pmap.c revision 208532
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 208532 2010-05-25 05:42:12Z neel $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_phys.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_page.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/uma.h>
94#include <sys/pcpu.h>
95#include <sys/sched.h>
96#ifdef SMP
97#include <sys/smp.h>
98#endif
99
100#include <machine/cache.h>
101#include <machine/md_var.h>
102
103#if defined(DIAGNOSTIC)
104#define	PMAP_DIAGNOSTIC
105#endif
106
107#undef PMAP_DEBUG
108
109#ifndef PMAP_SHPGPERPROC
110#define	PMAP_SHPGPERPROC 200
111#endif
112
113#if !defined(PMAP_DIAGNOSTIC)
114#define	PMAP_INLINE __inline
115#else
116#define	PMAP_INLINE
117#endif
118
119/*
120 * Get PDEs and PTEs for user/kernel address space
121 */
122#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
123#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
124
125#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
126#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
127#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
128#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
129
130#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
131#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
132
133#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
134#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
135#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
136#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
137#define	is_kernel_pmap(x)	((x) == kernel_pmap)
138
139struct pmap kernel_pmap_store;
140pd_entry_t *kernel_segmap;
141
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144
145static int nkpt;
146unsigned pmap_max_asid;		/* max ASID supported by the system */
147
148
149#define	PMAP_ASID_RESERVED	0
150
151vm_offset_t kernel_vm_end;
152
153static struct tlb tlbstash[MAXCPU][MIPS_MAX_TLB_ENTRIES];
154
155static void pmap_asid_alloc(pmap_t pmap);
156
157/*
158 * Data for the pv entry allocation mechanism
159 */
160static uma_zone_t pvzone;
161static struct vm_object pvzone_obj;
162static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
163
164static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
165static pv_entry_t get_pv_entry(pmap_t locked_pmap);
166static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
167
168static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
169    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
170static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
171static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
172static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
173static boolean_t pmap_testbit(vm_page_t m, int bit);
174static void
175pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
176    vm_page_t m, boolean_t wired);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179
180static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
181
182static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
183static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
184static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
185static void pmap_TLB_invalidate_kernel(vm_offset_t);
186static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
187static vm_page_t pmap_alloc_pte_page(pmap_t, unsigned int, int, vm_offset_t *);
188static void pmap_release_pte_page(vm_page_t);
189
190#ifdef SMP
191static void pmap_invalidate_page_action(void *arg);
192static void pmap_invalidate_all_action(void *arg);
193static void pmap_update_page_action(void *arg);
194#endif
195
196static void pmap_ptpgzone_dtor(void *mem, int size, void *arg);
197static void *pmap_ptpgzone_allocf(uma_zone_t, int, u_int8_t *, int);
198static uma_zone_t ptpgzone;
199
200struct local_sysmaps {
201	struct mtx lock;
202	vm_offset_t base;
203	uint16_t valid1, valid2;
204};
205
206/* This structure is for large memory
207 * above 512Meg. We can't (in 32 bit mode)
208 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
209 * macros since we can't see the memory and must
210 * map it in when we need to access it. In 64
211 * bit mode this goes away.
212 */
213static struct local_sysmaps sysmap_lmem[MAXCPU];
214caddr_t virtual_sys_start = (caddr_t)0;
215
216#define	PMAP_LMEM_MAP1(va, phys)					\
217	int cpu;							\
218	struct local_sysmaps *sysm;					\
219	pt_entry_t *pte, npte;						\
220									\
221	cpu = PCPU_GET(cpuid);						\
222	sysm = &sysmap_lmem[cpu];					\
223	PMAP_LGMEM_LOCK(sysm);						\
224	intr = intr_disable();						\
225	sched_pin();							\
226	va = sysm->base;						\
227	npte = mips_paddr_to_tlbpfn(phys) |				\
228	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
229	pte = pmap_pte(kernel_pmap, va);				\
230	*pte = npte;							\
231	sysm->valid1 = 1;
232
233#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
234	int cpu;							\
235	struct local_sysmaps *sysm;					\
236	pt_entry_t *pte, npte;						\
237									\
238	cpu = PCPU_GET(cpuid);						\
239	sysm = &sysmap_lmem[cpu];					\
240	PMAP_LGMEM_LOCK(sysm);						\
241	intr = intr_disable();						\
242	sched_pin();							\
243	va1 = sysm->base;						\
244	va2 = sysm->base + PAGE_SIZE;					\
245	npte = mips_paddr_to_tlbpfn(phys1) |				\
246	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
247	pte = pmap_pte(kernel_pmap, va1);				\
248	*pte = npte;							\
249	npte = mips_paddr_to_tlbpfn(phys2) |				\
250	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
251	pte = pmap_pte(kernel_pmap, va2);				\
252	*pte = npte;							\
253	sysm->valid1 = 1;						\
254	sysm->valid2 = 1;
255
256#define	PMAP_LMEM_UNMAP()						\
257	pte = pmap_pte(kernel_pmap, sysm->base);			\
258	*pte = PTE_G;							\
259	pmap_TLB_invalidate_kernel(sysm->base);				\
260	sysm->valid1 = 0;						\
261	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
262	*pte = PTE_G;							\
263	pmap_TLB_invalidate_kernel(sysm->base + PAGE_SIZE);		\
264	sysm->valid2 = 0;						\
265	sched_unpin();							\
266	intr_restore(intr);						\
267	PMAP_LGMEM_UNLOCK(sysm);
268
269pd_entry_t
270pmap_segmap(pmap_t pmap, vm_offset_t va)
271{
272	if (pmap->pm_segtab)
273		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
274	else
275		return ((pd_entry_t)0);
276}
277
278/*
279 *	Routine:	pmap_pte
280 *	Function:
281 *		Extract the page table entry associated
282 *		with the given map/virtual_address pair.
283 */
284pt_entry_t *
285pmap_pte(pmap_t pmap, vm_offset_t va)
286{
287	pt_entry_t *pdeaddr;
288
289	if (pmap) {
290		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
291		if (pdeaddr) {
292			return pdeaddr + vad_to_pte_offset(va);
293		}
294	}
295	return ((pt_entry_t *)0);
296}
297
298
299vm_offset_t
300pmap_steal_memory(vm_size_t size)
301{
302	vm_size_t bank_size;
303	vm_offset_t pa, va;
304
305	size = round_page(size);
306
307	bank_size = phys_avail[1] - phys_avail[0];
308	while (size > bank_size) {
309		int i;
310
311		for (i = 0; phys_avail[i + 2]; i += 2) {
312			phys_avail[i] = phys_avail[i + 2];
313			phys_avail[i + 1] = phys_avail[i + 3];
314		}
315		phys_avail[i] = 0;
316		phys_avail[i + 1] = 0;
317		if (!phys_avail[0])
318			panic("pmap_steal_memory: out of memory");
319		bank_size = phys_avail[1] - phys_avail[0];
320	}
321
322	pa = phys_avail[0];
323	phys_avail[0] += size;
324	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
325		panic("Out of memory below 512Meg?");
326	}
327	va = MIPS_PHYS_TO_KSEG0(pa);
328	bzero((caddr_t)va, size);
329	return va;
330}
331
332/*
333 *	Bootstrap the system enough to run with virtual memory.  This
334 * assumes that the phys_avail array has been initialized.
335 */
336void
337pmap_bootstrap(void)
338{
339	pt_entry_t *pgtab;
340	pt_entry_t *pte;
341	int i, j;
342	int memory_larger_than_512meg = 0;
343
344	/* Sort. */
345again:
346	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
347		/*
348		 * Keep the memory aligned on page boundary.
349		 */
350		phys_avail[i] = round_page(phys_avail[i]);
351		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
352
353		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
354			memory_larger_than_512meg++;
355		if (i < 2)
356			continue;
357		if (phys_avail[i - 2] > phys_avail[i]) {
358			vm_paddr_t ptemp[2];
359
360
361			ptemp[0] = phys_avail[i + 0];
362			ptemp[1] = phys_avail[i + 1];
363
364			phys_avail[i + 0] = phys_avail[i - 2];
365			phys_avail[i + 1] = phys_avail[i - 1];
366
367			phys_avail[i - 2] = ptemp[0];
368			phys_avail[i - 1] = ptemp[1];
369			goto again;
370		}
371	}
372
373	/*
374	 * Copy the phys_avail[] array before we start stealing memory from it.
375	 */
376	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
377		physmem_desc[i] = phys_avail[i];
378		physmem_desc[i + 1] = phys_avail[i + 1];
379	}
380
381	Maxmem = atop(phys_avail[i - 1]);
382
383	if (bootverbose) {
384		printf("Physical memory chunk(s):\n");
385		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
386			vm_paddr_t size;
387
388			size = phys_avail[i + 1] - phys_avail[i];
389			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
390			    (uintmax_t) phys_avail[i],
391			    (uintmax_t) phys_avail[i + 1] - 1,
392			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
393		}
394		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
395	}
396	/*
397	 * Steal the message buffer from the beginning of memory.
398	 */
399	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
400	msgbufinit(msgbufp, MSGBUF_SIZE);
401
402	/*
403	 * Steal thread0 kstack.
404	 */
405	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
406
407
408	virtual_avail = VM_MIN_KERNEL_ADDRESS;
409	virtual_end = VM_MAX_KERNEL_ADDRESS;
410
411#ifdef SMP
412	/*
413	 * Steal some virtual address space to map the pcpu area.
414	 */
415	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
416	pcpup = (struct pcpu *)virtual_avail;
417	virtual_avail += PAGE_SIZE * 2;
418
419	/*
420	 * Initialize the wired TLB entry mapping the pcpu region for
421	 * the BSP at 'pcpup'. Up until this point we were operating
422	 * with the 'pcpup' for the BSP pointing to a virtual address
423	 * in KSEG0 so there was no need for a TLB mapping.
424	 */
425	mips_pcpu_tlb_init(PCPU_ADDR(0));
426
427	if (bootverbose)
428		printf("pcpu is available at virtual address %p.\n", pcpup);
429#endif
430
431	/*
432	 * Steal some virtual space that will not be in kernel_segmap. This
433	 * va memory space will be used to map in kernel pages that are
434	 * outside the 512Meg region. Note that we only do this steal when
435	 * we do have memory in this region, that way for systems with
436	 * smaller memory we don't "steal" any va ranges :-)
437	 */
438	if (memory_larger_than_512meg) {
439		for (i = 0; i < MAXCPU; i++) {
440			sysmap_lmem[i].base = virtual_avail;
441			virtual_avail += PAGE_SIZE * 2;
442			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
443			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
444		}
445	}
446	virtual_sys_start = (caddr_t)virtual_avail;
447	/*
448	 * Allocate segment table for the kernel
449	 */
450	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
451
452	/*
453	 * Allocate second level page tables for the kernel
454	 */
455	nkpt = NKPT;
456	if (memory_larger_than_512meg) {
457		/*
458		 * If we have a large memory system we CANNOT afford to hit
459		 * pmap_growkernel() and allocate memory. Since we MAY end
460		 * up with a page that is NOT mappable. For that reason we
461		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
462		 * this gives us 480meg of kernel virtual addresses at the
463		 * cost of 120 pages (each page gets us 4 Meg). Since the
464		 * kernel starts at virtual_avail, we can use this to
465		 * calculate how many entris are left from there to the end
466		 * of the segmap, we want to allocate all of it, which would
467		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
468		 * in about 256 entries or so instead of the 120.
