pmap.c revision 207155
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 207155 2010-04-24 17:32:52Z alc $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_extern.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/uma.h>
93#include <sys/pcpu.h>
94#include <sys/sched.h>
95#ifdef SMP
96#include <sys/smp.h>
97#endif
98
99#include <machine/cache.h>
100#include <machine/md_var.h>
101
102#if defined(DIAGNOSTIC)
103#define	PMAP_DIAGNOSTIC
104#endif
105
106#undef PMAP_DEBUG
107
108#ifndef PMAP_SHPGPERPROC
109#define	PMAP_SHPGPERPROC 200
110#endif
111
112#if !defined(PMAP_DIAGNOSTIC)
113#define	PMAP_INLINE __inline
114#else
115#define	PMAP_INLINE
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
122#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
123
124#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
125#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
126#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
127#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
128
129#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
130#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
131
132#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
133#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
134#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
135#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
136#define	is_kernel_pmap(x)	((x) == kernel_pmap)
137
138struct pmap kernel_pmap_store;
139pd_entry_t *kernel_segmap;
140
141vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
142vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
143
144static int nkpt;
145unsigned pmap_max_asid;		/* max ASID supported by the system */
146
147
148#define	PMAP_ASID_RESERVED	0
149
150
151vm_offset_t kernel_vm_end;
152
153static struct tlb tlbstash[MAXCPU][MIPS_MAX_TLB_ENTRIES];
154
155static void pmap_asid_alloc(pmap_t pmap);
156
157/*
158 * Data for the pv entry allocation mechanism
159 */
160static uma_zone_t pvzone;
161static struct vm_object pvzone_obj;
162static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
163
164static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
165static pv_entry_t get_pv_entry(pmap_t locked_pmap);
166static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
167
168static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
169    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
170static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
171static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
172static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
173static boolean_t pmap_testbit(vm_page_t m, int bit);
174static void
175pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
176    vm_page_t m, boolean_t wired);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179
180static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
181
182static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
183static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
184static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
185static void pmap_TLB_invalidate_kernel(vm_offset_t);
186static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
187
188#ifdef SMP
189static void pmap_invalidate_page_action(void *arg);
190static void pmap_invalidate_all_action(void *arg);
191static void pmap_update_page_action(void *arg);
192
193#endif
194
195struct local_sysmaps {
196	struct mtx lock;
197	vm_offset_t base;
198	uint16_t valid1, valid2;
199};
200
201/* This structure is for large memory
202 * above 512Meg. We can't (in 32 bit mode)
203 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
204 * macros since we can't see the memory and must
205 * map it in when we need to access it. In 64
206 * bit mode this goes away.
207 */
208static struct local_sysmaps sysmap_lmem[MAXCPU];
209caddr_t virtual_sys_start = (caddr_t)0;
210
211#define	PMAP_LMEM_MAP1(va, phys)					\
212	int cpu;							\
213	struct local_sysmaps *sysm;					\
214	pt_entry_t *pte, npte;						\
215									\
216	cpu = PCPU_GET(cpuid);						\
217	sysm = &sysmap_lmem[cpu];					\
218	PMAP_LGMEM_LOCK(sysm);						\
219	intr = intr_disable();						\
220	sched_pin();							\
221	va = sysm->base;						\
222	npte = mips_paddr_to_tlbpfn(phys) |				\
223	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
224	pte = pmap_pte(kernel_pmap, va);				\
225	*pte = npte;							\
226	sysm->valid1 = 1;
227
228#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
229	int cpu;							\
230	struct local_sysmaps *sysm;					\
231	pt_entry_t *pte, npte;						\
232									\
233	cpu = PCPU_GET(cpuid);						\
234	sysm = &sysmap_lmem[cpu];					\
235	PMAP_LGMEM_LOCK(sysm);						\
236	intr = intr_disable();						\
237	sched_pin();							\
238	va1 = sysm->base;						\
239	va2 = sysm->base + PAGE_SIZE;					\
240	npte = mips_paddr_to_tlbpfn(phys2) |				\
241	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
242	pte = pmap_pte(kernel_pmap, va1);				\
243	*pte = npte;							\
244	npte = mips_paddr_to_tlbpfn(phys2) |				\
245	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
246	pte = pmap_pte(kernel_pmap, va2);				\
247	*pte = npte;							\
248	sysm->valid1 = 1;						\
249	sysm->valid2 = 1;
250
251#define	PMAP_LMEM_UNMAP()						\
252	pte = pmap_pte(kernel_pmap, sysm->base);			\
253	*pte = PTE_G;							\
254	pmap_TLB_invalidate_kernel(sysm->base);				\
255	sysm->valid1 = 0;						\
256	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
257	*pte = PTE_G;							\
258	pmap_TLB_invalidate_kernel(sysm->base + PAGE_SIZE);		\
259	sysm->valid2 = 0;						\
260	sched_unpin();							\
261	intr_restore(intr);						\
262	PMAP_LGMEM_UNLOCK(sysm);
263
264pd_entry_t
265pmap_segmap(pmap_t pmap, vm_offset_t va)
266{
267	if (pmap->pm_segtab)
268		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
269	else
270		return ((pd_entry_t)0);
271}
272
273/*
274 *	Routine:	pmap_pte
275 *	Function:
276 *		Extract the page table entry associated
277 *		with the given map/virtual_address pair.
