ptepindex)) {
921			mpte = pmap->pm_ptphint;
922		} else {
923			pteva = *pmap_pde(pmap, va);
924			mpte = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
925			pmap->pm_ptphint = mpte;
926		}
927	}
928	return pmap_unwire_pte_hold(pmap, mpte);
929}
930
931void
932pmap_pinit0(pmap_t pmap)
933{
934	int i;
935
936	PMAP_LOCK_INIT(pmap);
937	pmap->pm_segtab = kernel_segmap;
938	pmap->pm_active = 0;
939	pmap->pm_ptphint = NULL;
940	for (i = 0; i < MAXCPU; i++) {
941		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
942		pmap->pm_asid[i].gen = 0;
943	}
944	PCPU_SET(curpmap, pmap);
945	TAILQ_INIT(&pmap->pm_pvlist);
946	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
947}
948
949static void
950pmap_ptpgzone_dtor(void *mem, int size, void *arg)
951{
952#ifdef INVARIANTS
953	static char zeropage[PAGE_SIZE];
954
955	KASSERT(size == PAGE_SIZE,
956		("pmap_ptpgzone_dtor: invalid size %d", size));
957	KASSERT(bcmp(mem, zeropage, PAGE_SIZE) == 0,
958		("pmap_ptpgzone_dtor: freeing a non-zeroed page"));
959#endif
960}
961
962static void *
963pmap_ptpgzone_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
964{
965	vm_page_t m;
966	vm_paddr_t paddr;
967
968	KASSERT(bytes == PAGE_SIZE,
969		("pmap_ptpgzone_allocf: invalid allocation size %d", bytes));
970
971	*flags = UMA_SLAB_PRIV;
972	for (;;) {
973		m = vm_phys_alloc_contig(1, 0, MIPS_KSEG0_LARGEST_PHYS,
974		    PAGE_SIZE, PAGE_SIZE);
975		if (m != NULL)
976			break;
977		if ((wait & M_WAITOK) == 0)
978			return (NULL);
979		VM_WAIT;
980	}
981
982	paddr = VM_PAGE_TO_PHYS(m);
983	return ((void *)MIPS_PHYS_TO_KSEG0(paddr));
984}
985
986static vm_page_t
987pmap_alloc_pte_page(pmap_t pmap, unsigned int index, int wait, vm_offset_t *vap)
988{
989	vm_paddr_t paddr;
990	void *va;
991	vm_page_t m;
992	int locked;
993
994	locked = mtx_owned(&pmap->pm_mtx);
995	if (locked) {
996		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
997		PMAP_UNLOCK(pmap);
998		vm_page_unlock_queues();
999	}
1000	va = uma_zalloc(ptpgzone, wait);
1001	if (locked) {
1002		vm_page_lock_queues();
1003		PMAP_LOCK(pmap);
1004	}
1005	if (va == NULL)
1006		return (NULL);
1007
1008	paddr = MIPS_KSEG0_TO_PHYS(va);
1009	m = PHYS_TO_VM_PAGE(paddr);
1010
1011	m->pindex = index;
1012	m->valid = VM_PAGE_BITS_ALL;
1013	m->wire_count = 1;
1014	atomic_add_int(&cnt.v_wire_count, 1);
1015	*vap = (vm_offset_t)va;
1016	return (m);
1017}
1018
1019static void
1020pmap_release_pte_page(vm_page_t m)
1021{
1022	void *va;
1023	vm_paddr_t paddr;
1024
1025	paddr = VM_PAGE_TO_PHYS(m);
1026	va = (void *)MIPS_PHYS_TO_KSEG0(paddr);
1027	uma_zfree(ptpgzone, va);
1028}
1029
1030/*
1031 * Initialize a preallocated and zeroed pmap structure,
1032 * such as one in a vmspace structure.
1033 */
1034int
1035pmap_pinit(pmap_t pmap)
1036{
1037	vm_offset_t ptdva;
1038	vm_page_t ptdpg;
1039	int i;
1040
1041	PMAP_LOCK_INIT(pmap);
1042
1043	/*
1044	 * allocate the page directory page
1045	 */
1046	ptdpg = pmap_alloc_pte_page(pmap, NUSERPGTBLS, M_WAITOK, &ptdva);
1047	if (ptdpg == NULL)
1048		return (0);
1049
1050	pmap->pm_segtab = (pd_entry_t *)ptdva;
1051	pmap->pm_active = 0;
1052	pmap->pm_ptphint = NULL;
1053	for (i = 0; i < MAXCPU; i++) {
1054		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1055		pmap->pm_asid[i].gen = 0;
1056	}
1057	TAILQ_INIT(&pmap->pm_pvlist);
1058	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1059
1060	return (1);
1061}
1062
1063/*
1064 * this routine is called if the page table page is not
1065 * mapped correctly.
1066 */
1067static vm_page_t
1068_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1069{
1070	vm_offset_t pteva;
1071	vm_page_t m;
1072
1073	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1074	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1075	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1076
1077	/*
1078	 * Find or fabricate a new pagetable page
1079	 */
1080	m = pmap_alloc_pte_page(pmap, ptepindex, flags, &pteva);
1081	if (m == NULL)
1082		return (NULL);
1083
1084	/*
1085	 * Map the pagetable page into the process address space, if it
1086	 * isn't already there.
1087	 */
1088
1089	pmap->pm_stats.resident_count++;
1090	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1091
1092	/*
1093	 * Set the page table hint
1094	 */
1095	pmap->pm_ptphint = m;
1096	return (m);
1097}
1098
1099static vm_page_t
1100pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1101{
1102	unsigned ptepindex;
1103	vm_offset_t pteva;
1104	vm_page_t m;
1105
1106	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1107	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1108	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1109
1110	/*
1111	 * Calculate pagetable page index
1112	 */
1113	ptepindex = va >> SEGSHIFT;
1114retry:
1115	/*
1116	 * Get the page directory entry
1117	 */
1118	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1119
1120	/*
1121	 * If the page table page is mapped, we just increment the hold
1122	 * count, and activate it.
1123	 */
1124	if (pteva) {
1125		/*
1126		 * In order to get the page table page, try the hint first.
1127		 */
1128		if (pmap->pm_ptphint &&
1129		    (pmap->pm_ptphint->pindex == ptepindex)) {
1130			m = pmap->pm_ptphint;
1131		} else {
1132			m = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
1133			pmap->pm_ptphint = m;
1134		}
1135		m->wire_count++;
1136	} else {
1137		/*
1138		 * Here if the pte page isn't mapped, or if it has been
1139		 * deallocated.
1140		 */
1141		m = _pmap_allocpte(pmap, ptepindex, flags);
1142		if (m == NULL && (flags & M_WAITOK))
1143			goto retry;
1144	}
1145	return m;
1146}
1147
1148
1149/***************************************************
1150* Pmap allocation/deallocation routines.
1151 ***************************************************/
1152/*
1153 *  Revision 1.397
1154 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1155 *    called only the page directory page(s) can be left in the pmap pte
1156 *    object, since all page table pages will have been freed by
1157 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1158 *    reference to the pmap and the page directory is wired, so the page(s)
1159 *    can never be busy.  So all there is to do is clear the magic mappings
1160 *    from the page directory and free the page(s).
1161 */
1162
1163
1164/*
1165 * Release any resources held by the given physical map.
1166 * Called when a pmap initialized by pmap_pinit is being released.
1167 * Should only be called if the map contains no valid mappings.