469		 */
470		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
471	}
472	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
473
474	/*
475	 * The R[4-7]?00 stores only one copy of the Global bit in the
476	 * translation lookaside buffer for each 2 page entry. Thus invalid
477	 * entrys must have the Global bit set so when Entry LO and Entry HI
478	 * G bits are anded together they will produce a global bit to store
479	 * in the tlb.
480	 */
481	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
482		*pte = PTE_G;
483
484	/*
485	 * The segment table contains the KVA of the pages in the second
486	 * level page table.
487	 */
488	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
489		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
490
491	/*
492	 * The kernel's pmap is statically allocated so we don't have to use
493	 * pmap_create, which is unlikely to work correctly at this part of
494	 * the boot sequence (XXX and which no longer exists).
495	 */
496	PMAP_LOCK_INIT(kernel_pmap);
497	kernel_pmap->pm_segtab = kernel_segmap;
498	kernel_pmap->pm_active = ~0;
499	TAILQ_INIT(&kernel_pmap->pm_pvlist);
500	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
501	kernel_pmap->pm_asid[0].gen = 0;
502	pmap_max_asid = VMNUM_PIDS;
503	MachSetPID(0);
504}
505
506/*
507 * Initialize a vm_page's machine-dependent fields.
508 */
509void
510pmap_page_init(vm_page_t m)
511{
512
513	TAILQ_INIT(&m->md.pv_list);
514	m->md.pv_list_count = 0;
515	m->md.pv_flags = 0;
516}
517
518/*
519 *	Initialize the pmap module.
520 *	Called by vm_init, to initialize any structures that the pmap
521 *	system needs to map virtual memory.
522 *	pmap_init has been enhanced to support in a fairly consistant
523 *	way, discontiguous physical memory.
524 */
525void
526pmap_init(void)
527{
528
529	/*
530	 * Initialize the address space (zone) for the pv entries.  Set a
531	 * high water mark so that the system can recover from excessive
532	 * numbers of pv entries.
533	 */
534	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
535	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
536	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
537	pv_entry_high_water = 9 * (pv_entry_max / 10);
538	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
539
540	ptpgzone = uma_zcreate("PT ENTRY", PAGE_SIZE, NULL, pmap_ptpgzone_dtor,
541	    NULL, NULL, PAGE_SIZE - 1, UMA_ZONE_NOFREE | UMA_ZONE_ZINIT);
542	uma_zone_set_allocf(ptpgzone, pmap_ptpgzone_allocf);
543}
544
545/***************************************************
546 * Low level helper routines.....
547 ***************************************************/
548
549#if defined(PMAP_DIAGNOSTIC)
550
551/*
552 * This code checks for non-writeable/modified pages.
553 * This should be an invalid condition.
554 */
555static int
556pmap_nw_modified(pt_entry_t pte)
557{
558	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
559		return (1);
560	else
561		return (0);
562}
563
564#endif
565
566static void
567pmap_invalidate_all(pmap_t pmap)
568{
569#ifdef SMP
570	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
571}
572
573static void
574pmap_invalidate_all_action(void *arg)
575{
576	pmap_t pmap = (pmap_t)arg;
577
578#endif
579
580	if (pmap->pm_active & PCPU_GET(cpumask)) {
581		pmap_TLB_invalidate_all();
582	} else
583		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
584}
585
586struct pmap_invalidate_page_arg {
587	pmap_t pmap;
588	vm_offset_t va;
589};
590
591static __inline void
592pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
593{
594#ifdef SMP
595	struct pmap_invalidate_page_arg arg;
596
597	arg.pmap = pmap;
598	arg.va = va;
599
600	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
601}
602
603static void
604pmap_invalidate_page_action(void *arg)
605{
606	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
607	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
608
609#endif
610
611	if (is_kernel_pmap(pmap)) {
612		pmap_TLB_invalidate_kernel(va);
613		return;
614	}
615	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
616		return;
617	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
618		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
619		return;
620	}
621	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
622	mips_TBIS(va);
623}
624
625static void
626pmap_TLB_invalidate_kernel(vm_offset_t va)
627{
628	u_int32_t pid;
629
630	MachTLBGetPID(pid);
631	va = va | (pid << VMTLB_PID_SHIFT);
632	mips_TBIS(va);
633}
634
635struct pmap_update_page_arg {
636	pmap_t pmap;
637	vm_offset_t va;
638	pt_entry_t pte;
639};
640
641void
642pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
643{
644#ifdef SMP
645	struct pmap_update_page_arg arg;
646
647	arg.pmap = pmap;
648	arg.va = va;
649	arg.pte = pte;
650
651	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
652}
653
654static void
655pmap_update_page_action(void *arg)
656{
657	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
658	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
659	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
660
661#endif
662	if (is_kernel_pmap(pmap)) {
663		pmap_TLB_update_kernel(va, pte);
664		return;
665	}
666	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
667		return;
668	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
669		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
670		return;
671	}
672	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
673	MachTLBUpdate(va, pte);
674}
675
676static void
677pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
678{
679	u_int32_t pid;
680
681	va &= ~PAGE_MASK;
682
683	MachTLBGetPID(pid);
684	va = va | (pid << VMTLB_PID_SHIFT);
685
686	MachTLBUpdate(va, pte);
687}
688
689/*
690 *	Routine:	pmap_extract
691 *	Function:
692 *		Extract the physical page address associated
693 *		with the given map/virtual_address pair.
694 */
695vm_paddr_t
696pmap_extract(pmap_t pmap, vm_offset_t va)
697{
698	pt_entry_t *pte;
699	vm_offset_t retval = 0;
700
701	PMAP_LOCK(pmap);
702	pte = pmap_pte(pmap, va);
703	if (pte) {
704		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
705	}
706	PMAP_UNLOCK(pmap);
707	return retval;
708}
709
710/*
711 *	Routine:	pmap_extract_and_hold
712 *	Function:
713 *		Atomically extract and hold the physical page
714 *		with the given pmap and virtual address pair
715 *		if that mapping permits the given protection.
716 */
717vm_page_t
718pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
719{
720	pt_entry_t pte;
721	vm_page_t m;
722	vm_paddr_t pa;
723
724	m = NULL;
725	pa = 0;
726	PMAP_LOCK(pmap);
727retry:
728	pte = *pmap_pte(pmap, va);
729	if (pte != 0 && pmap_pte_v(&pte) &&
730	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
731		if (vm_page_pa_tryrelock(pmap, mips_tlbpfn_to_paddr(pte), &pa))
732			goto retry;
733
734		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
735		vm_page_hold(m);
736	}
737	PA_UNLOCK_COND(pa);
738	PMAP_UNLOCK(pmap);
739	return (m);
740}
741
742/***************************************************
743 * Low level mapping routines.....
744 ***************************************************/
745
746/*
747 * add a wired page to the kva
748 */
749 /* PMAP_INLINE */ void
750pmap_kenter(vm_offset_t va, vm_paddr_t pa)
751{
752	register pt_entry_t *pte;
753	pt_entry_t npte, opte;
754
755#ifdef PMAP_DEBUG
756	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
757#endif
758	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
759
760	if (is_cacheable_mem(pa))
761		npte |= PTE_CACHE;
762	else
763		npte |= PTE_UNCACHED;
764
765	pte = pmap_pte(kernel_pmap, va);
766	opte = *pte;
767	*pte = npte;
768
769	pmap_update_page(kernel_pmap, va, npte);
770}
771
772/*
773 * remove a page from the kernel pagetables
774 */
775 /* PMAP_INLINE */ void
776pmap_kremove(vm_offset_t va)
777{
778	register pt_entry_t *pte;
779
780	/*
781	 * Write back all caches from the page being destroyed
782	 */
783	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
784
785	pte = pmap_pte(kernel_pmap, va);
786	*pte = PTE_G;
787	pmap_invalidate_page(kernel_pmap, va);
788}
789
790/*
791 *	Used to map a range of physical addresses into kernel
792 *	virtual address space.
793 *
794 *	The value passed in '*virt' is a suggested virtual address for
795 *	the mapping. Architectures which can support a direct-mapped
796 *	physical to virtual region can return the appropriate address
797 *	within that region, leaving '*virt' unchanged. Other
798 *	architectures should map the pages starting at '*virt' and
799 *	update '*virt' with the first usable address after the mapped
800 *	region.
801 */
802vm_offset_t
803pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
804{
805	vm_offset_t va, sva;
806
807	va = sva = *virt;
808	while (start < end) {
809		pmap_kenter(va, start);
810		va += PAGE_SIZE;
811		start += PAGE_SIZE;
812	}
813	*virt = va;
814	return (sva);
815}
816
817/*
818 * Add a list of wired pages to the kva
819 * this routine is only used for temporary
820 * kernel mappings that do not need to have
821 * page modification or references recorded.
822 * Note that old mappings are simply written
823 * over.  The page *must* be wired.
824 */
825void
826pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
827{
828	int i;
829	vm_offset_t origva = va;
830
831	for (i = 0; i < count; i++) {
832		pmap_flush_pvcache(m[i]);
833		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
834		va += PAGE_SIZE;
835	}
836
837	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
838}
839
840/*
841 * this routine jerks page mappings from the
842 * kernel -- it is meant only for temporary mappings.
843 */
844void
845pmap_qremove(vm_offset_t va, int count)
846{
847	/*
848	 * No need to wb/inv caches here,
849	 *   pmap_kremove will do it for us
850	 */
851
852	while (count-- > 0) {
853		pmap_kremove(va);
854		va += PAGE_SIZE;
855	}
856}
857
858/***************************************************
859 * Page table page management routines.....
860 ***************************************************/
861
862/*  Revision 1.507
863 *
864 * Simplify the reference counting of page table pages.	 Specifically, use
865 * the page table page's wired count rather than its hold count to contain
866 * the reference count.
867 */
868
869/*
870 * This routine unholds page table pages, and if the hold count
871 * drops to zero, then it decrements the wire count.
872 */
873static int
874_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
875{
876
877	/*
878	 * unmap the page table page
879	 */
880	pmap->pm_segtab[m->pindex] = 0;
881	--pmap->pm_stats.resident_count;
882
883	if (pmap->pm_ptphint == m)
884		pmap->pm_ptphint = NULL;
885
886	/*
887	 * If the page is finally unwired, simply free it.
888	 */
889	pmap_release_pte_page(m);
890	atomic_subtract_int(&cnt.v_wire_count, 1);
891	return (1);
892}
893
894static PMAP_INLINE int
895pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
896{
897	--m->wire_count;
898	if (m->wire_count == 0)
899		return (_pmap_unwire_pte_hold(pmap, m));
900	else
901		return (0);
902}
903
904/*
905 * After removing a page table entry, this routine is used to
906 * conditionally free the page, and manage the hold/wire counts.