278 */
279pt_entry_t *
280pmap_pte(pmap_t pmap, vm_offset_t va)
281{
282	pt_entry_t *pdeaddr;
283
284	if (pmap) {
285		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
286		if (pdeaddr) {
287			return pdeaddr + vad_to_pte_offset(va);
288		}
289	}
290	return ((pt_entry_t *)0);
291}
292
293
294vm_offset_t
295pmap_steal_memory(vm_size_t size)
296{
297	vm_size_t bank_size;
298	vm_offset_t pa, va;
299
300	size = round_page(size);
301
302	bank_size = phys_avail[1] - phys_avail[0];
303	while (size > bank_size) {
304		int i;
305
306		for (i = 0; phys_avail[i + 2]; i += 2) {
307			phys_avail[i] = phys_avail[i + 2];
308			phys_avail[i + 1] = phys_avail[i + 3];
309		}
310		phys_avail[i] = 0;
311		phys_avail[i + 1] = 0;
312		if (!phys_avail[0])
313			panic("pmap_steal_memory: out of memory");
314		bank_size = phys_avail[1] - phys_avail[0];
315	}
316
317	pa = phys_avail[0];
318	phys_avail[0] += size;
319	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
320		panic("Out of memory below 512Meg?");
321	}
322	va = MIPS_PHYS_TO_KSEG0(pa);
323	bzero((caddr_t)va, size);
324	return va;
325}
326
327/*
328 *	Bootstrap the system enough to run with virtual memory.  This
329 * assumes that the phys_avail array has been initialized.
330 */
331void
332pmap_bootstrap(void)
333{
334	pt_entry_t *pgtab;
335	pt_entry_t *pte;
336	int i, j;
337	int memory_larger_than_512meg = 0;
338
339	/* Sort. */
340again:
341	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
342		/*
343		 * Keep the memory aligned on page boundary.
344		 */
345		phys_avail[i] = round_page(phys_avail[i]);
346		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
347
348		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
349			memory_larger_than_512meg++;
350		if (i < 2)
351			continue;
352		if (phys_avail[i - 2] > phys_avail[i]) {
353			vm_paddr_t ptemp[2];
354
355
356			ptemp[0] = phys_avail[i + 0];
357			ptemp[1] = phys_avail[i + 1];
358
359			phys_avail[i + 0] = phys_avail[i - 2];
360			phys_avail[i + 1] = phys_avail[i - 1];
361
362			phys_avail[i - 2] = ptemp[0];
363			phys_avail[i - 1] = ptemp[1];
364			goto again;
365		}
366	}
367
368	/*
369	 * Copy the phys_avail[] array before we start stealing memory from it.
370	 */
371	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
372		physmem_desc[i] = phys_avail[i];
373		physmem_desc[i + 1] = phys_avail[i + 1];
374	}
375
376	Maxmem = atop(phys_avail[i - 1]);
377
378	if (bootverbose) {
379		printf("Physical memory chunk(s):\n");
380		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
381			vm_paddr_t size;
382
383			size = phys_avail[i + 1] - phys_avail[i];
384			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
385			    (uintmax_t) phys_avail[i],
386			    (uintmax_t) phys_avail[i + 1] - 1,
387			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
388		}
389		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
390	}
391	/*
392	 * Steal the message buffer from the beginning of memory.