1168 */
1169void
1170pmap_release(pmap_t pmap)
1171{
1172	vm_offset_t ptdva;
1173	vm_page_t ptdpg;
1174
1175	KASSERT(pmap->pm_stats.resident_count == 0,
1176	    ("pmap_release: pmap resident count %ld != 0",
1177	    pmap->pm_stats.resident_count));
1178
1179	ptdva = (vm_offset_t)pmap->pm_segtab;
1180	ptdpg = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(ptdva));
1181
1182	ptdpg->wire_count--;
1183	atomic_subtract_int(&cnt.v_wire_count, 1);
1184	pmap_release_pte_page(ptdpg);
1185	PMAP_LOCK_DESTROY(pmap);
1186}
1187
1188/*
1189 * grow the number of kernel page table entries, if needed
1190 */
1191void
1192pmap_growkernel(vm_offset_t addr)
1193{
1194	vm_offset_t pageva;
1195	vm_page_t nkpg;
1196	pt_entry_t *pte;
1197	int i;
1198
1199	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1200	if (kernel_vm_end == 0) {
1201		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1202		nkpt = 0;
1203		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1204			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1205			    ~(PAGE_SIZE * NPTEPG - 1);
1206			nkpt++;
1207			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1208				kernel_vm_end = kernel_map->max_offset;
1209				break;
1210			}
1211		}
1212	}
1213	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1214	if (addr - 1 >= kernel_map->max_offset)
1215		addr = kernel_map->max_offset;
1216	while (kernel_vm_end < addr) {
1217		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1218			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1219			    ~(PAGE_SIZE * NPTEPG - 1);
1220			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1221				kernel_vm_end = kernel_map->max_offset;
1222				break;
1223			}
1224			continue;
1225		}
1226		/*
1227		 * This index is bogus, but out of the way
1228		 */
1229		nkpg = pmap_alloc_pte_page(kernel_pmap, nkpt, M_NOWAIT, &pageva);
1230
1231		if (!nkpg)
1232			panic("pmap_growkernel: no memory to grow kernel");
1233
1234		nkpt++;
1235		pte = (pt_entry_t *)pageva;
1236		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1237
1238		/*
1239		 * The R[4-7]?00 stores only one copy of the Global bit in
1240		 * the translation lookaside buffer for each 2 page entry.
1241		 * Thus invalid entrys must have the Global bit set so when
1242		 * Entry LO and Entry HI G bits are anded together they will
1243		 * produce a global bit to store in the tlb.
1244		 */
1245		for (i = 0; i < NPTEPG; i++, pte++)
1246			*pte = PTE_G;
1247
1248		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1249		    ~(PAGE_SIZE * NPTEPG - 1);
1250		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1251			kernel_vm_end = kernel_map->max_offset;
1252			break;
1253		}
1254	}
1255}
1256
1257/***************************************************
1258* page management routines.
1259 ***************************************************/
1260
1261/*
1262 * free the pv_entry back to the free list
1263 */
1264static PMAP_INLINE void
1265free_pv_entry(pv_entry_t pv)
1266{
1267
1268	pv_entry_count--;
1269	uma_zfree(pvzone, pv);
1270}
1271
1272/*
1273 * get a new pv_entry, allocating a block from the system
1274 * when needed.
1275 * the memory allocation is performed bypassing the malloc code
1276 * because of the possibility of allocations at interrupt time.
1277 */
1278static pv_entry_t
1279get_pv_entry(pmap_t locked_pmap)
1280{
1281	static const struct timeval printinterval = { 60, 0 };
1282	static struct timeval lastprint;
1283	struct vpgqueues *vpq;
1284	pt_entry_t *pte, oldpte;
1285	pmap_t pmap;
1286	pv_entry_t allocated_pv, next_pv, pv;
1287	vm_offset_t va;
1288	vm_page_t m;
1289
1290	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1292	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1293	if (allocated_pv != NULL) {
1294		pv_entry_count++;
1295		if (pv_entry_count > pv_entry_high_water)
1296			pagedaemon_wakeup();
1297		else
1298			return (allocated_pv);
1299	}
1300	/*
1301	 * Reclaim pv entries: At first, destroy mappings to inactive
1302	 * pages.  After that, if a pv entry is still needed, destroy
1303	 * mappings to active pages.
1304	 */
1305	if (ratecheck(&lastprint, &printinterval))
1306		printf("Approaching the limit on PV entries, "
1307		    "increase the vm.pmap.shpgperproc tunable.\n");
1308	vpq = &vm_page_queues[PQ_INACTIVE];
1309retry:
1310	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1311		if (m->hold_count || m->busy)
1312			continue;
1313		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1314			va = pv->pv_va;
1315			pmap = pv->pv_pmap;
1316			/* Avoid deadlock and lock recursion. */
1317			if (pmap > locked_pmap)
1318				PMAP_LOCK(pmap);
1319			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1320				continue;
1321			pmap->pm_stats.resident_count--;
1322			pte = pmap_pte(pmap, va);
1323			KASSERT(pte != NULL, ("pte"));
1324			oldpte = loadandclear((u_int *)pte);
1325			if (is_kernel_pmap(pmap))
1326				*pte = PTE_G;
1327			KASSERT((oldpte & PTE_W) == 0,
1328			    ("wired pte for unwired page"));
1329			if (m->md.pv_flags & PV_TABLE_REF)
1330				vm_page_flag_set(m, PG_REFERENCED);
1331			if (oldpte & PTE_M)
1332				vm_page_dirty(m);
1333			pmap_invalidate_page(pmap, va);
1334			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1335			m->md.pv_list_count--;
1336			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1337			if (TAILQ_EMPTY(&m->md.pv_list)) {
1338				vm_page_flag_clear(m, PG_WRITEABLE);
1339				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1340			}
1341			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1342			if (pmap != locked_pmap)
1343				PMAP_UNLOCK(pmap);
1344			if (allocated_pv == NULL)
1345				allocated_pv = pv;
1346			else
1347				free_pv_entry(pv);
1348		}
1349	}
1350	if (allocated_pv == NULL) {
1351		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1352			vpq = &vm_page_queues[PQ_ACTIVE];
1353			goto retry;
1354		}
1355		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1356	}
1357	return (allocated_pv);
1358}
1359
1360/*
1361 *  Revision 1.370
1362 *
1363 *  Move pmap_collect() out of the machine-dependent code, rename it
1364 *  to reflect its new location, and add page queue and flag locking.
1365 *
1366 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1367 *  of pmap_collect() in terms of machine-independent interfaces;
1368 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1369 *
1370 *  MIPS implementation was identical to alpha [Junos 8.2]
1371 */
1372
1373/*
1374 * If it is the first entry on the list, it is actually
1375 * in the header and we must copy the following entry up
1376 * to the header.  Otherwise we must search the list for
1377 * the entry.  In either case we free the now unused entry.
1378 */
1379
1380static void
1381pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1382{
1383	pv_entry_t pv;
1384
1385	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1386	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1387	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1388		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1389			if (pmap == pv->pv_pmap && va == pv->pv_va)
1390				break;
1391		}
1392	} else {
1393		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1394			if (va == pv->pv_va)
1395				break;
1396		}
1397	}
1398
1399	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found, pa %lx va %lx",
1400	     (u_long)VM_PAGE_TO_PHYS(m), (u_long)va));
1401	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1402	m->md.pv_list_count--;
1403	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1404		vm_page_flag_clear(m, PG_WRITEABLE);
1405
1406	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1407	free_pv_entry(pv);
1408}
1409
1410/*
1411 * Create a pv entry for page at pa for
1412 * (pmap, va).
1413 */
1414static void
1415pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1416    boolean_t wired)
1417{
1418	pv_entry_t pv;
1419
1420	pv = get_pv_entry(pmap);
1421	pv->pv_va = va;
1422	pv->pv_pmap = pmap;
1423	pv->pv_ptem = mpte;
1424	pv->pv_wired = wired;
1425
1426	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1427	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1428	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1429	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1430	m->md.pv_list_count++;
1431}
1432
1433/*
1434 * Conditionally create a pv entry.
1435 */
1436static boolean_t
1437pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1438    vm_page_t m)
1439{
1440	pv_entry_t pv;
1441
1442	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1443	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1444	if (pv_entry_count < pv_entry_high_water &&
1445	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1446		pv_entry_count++;
1447		pv->pv_va = va;
1448		pv->pv_pmap = pmap;
1449		pv->pv_ptem = mpte;
1450		pv->pv_wired = FALSE;
1451		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1452		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1453		m->md.pv_list_count++;
1454		return (TRUE);
1455	} else
1456		return (FALSE);
1457}
1458
1459/*
1460 * pmap_remove_pte: do the things to unmap a page in a process
1461 */
1462static int
1463pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1464{
1465	pt_entry_t oldpte;
1466	vm_page_t m;
1467	vm_offset_t pa;
1468
1469	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1470	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1471
1472	oldpte = loadandclear((u_int *)ptq);
1473	if (is_kernel_pmap(pmap))
1474		*ptq = PTE_G;
1475
1476	if (oldpte & PTE_W)
1477		pmap->pm_stats.wired_count -= 1;
1478
1479	pmap->pm_stats.resident_count -= 1;
1480	pa = mips_tlbpfn_to_paddr(oldpte);
1481
1482	if (page_is_managed(pa)) {
1483		m = PHYS_TO_VM_PAGE(pa);
1484		if (oldpte & PTE_M) {
1485#if defined(PMAP_DIAGNOSTIC)
1486			if (pmap_nw_modified(oldpte)) {
1487				printf(
1488				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1489				    va, oldpte);
1490			}
1491#endif
1492			vm_page_dirty(m);
1493		}
1494		if (m->md.pv_flags & PV_TABLE_REF)
1495			vm_page_flag_set(m, PG_REFERENCED);
1496		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1497
1498		pmap_remove_entry(pmap, m, va);
1499	}
1500	return pmap_unuse_pt(pmap, va, NULL);
1501}
1502
1503/*
1504 * Remove a single page from a process address space
1505 */
1506static void
1507pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1508{
1509	register pt_entry_t *ptq;
1510
1511	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1512	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1513	ptq = pmap_pte(pmap, va);
1514
1515	/*
1516	 * if there is no pte for this address, just skip it!!!