907 */
908static int
909pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
910{
911	unsigned ptepindex;
912	pd_entry_t pteva;
913
914	if (va >= VM_MAXUSER_ADDRESS)
915		return (0);
916
917	if (mpte == NULL) {
918		ptepindex = (va >> SEGSHIFT);
919		if (pmap->pm_ptphint &&
920		    (pmap->pm_ptphint->pindex == ptepindex)) {
921			mpte = pmap->pm_ptphint;
922		} else {
923			pteva = *pmap_pde(pmap, va);
924			mpte = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
925			pmap->pm_ptphint = mpte;
926		}
927	}
928	return pmap_unwire_pte_hold(pmap, mpte);
929}
930
931void
932pmap_pinit0(pmap_t pmap)
933{
934	int i;
935
936	PMAP_LOCK_INIT(pmap);
937	pmap->pm_segtab = kernel_segmap;
938	pmap->pm_active = 0;
939	pmap->pm_ptphint = NULL;
940	for (i = 0; i < MAXCPU; i++) {
941		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
942		pmap->pm_asid[i].gen = 0;
943	}
944	PCPU_SET(curpmap, pmap);
945	TAILQ_INIT(&pmap->pm_pvlist);
946	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
947}
948
949static void
950pmap_ptpgzone_dtor(void *mem, int size, void *arg)
951{
952#ifdef INVARIANTS
953	static char zeropage[PAGE_SIZE];
954
955	KASSERT(size == PAGE_SIZE,
956		("pmap_ptpgzone_dtor: invalid size %d", size));
957	KASSERT(bcmp(mem, zeropage, PAGE_SIZE) == 0,
958		("pmap_ptpgzone_dtor: freeing a non-zeroed page"));
959#endif
960}
961
962static void *
963pmap_ptpgzone_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
964{
965	vm_page_t m;
966	vm_paddr_t paddr;
967
968	KASSERT(bytes == PAGE_SIZE,
969		("pmap_ptpgzone_allocf: invalid allocation size %d", bytes));
970
971	*flags = UMA_SLAB_PRIV;
972	m = vm_phys_alloc_contig(1, 0, MIPS_KSEG0_LARGEST_PHYS,
973	     PAGE_SIZE, PAGE_SIZE);
974	if (m == NULL)
975		return (NULL);
976
977	paddr = VM_PAGE_TO_PHYS(m);
978	return ((void *)MIPS_PHYS_TO_KSEG0(paddr));
979}
980
981static vm_page_t
982pmap_alloc_pte_page(pmap_t pmap, unsigned int index, int wait, vm_offset_t *vap)
983{
984	vm_paddr_t paddr;
985	void *va;
986	vm_page_t m;
987	int locked;
988
989	locked = mtx_owned(&pmap->pm_mtx);
990	if (locked) {
991		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
992		PMAP_UNLOCK(pmap);
993		vm_page_unlock_queues();
994	}
995	va = uma_zalloc(ptpgzone, wait);
996	if (locked) {
997		vm_page_lock_queues();
998		PMAP_LOCK(pmap);
999	}
1000	if (va == NULL)
1001		return (NULL);
1002
1003	paddr = MIPS_KSEG0_TO_PHYS(va);
1004	m = PHYS_TO_VM_PAGE(paddr);
1005
1006	m->pindex = index;
1007	m->valid = VM_PAGE_BITS_ALL;
1008	m->wire_count = 1;
1009	atomic_add_int(&cnt.v_wire_count, 1);
1010	*vap = (vm_offset_t)va;
1011	return (m);
1012}
1013
1014static void
1015pmap_release_pte_page(vm_page_t m)
1016{
1017	void *va;
1018	vm_paddr_t paddr;
1019
1020	paddr = VM_PAGE_TO_PHYS(m);
1021	va = (void *)MIPS_PHYS_TO_KSEG0(paddr);
1022	uma_zfree(ptpgzone, va);
1023}
1024
1025/*
1026 * Initialize a preallocated and zeroed pmap structure,
1027 * such as one in a vmspace structure.
1028 */
1029int
1030pmap_pinit(pmap_t pmap)
1031{
1032	vm_offset_t ptdva;
1033	vm_page_t ptdpg;
1034	int i;
1035
1036	PMAP_LOCK_INIT(pmap);
1037
1038	/*
1039	 * allocate the page directory page
1040	 */
1041	ptdpg = pmap_alloc_pte_page(pmap, NUSERPGTBLS, M_WAITOK, &ptdva);
1042	pmap->pm_segtab = (pd_entry_t *)ptdva;
1043
1044	pmap->pm_active = 0;
1045	pmap->pm_ptphint = NULL;
1046	for (i = 0; i < MAXCPU; i++) {
1047		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1048		pmap->pm_asid[i].gen = 0;
1049	}
1050	TAILQ_INIT(&pmap->pm_pvlist);
1051	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1052
1053	return (1);
1054}
1055
1056/*
1057 * this routine is called if the page table page is not
1058 * mapped correctly.
1059 */
1060static vm_page_t
1061_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1062{
1063	vm_offset_t pteva;
1064	vm_page_t m;
1065	int req;
1066
1067	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1068	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1069	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1070
1071	req = VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ;
1072	/*
1073	 * Find or fabricate a new pagetable page
1074	 */
1075	m = pmap_alloc_pte_page(pmap, ptepindex, flags, &pteva);
1076	if (m == NULL)
1077		return (NULL);
1078
1079	/*
1080	 * Map the pagetable page into the process address space, if it
1081	 * isn't already there.
1082	 */
1083
1084	pmap->pm_stats.resident_count++;
1085	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1086
1087	/*
1088	 * Set the page table hint
1089	 */
1090	pmap->pm_ptphint = m;
1091	return (m);
1092}
1093
1094static vm_page_t
1095pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1096{
1097	unsigned ptepindex;
1098	vm_offset_t pteva;
1099	vm_page_t m;
1100
1101	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1102	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1103	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1104
1105	/*
1106	 * Calculate pagetable page index
1107	 */
1108	ptepindex = va >> SEGSHIFT;
1109retry:
1110	/*
1111	 * Get the page directory entry
1112	 */
1113	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1114
1115	/*
1116	 * If the page table page is mapped, we just increment the hold
1117	 * count, and activate it.
1118	 */
1119	if (pteva) {
1120		/*
1121		 * In order to get the page table page, try the hint first.
1122		 */
1123		if (pmap->pm_ptphint &&
1124		    (pmap->pm_ptphint->pindex == ptepindex)) {
1125			m = pmap->pm_ptphint;
1126		} else {
1127			m = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(pteva));
1128			pmap->pm_ptphint = m;
1129		}
1130		m->wire_count++;
1131	} else {
1132		/*
1133		 * Here if the pte page isn't mapped, or if it has been
1134		 * deallocated.
1135		 */
1136		m = _pmap_allocpte(pmap, ptepindex, flags);
1137		if (m == NULL && (flags & M_WAITOK))
1138			goto retry;
1139	}
1140	return m;
1141}
1142
1143
1144/***************************************************
1145* Pmap allocation/deallocation routines.
1146 ***************************************************/
1147/*
1148 *  Revision 1.397
1149 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1150 *    called only the page directory page(s) can be left in the pmap pte
1151 *    object, since all page table pages will have been freed by
1152 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1153 *    reference to the pmap and the page directory is wired, so the page(s)
1154 *    can never be busy.  So all there is to do is clear the magic mappings
1155 *    from the page directory and free the page(s).
1156 */
1157
1158
1159/*
1160 * Release any resources held by the given physical map.
1161 * Called when a pmap initialized by pmap_pinit is being released.
1162 * Should only be called if the map contains no valid mappings.
1163 */
1164void
1165pmap_release(pmap_t pmap)
1166{
1167	vm_offset_t ptdva;
1168	vm_page_t ptdpg;
1169
1170	KASSERT(pmap->pm_stats.resident_count == 0,
1171	    ("pmap_release: pmap resident count %ld != 0",
1172	    pmap->pm_stats.resident_count));
1173
1174	ptdva = (vm_offset_t)pmap->pm_segtab;
1175	ptdpg = PHYS_TO_VM_PAGE(MIPS_KSEG0_TO_PHYS(ptdva));
1176
1177	ptdpg->wire_count--;
1178	atomic_subtract_int(&cnt.v_wire_count, 1);
1179	pmap_release_pte_page(ptdpg);
1180	PMAP_LOCK_DESTROY(pmap);
1181}
1182
1183/*
1184 * grow the number of kernel page table entries, if needed
1185 */
1186void
1187pmap_growkernel(vm_offset_t addr)
1188{
1189	vm_offset_t pageva;
1190	vm_page_t nkpg;
1191	pt_entry_t *pte;
1192	int i;
1193
1194	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1195	if (kernel_vm_end == 0) {
1196		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1197		nkpt = 0;
1198		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1199			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1200			    ~(PAGE_SIZE * NPTEPG - 1);
1201			nkpt++;
1202			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1203				kernel_vm_end = kernel_map->max_offset;
1204				break;
1205			}
1206		}
1207	}
1208	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1209	if (addr - 1 >= kernel_map->max_offset)
1210		addr = kernel_map->max_offset;
1211	while (kernel_vm_end < addr) {
1212		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1213			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1214			    ~(PAGE_SIZE * NPTEPG - 1);
1215			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1216				kernel_vm_end = kernel_map->max_offset;
1217				break;
1218			}
1219			continue;
1220		}
1221		/*
1222		 * This index is bogus, but out of the way
1223		 */
1224		nkpg = pmap_alloc_pte_page(kernel_pmap, nkpt, M_NOWAIT, &pageva);
1225
1226		if (!nkpg)
1227			panic("pmap_growkernel: no memory to grow kernel");
1228
1229		nkpt++;
1230		pte = (pt_entry_t *)pageva;
1231		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1232
1233		/*
1234		 * The R[4-7]?00 stores only one copy of the Global bit in
1235		 * the translation lookaside buffer for each 2 page entry.
1236		 * Thus invalid entrys must have the Global bit set so when
1237		 * Entry LO and Entry HI G bits are anded together they will
1238		 * produce a global bit to store in the tlb.
1239		 */
1240		for (i = 0; i < NPTEPG; i++, pte++)
1241			*pte = PTE_G;
1242
1243		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1244		    ~(PAGE_SIZE * NPTEPG - 1);
1245		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1246			kernel_vm_end = kernel_map->max_offset;
1247			break;
1248		}
1249	}
1250}
1251
1252/***************************************************
1253* page management routines.
1254 ***************************************************/
1255
1256/*
1257 * free the pv_entry back to the free list
1258 */
1259static PMAP_INLINE void
1260free_pv_entry(pv_entry_t pv)
1261{
1262
1263	pv_entry_count--;
1264	uma_zfree(pvzone, pv);
1265}
1266
1267/*
1268 * get a new pv_entry, allocating a block from the system
1269 * when needed.
1270 * the memory allocation is performed bypassing the malloc code
1271 * because of the possibility of allocations at interrupt time.