393	 */
394	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
395	msgbufinit(msgbufp, MSGBUF_SIZE);
396
397	/*
398	 * Steal thread0 kstack.
399	 */
400	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
401
402
403	virtual_avail = VM_MIN_KERNEL_ADDRESS;
404	virtual_end = VM_MAX_KERNEL_ADDRESS;
405
406#ifdef SMP
407	/*
408	 * Steal some virtual address space to map the pcpu area.
409	 */
410	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
411	pcpup = (struct pcpu *)virtual_avail;
412	virtual_avail += PAGE_SIZE * 2;
413
414	/*
415	 * Initialize the wired TLB entry mapping the pcpu region for
416	 * the BSP at 'pcpup'. Up until this point we were operating
417	 * with the 'pcpup' for the BSP pointing to a virtual address
418	 * in KSEG0 so there was no need for a TLB mapping.
419	 */
420	mips_pcpu_tlb_init(PCPU_ADDR(0));
421
422	if (bootverbose)
423		printf("pcpu is available at virtual address %p.\n", pcpup);
424#endif
425
426	/*
427	 * Steal some virtual space that will not be in kernel_segmap. This
428	 * va memory space will be used to map in kernel pages that are
429	 * outside the 512Meg region. Note that we only do this steal when
430	 * we do have memory in this region, that way for systems with
431	 * smaller memory we don't "steal" any va ranges :-)
432	 */
433	if (memory_larger_than_512meg) {
434		for (i = 0; i < MAXCPU; i++) {
435			sysmap_lmem[i].base = virtual_avail;
436			virtual_avail += PAGE_SIZE * 2;
437			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
438			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
439		}
440	}
441	virtual_sys_start = (caddr_t)virtual_avail;
442	/*
443	 * Allocate segment table for the kernel
444	 */
445	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
446
447	/*
448	 * Allocate second level page tables for the kernel
449	 */
450	nkpt = NKPT;
451	if (memory_larger_than_512meg) {
452		/*
453		 * If we have a large memory system we CANNOT afford to hit
454		 * pmap_growkernel() and allocate memory. Since we MAY end
455		 * up with a page that is NOT mappable. For that reason we
456		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
457		 * this gives us 480meg of kernel virtual addresses at the
458		 * cost of 120 pages (each page gets us 4 Meg). Since the
459		 * kernel starts at virtual_avail, we can use this to
460		 * calculate how many entris are left from there to the end
461		 * of the segmap, we want to allocate all of it, which would
462		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
463		 * in about 256 entries or so instead of the 120.
464		 */
465		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
466	}
467	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
468
469	/*
470	 * The R[4-7]?00 stores only one copy of the Global bit in the
471	 * translation lookaside buffer for each 2 page entry. Thus invalid
472	 * entrys must have the Global bit set so when Entry LO and Entry HI
473	 * G bits are anded together they will produce a global bit to store
474	 * in the tlb.
475	 */
476	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
477		*pte = PTE_G;
478
479	/*
480	 * The segment table contains the KVA of the pages in the second
481	 * level page table.
482	 */
483	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
484		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
485
486	/*
487	 * The kernel's pmap is statically allocated so we don't have to use
488	 * pmap_create, which is unlikely to work correctly at this part of
489	 * the boot sequence (XXX and which no longer exists).
490	 */
491	PMAP_LOCK_INIT(kernel_pmap);
492	kernel_pmap->pm_segtab = kernel_segmap;
493	kernel_pmap->pm_active = ~0;
494	TAILQ_INIT(&kernel_pmap->pm_pvlist);
495	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
496	kernel_pmap->pm_asid[0].gen = 0;
497	pmap_max_asid = VMNUM_PIDS;
498	MachSetPID(0);
499}
500
501/*
502 * Initialize a vm_page's machine-dependent fields.
503 */
504void
505pmap_page_init(vm_page_t m)
506{
507
508	TAILQ_INIT(&m->md.pv_list);
509	m->md.pv_list_count = 0;
510	m->md.pv_flags = 0;
511}
512
513/*
514 *	Initialize the pmap module.