1517	 */
1518	if (!ptq || !pmap_pte_v(ptq)) {
1519		return;
1520	}
1521
1522	/*
1523	 * Write back all caches from the page being destroyed
1524	 */
1525	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1526
1527	/*
1528	 * get a local va for mappings for this pmap.
1529	 */
1530	(void)pmap_remove_pte(pmap, ptq, va);
1531	pmap_invalidate_page(pmap, va);
1532
1533	return;
1534}
1535
1536/*
1537 *	Remove the given range of addresses from the specified map.
1538 *
1539 *	It is assumed that the start and end are properly
1540 *	rounded to the page size.
1541 */
1542void
1543pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1544{
1545	vm_offset_t va, nva;
1546
1547	if (pmap == NULL)
1548		return;
1549
1550	if (pmap->pm_stats.resident_count == 0)
1551		return;
1552
1553	vm_page_lock_queues();
1554	PMAP_LOCK(pmap);
1555
1556	/*
1557	 * special handling of removing one page.  a very common operation
1558	 * and easy to short circuit some code.
1559	 */
1560	if ((sva + PAGE_SIZE) == eva) {
1561		pmap_remove_page(pmap, sva);
1562		goto out;
1563	}
1564	for (va = sva; va < eva; va = nva) {
1565		if (!*pmap_pde(pmap, va)) {
1566			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1567			continue;
1568		}
1569		pmap_remove_page(pmap, va);
1570		nva = va + PAGE_SIZE;
1571	}
1572
1573out:
1574	vm_page_unlock_queues();
1575	PMAP_UNLOCK(pmap);
1576}
1577
1578/*
1579 *	Routine:	pmap_remove_all
1580 *	Function:
1581 *		Removes this physical page from
1582 *		all physical maps in which it resides.
1583 *		Reflects back modify bits to the pager.
1584 *
1585 *	Notes:
1586 *		Original versions of this routine were very
1587 *		inefficient because they iteratively called
1588 *		pmap_remove (slow...)
1589 */
1590
1591void
1592pmap_remove_all(vm_page_t m)
1593{
1594	register pv_entry_t pv;
1595	register pt_entry_t *pte, tpte;
1596
1597	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1598	    ("pmap_remove_all: page %p is fictitious", m));
1599	vm_page_lock_queues();
1600
1601	if (m->md.pv_flags & PV_TABLE_REF)
1602		vm_page_flag_set(m, PG_REFERENCED);
1603
1604	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1605		PMAP_LOCK(pv->pv_pmap);
1606
1607		/*
1608		 * If it's last mapping writeback all caches from
1609		 * the page being destroyed
1610	 	 */
1611		if (m->md.pv_list_count == 1)
1612			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1613
1614		pv->pv_pmap->pm_stats.resident_count--;
1615
1616		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1617
1618		tpte = loadandclear((u_int *)pte);
1619		if (is_kernel_pmap(pv->pv_pmap))
1620			*pte = PTE_G;
1621
1622		if (tpte & PTE_W)
1623			pv->pv_pmap->pm_stats.wired_count--;
1624
1625		/*
1626		 * Update the vm_page_t clean and reference bits.
1627		 */
1628		if (tpte & PTE_M) {
1629#if defined(PMAP_DIAGNOSTIC)
1630			if (pmap_nw_modified(tpte)) {
1631				printf(
1632				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1633				    pv->pv_va, tpte);
1634			}
1635#endif
1636			vm_page_dirty(m);
1637		}
1638		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1639
1640		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1641		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1642		m->md.pv_list_count--;
1643		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1644		PMAP_UNLOCK(pv->pv_pmap);
1645		free_pv_entry(pv);
1646	}
1647
1648	vm_page_flag_clear(m, PG_WRITEABLE);
1649	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1650	vm_page_unlock_queues();
1651}
1652
1653/*
1654 *	Set the physical protection on the
1655 *	specified range of this map as requested.
1656 */
1657void
1658pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1659{
1660	pt_entry_t *pte;
1661
1662	if (pmap == NULL)
1663		return;
1664
1665	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1666		pmap_remove(pmap, sva, eva);
1667		return;
1668	}
1669	if (prot & VM_PROT_WRITE)
1670		return;
1671
1672	vm_page_lock_queues();
1673	PMAP_LOCK(pmap);
1674	while (sva < eva) {
1675		pt_entry_t pbits, obits;
1676		vm_page_t m;
1677		vm_offset_t pa;
1678
1679		/*
1680		 * If segment table entry is empty, skip this segment.
1681		 */
1682		if (!*pmap_pde(pmap, sva)) {
1683			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1684			continue;
1685		}
1686		/*
1687		 * If pte is invalid, skip this page
1688		 */
1689		pte = pmap_pte(pmap, sva);
1690		if (!pmap_pte_v(pte)) {
1691			sva += PAGE_SIZE;
1692			continue;
1693		}
1694retry:
1695		obits = pbits = *pte;
1696		pa = mips_tlbpfn_to_paddr(pbits);
1697
1698		if (page_is_managed(pa) && (pbits & PTE_M) != 0) {
1699			m = PHYS_TO_VM_PAGE(pa);
1700			vm_page_dirty(m);
1701			m->md.pv_flags &= ~PV_TABLE_MOD;
1702		}
1703		pbits = (pbits & ~PTE_M) | PTE_RO;
1704
1705		if (pbits != *pte) {
1706			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1707				goto retry;
1708			pmap_update_page(pmap, sva, pbits);
1709		}
1710		sva += PAGE_SIZE;
1711	}
1712	vm_page_unlock_queues();
1713	PMAP_UNLOCK(pmap);
1714}
1715
1716/*
1717 *	Insert the given physical page (p) at
1718 *	the specified virtual address (v) in the
1719 *	target physical map with the protection requested.
1720 *
1721 *	If specified, the page will be wired down, meaning
1722 *	that the related pte can not be reclaimed.
1723 *
1724 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1725 *	or lose information.  That is, this routine must actually
1726 *	insert this page into the given map NOW.
1727 */
1728void
1729pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1730    vm_prot_t prot, boolean_t wired)
1731{
1732	vm_offset_t pa, opa;
1733	register pt_entry_t *pte;
1734	pt_entry_t origpte, newpte;
1735	vm_page_t mpte, om;
1736	int rw = 0;
1737
1738	if (pmap == NULL)
1739		return;
1740
1741	va &= ~PAGE_MASK;
1742 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1743	KASSERT((m->oflags & VPO_BUSY) != 0,
1744	    ("pmap_enter: page %p is not busy", m));
1745
1746	mpte = NULL;
1747
1748	vm_page_lock_queues();
1749	PMAP_LOCK(pmap);
1750
1751	/*
1752	 * In the case that a page table page is not resident, we are
1753	 * creating it here.
1754	 */
1755	if (va < VM_MAXUSER_ADDRESS) {
1756		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1757	}
1758	pte = pmap_pte(pmap, va);
1759
1760	/*
1761	 * Page Directory table entry not valid, we need a new PT page
1762	 */
1763	if (pte == NULL) {
1764		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1765		    (void *)pmap->pm_segtab, (void *)va);
1766	}
1767	pa = VM_PAGE_TO_PHYS(m);
1768	om = NULL;
1769	origpte = *pte;
1770	opa = mips_tlbpfn_to_paddr(origpte);
1771
1772	/*
1773	 * Mapping has not changed, must be protection or wiring change.
1774	 */
1775	if ((origpte & PTE_V) && (opa == pa)) {
1776		/*
1777		 * Wiring change, just update stats. We don't worry about
1778		 * wiring PT pages as they remain resident as long as there
1779		 * are valid mappings in them. Hence, if a user page is
1780		 * wired, the PT page will be also.