1272 */
1273static pv_entry_t
1274get_pv_entry(pmap_t locked_pmap)
1275{
1276	static const struct timeval printinterval = { 60, 0 };
1277	static struct timeval lastprint;
1278	struct vpgqueues *vpq;
1279	pt_entry_t *pte, oldpte;
1280	pmap_t pmap;
1281	pv_entry_t allocated_pv, next_pv, pv;
1282	vm_offset_t va;
1283	vm_page_t m;
1284
1285	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1286	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1287	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1288	if (allocated_pv != NULL) {
1289		pv_entry_count++;
1290		if (pv_entry_count > pv_entry_high_water)
1291			pagedaemon_wakeup();
1292		else
1293			return (allocated_pv);
1294	}
1295	/*
1296	 * Reclaim pv entries: At first, destroy mappings to inactive
1297	 * pages.  After that, if a pv entry is still needed, destroy
1298	 * mappings to active pages.
1299	 */
1300	if (ratecheck(&lastprint, &printinterval))
1301		printf("Approaching the limit on PV entries, "
1302		    "increase the vm.pmap.shpgperproc tunable.\n");
1303	vpq = &vm_page_queues[PQ_INACTIVE];
1304retry:
1305	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1306		if (m->hold_count || m->busy)
1307			continue;
1308		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1309			va = pv->pv_va;
1310			pmap = pv->pv_pmap;
1311			/* Avoid deadlock and lock recursion. */
1312			if (pmap > locked_pmap)
1313				PMAP_LOCK(pmap);
1314			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1315				continue;
1316			pmap->pm_stats.resident_count--;
1317			pte = pmap_pte(pmap, va);
1318			KASSERT(pte != NULL, ("pte"));
1319			oldpte = loadandclear((u_int *)pte);
1320			if (is_kernel_pmap(pmap))
1321				*pte = PTE_G;
1322			KASSERT((oldpte & PTE_W) == 0,
1323			    ("wired pte for unwired page"));
1324			if (m->md.pv_flags & PV_TABLE_REF)
1325				vm_page_flag_set(m, PG_REFERENCED);
1326			if (oldpte & PTE_M)
1327				vm_page_dirty(m);
1328			pmap_invalidate_page(pmap, va);
1329			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1330			m->md.pv_list_count--;
1331			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1332			if (TAILQ_EMPTY(&m->md.pv_list)) {
1333				vm_page_flag_clear(m, PG_WRITEABLE);
1334				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1335			}
1336			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1337			if (pmap != locked_pmap)
1338				PMAP_UNLOCK(pmap);
1339			if (allocated_pv == NULL)
1340				allocated_pv = pv;
1341			else
1342				free_pv_entry(pv);
1343		}
1344	}
1345	if (allocated_pv == NULL) {
1346		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1347			vpq = &vm_page_queues[PQ_ACTIVE];
1348			goto retry;
1349		}
1350		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1351	}
1352	return (allocated_pv);
1353}
1354
1355/*
1356 *  Revision 1.370
1357 *
1358 *  Move pmap_collect() out of the machine-dependent code, rename it
1359 *  to reflect its new location, and add page queue and flag locking.
1360 *
1361 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1362 *  of pmap_collect() in terms of machine-independent interfaces;
1363 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1364 *
1365 *  MIPS implementation was identical to alpha [Junos 8.2]
1366 */
1367
1368/*
1369 * If it is the first entry on the list, it is actually
1370 * in the header and we must copy the following entry up
1371 * to the header.  Otherwise we must search the list for
1372 * the entry.  In either case we free the now unused entry.
1373 */
1374
1375static void
1376pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1377{
1378	pv_entry_t pv;
1379
1380	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1381	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1382	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1383		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1384			if (pmap == pv->pv_pmap && va == pv->pv_va)
1385				break;
1386		}
1387	} else {
1388		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1389			if (va == pv->pv_va)
1390				break;
1391		}
1392	}
1393
1394	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found, pa %lx va %lx",
1395	     (u_long)VM_PAGE_TO_PHYS(m), (u_long)va));
1396	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1397	m->md.pv_list_count--;
1398	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1399		vm_page_flag_clear(m, PG_WRITEABLE);
1400
1401	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1402	free_pv_entry(pv);
1403}
1404
1405/*
1406 * Create a pv entry for page at pa for
1407 * (pmap, va).
1408 */
1409static void
1410pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1411    boolean_t wired)
1412{
1413	pv_entry_t pv;
1414
1415	pv = get_pv_entry(pmap);
1416	pv->pv_va = va;
1417	pv->pv_pmap = pmap;
1418	pv->pv_ptem = mpte;
1419	pv->pv_wired = wired;
1420
1421	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1422	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1423	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1424	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1425	m->md.pv_list_count++;
1426}
1427
1428/*
1429 * Conditionally create a pv entry.
1430 */
1431static boolean_t
1432pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1433    vm_page_t m)
1434{
1435	pv_entry_t pv;
1436
1437	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1438	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1439	if (pv_entry_count < pv_entry_high_water &&
1440	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1441		pv_entry_count++;
1442		pv->pv_va = va;
1443		pv->pv_pmap = pmap;
1444		pv->pv_ptem = mpte;
1445		pv->pv_wired = FALSE;
1446		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1447		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1448		m->md.pv_list_count++;
1449		return (TRUE);
1450	} else
1451		return (FALSE);
1452}
1453
1454/*
1455 * pmap_remove_pte: do the things to unmap a page in a process
1456 */
1457static int
1458pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1459{
1460	pt_entry_t oldpte;
1461	vm_page_t m;
1462	vm_offset_t pa;
1463
1464	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1465	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1466
1467	oldpte = loadandclear((u_int *)ptq);
1468	if (is_kernel_pmap(pmap))
1469		*ptq = PTE_G;
1470
1471	if (oldpte & PTE_W)
1472		pmap->pm_stats.wired_count -= 1;
1473
1474	pmap->pm_stats.resident_count -= 1;
1475	pa = mips_tlbpfn_to_paddr(oldpte);
1476
1477	if (page_is_managed(pa)) {
1478		m = PHYS_TO_VM_PAGE(pa);
1479		if (oldpte & PTE_M) {
1480#if defined(PMAP_DIAGNOSTIC)
1481			if (pmap_nw_modified(oldpte)) {
1482				printf(
1483				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1484				    va, oldpte);
1485			}
1486#endif
1487			vm_page_dirty(m);
1488		}
1489		if (m->md.pv_flags & PV_TABLE_REF)
1490			vm_page_flag_set(m, PG_REFERENCED);
1491		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1492
1493		pmap_remove_entry(pmap, m, va);
1494	}
1495	return pmap_unuse_pt(pmap, va, NULL);
1496}
1497
1498/*
1499 * Remove a single page from a process address space
1500 */
1501static void
1502pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1503{
1504	register pt_entry_t *ptq;
1505
1506	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1507	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1508	ptq = pmap_pte(pmap, va);
1509
1510	/*
1511	 * if there is no pte for this address, just skip it!!!
1512	 */
1513	if (!ptq || !pmap_pte_v(ptq)) {
1514		return;
1515	}
1516
1517	/*
1518	 * Write back all caches from the page being destroyed
1519	 */
1520	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1521
1522	/*
1523	 * get a local va for mappings for this pmap.
1524	 */
1525	(void)pmap_remove_pte(pmap, ptq, va);
1526	pmap_invalidate_page(pmap, va);
1527
1528	return;
1529}
1530
1531/*
1532 *	Remove the given range of addresses from the specified map.
1533 *
1534 *	It is assumed that the start and end are properly
1535 *	rounded to the page size.
1536 */
1537void
1538pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1539{
1540	vm_offset_t va, nva;
1541
1542	if (pmap == NULL)
1543		return;
1544
1545	if (pmap->pm_stats.resident_count == 0)
1546		return;
1547
1548	vm_page_lock_queues();
1549	PMAP_LOCK(pmap);
1550
1551	/*
1552	 * special handling of removing one page.  a very common operation
1553	 * and easy to short circuit some code.
1554	 */
1555	if ((sva + PAGE_SIZE) == eva) {
1556		pmap_remove_page(pmap, sva);
1557		goto out;
1558	}
1559	for (va = sva; va < eva; va = nva) {
1560		if (!*pmap_pde(pmap, va)) {
1561			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1562			continue;
1563		}
1564		pmap_remove_page(pmap, va);
1565		nva = va + PAGE_SIZE;
1566	}
1567
1568out:
1569	vm_page_unlock_queues();
1570	PMAP_UNLOCK(pmap);
1571}
1572
1573/*
1574 *	Routine:	pmap_remove_all
1575 *	Function:
1576 *		Removes this physical page from
1577 *		all physical maps in which it resides.
1578 *		Reflects back modify bits to the pager.
1579 *
1580 *	Notes:
1581 *		Original versions of this routine were very
1582 *		inefficient because they iteratively called
1583 *		pmap_remove (slow...)
1584 */
1585
1586void
1587pmap_remove_all(vm_page_t m)
1588{
1589	register pv_entry_t pv;
1590	register pt_entry_t *pte, tpte;
1591
1592	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1593	    ("pmap_remove_all: page %p is fictitious", m));
1594	vm_page_lock_queues();
1595
1596	if (m->md.pv_flags & PV_TABLE_REF)
1597		vm_page_flag_set(m, PG_REFERENCED);
1598
1599	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1600		PMAP_LOCK(pv->pv_pmap);
1601
1602		/*
1603		 * If it's last mapping writeback all caches from
1604		 * the page being destroyed
1605	 	 */
1606		if (m->md.pv_list_count == 1)
1607			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1608
1609		pv->pv_pmap->pm_stats.resident_count--;
1610
1611		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1612
1613		tpte = loadandclear((u_int *)pte);
1614		if (is_kernel_pmap(pv->pv_pmap))
1615			*pte = PTE_G;
1616
1617		if (tpte & PTE_W)
1618			pv->pv_pmap->pm_stats.wired_count--;
1619
1620		/*
1621		 * Update the vm_page_t clean and reference bits.
1622		 */
1623		if (tpte & PTE_M) {
1624#if defined(PMAP_DIAGNOSTIC)
1625			if (pmap_nw_modified(tpte)) {
1626				printf(
1627				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1628				    pv->pv_va, tpte);
1629			}
1630#endif
1631			vm_page_dirty(m);
1632		}
1633		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1634
1635		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1636		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1637		m->md.pv_list_count--;
1638		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1639		PMAP_UNLOCK(pv->pv_pmap);
1640		free_pv_entry(pv);
1641	}
1642
1643	vm_page_flag_clear(m, PG_WRITEABLE);
1644	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1645	vm_page_unlock_queues();
1646}
1647
1648/*
1649 *	Set the physical protection on the
1650 *	specified range of this map as requested.
1651 */
1652void
1653pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1654{
1655	pt_entry_t *pte;
1656
1657	if (pmap == NULL)
1658		return;
1659
1660	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1661		pmap_remove(pmap, sva, eva);
1662		return;
1663	}
1664	if (prot & VM_PROT_WRITE)
1665		return;
1666
1667	vm_page_lock_queues();
1668	PMAP_LOCK(pmap);
1669	while (sva < eva) {
1670		pt_entry_t pbits, obits;
1671		vm_page_t m;
1672		vm_offset_t pa;
1673
1674		/*
1675		 * If segment table entry is empty, skip this segment.