515 *	Called by vm_init, to initialize any structures that the pmap
516 *	system needs to map virtual memory.
517 *	pmap_init has been enhanced to support in a fairly consistant
518 *	way, discontiguous physical memory.
519 */
520void
521pmap_init(void)
522{
523
524	/*
525	 * Initialize the address space (zone) for the pv entries.  Set a
526	 * high water mark so that the system can recover from excessive
527	 * numbers of pv entries.
528	 */
529	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
530	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
531	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
532	pv_entry_high_water = 9 * (pv_entry_max / 10);
533	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
534}
535
536/***************************************************
537 * Low level helper routines.....
538 ***************************************************/
539
540#if defined(PMAP_DIAGNOSTIC)
541
542/*
543 * This code checks for non-writeable/modified pages.
544 * This should be an invalid condition.
545 */
546static int
547pmap_nw_modified(pt_entry_t pte)
548{
549	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
550		return (1);
551	else
552		return (0);
553}
554
555#endif
556
557static void
558pmap_invalidate_all(pmap_t pmap)
559{
560#ifdef SMP
561	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
562}
563
564static void
565pmap_invalidate_all_action(void *arg)
566{
567	pmap_t pmap = (pmap_t)arg;
568
569#endif
570
571	if (pmap->pm_active & PCPU_GET(cpumask)) {
572		pmap_TLB_invalidate_all();
573	} else
574		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
575}
576
577struct pmap_invalidate_page_arg {
578	pmap_t pmap;
579	vm_offset_t va;
580};
581
582static __inline void
583pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
584{
585#ifdef SMP
586	struct pmap_invalidate_page_arg arg;
587
588	arg.pmap = pmap;
589	arg.va = va;
590
591	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
592}
593
594static void
595pmap_invalidate_page_action(void *arg)
596{
597	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
598	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
599
600#endif
601
602	if (is_kernel_pmap(pmap)) {
603		pmap_TLB_invalidate_kernel(va);
604		return;
605	}
606	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
607		return;
608	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
609		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
610		return;
611	}
612	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
613	mips_TBIS(va);
614}
615
616static void
617pmap_TLB_invalidate_kernel(vm_offset_t va)
618{
619	u_int32_t pid;
620
621	MachTLBGetPID(pid);
622	va = va | (pid << VMTLB_PID_SHIFT);
623	mips_TBIS(va);
624}
625
626struct pmap_update_page_arg {
627	pmap_t pmap;
628	vm_offset_t va;
629	pt_entry_t pte;
630};
631
632void
633pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
634{
635#ifdef SMP
636	struct pmap_update_page_arg arg;
637
638	arg.pmap = pmap;
639	arg.va = va;
640	arg.pte = pte;
641
642	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
643}
644
645static void
646pmap_update_page_action(void *arg)
647{
648	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
649	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
650	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
651
652#endif
653	if (is_kernel_pmap(pmap)) {
654		pmap_TLB_update_kernel(va, pte);
655		return;
656	}
657	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
658		return;
659	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
660		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
661		return;
662	}
663	va = pmap_va_asid(pmap, (va & ~PAGE_MASK));
664	MachTLBUpdate(va, pte);
665}
666
667static void
668pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
669{
670	u_int32_t pid;
671
672	va &= ~PAGE_MASK;
673
674	MachTLBGetPID(pid);
675	va = va | (pid << VMTLB_PID_SHIFT);
676
677	MachTLBUpdate(va, pte);
678}
679
680/*
681 *	Routine:	pmap_extract
682 *	Function:
683 *		Extract the physical page address associated
684 *		with the given map/virtual_address pair.
685 */
686vm_paddr_t
687pmap_extract(pmap_t pmap, vm_offset_t va)
688{
689	pt_entry_t *pte;
690	vm_offset_t retval = 0;
691
692	PMAP_LOCK(pmap);
693	pte = pmap_pte(pmap, va);
694	if (pte) {
695		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
696	}
697	PMAP_UNLOCK(pmap);
698	return retval;
699}
700
701/*
702 *	Routine:	pmap_extract_and_hold
703 *	Function:
704 *		Atomically extract and hold the physical page
705 *		with the given pmap and virtual address pair
706 *		if that mapping permits the given protection.