1781		 */
1782		if (wired && ((origpte & PTE_W) == 0))
1783			pmap->pm_stats.wired_count++;
1784		else if (!wired && (origpte & PTE_W))
1785			pmap->pm_stats.wired_count--;
1786
1787#if defined(PMAP_DIAGNOSTIC)
1788		if (pmap_nw_modified(origpte)) {
1789			printf(
1790			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1791			    va, origpte);
1792		}
1793#endif
1794
1795		/*
1796		 * Remove extra pte reference
1797		 */
1798		if (mpte)
1799			mpte->wire_count--;
1800
1801		/*
1802		 * We might be turning off write access to the page, so we
1803		 * go ahead and sense modify status.
1804		 */
1805		if (page_is_managed(opa)) {
1806			om = m;
1807		}
1808		goto validate;
1809	}
1810	/*
1811	 * Mapping has changed, invalidate old range and fall through to
1812	 * handle validating new mapping.
1813	 */
1814	if (opa) {
1815		if (origpte & PTE_W)
1816			pmap->pm_stats.wired_count--;
1817
1818		if (page_is_managed(opa)) {
1819			om = PHYS_TO_VM_PAGE(opa);
1820			pmap_remove_entry(pmap, om, va);
1821		}
1822		if (mpte != NULL) {
1823			mpte->wire_count--;
1824			KASSERT(mpte->wire_count > 0,
1825			    ("pmap_enter: missing reference to page table page,"
1826			    " va: %p", (void *)va));
1827		}
1828	} else
1829		pmap->pm_stats.resident_count++;
1830
1831	/*
1832	 * Enter on the PV list if part of our managed memory. Note that we
1833	 * raise IPL while manipulating pv_table since pmap_enter can be
1834	 * called at interrupt time.
1835	 */
1836	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1837		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1838		    ("pmap_enter: managed mapping within the clean submap"));
1839		pmap_insert_entry(pmap, va, mpte, m, wired);
1840	}
1841	/*
1842	 * Increment counters
1843	 */
1844	if (wired)
1845		pmap->pm_stats.wired_count++;
1846
1847validate:
1848	if ((access & VM_PROT_WRITE) != 0)
1849		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1850	rw = init_pte_prot(va, m, prot);
1851
1852#ifdef PMAP_DEBUG
1853	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1854#endif
1855	/*
1856	 * Now validate mapping with desired protection/wiring.
1857	 */
1858	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1859
1860	if (is_cacheable_mem(pa))
1861		newpte |= PTE_CACHE;
1862	else
1863		newpte |= PTE_UNCACHED;
1864
1865	if (wired)
1866		newpte |= PTE_W;
1867
1868	if (is_kernel_pmap(pmap)) {
1869	         newpte |= PTE_G;
1870	}
1871
1872	/*
1873	 * if the mapping or permission bits are different, we need to
1874	 * update the pte.
1875	 */
1876	if (origpte != newpte) {
1877		if (origpte & PTE_V) {
1878			*pte = newpte;
1879			if (page_is_managed(opa) && (opa != pa)) {
1880				if (om->md.pv_flags & PV_TABLE_REF)
1881					vm_page_flag_set(om, PG_REFERENCED);
1882				om->md.pv_flags &=
1883				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1884			}
1885			if (origpte & PTE_M) {
1886				KASSERT((origpte & PTE_RW),
1887				    ("pmap_enter: modified page not writable:"
1888				    " va: %p, pte: 0x%x", (void *)va, origpte));
1889				if (page_is_managed(opa))
1890					vm_page_dirty(om);
1891			}
1892		} else {
1893			*pte = newpte;
1894		}
1895	}
1896	pmap_update_page(pmap, va, newpte);
1897
1898	/*
1899	 * Sync I & D caches for executable pages.  Do this only if the the
1900	 * target pmap belongs to the current process.  Otherwise, an
1901	 * unresolvable TLB miss may occur.
1902	 */
1903	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1904	    (prot & VM_PROT_EXECUTE)) {
1905		mips_icache_sync_range(va, PAGE_SIZE);
1906		mips_dcache_wbinv_range(va, PAGE_SIZE);
1907	}
1908	vm_page_unlock_queues();
1909	PMAP_UNLOCK(pmap);
1910}
1911
1912/*
1913 * this code makes some *MAJOR* assumptions:
1914 * 1. Current pmap & pmap exists.
1915 * 2. Not wired.
1916 * 3. Read access.
1917 * 4. No page table pages.
1918 * but is *MUCH* faster than pmap_enter...
1919 */
1920
1921void
1922pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1923{
1924
1925	vm_page_lock_queues();
1926	PMAP_LOCK(pmap);
1927	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1928	vm_page_unlock_queues();
1929	PMAP_UNLOCK(pmap);
1930}
1931
1932static vm_page_t
1933pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1934    vm_prot_t prot, vm_page_t mpte)
1935{
1936	pt_entry_t *pte;
1937	vm_offset_t pa;
1938
1939	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1940	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1941	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1942	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1943	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1944
1945	/*
1946	 * In the case that a page table page is not resident, we are
1947	 * creating it here.
1948	 */
1949	if (va < VM_MAXUSER_ADDRESS) {
1950		unsigned ptepindex;
1951		vm_offset_t pteva;
1952
1953		/*
1954		 * Calculate pagetable page index
1955		 */
1956		ptepindex = va >> SEGSHIFT;
1957		if (mpte && (mpte->pindex == ptepindex)) {
1958			mpte->wire_count++;
1959		} else {
1960			/*
1961			 * Get the page directory entry
1962			 */
1963			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1964
1965			/*
1966			 * If the page table page is mapped, we just
1967			 * increment the hold count, and activate it.
1968			 */
1969			if (pteva) {
1970				if (pmap->pm_ptphint &&
1971				    (pmap->pm_ptphint->pindex == ptepindex)) {
1972					mpte = pmap->pm_ptphint;
1973				} else {
1974					mpte = PHYS_TO_VM_PAGE(
1975						MIPS_KSEG0_TO_PHYS(pteva));
1976					pmap->pm_ptphint = mpte;
1977				}
1978				mpte->wire_count++;
1979			} else {
1980				mpte = _pmap_allocpte(pmap, ptepindex,
1981				    M_NOWAIT);
1982				if (mpte == NULL)
1983					return (mpte);
1984			}
1985		}
1986	} else {
1987		mpte = NULL;
1988	}
1989
1990	pte = pmap_pte(pmap, va);
1991	if (pmap_pte_v(pte)) {
1992		if (mpte != NULL) {
1993			mpte->wire_count--;
1994			mpte = NULL;
1995		}
1996		return (mpte);
1997	}
1998
1999	/*
2000	 * Enter on the PV list if part of our managed memory.
2001	 */
2002	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2003	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2004		if (mpte != NULL) {
2005			pmap_unwire_pte_hold(pmap, mpte);
2006			mpte = NULL;
2007		}
2008		return (mpte);
2009	}
2010
2011	/*
2012	 * Increment counters
2013	 */
2014	pmap->pm_stats.resident_count++;
2015
2016	pa = VM_PAGE_TO_PHYS(m);
2017
2018	/*
2019	 * Now validate mapping with RO protection
2020	 */
2021	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2022
2023	if (is_cacheable_mem(pa))
2024		*pte |= PTE_CACHE;
2025	else
2026		*pte |= PTE_UNCACHED;
2027
2028	if (is_kernel_pmap(pmap))
2029		*pte |= PTE_G;
2030	else {
2031		*pte |= PTE_RO;
2032		/*
2033		 * Sync I & D caches.  Do this only if the the target pmap
2034		 * belongs to the current process.  Otherwise, an
2035		 * unresolvable TLB miss may occur. */
2036		if (pmap == &curproc->p_vmspace->vm_pmap) {
2037			va &= ~PAGE_MASK;
2038			mips_icache_sync_range(va, PAGE_SIZE);
2039			mips_dcache_wbinv_range(va, PAGE_SIZE);
2040		}
2041	}
2042	return (mpte);
2043}
2044
2045/*
2046 * Make a temporary mapping for a physical address.  This is only intended
2047 * to be used for panic dumps.