1676		 */
1677		if (!*pmap_pde(pmap, sva)) {
1678			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1679			continue;
1680		}
1681		/*
1682		 * If pte is invalid, skip this page
1683		 */
1684		pte = pmap_pte(pmap, sva);
1685		if (!pmap_pte_v(pte)) {
1686			sva += PAGE_SIZE;
1687			continue;
1688		}
1689retry:
1690		obits = pbits = *pte;
1691		pa = mips_tlbpfn_to_paddr(pbits);
1692
1693		if (page_is_managed(pa) && (pbits & PTE_M) != 0) {
1694			m = PHYS_TO_VM_PAGE(pa);
1695			vm_page_dirty(m);
1696			m->md.pv_flags &= ~PV_TABLE_MOD;
1697		}
1698		pbits = (pbits & ~PTE_M) | PTE_RO;
1699
1700		if (pbits != *pte) {
1701			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1702				goto retry;
1703			pmap_update_page(pmap, sva, pbits);
1704		}
1705		sva += PAGE_SIZE;
1706	}
1707	vm_page_unlock_queues();
1708	PMAP_UNLOCK(pmap);
1709}
1710
1711/*
1712 *	Insert the given physical page (p) at
1713 *	the specified virtual address (v) in the
1714 *	target physical map with the protection requested.
1715 *
1716 *	If specified, the page will be wired down, meaning
1717 *	that the related pte can not be reclaimed.
1718 *
1719 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1720 *	or lose information.  That is, this routine must actually
1721 *	insert this page into the given map NOW.
1722 */
1723void
1724pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1725    vm_prot_t prot, boolean_t wired)
1726{
1727	vm_offset_t pa, opa;
1728	register pt_entry_t *pte;
1729	pt_entry_t origpte, newpte;
1730	vm_page_t mpte, om;
1731	int rw = 0;
1732
1733	if (pmap == NULL)
1734		return;
1735
1736	va &= ~PAGE_MASK;
1737 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1738	KASSERT((m->oflags & VPO_BUSY) != 0,
1739	    ("pmap_enter: page %p is not busy", m));
1740
1741	mpte = NULL;
1742
1743	vm_page_lock_queues();
1744	PMAP_LOCK(pmap);
1745
1746	/*
1747	 * In the case that a page table page is not resident, we are
1748	 * creating it here.
1749	 */
1750	if (va < VM_MAXUSER_ADDRESS) {
1751		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1752	}
1753	pte = pmap_pte(pmap, va);
1754
1755	/*
1756	 * Page Directory table entry not valid, we need a new PT page
1757	 */
1758	if (pte == NULL) {
1759		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1760		    (void *)pmap->pm_segtab, (void *)va);
1761	}
1762	pa = VM_PAGE_TO_PHYS(m);
1763	om = NULL;
1764	origpte = *pte;
1765	opa = mips_tlbpfn_to_paddr(origpte);
1766
1767	/*
1768	 * Mapping has not changed, must be protection or wiring change.
1769	 */
1770	if ((origpte & PTE_V) && (opa == pa)) {
1771		/*
1772		 * Wiring change, just update stats. We don't worry about
1773		 * wiring PT pages as they remain resident as long as there
1774		 * are valid mappings in them. Hence, if a user page is
1775		 * wired, the PT page will be also.
1776		 */
1777		if (wired && ((origpte & PTE_W) == 0))
1778			pmap->pm_stats.wired_count++;
1779		else if (!wired && (origpte & PTE_W))
1780			pmap->pm_stats.wired_count--;
1781
1782#if defined(PMAP_DIAGNOSTIC)
1783		if (pmap_nw_modified(origpte)) {
1784			printf(
1785			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1786			    va, origpte);
1787		}
1788#endif
1789
1790		/*
1791		 * Remove extra pte reference
1792		 */
1793		if (mpte)
1794			mpte->wire_count--;
1795
1796		/*
1797		 * We might be turning off write access to the page, so we
1798		 * go ahead and sense modify status.
1799		 */
1800		if (page_is_managed(opa)) {
1801			om = m;
1802		}
1803		goto validate;
1804	}
1805	/*
1806	 * Mapping has changed, invalidate old range and fall through to
1807	 * handle validating new mapping.
1808	 */
1809	if (opa) {
1810		if (origpte & PTE_W)
1811			pmap->pm_stats.wired_count--;
1812
1813		if (page_is_managed(opa)) {
1814			om = PHYS_TO_VM_PAGE(opa);
1815			pmap_remove_entry(pmap, om, va);
1816		}
1817		if (mpte != NULL) {
1818			mpte->wire_count--;
1819			KASSERT(mpte->wire_count > 0,
1820			    ("pmap_enter: missing reference to page table page,"
1821			    " va: %p", (void *)va));
1822		}
1823	} else
1824		pmap->pm_stats.resident_count++;
1825
1826	/*
1827	 * Enter on the PV list if part of our managed memory. Note that we
1828	 * raise IPL while manipulating pv_table since pmap_enter can be
1829	 * called at interrupt time.
1830	 */
1831	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1832		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1833		    ("pmap_enter: managed mapping within the clean submap"));
1834		pmap_insert_entry(pmap, va, mpte, m, wired);
1835	}
1836	/*
1837	 * Increment counters
1838	 */
1839	if (wired)
1840		pmap->pm_stats.wired_count++;
1841
1842validate:
1843	if ((access & VM_PROT_WRITE) != 0)
1844		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1845	rw = init_pte_prot(va, m, prot);
1846
1847#ifdef PMAP_DEBUG
1848	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1849#endif
1850	/*
1851	 * Now validate mapping with desired protection/wiring.
1852	 */
1853	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1854
1855	if (is_cacheable_mem(pa))
1856		newpte |= PTE_CACHE;
1857	else
1858		newpte |= PTE_UNCACHED;
1859
1860	if (wired)
1861		newpte |= PTE_W;
1862
1863	if (is_kernel_pmap(pmap)) {
1864	         newpte |= PTE_G;
1865	}
1866
1867	/*
1868	 * if the mapping or permission bits are different, we need to
1869	 * update the pte.
1870	 */
1871	if (origpte != newpte) {
1872		if (origpte & PTE_V) {
1873			*pte = newpte;
1874			if (page_is_managed(opa) && (opa != pa)) {
1875				if (om->md.pv_flags & PV_TABLE_REF)
1876					vm_page_flag_set(om, PG_REFERENCED);
1877				om->md.pv_flags &=
1878				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1879			}
1880			if (origpte & PTE_M) {
1881				KASSERT((origpte & PTE_RW),
1882				    ("pmap_enter: modified page not writable:"
1883				    " va: %p, pte: 0x%x", (void *)va, origpte));
1884				if (page_is_managed(opa))
1885					vm_page_dirty(om);
1886			}
1887		} else {
1888			*pte = newpte;
1889		}
1890	}
1891	pmap_update_page(pmap, va, newpte);
1892
1893	/*
1894	 * Sync I & D caches for executable pages.  Do this only if the the
1895	 * target pmap belongs to the current process.  Otherwise, an
1896	 * unresolvable TLB miss may occur.
1897	 */
1898	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1899	    (prot & VM_PROT_EXECUTE)) {
1900		mips_icache_sync_range(va, PAGE_SIZE);
1901		mips_dcache_wbinv_range(va, PAGE_SIZE);
1902	}
1903	vm_page_unlock_queues();
1904	PMAP_UNLOCK(pmap);
1905}
1906
1907/*
1908 * this code makes some *MAJOR* assumptions:
1909 * 1. Current pmap & pmap exists.
1910 * 2. Not wired.
1911 * 3. Read access.
1912 * 4. No page table pages.
1913 * but is *MUCH* faster than pmap_enter...
1914 */
1915
1916void
1917pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1918{
1919
1920	vm_page_lock_queues();
1921	PMAP_LOCK(pmap);
1922	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1923	vm_page_unlock_queues();
1924	PMAP_UNLOCK(pmap);
1925}
1926
1927static vm_page_t
1928pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1929    vm_prot_t prot, vm_page_t mpte)
1930{
1931	pt_entry_t *pte;
1932	vm_offset_t pa;
1933
1934	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1935	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1936	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1937	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1938	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1939
1940	/*
1941	 * In the case that a page table page is not resident, we are
1942	 * creating it here.
1943	 */
1944	if (va < VM_MAXUSER_ADDRESS) {
1945		unsigned ptepindex;
1946		vm_offset_t pteva;
1947
1948		/*
1949		 * Calculate pagetable page index
1950		 */
1951		ptepindex = va >> SEGSHIFT;
1952		if (mpte && (mpte->pindex == ptepindex)) {
1953			mpte->wire_count++;
1954		} else {
1955			/*
1956			 * Get the page directory entry
1957			 */
1958			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1959
1960			/*
1961			 * If the page table page is mapped, we just
1962			 * increment the hold count, and activate it.
1963			 */
1964			if (pteva) {
1965				if (pmap->pm_ptphint &&
1966				    (pmap->pm_ptphint->pindex == ptepindex)) {
1967					mpte = pmap->pm_ptphint;
1968				} else {
1969					mpte = PHYS_TO_VM_PAGE(
1970						MIPS_KSEG0_TO_PHYS(pteva));
1971					pmap->pm_ptphint = mpte;
1972				}
1973				mpte->wire_count++;
1974			} else {
1975				mpte = _pmap_allocpte(pmap, ptepindex,
1976				    M_NOWAIT);
1977				if (mpte == NULL)
1978					return (mpte);
1979			}
1980		}
1981	} else {
1982		mpte = NULL;
1983	}
1984
1985	pte = pmap_pte(pmap, va);
1986	if (pmap_pte_v(pte)) {
1987		if (mpte != NULL) {
1988			mpte->wire_count--;
1989			mpte = NULL;
1990		}
1991		return (mpte);
1992	}
1993
1994	/*
1995	 * Enter on the PV list if part of our managed memory.
1996	 */
1997	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
1998	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
1999		if (mpte != NULL) {
2000			pmap_unwire_pte_hold(pmap, mpte);
2001			mpte = NULL;
2002		}
2003		return (mpte);
2004	}
2005
2006	/*
2007	 * Increment counters
2008	 */
2009	pmap->pm_stats.resident_count++;
2010
2011	pa = VM_PAGE_TO_PHYS(m);
2012
2013	/*
2014	 * Now validate mapping with RO protection
2015	 */
2016	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2017
2018	if (is_cacheable_mem(pa))
2019		*pte |= PTE_CACHE;
2020	else
2021		*pte |= PTE_UNCACHED;
2022
2023	if (is_kernel_pmap(pmap))
2024		*pte |= PTE_G;
2025	else {
2026		*pte |= PTE_RO;
2027		/*
2028		 * Sync I & D caches.  Do this only if the the target pmap
2029		 * belongs to the current process.  Otherwise, an
2030		 * unresolvable TLB miss may occur. */
2031		if (pmap == &curproc->p_vmspace->vm_pmap) {
2032			va &= ~PAGE_MASK;
2033			mips_icache_sync_range(va, PAGE_SIZE);
2034			mips_dcache_wbinv_range(va, PAGE_SIZE);
2035		}
2036	}
2037	return (mpte);
2038}
2039
2040/*
2041 * Make a temporary mapping for a physical address.  This is only intended
2042 * to be used for panic dumps.