707 */
708vm_page_t
709pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
710{
711	pt_entry_t pte;
712	vm_page_t m;
713
714	m = NULL;
715	vm_page_lock_queues();
716	PMAP_LOCK(pmap);
717
718	pte = *pmap_pte(pmap, va);
719	if (pte != 0 && pmap_pte_v(&pte) &&
720	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
721		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
722		vm_page_hold(m);
723	}
724	vm_page_unlock_queues();
725	PMAP_UNLOCK(pmap);
726	return (m);
727}
728
729/***************************************************
730 * Low level mapping routines.....
731 ***************************************************/
732
733/*
734 * add a wired page to the kva
735 */
736 /* PMAP_INLINE */ void
737pmap_kenter(vm_offset_t va, vm_paddr_t pa)
738{
739	register pt_entry_t *pte;
740	pt_entry_t npte, opte;
741
742#ifdef PMAP_DEBUG
743	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
744#endif
745	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
746
747	if (is_cacheable_mem(pa))
748		npte |= PTE_CACHE;
749	else
750		npte |= PTE_UNCACHED;
751
752	pte = pmap_pte(kernel_pmap, va);
753	opte = *pte;
754	*pte = npte;
755
756	pmap_update_page(kernel_pmap, va, npte);
757}
758
759/*
760 * remove a page from the kernel pagetables
761 */
762 /* PMAP_INLINE */ void
763pmap_kremove(vm_offset_t va)
764{
765	register pt_entry_t *pte;
766
767	/*
768	 * Write back all caches from the page being destroyed
769	 */
770	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
771
772	pte = pmap_pte(kernel_pmap, va);
773	*pte = PTE_G;
774	pmap_invalidate_page(kernel_pmap, va);
775}
776
777/*
778 *	Used to map a range of physical addresses into kernel
779 *	virtual address space.
780 *
781 *	The value passed in '*virt' is a suggested virtual address for
782 *	the mapping. Architectures which can support a direct-mapped
783 *	physical to virtual region can return the appropriate address
784 *	within that region, leaving '*virt' unchanged. Other
785 *	architectures should map the pages starting at '*virt' and
786 *	update '*virt' with the first usable address after the mapped
787 *	region.
788 */
789vm_offset_t
790pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
791{
792	vm_offset_t va, sva;
793
794	va = sva = *virt;
795	while (start < end) {
796		pmap_kenter(va, start);
797		va += PAGE_SIZE;
798		start += PAGE_SIZE;
799	}
800	*virt = va;
801	return (sva);
802}
803
804/*
805 * Add a list of wired pages to the kva
806 * this routine is only used for temporary
807 * kernel mappings that do not need to have
808 * page modification or references recorded.
809 * Note that old mappings are simply written
810 * over.  The page *must* be wired.
811 */
812void
813pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
814{
815	int i;
816	vm_offset_t origva = va;
817
818	for (i = 0; i < count; i++) {
819		pmap_flush_pvcache(m[i]);
820		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
821		va += PAGE_SIZE;
822	}
823
824	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
825}
826
827/*
828 * this routine jerks page mappings from the
829 * kernel -- it is meant only for temporary mappings.
830 */
831void
832pmap_qremove(vm_offset_t va, int count)
833{
834	/*
835	 * No need to wb/inv caches here,
836	 *   pmap_kremove will do it for us
837	 */
838
839	while (count-- > 0) {
840		pmap_kremove(va);
841		va += PAGE_SIZE;
842	}
843}
844
845/***************************************************
846 * Page table page management routines.....
847 ***************************************************/
848
849/*  Revision 1.507
850 *
851 * Simplify the reference counting of page table pages.	 Specifically, use
852 * the page table page's wired count rather than its hold count to contain
853 * the reference count.
854 */
855
856/*
857 * This routine unholds page table pages, and if the hold count
858 * drops to zero, then it decrements the wire count.
859 */
860static int
861_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
862{
863	vm_offset_t pteva;
864
865	/*
866	 * unmap the page table page
867	 */
868	pteva = (vm_offset_t)pmap->pm_segtab[m->pindex];
869	if (pteva >= VM_MIN_KERNEL_ADDRESS) {
870		pmap_kremove(pteva);
871		kmem_free(kernel_map, pteva, PAGE_SIZE);
872	} else {
873		KASSERT(MIPS_IS_KSEG0_ADDR(pteva),
874		    ("_pmap_unwire_pte_hold: 0x%0lx is not in kseg0",
875		    (long)pteva));
876	}
877
878	pmap->pm_segtab[m->pindex] = 0;
879	--pmap->pm_stats.resident_count;
880
881	if (pmap->pm_ptphint == m)
882		pmap->pm_ptphint = NULL;
883
884	/*
885	 * If the page is finally unwired, simply free it.