2048 */
2049void *
2050pmap_kenter_temporary(vm_paddr_t pa, int i)
2051{
2052	vm_offset_t va;
2053	register_t intr;
2054	if (i != 0)
2055		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2056		    __func__);
2057
2058	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2059		va = MIPS_PHYS_TO_KSEG0(pa);
2060	} else {
2061		int cpu;
2062		struct local_sysmaps *sysm;
2063		pt_entry_t *pte, npte;
2064
2065		/* If this is used other than for dumps, we may need to leave
2066		 * interrupts disasbled on return. If crash dumps don't work when
2067		 * we get to this point, we might want to consider this (leaving things
2068		 * disabled as a starting point ;-)
2069	 	 */
2070		intr = intr_disable();
2071		cpu = PCPU_GET(cpuid);
2072		sysm = &sysmap_lmem[cpu];
2073		/* Since this is for the debugger, no locks or any other fun */
2074		npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2075		pte = pmap_pte(kernel_pmap, sysm->base);
2076		*pte = npte;
2077		sysm->valid1 = 1;
2078		pmap_update_page(kernel_pmap, sysm->base, npte);
2079		va = sysm->base;
2080		intr_restore(intr);
2081	}
2082	return ((void *)va);
2083}
2084
2085void
2086pmap_kenter_temporary_free(vm_paddr_t pa)
2087{
2088	int cpu;
2089	register_t intr;
2090	struct local_sysmaps *sysm;
2091
2092	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2093		/* nothing to do for this case */
2094		return;
2095	}
2096	cpu = PCPU_GET(cpuid);
2097	sysm = &sysmap_lmem[cpu];
2098	if (sysm->valid1) {
2099		pt_entry_t *pte;
2100
2101		intr = intr_disable();
2102		pte = pmap_pte(kernel_pmap, sysm->base);
2103		*pte = PTE_G;
2104		pmap_invalidate_page(kernel_pmap, sysm->base);
2105		intr_restore(intr);
2106		sysm->valid1 = 0;
2107	}
2108}
2109
2110/*
2111 * Moved the code to Machine Independent
2112 *	 vm_map_pmap_enter()
2113 */
2114
2115/*
2116 * Maps a sequence of resident pages belonging to the same object.
2117 * The sequence begins with the given page m_start.  This page is
2118 * mapped at the given virtual address start.  Each subsequent page is
2119 * mapped at a virtual address that is offset from start by the same
2120 * amount as the page is offset from m_start within the object.  The
2121 * last page in the sequence is the page with the largest offset from
2122 * m_start that can be mapped at a virtual address less than the given
2123 * virtual address end.  Not every virtual page between start and end
2124 * is mapped; only those for which a resident page exists with the
2125 * corresponding offset from m_start are mapped.
2126 */
2127void
2128pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2129    vm_page_t m_start, vm_prot_t prot)
2130{
2131	vm_page_t m, mpte;
2132	vm_pindex_t diff, psize;
2133
2134	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2135	psize = atop(end - start);
2136	mpte = NULL;
2137	m = m_start;
2138	vm_page_lock_queues();
2139	PMAP_LOCK(pmap);
2140	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2141		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2142		    prot, mpte);
2143		m = TAILQ_NEXT(m, listq);
2144	}
2145	vm_page_unlock_queues();
2146 	PMAP_UNLOCK(pmap);
2147}
2148
2149/*
2150 * pmap_object_init_pt preloads the ptes for a given object
2151 * into the specified pmap.  This eliminates the blast of soft
2152 * faults on process startup and immediately after an mmap.
2153 */
2154void
2155pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2156    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2157{
2158	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2159	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2160	    ("pmap_object_init_pt: non-device object"));
2161}
2162
2163/*
2164 *	Routine:	pmap_change_wiring
2165 *	Function:	Change the wiring attribute for a map/virtual-address
2166 *			pair.
2167 *	In/out conditions:
2168 *			The mapping must already exist in the pmap.
2169 */
2170void
2171pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2172{
2173	register pt_entry_t *pte;
2174
2175	if (pmap == NULL)
2176		return;
2177
2178	PMAP_LOCK(pmap);
2179	pte = pmap_pte(pmap, va);
2180
2181	if (wired && !pmap_pte_w(pte))
2182		pmap->pm_stats.wired_count++;
2183	else if (!wired && pmap_pte_w(pte))
2184		pmap->pm_stats.wired_count--;
2185
2186	/*
2187	 * Wiring is not a hardware characteristic so there is no need to
2188	 * invalidate TLB.
2189	 */
2190	pmap_pte_set_w(pte, wired);
2191	PMAP_UNLOCK(pmap);
2192}
2193
2194/*
2195 *	Copy the range specified by src_addr/len
2196 *	from the source map to the range dst_addr/len
2197 *	in the destination map.
2198 *
2199 *	This routine is only advisory and need not do anything.
2200 */
2201
2202void
2203pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2204    vm_size_t len, vm_offset_t src_addr)
2205{
2206}
2207
2208/*
2209 *	pmap_zero_page zeros the specified hardware page by mapping
2210 *	the page into KVM and using bzero to clear its contents.
2211 */
2212void
2213pmap_zero_page(vm_page_t m)
2214{
2215	vm_offset_t va;
2216	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2217	register_t intr;
2218
2219	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2220		va = MIPS_PHYS_TO_KSEG0(phys);
2221
2222		bzero((caddr_t)va, PAGE_SIZE);
2223		mips_dcache_wbinv_range(va, PAGE_SIZE);
2224	} else {
2225		PMAP_LMEM_MAP1(va, phys);
2226
2227		bzero((caddr_t)va, PAGE_SIZE);
2228		mips_dcache_wbinv_range(va, PAGE_SIZE);
2229
2230		PMAP_LMEM_UNMAP();
2231	}
2232}
2233
2234/*
2235 *	pmap_zero_page_area zeros the specified hardware page by mapping
2236 *	the page into KVM and using bzero to clear its contents.
2237 *
2238 *	off and size may not cover an area beyond a single hardware page.
2239 */
2240void
2241pmap_zero_page_area(vm_page_t m, int off, int size)
2242{
2243	vm_offset_t va;
2244	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2245	register_t intr;
2246
2247	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2248		va = MIPS_PHYS_TO_KSEG0(phys);
2249		bzero((char *)(caddr_t)va + off, size);
2250		mips_dcache_wbinv_range(va + off, size);
2251	} else {
2252		PMAP_LMEM_MAP1(va, phys);
2253
2254		bzero((char *)va + off, size);
2255		mips_dcache_wbinv_range(va + off, size);
2256
2257		PMAP_LMEM_UNMAP();
2258	}
2259}
2260
2261void
2262pmap_zero_page_idle(vm_page_t m)
2263{
2264	vm_offset_t va;
2265	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2266	register_t intr;
2267
2268	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2269		va = MIPS_PHYS_TO_KSEG0(phys);
2270		bzero((caddr_t)va, PAGE_SIZE);
2271		mips_dcache_wbinv_range(va, PAGE_SIZE);
2272	} else {
2273		PMAP_LMEM_MAP1(va, phys);
2274
2275		bzero((caddr_t)va, PAGE_SIZE);
2276		mips_dcache_wbinv_range(va, PAGE_SIZE);
2277
2278		PMAP_LMEM_UNMAP();
2279	}
2280}
2281
2282/*
2283 *	pmap_copy_page copies the specified (machine independent)
2284 *	page by mapping the page into virtual memory and using
2285 *	bcopy to copy the page, one machine dependent page at a
2286 *	time.
2287 */
2288void
2289pmap_copy_page(vm_page_t src, vm_page_t dst)
2290{
2291	vm_offset_t va_src, va_dst;
2292	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2293	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2294	register_t intr;
2295
2296	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2297		/* easy case, all can be accessed via KSEG0 */
2298		/*
2299		 * Flush all caches for VA that are mapped to this page
2300		 * to make sure that data in SDRAM is up to date
2301		 */
2302		pmap_flush_pvcache(src);
2303		mips_dcache_wbinv_range_index(
2304		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2305		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2306		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2307		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2308		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2309	} else {
2310		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2311
2312		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2313		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2314
2315		PMAP_LMEM_UNMAP();
2316	}
2317}
2318
2319/*
2320 * Returns true if the pmap's pv is one of the first
2321 * 16 pvs linked to from this page.  This count may
2322 * be changed upwards or downwards in the future; it
2323 * is only necessary that true be returned for a small
2324 * subset of pmaps for proper page aging.