2043 */
2044void *
2045pmap_kenter_temporary(vm_paddr_t pa, int i)
2046{
2047	vm_offset_t va;
2048	register_t intr;
2049	if (i != 0)
2050		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2051		    __func__);
2052
2053	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2054		va = MIPS_PHYS_TO_KSEG0(pa);
2055	} else {
2056		int cpu;
2057		struct local_sysmaps *sysm;
2058		pt_entry_t *pte, npte;
2059
2060		/* If this is used other than for dumps, we may need to leave
2061		 * interrupts disasbled on return. If crash dumps don't work when
2062		 * we get to this point, we might want to consider this (leaving things
2063		 * disabled as a starting point ;-)
2064	 	 */
2065		intr = intr_disable();
2066		cpu = PCPU_GET(cpuid);
2067		sysm = &sysmap_lmem[cpu];
2068		/* Since this is for the debugger, no locks or any other fun */
2069		npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2070		pte = pmap_pte(kernel_pmap, sysm->base);
2071		*pte = npte;
2072		sysm->valid1 = 1;
2073		pmap_update_page(kernel_pmap, sysm->base, npte);
2074		va = sysm->base;
2075		intr_restore(intr);
2076	}
2077	return ((void *)va);
2078}
2079
2080void
2081pmap_kenter_temporary_free(vm_paddr_t pa)
2082{
2083	int cpu;
2084	register_t intr;
2085	struct local_sysmaps *sysm;
2086
2087	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2088		/* nothing to do for this case */
2089		return;
2090	}
2091	cpu = PCPU_GET(cpuid);
2092	sysm = &sysmap_lmem[cpu];
2093	if (sysm->valid1) {
2094		pt_entry_t *pte;
2095
2096		intr = intr_disable();
2097		pte = pmap_pte(kernel_pmap, sysm->base);
2098		*pte = PTE_G;
2099		pmap_invalidate_page(kernel_pmap, sysm->base);
2100		intr_restore(intr);
2101		sysm->valid1 = 0;
2102	}
2103}
2104
2105/*
2106 * Moved the code to Machine Independent
2107 *	 vm_map_pmap_enter()
2108 */
2109
2110/*
2111 * Maps a sequence of resident pages belonging to the same object.
2112 * The sequence begins with the given page m_start.  This page is
2113 * mapped at the given virtual address start.  Each subsequent page is
2114 * mapped at a virtual address that is offset from start by the same
2115 * amount as the page is offset from m_start within the object.  The
2116 * last page in the sequence is the page with the largest offset from
2117 * m_start that can be mapped at a virtual address less than the given
2118 * virtual address end.  Not every virtual page between start and end
2119 * is mapped; only those for which a resident page exists with the
2120 * corresponding offset from m_start are mapped.
2121 */
2122void
2123pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2124    vm_page_t m_start, vm_prot_t prot)
2125{
2126	vm_page_t m, mpte;
2127	vm_pindex_t diff, psize;
2128
2129	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2130	psize = atop(end - start);
2131	mpte = NULL;
2132	m = m_start;
2133	PMAP_LOCK(pmap);
2134	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2135		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2136		    prot, mpte);
2137		m = TAILQ_NEXT(m, listq);
2138	}
2139 	PMAP_UNLOCK(pmap);
2140}
2141
2142/*
2143 * pmap_object_init_pt preloads the ptes for a given object
2144 * into the specified pmap.  This eliminates the blast of soft
2145 * faults on process startup and immediately after an mmap.
2146 */
2147void
2148pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2149    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2150{
2151	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2152	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2153	    ("pmap_object_init_pt: non-device object"));
2154}
2155
2156/*
2157 *	Routine:	pmap_change_wiring
2158 *	Function:	Change the wiring attribute for a map/virtual-address
2159 *			pair.
2160 *	In/out conditions:
2161 *			The mapping must already exist in the pmap.
2162 */
2163void
2164pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2165{
2166	register pt_entry_t *pte;
2167
2168	if (pmap == NULL)
2169		return;
2170
2171	PMAP_LOCK(pmap);
2172	pte = pmap_pte(pmap, va);
2173
2174	if (wired && !pmap_pte_w(pte))
2175		pmap->pm_stats.wired_count++;
2176	else if (!wired && pmap_pte_w(pte))
2177		pmap->pm_stats.wired_count--;
2178
2179	/*
2180	 * Wiring is not a hardware characteristic so there is no need to
2181	 * invalidate TLB.
2182	 */
2183	pmap_pte_set_w(pte, wired);
2184	PMAP_UNLOCK(pmap);
2185}
2186
2187/*
2188 *	Copy the range specified by src_addr/len
2189 *	from the source map to the range dst_addr/len
2190 *	in the destination map.
2191 *
2192 *	This routine is only advisory and need not do anything.
2193 */
2194
2195void
2196pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2197    vm_size_t len, vm_offset_t src_addr)
2198{
2199}
2200
2201/*
2202 *	pmap_zero_page zeros the specified hardware page by mapping
2203 *	the page into KVM and using bzero to clear its contents.
2204 */
2205void
2206pmap_zero_page(vm_page_t m)
2207{
2208	vm_offset_t va;
2209	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2210	register_t intr;
2211
2212	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2213		va = MIPS_PHYS_TO_KSEG0(phys);
2214
2215		bzero((caddr_t)va, PAGE_SIZE);
2216		mips_dcache_wbinv_range(va, PAGE_SIZE);
2217	} else {
2218		PMAP_LMEM_MAP1(va, phys);
2219
2220		bzero((caddr_t)va, PAGE_SIZE);
2221		mips_dcache_wbinv_range(va, PAGE_SIZE);
2222
2223		PMAP_LMEM_UNMAP();
2224	}
2225}
2226
2227/*
2228 *	pmap_zero_page_area zeros the specified hardware page by mapping
2229 *	the page into KVM and using bzero to clear its contents.
2230 *
2231 *	off and size may not cover an area beyond a single hardware page.
2232 */
2233void
2234pmap_zero_page_area(vm_page_t m, int off, int size)
2235{
2236	vm_offset_t va;
2237	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2238	register_t intr;
2239
2240	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2241		va = MIPS_PHYS_TO_KSEG0(phys);
2242		bzero((char *)(caddr_t)va + off, size);
2243		mips_dcache_wbinv_range(va + off, size);
2244	} else {
2245		PMAP_LMEM_MAP1(va, phys);
2246
2247		bzero((char *)va + off, size);
2248		mips_dcache_wbinv_range(va + off, size);
2249
2250		PMAP_LMEM_UNMAP();
2251	}
2252}
2253
2254void
2255pmap_zero_page_idle(vm_page_t m)
2256{
2257	vm_offset_t va;
2258	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2259	register_t intr;
2260
2261	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2262		va = MIPS_PHYS_TO_KSEG0(phys);
2263		bzero((caddr_t)va, PAGE_SIZE);
2264		mips_dcache_wbinv_range(va, PAGE_SIZE);
2265	} else {
2266		PMAP_LMEM_MAP1(va, phys);
2267
2268		bzero((caddr_t)va, PAGE_SIZE);
2269		mips_dcache_wbinv_range(va, PAGE_SIZE);
2270
2271		PMAP_LMEM_UNMAP();
2272	}
2273}
2274
2275/*
2276 *	pmap_copy_page copies the specified (machine independent)
2277 *	page by mapping the page into virtual memory and using
2278 *	bcopy to copy the page, one machine dependent page at a
2279 *	time.
2280 */
2281void
2282pmap_copy_page(vm_page_t src, vm_page_t dst)
2283{
2284	vm_offset_t va_src, va_dst;
2285	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2286	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2287	register_t intr;
2288
2289	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2290		/* easy case, all can be accessed via KSEG0 */
2291		/*
2292		 * Flush all caches for VA that are mapped to this page
2293		 * to make sure that data in SDRAM is up to date
2294		 */
2295		pmap_flush_pvcache(src);
2296		mips_dcache_wbinv_range_index(
2297		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2298		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2299		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2300		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2301		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2302	} else {
2303		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2304
2305		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2306		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2307
2308		PMAP_LMEM_UNMAP();
2309	}
2310}
2311
2312/*
2313 * Returns true if the pmap's pv is one of the first
2314 * 16 pvs linked to from this page.  This count may
2315 * be changed upwards or downwards in the future; it
2316 * is only necessary that true be returned for a small
2317 * subset of pmaps for proper page aging.
2318 */
2319boolean_t
2320pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2321{
2322	pv_entry_t pv;
2323	int loops = 0;
2324
2325	if (m->flags & PG_FICTITIOUS)
2326		return FALSE;
2327
2328	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2329	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2330		if (pv->pv_pmap == pmap) {
2331			return TRUE;
2332		}
2333		loops++;
2334		if (loops >= 16)
2335			break;
2336	}
2337	return (FALSE);
2338}
2339
2340/*
2341 * Remove all pages from specified address space
2342 * this aids process exit speeds.  Also, this code
2343 * is special cased for current process only, but
2344 * can have the more generic (and slightly slower)
2345 * mode enabled.  This is much faster than pmap_remove
2346 * in the case of running down an entire address space.
2347 */
2348void
2349pmap_remove_pages(pmap_t pmap)
2350{
2351	pt_entry_t *pte, tpte;
2352	pv_entry_t pv, npv;
2353	vm_page_t m;
2354
2355	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2356		printf("warning: pmap_remove_pages called with non-current pmap\n");
2357		return;
2358	}
2359	vm_page_lock_queues();
2360	PMAP_LOCK(pmap);
2361	sched_pin();
2362	//XXX need to be TAILQ_FOREACH_SAFE ?
2363	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2364
2365		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2366		if (!pmap_pte_v(pte))
2367			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2368		tpte = *pte;
2369
2370/*
2371 * We cannot remove wired pages from a process' mapping at this time
2372 */
2373		if (tpte & PTE_W) {
2374			npv = TAILQ_NEXT(pv, pv_plist);
2375			continue;
2376		}
2377		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2378
2379		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2380		KASSERT(m != NULL,
2381		    ("pmap_remove_pages: bad tpte %x", tpte));
2382
2383		pv->pv_pmap->pm_stats.resident_count--;
2384
2385		/*
2386		 * Update the vm_page_t clean and reference bits.
2387		 */
2388		if (tpte & PTE_M) {
2389			vm_page_dirty(m);
2390		}
2391		npv = TAILQ_NEXT(pv, pv_plist);
2392		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2393
2394		m->md.pv_list_count--;
2395		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2396		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2397			vm_page_flag_clear(m, PG_WRITEABLE);
2398		}
2399		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2400		free_pv_entry(pv);
2401	}
2402	sched_unpin();
2403	pmap_invalidate_all(pmap);
2404	PMAP_UNLOCK(pmap);
2405	vm_page_unlock_queues();
2406}
2407
2408/*
2409 * pmap_testbit tests bits in pte's
2410 * note that the testbit/changebit routines are inline,
2411 * and a lot of things compile-time evaluate.