886	 */
887	vm_page_free_zero(m);
888	atomic_subtract_int(&cnt.v_wire_count, 1);
889	return (1);
890}
891
892static PMAP_INLINE int
893pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
894{
895	--m->wire_count;
896	if (m->wire_count == 0)
897		return (_pmap_unwire_pte_hold(pmap, m));
898	else
899		return (0);
900}
901
902/*
903 * After removing a page table entry, this routine is used to
904 * conditionally free the page, and manage the hold/wire counts.
905 */
906static int
907pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
908{
909	unsigned ptepindex;
910	pd_entry_t pteva;
911
912	if (va >= VM_MAXUSER_ADDRESS)
913		return (0);
914
915	if (mpte == NULL) {
916		ptepindex = (va >> SEGSHIFT);
917		if (pmap->pm_ptphint &&
918		    (pmap->pm_ptphint->pindex == ptepindex)) {
919			mpte = pmap->pm_ptphint;
920		} else {
921			pteva = *pmap_pde(pmap, va);
922			mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
923			pmap->pm_ptphint = mpte;
924		}
925	}
926	return pmap_unwire_pte_hold(pmap, mpte);
927}
928
929void
930pmap_pinit0(pmap_t pmap)
931{
932	int i;
933
934	PMAP_LOCK_INIT(pmap);
935	pmap->pm_segtab = kernel_segmap;
936	pmap->pm_active = 0;
937	pmap->pm_ptphint = NULL;
938	for (i = 0; i < MAXCPU; i++) {
939		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
940		pmap->pm_asid[i].gen = 0;
941	}
942	PCPU_SET(curpmap, pmap);
943	TAILQ_INIT(&pmap->pm_pvlist);
944	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
945}
946
947/*
948 * Initialize a preallocated and zeroed pmap structure,
949 * such as one in a vmspace structure.
950 */
951int
952pmap_pinit(pmap_t pmap)
953{
954	vm_offset_t ptdva;
955	vm_paddr_t ptdpa;
956	vm_page_t ptdpg;
957	int i;
958	int req;
959
960	PMAP_LOCK_INIT(pmap);
961
962	req = VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED |
963	    VM_ALLOC_ZERO;
964
965	/*
966	 * allocate the page directory page
967	 */
968	while ((ptdpg = vm_page_alloc(NULL, NUSERPGTBLS, req)) == NULL)
969		VM_WAIT;
970
971	ptdpg->valid = VM_PAGE_BITS_ALL;
972
973	ptdpa = VM_PAGE_TO_PHYS(ptdpg);
974	if (ptdpa < MIPS_KSEG0_LARGEST_PHYS) {
975		ptdva = MIPS_PHYS_TO_KSEG0(ptdpa);
976	} else {
977		ptdva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
978		if (ptdva == 0)
979			panic("pmap_pinit: unable to allocate kva");
980		pmap_kenter(ptdva, ptdpa);
981	}
982
983	pmap->pm_segtab = (pd_entry_t *)ptdva;
984	if ((ptdpg->flags & PG_ZERO) == 0)
985		bzero(pmap->pm_segtab, PAGE_SIZE);
986
987	pmap->pm_active = 0;
988	pmap->pm_ptphint = NULL;
989	for (i = 0; i < MAXCPU; i++) {
990		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
991		pmap->pm_asid[i].gen = 0;
992	}
993	TAILQ_INIT(&pmap->pm_pvlist);
994	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
995
996	return (1);
997}
998
999/*
1000 * this routine is called if the page table page is not
1001 * mapped correctly.