2325 */
2326boolean_t
2327pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2328{
2329	pv_entry_t pv;
2330	int loops = 0;
2331
2332	if (m->flags & PG_FICTITIOUS)
2333		return FALSE;
2334
2335	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2336	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2337		if (pv->pv_pmap == pmap) {
2338			return TRUE;
2339		}
2340		loops++;
2341		if (loops >= 16)
2342			break;
2343	}
2344	return (FALSE);
2345}
2346
2347/*
2348 * Remove all pages from specified address space
2349 * this aids process exit speeds.  Also, this code
2350 * is special cased for current process only, but
2351 * can have the more generic (and slightly slower)
2352 * mode enabled.  This is much faster than pmap_remove
2353 * in the case of running down an entire address space.
2354 */
2355void
2356pmap_remove_pages(pmap_t pmap)
2357{
2358	pt_entry_t *pte, tpte;
2359	pv_entry_t pv, npv;
2360	vm_page_t m;
2361
2362	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2363		printf("warning: pmap_remove_pages called with non-current pmap\n");
2364		return;
2365	}
2366	vm_page_lock_queues();
2367	PMAP_LOCK(pmap);
2368	sched_pin();
2369	//XXX need to be TAILQ_FOREACH_SAFE ?
2370	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2371
2372		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2373		if (!pmap_pte_v(pte))
2374			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2375		tpte = *pte;
2376
2377/*
2378 * We cannot remove wired pages from a process' mapping at this time
2379 */
2380		if (tpte & PTE_W) {
2381			npv = TAILQ_NEXT(pv, pv_plist);
2382			continue;
2383		}
2384		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2385
2386		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2387		KASSERT(m != NULL,
2388		    ("pmap_remove_pages: bad tpte %x", tpte));
2389
2390		pv->pv_pmap->pm_stats.resident_count--;
2391
2392		/*
2393		 * Update the vm_page_t clean and reference bits.
2394		 */
2395		if (tpte & PTE_M) {
2396			vm_page_dirty(m);
2397		}
2398		npv = TAILQ_NEXT(pv, pv_plist);
2399		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2400
2401		m->md.pv_list_count--;
2402		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2403		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2404			vm_page_flag_clear(m, PG_WRITEABLE);
2405		}
2406		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2407		free_pv_entry(pv);
2408	}
2409	sched_unpin();
2410	pmap_invalidate_all(pmap);
2411	PMAP_UNLOCK(pmap);
2412	vm_page_unlock_queues();
2413}
2414
2415/*
2416 * pmap_testbit tests bits in pte's
2417 * note that the testbit/changebit routines are inline,
2418 * and a lot of things compile-time evaluate.
2419 */
2420static boolean_t
2421pmap_testbit(vm_page_t m, int bit)
2422{
2423	pv_entry_t pv;
2424	pt_entry_t *pte;
2425	boolean_t rv = FALSE;
2426
2427	if (m->flags & PG_FICTITIOUS)
2428		return rv;
2429
2430	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2431		return rv;
2432
2433	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2434	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2435#if defined(PMAP_DIAGNOSTIC)
2436		if (!pv->pv_pmap) {
2437			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2438			continue;
2439		}
2440#endif
2441		PMAP_LOCK(pv->pv_pmap);
2442		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2443		rv = (*pte & bit) != 0;
2444		PMAP_UNLOCK(pv->pv_pmap);
2445		if (rv)
2446			break;
2447	}
2448	return (rv);
2449}
2450
2451/*
2452 * this routine is used to modify bits in ptes
2453 */
2454static __inline void
2455pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2456{
2457	register pv_entry_t pv;
2458	register pt_entry_t *pte;
2459
2460	if (m->flags & PG_FICTITIOUS)
2461		return;
2462
2463	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2464	/*
2465	 * Loop over all current mappings setting/clearing as appropos If
2466	 * setting RO do we need to clear the VAC?
2467	 */
2468	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2469#if defined(PMAP_DIAGNOSTIC)
2470		if (!pv->pv_pmap) {
2471			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2472			continue;
2473		}
2474#endif
2475
2476		PMAP_LOCK(pv->pv_pmap);
2477		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2478
2479		if (setem) {
2480			*(int *)pte |= bit;
2481			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2482		} else {
2483			vm_offset_t pbits = *(vm_offset_t *)pte;
2484
2485			if (pbits & bit) {
2486				if (bit == PTE_RW) {
2487					if (pbits & PTE_M) {
2488						vm_page_dirty(m);
2489					}
2490					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2491					    PTE_RO;
2492				} else {
2493					*(int *)pte = pbits & ~bit;
2494				}
2495				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2496			}
2497		}
2498		PMAP_UNLOCK(pv->pv_pmap);
2499	}
2500	if (!setem && bit == PTE_RW)
2501		vm_page_flag_clear(m, PG_WRITEABLE);
2502}
2503
2504/*
2505 *	pmap_page_wired_mappings:
2506 *
2507 *	Return the number of managed mappings to the given physical page
2508 *	that are wired.
2509 */
2510int
2511pmap_page_wired_mappings(vm_page_t m)
2512{
2513	pv_entry_t pv;
2514	int count;
2515
2516	count = 0;
2517	if ((m->flags & PG_FICTITIOUS) != 0)
2518		return (count);
2519	vm_page_lock_queues();
2520	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2521	    if (pv->pv_wired)
2522		count++;
2523	vm_page_unlock_queues();
2524	return (count);
2525}
2526
2527/*
2528 * Clear the write and modified bits in each of the given page's mappings.
2529 */
2530void
2531pmap_remove_write(vm_page_t m)
2532{
2533	pv_entry_t pv, npv;
2534	vm_offset_t va;
2535	pt_entry_t *pte;
2536
2537	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2538	    ("pmap_remove_write: page %p is not managed", m));
2539
2540	/*
2541	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2542	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2543	 * is clear, no page table entries need updating.
2544	 */
2545	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2546	if ((m->oflags & VPO_BUSY) == 0 &&
2547	    (m->flags & PG_WRITEABLE) == 0)
2548		return;
2549
2550	/*
2551	 * Loop over all current mappings setting/clearing as appropos.
2552	 */
2553	vm_page_lock_queues();
2554	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2555		npv = TAILQ_NEXT(pv, pv_plist);
2556		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2557
2558		if ((pte == NULL) || !mips_pg_v(*pte))
2559			panic("page on pm_pvlist has no pte\n");
2560
2561		va = pv->pv_va;
2562		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2563		    VM_PROT_READ | VM_PROT_EXECUTE);
2564	}
2565	vm_page_flag_clear(m, PG_WRITEABLE);
2566	vm_page_unlock_queues();
2567}
2568
2569/*
2570 *	pmap_ts_referenced:
2571 *
2572 *	Return the count of reference bits for a page, clearing all of them.
2573 */
2574int
2575pmap_ts_referenced(vm_page_t m)
2576{
2577	if (m->flags & PG_FICTITIOUS)
2578		return (0);
2579
2580	if (m->md.pv_flags & PV_TABLE_REF) {
2581		m->md.pv_flags &= ~PV_TABLE_REF;
2582		return 1;
2583	}
2584	return 0;
2585}
2586
2587/*
2588 *	pmap_is_modified:
2589 *
2590 *	Return whether or not the specified physical page was modified
2591 *	in any physical maps.
2592 */
2593boolean_t
2594pmap_is_modified(vm_page_t m)
2595{
2596	boolean_t rv;
2597
2598	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2599	    ("pmap_is_modified: page %p is not managed", m));
2600
2601	/*
2602	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2603	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2604	 * is clear, no PTEs can have PTE_M set.
2605	 */
2606	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2607	if ((m->oflags & VPO_BUSY) == 0 &&
2608	    (m->flags & PG_WRITEABLE) == 0)
2609		return (FALSE);
2610	vm_page_lock_queues();
2611	if (m->md.pv_flags & PV_TABLE_MOD)
2612		rv = TRUE;
2613	else
2614		rv = pmap_testbit(m, PTE_M);
2615	vm_page_unlock_queues();
2616	return (rv);
2617}
2618
2619/* N/C */
2620
2621/*
2622 *	pmap_is_prefaultable:
2623 *
2624 *	Return whether or not the specified virtual address is elgible
2625 *	for prefault.
2626 */
2627boolean_t
2628pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2629{
2630	pt_entry_t *pte;
2631	boolean_t rv;
2632
2633	rv = FALSE;
2634	PMAP_LOCK(pmap);
2635	if (*pmap_pde(pmap, addr)) {
2636		pte = pmap_pte(pmap, addr);
2637		rv = (*pte == 0);
2638	}
2639	PMAP_UNLOCK(pmap);
2640	return (rv);
2641}
2642
2643/*
2644 *	Clear the modify bits on the specified physical page.