2412 */
2413static boolean_t
2414pmap_testbit(vm_page_t m, int bit)
2415{
2416	pv_entry_t pv;
2417	pt_entry_t *pte;
2418	boolean_t rv = FALSE;
2419
2420	if (m->flags & PG_FICTITIOUS)
2421		return rv;
2422
2423	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2424		return rv;
2425
2426	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2427	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2428#if defined(PMAP_DIAGNOSTIC)
2429		if (!pv->pv_pmap) {
2430			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2431			continue;
2432		}
2433#endif
2434		PMAP_LOCK(pv->pv_pmap);
2435		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2436		rv = (*pte & bit) != 0;
2437		PMAP_UNLOCK(pv->pv_pmap);
2438		if (rv)
2439			break;
2440	}
2441	return (rv);
2442}
2443
2444/*
2445 * this routine is used to modify bits in ptes
2446 */
2447static __inline void
2448pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2449{
2450	register pv_entry_t pv;
2451	register pt_entry_t *pte;
2452
2453	if (m->flags & PG_FICTITIOUS)
2454		return;
2455
2456	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2457	/*
2458	 * Loop over all current mappings setting/clearing as appropos If
2459	 * setting RO do we need to clear the VAC?
2460	 */
2461	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2462#if defined(PMAP_DIAGNOSTIC)
2463		if (!pv->pv_pmap) {
2464			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2465			continue;
2466		}
2467#endif
2468
2469		PMAP_LOCK(pv->pv_pmap);
2470		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2471
2472		if (setem) {
2473			*(int *)pte |= bit;
2474			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2475		} else {
2476			vm_offset_t pbits = *(vm_offset_t *)pte;
2477
2478			if (pbits & bit) {
2479				if (bit == PTE_RW) {
2480					if (pbits & PTE_M) {
2481						vm_page_dirty(m);
2482					}
2483					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2484					    PTE_RO;
2485				} else {
2486					*(int *)pte = pbits & ~bit;
2487				}
2488				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2489			}
2490		}
2491		PMAP_UNLOCK(pv->pv_pmap);
2492	}
2493	if (!setem && bit == PTE_RW)
2494		vm_page_flag_clear(m, PG_WRITEABLE);
2495}
2496
2497/*
2498 *	pmap_page_wired_mappings:
2499 *
2500 *	Return the number of managed mappings to the given physical page
2501 *	that are wired.
2502 */
2503int
2504pmap_page_wired_mappings(vm_page_t m)
2505{
2506	pv_entry_t pv;
2507	int count;
2508
2509	count = 0;
2510	if ((m->flags & PG_FICTITIOUS) != 0)
2511		return (count);
2512	vm_page_lock_queues();
2513	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2514	    if (pv->pv_wired)
2515		count++;
2516	vm_page_unlock_queues();
2517	return (count);
2518}
2519
2520/*
2521 * Clear the write and modified bits in each of the given page's mappings.
2522 */
2523void
2524pmap_remove_write(vm_page_t m)
2525{
2526	pv_entry_t pv, npv;
2527	vm_offset_t va;
2528	pt_entry_t *pte;
2529
2530	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2531	    ("pmap_remove_write: page %p is not managed", m));
2532
2533	/*
2534	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
2535	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
2536	 * is clear, no page table entries need updating.
2537	 */
2538	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2539	if ((m->oflags & VPO_BUSY) == 0 &&
2540	    (m->flags & PG_WRITEABLE) == 0)
2541		return;
2542
2543	/*
2544	 * Loop over all current mappings setting/clearing as appropos.
2545	 */
2546	vm_page_lock_queues();
2547	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2548		npv = TAILQ_NEXT(pv, pv_plist);
2549		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2550
2551		if ((pte == NULL) || !mips_pg_v(*pte))
2552			panic("page on pm_pvlist has no pte\n");
2553
2554		va = pv->pv_va;
2555		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2556		    VM_PROT_READ | VM_PROT_EXECUTE);
2557	}
2558	vm_page_flag_clear(m, PG_WRITEABLE);
2559	vm_page_unlock_queues();
2560}
2561
2562/*
2563 *	pmap_ts_referenced:
2564 *
2565 *	Return the count of reference bits for a page, clearing all of them.
2566 */
2567int
2568pmap_ts_referenced(vm_page_t m)
2569{
2570	if (m->flags & PG_FICTITIOUS)
2571		return (0);
2572
2573	if (m->md.pv_flags & PV_TABLE_REF) {
2574		m->md.pv_flags &= ~PV_TABLE_REF;
2575		return 1;
2576	}
2577	return 0;
2578}
2579
2580/*
2581 *	pmap_is_modified:
2582 *
2583 *	Return whether or not the specified physical page was modified
2584 *	in any physical maps.
2585 */
2586boolean_t
2587pmap_is_modified(vm_page_t m)
2588{
2589	boolean_t rv;
2590
2591	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2592	    ("pmap_is_modified: page %p is not managed", m));
2593
2594	/*
2595	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
2596	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
2597	 * is clear, no PTEs can have PTE_M set.
2598	 */
2599	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2600	if ((m->oflags & VPO_BUSY) == 0 &&
2601	    (m->flags & PG_WRITEABLE) == 0)
2602		return (FALSE);
2603	vm_page_lock_queues();
2604	if (m->md.pv_flags & PV_TABLE_MOD)
2605		rv = TRUE;
2606	else
2607		rv = pmap_testbit(m, PTE_M);
2608	vm_page_unlock_queues();
2609	return (rv);
2610}
2611
2612/* N/C */
2613
2614/*
2615 *	pmap_is_prefaultable:
2616 *
2617 *	Return whether or not the specified virtual address is elgible
2618 *	for prefault.
2619 */
2620boolean_t
2621pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2622{
2623	pt_entry_t *pte;
2624	boolean_t rv;
2625
2626	rv = FALSE;
2627	PMAP_LOCK(pmap);
2628	if (*pmap_pde(pmap, addr)) {
2629		pte = pmap_pte(pmap, addr);
2630		rv = (*pte == 0);
2631	}
2632	PMAP_UNLOCK(pmap);
2633	return (rv);
2634}
2635
2636/*
2637 *	Clear the modify bits on the specified physical page.
2638 */
2639void
2640pmap_clear_modify(vm_page_t m)
2641{
2642
2643	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2644	    ("pmap_clear_modify: page %p is not managed", m));
2645	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2646	KASSERT((m->oflags & VPO_BUSY) == 0,
2647	    ("pmap_clear_modify: page %p is busy", m));
2648
2649	/*
2650	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_M set.
2651	 * If the object containing the page is locked and the page is not
2652	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
2653	 */
2654	if ((m->flags & PG_WRITEABLE) == 0)
2655		return;
2656	vm_page_lock_queues();
2657	if (m->md.pv_flags & PV_TABLE_MOD) {
2658		pmap_changebit(m, PTE_M, FALSE);
2659		m->md.pv_flags &= ~PV_TABLE_MOD;
2660	}
2661	vm_page_unlock_queues();
2662}
2663
2664/*
2665 *	pmap_is_referenced:
2666 *
2667 *	Return whether or not the specified physical page was referenced
2668 *	in any physical maps.
2669 */
2670boolean_t
2671pmap_is_referenced(vm_page_t m)
2672{
2673
2674	return ((m->flags & PG_FICTITIOUS) == 0 &&
2675	    (m->md.pv_flags & PV_TABLE_REF) != 0);
2676}
2677
2678/*
2679 *	pmap_clear_reference:
2680 *
2681 *	Clear the reference bit on the specified physical page.
2682 */
2683void
2684pmap_clear_reference(vm_page_t m)
2685{
2686
2687	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2688	    ("pmap_clear_reference: page %p is not managed", m));
2689	vm_page_lock_queues();
2690	if (m->md.pv_flags & PV_TABLE_REF) {
2691		m->md.pv_flags &= ~PV_TABLE_REF;
2692	}
2693	vm_page_unlock_queues();
2694}
2695
2696/*
2697 * Miscellaneous support routines follow
2698 */
2699
2700/*
2701 * Map a set of physical memory pages into the kernel virtual
2702 * address space. Return a pointer to where it is mapped. This
2703 * routine is intended to be used for mapping device memory,
2704 * NOT real memory.
2705 */
2706
2707/*
2708 * Map a set of physical memory pages into the kernel virtual
2709 * address space. Return a pointer to where it is mapped. This
2710 * routine is intended to be used for mapping device memory,
2711 * NOT real memory.
2712 */
2713void *
2714pmap_mapdev(vm_offset_t pa, vm_size_t size)
2715{
2716        vm_offset_t va, tmpva, offset;
2717
2718	/*
2719	 * KSEG1 maps only first 512M of phys address space. For
2720	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2721	 */
2722	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2723		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2724	else {
2725		offset = pa & PAGE_MASK;
2726		size = roundup(size + offset, PAGE_SIZE);
2727
2728		va = kmem_alloc_nofault(kernel_map, size);
2729		if (!va)
2730			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2731		pa = trunc_page(pa);
2732		for (tmpva = va; size > 0;) {
2733			pmap_kenter(tmpva, pa);
2734			size -= PAGE_SIZE;
2735			tmpva += PAGE_SIZE;
2736			pa += PAGE_SIZE;
2737		}
2738	}
2739
2740	return ((void *)(va + offset));
2741}
2742
2743void
2744pmap_unmapdev(vm_offset_t va, vm_size_t size)
2745{
2746	vm_offset_t base, offset, tmpva;
2747
2748	/* If the address is within KSEG1 then there is nothing to do */
2749	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2750		return;
2751
2752	base = trunc_page(va);
2753	offset = va & PAGE_MASK;
2754	size = roundup(size + offset, PAGE_SIZE);
2755	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2756		pmap_kremove(tmpva);
2757	kmem_free(kernel_map, base, size);
2758}
2759
2760/*
2761 * perform the pmap work for mincore
2762 */
2763int
2764pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
2765{
2766	pt_entry_t *ptep, pte;
2767	vm_offset_t pa;
2768	vm_page_t m;
2769	int val;
2770	boolean_t managed;
2771
2772	PMAP_LOCK(pmap);
2773retry:
2774	ptep = pmap_pte(pmap, addr);
2775	pte = (ptep != NULL) ? *ptep : 0;
2776	if (!mips_pg_v(pte)) {
2777		val = 0;
2778		goto out;
2779	}
2780	val = MINCORE_INCORE;
2781	if ((pte & PTE_M) != 0)
2782		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2783	pa = mips_tlbpfn_to_paddr(pte);
2784	managed = page_is_managed(pa);
2785	if (managed) {
2786		/*
2787		 * This may falsely report the given address as
2788		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
2789		 * per-PTE reference information, it is impossible to
2790		 * determine if the address is MINCORE_REFERENCED.
2791		 */
2792		m = PHYS_TO_VM_PAGE(pa);
2793		if ((m->flags & PG_REFERENCED) != 0)
2794			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2795	}
2796	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
2797	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
2798		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
2799		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
2800			goto retry;
2801	} else
2802out:
2803		PA_UNLOCK_COND(*locked_pa);
2804	PMAP_UNLOCK(pmap);
2805	return (val);
2806}
2807
2808void
2809pmap_activate(struct thread *td)
2810{
2811	pmap_t pmap, oldpmap;
2812	struct proc *p = td->td_proc;
2813
2814	critical_enter();
2815
2816	pmap = vmspace_pmap(p->p_vmspace);
2817	oldpmap = PCPU_GET(curpmap);
2818
2819	if (oldpmap)
2820		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2821	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2822	pmap_asid_alloc(pmap);
2823	if (td == curthread) {
2824		PCPU_SET(segbase, pmap->pm_segtab);
2825		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2826	}
2827
2828	PCPU_SET(curpmap, pmap);
2829	critical_exit();
2830}
2831
2832void
2833pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2834{
2835}
2836
2837/*
2838 *	Increase the starting virtual address of the given mapping if a
2839 *	different alignment might result in more superpage mappings.