2645 */
2646void
2647pmap_clear_modify(vm_page_t m)
2648{
2649
2650	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2651	    ("pmap_clear_modify: page %p is not managed", m));
2652	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2653	KASSERT((m->oflags & VPO_BUSY) == 0,
2654	    ("pmap_clear_modify: page %p is busy", m));
2655
2656	/*
2657	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_M set.
2658	 * If the object containing the page is locked and the page is not
2659	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2660	 */
2661	if ((m->flags & PG_WRITEABLE) == 0)
2662		return;
2663	vm_page_lock_queues();
2664	if (m->md.pv_flags & PV_TABLE_MOD) {
2665		pmap_changebit(m, PTE_M, FALSE);
2666		m->md.pv_flags &= ~PV_TABLE_MOD;
2667	}
2668	vm_page_unlock_queues();
2669}
2670
2671/*
2672 *	pmap_is_referenced:
2673 *
2674 *	Return whether or not the specified physical page was referenced
2675 *	in any physical maps.
2676 */
2677boolean_t
2678pmap_is_referenced(vm_page_t m)
2679{
2680
2681	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2682	    ("pmap_is_referenced: page %p is not managed", m));
2683	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
2684}
2685
2686/*
2687 *	pmap_clear_reference:
2688 *
2689 *	Clear the reference bit on the specified physical page.
2690 */
2691void
2692pmap_clear_reference(vm_page_t m)
2693{
2694
2695	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2696	    ("pmap_clear_reference: page %p is not managed", m));
2697	vm_page_lock_queues();
2698	if (m->md.pv_flags & PV_TABLE_REF) {
2699		m->md.pv_flags &= ~PV_TABLE_REF;
2700	}
2701	vm_page_unlock_queues();
2702}
2703
2704/*
2705 * Miscellaneous support routines follow
2706 */
2707
2708/*
2709 * Map a set of physical memory pages into the kernel virtual
2710 * address space. Return a pointer to where it is mapped. This
2711 * routine is intended to be used for mapping device memory,
2712 * NOT real memory.
2713 */
2714
2715/*
2716 * Map a set of physical memory pages into the kernel virtual
2717 * address space. Return a pointer to where it is mapped. This
2718 * routine is intended to be used for mapping device memory,
2719 * NOT real memory.
2720 */
2721void *
2722pmap_mapdev(vm_offset_t pa, vm_size_t size)
2723{
2724        vm_offset_t va, tmpva, offset;
2725
2726	/*
2727	 * KSEG1 maps only first 512M of phys address space. For
2728	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2729	 */
2730	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2731		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2732	else {
2733		offset = pa & PAGE_MASK;
2734		size = roundup(size + offset, PAGE_SIZE);
2735
2736		va = kmem_alloc_nofault(kernel_map, size);
2737		if (!va)
2738			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2739		pa = trunc_page(pa);
2740		for (tmpva = va; size > 0;) {
2741			pmap_kenter(tmpva, pa);
2742			size -= PAGE_SIZE;
2743			tmpva += PAGE_SIZE;
2744			pa += PAGE_SIZE;
2745		}
2746	}
2747
2748	return ((void *)(va + offset));
2749}
2750
2751void
2752pmap_unmapdev(vm_offset_t va, vm_size_t size)
2753{
2754	vm_offset_t base, offset, tmpva;
2755
2756	/* If the address is within KSEG1 then there is nothing to do */
2757	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2758		return;
2759
2760	base = trunc_page(va);
2761	offset = va & PAGE_MASK;
2762	size = roundup(size + offset, PAGE_SIZE);
2763	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2764		pmap_kremove(tmpva);
2765	kmem_free(kernel_map, base, size);
2766}
2767
2768/*
2769 * perform the pmap work for mincore
2770 */
2771int
2772pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2773{
2774	pt_entry_t *ptep, pte;
2775	vm_offset_t pa;
2776	vm_page_t m;
2777	int val;
2778	boolean_t managed;
2779
2780	PMAP_LOCK(pmap);
2781retry:
2782	ptep = pmap_pte(pmap, addr);
2783	pte = (ptep != NULL) ? *ptep : 0;
2784	if (!mips_pg_v(pte)) {
2785		val = 0;
2786		goto out;
2787	}
2788	val = MINCORE_INCORE;
2789	if ((pte & PTE_M) != 0)
2790		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2791	pa = mips_tlbpfn_to_paddr(pte);
2792	managed = page_is_managed(pa);
2793	if (managed) {
2794		/*
2795		 * This may falsely report the given address as
2796		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2797		 * per-PTE reference information, it is impossible to
2798		 * determine if the address is MINCORE_REFERENCED.
2799		 */
2800		m = PHYS_TO_VM_PAGE(pa);
2801		if ((m->flags & PG_REFERENCED) != 0)
2802			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2803	}
2804	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2805	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2806		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2807		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2808			goto retry;
2809	} else
2810out:
2811		PA_UNLOCK_COND(*locked_pa);
2812	PMAP_UNLOCK(pmap);
2813	return (val);
2814}
2815
2816void
2817pmap_activate(struct thread *td)
2818{
2819	pmap_t pmap, oldpmap;
2820	struct proc *p = td->td_proc;
2821
2822	critical_enter();
2823
2824	pmap = vmspace_pmap(p->p_vmspace);
2825	oldpmap = PCPU_GET(curpmap);
2826
2827	if (oldpmap)
2828		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2829	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2830	pmap_asid_alloc(pmap);
2831	if (td == curthread) {
2832		PCPU_SET(segbase, pmap->pm_segtab);
2833		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2834	}
2835
2836	PCPU_SET(curpmap, pmap);
2837	critical_exit();
2838}
2839
2840void
2841pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2842{
2843}
2844
2845/*
2846 *	Increase the starting virtual address of the given mapping if a
2847 *	different alignment might result in more superpage mappings.
2848 */
2849void
2850pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2851    vm_offset_t *addr, vm_size_t size)
2852{
2853	vm_offset_t superpage_offset;
2854
2855	if (size < NBSEG)
2856		return;
2857	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2858		offset += ptoa(object->pg_color);
2859	superpage_offset = offset & SEGOFSET;
2860	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2861	    (*addr & SEGOFSET) == superpage_offset)
2862		return;
2863	if ((*addr & SEGOFSET) < superpage_offset)
2864		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2865	else
2866		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2867}
2868
2869/*
2870 * 	Increase the starting virtual address of the given mapping so
2871 * 	that it is aligned to not be the second page in a TLB entry.
2872 * 	This routine assumes that the length is appropriately-sized so
2873 * 	that the allocation does not share a TLB entry at all if required.
2874 */
2875void
2876pmap_align_tlb(vm_offset_t *addr)
2877{
2878	if ((*addr & PAGE_SIZE) == 0)
2879		return;
2880	*addr += PAGE_SIZE;
2881	return;
2882}
2883
2884int pmap_pid_dump(int pid);
2885
2886int
2887pmap_pid_dump(int pid)
2888{
2889	pmap_t pmap;
2890	struct proc *p;
2891	int npte = 0;
2892	int index;
2893
2894	sx_slock(&allproc_lock);
2895	LIST_FOREACH(p, &allproc, p_list) {
2896		if (p->p_pid != pid)
2897			continue;
2898
2899		if (p->p_vmspace) {
2900			int i, j;
2901
2902			printf("vmspace is %p\n",
2903			       p->p_vmspace);
2904			index = 0;
2905			pmap = vmspace_pmap(p->p_vmspace);
2906			printf("pmap asid:%x generation:%x\n",
2907			       pmap->pm_asid[0].asid,
2908			       pmap->pm_asid[0].gen);
2909			for (i = 0; i < NUSERPGTBLS; i++) {
2910				pd_entry_t *pde;
2911				pt_entry_t *pte;
2912				unsigned base = i << SEGSHIFT;
2913
2914				pde = &pmap->pm_segtab[i];
2915				if (pde && pmap_pde_v(pde)) {
2916					for (j = 0; j < 1024; j++) {
2917						vm_offset_t va = base +
2918						(j << PAGE_SHIFT);
2919
2920						pte = pmap_pte(pmap, va);
2921						if (pte && pmap_pte_v(pte)) {
2922							vm_offset_t pa;
2923							vm_page_t m;
2924
2925							pa = mips_tlbpfn_to_paddr(*pte);
2926							m = PHYS_TO_VM_PAGE(pa);
2927							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2928							    (void *)va,
2929							    (void *)pa,
2930							    m->hold_count,
2931							    m->wire_count,
2932							    m->flags);
2933							npte++;
2934							index++;
2935							if (index >= 2) {
2936								index = 0;
2937								printf("\n");
2938							} else {
2939								printf(" ");
2940							}
2941						}
2942					}
2943				}
2944			}
2945		} else {
2946		  printf("Process pid:%d has no vm_space\n", pid);
2947		}
2948		break;
2949	}
2950	sx_sunlock(&allproc_lock);
2951	return npte;
2952}
2953
2954
2955#if defined(DEBUG)
2956
2957static void pads(pmap_t pm);
2958void pmap_pvdump(vm_offset_t pa);
2959
2960/* print address space of pmap*/
2961static void
2962pads(pmap_t pm)
2963{
2964	unsigned va, i, j;
2965	pt_entry_t *ptep;
2966
2967	if (pm == kernel_pmap)
2968		return;
2969	for (i = 0; i < NPTEPG; i++)
2970		if (pm->pm_segtab[i])
2971			for (j = 0; j < NPTEPG; j++) {
2972				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
2973				if (pm == kernel_pmap && va < KERNBASE)
2974					continue;
2975				if (pm != kernel_pmap &&
2976				    va >= VM_MAXUSER_ADDRESS)
2977					continue;
2978				ptep = pmap_pte(pm, va);
2979				if (pmap_pte_v(ptep))
2980					printf("%x:%x ", va, *(int *)ptep);
2981			}
2982
2983}
2984
2985void
2986pmap_pvdump(vm_offset_t pa)
2987{
2988	register pv_entry_t pv;
2989	vm_page_t m;
2990
2991	printf("pa %x", pa);
2992	m = PHYS_TO_VM_PAGE(pa);
2993	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
2994	    pv = TAILQ_NEXT(pv, pv_list)) {
2995		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
2996		pads(pv->pv_pmap);
2997	}
2998	printf(" ");
2999}
3000
3001/* N/C */
3002#endif
3003
3004
3005/*
3006 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3007 * It takes almost as much or more time to search the TLB for a
3008 * specific ASID and flush those entries as it does to flush the entire TLB.
3009 * Therefore, when we allocate a new ASID, we just take the next number. When
3010 * we run out of numbers, we flush the TLB, increment the generation count
3011 * and start over. ASID zero is reserved for kernel use.
3012 */
3013static void
3014pmap_asid_alloc(pmap)
3015	pmap_t pmap;
3016{
3017	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3018	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3019	else {
3020		if (PCPU_GET(next_asid) == pmap_max_asid) {
3021			MIPS_TBIAP();
3022			PCPU_SET(asid_generation,
3023			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3024			if (PCPU_GET(asid_generation) == 0) {
3025				PCPU_SET(asid_generation, 1);
3026			}
3027			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3028		}
3029		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3030		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3031		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3032	}
3033}
3034
3035int
3036page_is_managed(vm_offset_t pa)
3037{
3038	vm_offset_t pgnum = mips_btop(pa);
3039
3040	if (pgnum >= first_page) {
3041		vm_page_t m;
3042
3043		m = PHYS_TO_VM_PAGE(pa);
3044		if (m == NULL)
3045			return 0;
3046		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3047			return 1;
3048	}
3049	return 0;
3050}
3051
3052static int
3053init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3054{
3055	int rw = 0;
3056
3057	if (!(prot & VM_PROT_WRITE))
3058		rw = PTE_ROPAGE;
3059	else {
3060		if (va >= VM_MIN_KERNEL_ADDRESS) {
3061			/*
3062			 * Don't bother to trap on kernel writes, just
3063			 * record page as dirty.
3064			 */
3065			rw = PTE_RWPAGE;
3066			vm_page_dirty(m);
3067		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
3068		    m->dirty == VM_PAGE_BITS_ALL)
3069			rw = PTE_RWPAGE;
3070		else
3071			rw = PTE_CWPAGE;
3072		vm_page_flag_set(m, PG_WRITEABLE);
3073	}
3074	return rw;
3075}
3076
3077/*
3078 *	pmap_set_modified:
3079 *
3080 *	Sets the page modified and reference bits for the specified page.
3081 */
3082void
3083pmap_set_modified(vm_offset_t pa)
3084{
3085
3086	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3087}
3088
3089/*
3090 *	Routine:	pmap_kextract
3091 *	Function:
3092 *		Extract the physical page address associated
3093 *		virtual address.
3094 */
3095 /* PMAP_INLINE */ vm_offset_t
3096pmap_kextract(vm_offset_t va)
3097{
3098	vm_offset_t pa = 0;
3099
3100	if (va < MIPS_KSEG0_START) {
3101		/* user virtual address */
3102		pt_entry_t *ptep;
3103
3104		if (curproc && curproc->p_vmspace) {
3105			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3106			if (ptep)
3107				pa = mips_tlbpfn_to_paddr(*ptep) |
3108				    (va & PAGE_MASK);
3109		}
3110	} else if (va >= MIPS_KSEG0_START &&
3111	    va < MIPS_KSEG1_START)
3112		pa = MIPS_KSEG0_TO_PHYS(va);
3113	else if (va >= MIPS_KSEG1_START &&
3114	    va < MIPS_KSEG2_START)
3115		pa = MIPS_KSEG1_TO_PHYS(va);
3116	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3117		pt_entry_t *ptep;
3118
3119		/* Is the kernel pmap initialized? */
3120		if (kernel_pmap->pm_active) {
3121			/* Its inside the virtual address range */
3122			ptep = pmap_pte(kernel_pmap, va);
3123			if (ptep)
3124				pa = mips_tlbpfn_to_paddr(*ptep) |
3125				    (va & PAGE_MASK);
3126		}
3127	}
3128	return pa;
3129}
3130
3131void
3132pmap_flush_pvcache(vm_page_t m)
3133{
3134	pv_entry_t pv;
3135
3136	if (m != NULL) {
3137		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3138	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3139			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3140		}
3141	}
3142}
3143
3144void
3145pmap_save_tlb(void)
3146{
3147	int tlbno, cpu;
3148
3149	cpu = PCPU_GET(cpuid);
3150
3151	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno)
3152		MachTLBRead(tlbno, &tlbstash[cpu][tlbno]);
3153}
3154
3155#ifdef DDB
3156#include <ddb/ddb.h>
3157
3158DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3159{
3160	int cpu, tlbno;
3161	struct tlb *tlb;
3162
3163	if (have_addr)
3164		cpu = ((addr >> 4) % 16) * 10 + (addr % 16);
3165	else
3166		cpu = PCPU_GET(cpuid);
3167
3168	if (cpu < 0 || cpu >= mp_ncpus) {
3169		db_printf("Invalid CPU %d\n", cpu);
3170		return;
3171	} else
3172		db_printf("CPU %d:\n", cpu);
3173
3174	if (cpu == PCPU_GET(cpuid))
3175		pmap_save_tlb();
3176
3177	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno) {
3178		tlb = &tlbstash[cpu][tlbno];
3179		if (tlb->tlb_lo0 & PTE_V || tlb->tlb_lo1 & PTE_V) {
3180			printf("TLB %2d vad 0x%0lx ",
3181				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3182		} else {
3183			printf("TLB*%2d vad 0x%0lx ",
3184				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3185		}
3186		printf("0=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo0));
3187		printf("%c", tlb->tlb_lo0 & PTE_V ? 'V' : '-');
3188		printf("%c", tlb->tlb_lo0 & PTE_M ? 'M' : '-');
3189		printf("%c", tlb->tlb_lo0 & PTE_G ? 'G' : '-');
3190		printf(" atr %x ", (tlb->tlb_lo0 >> 3) & 7);
3191		printf("1=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo1));
3192		printf("%c", tlb->tlb_lo1 & PTE_V ? 'V' : '-');
3193		printf("%c", tlb->tlb_lo1 & PTE_M ? 'M' : '-');
3194		printf("%c", tlb->tlb_lo1 & PTE_G ? 'G' : '-');
3195		printf(" atr %x ", (tlb->tlb_lo1 >> 3) & 7);
3196		printf(" sz=%x pid=%x\n", tlb->tlb_mask,
3197		       (tlb->tlb_hi & 0x000000ff));
3198	}
3199}
3200#endif	/* DDB */
3201