2840 */
2841void
2842pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2843    vm_offset_t *addr, vm_size_t size)
2844{
2845	vm_offset_t superpage_offset;
2846
2847	if (size < NBSEG)
2848		return;
2849	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2850		offset += ptoa(object->pg_color);
2851	superpage_offset = offset & SEGOFSET;
2852	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2853	    (*addr & SEGOFSET) == superpage_offset)
2854		return;
2855	if ((*addr & SEGOFSET) < superpage_offset)
2856		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2857	else
2858		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2859}
2860
2861/*
2862 * 	Increase the starting virtual address of the given mapping so
2863 * 	that it is aligned to not be the second page in a TLB entry.
2864 * 	This routine assumes that the length is appropriately-sized so
2865 * 	that the allocation does not share a TLB entry at all if required.
2866 */
2867void
2868pmap_align_tlb(vm_offset_t *addr)
2869{
2870	if ((*addr & PAGE_SIZE) == 0)
2871		return;
2872	*addr += PAGE_SIZE;
2873	return;
2874}
2875
2876int pmap_pid_dump(int pid);
2877
2878int
2879pmap_pid_dump(int pid)
2880{
2881	pmap_t pmap;
2882	struct proc *p;
2883	int npte = 0;
2884	int index;
2885
2886	sx_slock(&allproc_lock);
2887	LIST_FOREACH(p, &allproc, p_list) {
2888		if (p->p_pid != pid)
2889			continue;
2890
2891		if (p->p_vmspace) {
2892			int i, j;
2893
2894			printf("vmspace is %p\n",
2895			       p->p_vmspace);
2896			index = 0;
2897			pmap = vmspace_pmap(p->p_vmspace);
2898			printf("pmap asid:%x generation:%x\n",
2899			       pmap->pm_asid[0].asid,
2900			       pmap->pm_asid[0].gen);
2901			for (i = 0; i < NUSERPGTBLS; i++) {
2902				pd_entry_t *pde;
2903				pt_entry_t *pte;
2904				unsigned base = i << SEGSHIFT;
2905
2906				pde = &pmap->pm_segtab[i];
2907				if (pde && pmap_pde_v(pde)) {
2908					for (j = 0; j < 1024; j++) {
2909						vm_offset_t va = base +
2910						(j << PAGE_SHIFT);
2911
2912						pte = pmap_pte(pmap, va);
2913						if (pte && pmap_pte_v(pte)) {
2914							vm_offset_t pa;
2915							vm_page_t m;
2916
2917							pa = mips_tlbpfn_to_paddr(*pte);
2918							m = PHYS_TO_VM_PAGE(pa);
2919							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2920							    (void *)va,
2921							    (void *)pa,
2922							    m->hold_count,
2923							    m->wire_count,
2924							    m->flags);
2925							npte++;
2926							index++;
2927							if (index >= 2) {
2928								index = 0;
2929								printf("\n");
2930							} else {
2931								printf(" ");
2932							}
2933						}
2934					}
2935				}
2936			}
2937		} else {
2938		  printf("Process pid:%d has no vm_space\n", pid);
2939		}
2940		break;
2941	}
2942	sx_sunlock(&allproc_lock);
2943	return npte;
2944}
2945
2946
2947#if defined(DEBUG)
2948
2949static void pads(pmap_t pm);
2950void pmap_pvdump(vm_offset_t pa);
2951
2952/* print address space of pmap*/
2953static void
2954pads(pmap_t pm)
2955{
2956	unsigned va, i, j;
2957	pt_entry_t *ptep;
2958
2959	if (pm == kernel_pmap)
2960		return;
2961	for (i = 0; i < NPTEPG; i++)
2962		if (pm->pm_segtab[i])
2963			for (j = 0; j < NPTEPG; j++) {
2964				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
2965				if (pm == kernel_pmap && va < KERNBASE)
2966					continue;
2967				if (pm != kernel_pmap &&
2968				    va >= VM_MAXUSER_ADDRESS)
2969					continue;
2970				ptep = pmap_pte(pm, va);
2971				if (pmap_pte_v(ptep))
2972					printf("%x:%x ", va, *(int *)ptep);
2973			}
2974
2975}
2976
2977void
2978pmap_pvdump(vm_offset_t pa)
2979{
2980	register pv_entry_t pv;
2981	vm_page_t m;
2982
2983	printf("pa %x", pa);
2984	m = PHYS_TO_VM_PAGE(pa);
2985	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
2986	    pv = TAILQ_NEXT(pv, pv_list)) {
2987		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
2988		pads(pv->pv_pmap);
2989	}
2990	printf(" ");
2991}
2992
2993/* N/C */
2994#endif
2995
2996
2997/*
2998 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
2999 * It takes almost as much or more time to search the TLB for a
3000 * specific ASID and flush those entries as it does to flush the entire TLB.
3001 * Therefore, when we allocate a new ASID, we just take the next number. When
3002 * we run out of numbers, we flush the TLB, increment the generation count
3003 * and start over. ASID zero is reserved for kernel use.
3004 */
3005static void
3006pmap_asid_alloc(pmap)
3007	pmap_t pmap;
3008{
3009	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3010	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3011	else {
3012		if (PCPU_GET(next_asid) == pmap_max_asid) {
3013			MIPS_TBIAP();
3014			PCPU_SET(asid_generation,
3015			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3016			if (PCPU_GET(asid_generation) == 0) {
3017				PCPU_SET(asid_generation, 1);
3018			}
3019			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3020		}
3021		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3022		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3023		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3024	}
3025}
3026
3027int
3028page_is_managed(vm_offset_t pa)
3029{
3030	vm_offset_t pgnum = mips_btop(pa);
3031
3032	if (pgnum >= first_page) {
3033		vm_page_t m;
3034
3035		m = PHYS_TO_VM_PAGE(pa);
3036		if (m == NULL)
3037			return 0;
3038		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3039			return 1;
3040	}
3041	return 0;
3042}
3043
3044static int
3045init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3046{
3047	int rw = 0;
3048
3049	if (!(prot & VM_PROT_WRITE))
3050		rw = PTE_ROPAGE;
3051	else {
3052		if (va >= VM_MIN_KERNEL_ADDRESS) {
3053			/*
3054			 * Don't bother to trap on kernel writes, just
3055			 * record page as dirty.
3056			 */
3057			rw = PTE_RWPAGE;
3058			vm_page_dirty(m);
3059		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
3060		    m->dirty == VM_PAGE_BITS_ALL)
3061			rw = PTE_RWPAGE;
3062		else
3063			rw = PTE_CWPAGE;
3064		vm_page_flag_set(m, PG_WRITEABLE);
3065	}
3066	return rw;
3067}
3068
3069/*
3070 *	pmap_set_modified:
3071 *
3072 *	Sets the page modified and reference bits for the specified page.
3073 */
3074void
3075pmap_set_modified(vm_offset_t pa)
3076{
3077
3078	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3079}
3080
3081/*
3082 *	Routine:	pmap_kextract
3083 *	Function:
3084 *		Extract the physical page address associated
3085 *		virtual address.
3086 */
3087 /* PMAP_INLINE */ vm_offset_t
3088pmap_kextract(vm_offset_t va)
3089{
3090	vm_offset_t pa = 0;
3091
3092	if (va < MIPS_KSEG0_START) {
3093		/* user virtual address */
3094		pt_entry_t *ptep;
3095
3096		if (curproc && curproc->p_vmspace) {
3097			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3098			if (ptep)
3099				pa = mips_tlbpfn_to_paddr(*ptep) |
3100				    (va & PAGE_MASK);
3101		}
3102	} else if (va >= MIPS_KSEG0_START &&
3103	    va < MIPS_KSEG1_START)
3104		pa = MIPS_KSEG0_TO_PHYS(va);
3105	else if (va >= MIPS_KSEG1_START &&
3106	    va < MIPS_KSEG2_START)
3107		pa = MIPS_KSEG1_TO_PHYS(va);
3108	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3109		pt_entry_t *ptep;
3110
3111		/* Is the kernel pmap initialized? */
3112		if (kernel_pmap->pm_active) {
3113			/* Its inside the virtual address range */
3114			ptep = pmap_pte(kernel_pmap, va);
3115			if (ptep)
3116				pa = mips_tlbpfn_to_paddr(*ptep) |
3117				    (va & PAGE_MASK);
3118		}
3119	}
3120	return pa;
3121}
3122
3123void
3124pmap_flush_pvcache(vm_page_t m)
3125{
3126	pv_entry_t pv;
3127
3128	if (m != NULL) {
3129		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3130	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3131			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3132		}
3133	}
3134}
3135
3136void
3137pmap_save_tlb(void)
3138{
3139	int tlbno, cpu;
3140
3141	cpu = PCPU_GET(cpuid);
3142
3143	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno)
3144		MachTLBRead(tlbno, &tlbstash[cpu][tlbno]);
3145}
3146
3147#ifdef DDB
3148#include <ddb/ddb.h>
3149
3150DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3151{
3152	int cpu, tlbno;
3153	struct tlb *tlb;
3154
3155	if (have_addr)
3156		cpu = ((addr >> 4) % 16) * 10 + (addr % 16);
3157	else
3158		cpu = PCPU_GET(cpuid);
3159
3160	if (cpu < 0 || cpu >= mp_ncpus) {
3161		db_printf("Invalid CPU %d\n", cpu);
3162		return;
3163	} else
3164		db_printf("CPU %d:\n", cpu);
3165
3166	if (cpu == PCPU_GET(cpuid))
3167		pmap_save_tlb();
3168
3169	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno) {
3170		tlb = &tlbstash[cpu][tlbno];
3171		if (tlb->tlb_lo0 & PTE_V || tlb->tlb_lo1 & PTE_V) {
3172			printf("TLB %2d vad 0x%0lx ",
3173				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3174		} else {
3175			printf("TLB*%2d vad 0x%0lx ",
3176				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3177		}
3178		printf("0=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo0));
3179		printf("%c", tlb->tlb_lo0 & PTE_V ? 'V' : '-');
3180		printf("%c", tlb->tlb_lo0 & PTE_M ? 'M' : '-');
3181		printf("%c", tlb->tlb_lo0 & PTE_G ? 'G' : '-');
3182		printf(" atr %x ", (tlb->tlb_lo0 >> 3) & 7);
3183		printf("1=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo1));
3184		printf("%c", tlb->tlb_lo1 & PTE_V ? 'V' : '-');
3185		printf("%c", tlb->tlb_lo1 & PTE_M ? 'M' : '-');
3186		printf("%c", tlb->tlb_lo1 & PTE_G ? 'G' : '-');
3187		printf(" atr %x ", (tlb->tlb_lo1 >> 3) & 7);
3188		printf(" sz=%x pid=%x\n", tlb->tlb_mask,
3189		       (tlb->tlb_hi & 0x000000ff));
3190	}
3191}
3192#endif	/* DDB */
3193