1002 */
1003static vm_page_t
1004_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1005{
1006	vm_offset_t pteva, ptepa;
1007	vm_page_t m;
1008	int req;
1009
1010	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1011	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1012	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1013
1014	req = VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ;
1015	/*
1016	 * Find or fabricate a new pagetable page
1017	 */
1018	if ((m = vm_page_alloc(NULL, ptepindex, req)) == NULL) {
1019		if (flags & M_WAITOK) {
1020			PMAP_UNLOCK(pmap);
1021			vm_page_unlock_queues();
1022			VM_WAIT;
1023			vm_page_lock_queues();
1024			PMAP_LOCK(pmap);
1025		}
1026		/*
1027		 * Indicate the need to retry.	While waiting, the page
1028		 * table page may have been allocated.
1029		 */
1030		return (NULL);
1031	}
1032	if ((m->flags & PG_ZERO) == 0)
1033		pmap_zero_page(m);
1034
1035	KASSERT(m->queue == PQ_NONE,
1036	    ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1037
1038	/*
1039	 * Map the pagetable page into the process address space, if it
1040	 * isn't already there.
1041	 */
1042
1043	pmap->pm_stats.resident_count++;
1044
1045	ptepa = VM_PAGE_TO_PHYS(m);
1046	if (ptepa < MIPS_KSEG0_LARGEST_PHYS) {
1047		pteva = MIPS_PHYS_TO_KSEG0(ptepa);
1048	} else {
1049		pteva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
1050		if (pteva == 0)
1051			panic("_pmap_allocpte: unable to allocate kva");
1052		pmap_kenter(pteva, ptepa);
1053	}
1054
1055	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1056
1057	/*
1058	 * Set the page table hint
1059	 */
1060	pmap->pm_ptphint = m;
1061
1062	/*
1063	 * Kernel page tables are allocated in pmap_bootstrap() or
1064	 * pmap_growkernel().
1065	 */
1066	if (is_kernel_pmap(pmap))
1067		panic("_pmap_allocpte() called for kernel pmap\n");
1068
1069	m->valid = VM_PAGE_BITS_ALL;
1070	vm_page_flag_clear(m, PG_ZERO);
1071
1072	return (m);
1073}
1074
1075static vm_page_t
1076pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1077{
1078	unsigned ptepindex;
1079	vm_offset_t pteva;
1080	vm_page_t m;
1081
1082	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1083	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1084	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1085
1086	/*
1087	 * Calculate pagetable page index
1088	 */
1089	ptepindex = va >> SEGSHIFT;
1090retry:
1091	/*
1092	 * Get the page directory entry
1093	 */
1094	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1095
1096	/*
1097	 * If the page table page is mapped, we just increment the hold
1098	 * count, and activate it.
1099	 */
1100	if (pteva) {
1101		/*
1102		 * In order to get the page table page, try the hint first.
1103		 */
1104		if (pmap->pm_ptphint &&
1105		    (pmap->pm_ptphint->pindex == ptepindex)) {
1106			m = pmap->pm_ptphint;
1107		} else {
1108			m = PHYS_TO_VM_PAGE(vtophys(pteva));
1109			pmap->pm_ptphint = m;
1110		}
1111		m->wire_count++;
1112	} else {
1113		/*
1114		 * Here if the pte page isn't mapped, or if it has been
1115		 * deallocated.
1116		 */
1117		m = _pmap_allocpte(pmap, ptepindex, flags);
1118		if (m == NULL && (flags & M_WAITOK))
1119			goto retry;
1120	}
1121	return m;
1122}
1123
1124
1125/***************************************************
1126* Pmap allocation/deallocation routines.
1127 ***************************************************/
1128/*
1129 *  Revision 1.397
1130 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1131 *    called only the page directory page(s) can be left in the pmap pte
1132 *    object, since all page table pages will have been freed by
1133 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1134 *    reference to the pmap and the page directory is wired, so the page(s)
1135 *    can never be busy.  So all there is to do is clear the magic mappings
1136 *    from the page directory and free the page(s).
1137 */
1138
1139
1140/*
1141 * Release any resources held by the given physical map.
1142 * Called when a pmap initialized by pmap_pinit is being released.
1143 * Should only be called if the map contains no valid mappings.
1144 */
1145void
1146pmap_release(pmap_t pmap)
1147{
1148	vm_offset_t ptdva;
1149	vm_page_t ptdpg;
1150
1151	KASSERT(pmap->pm_stats.resident_count == 0,
1152	    ("pmap_release: pmap resident count %ld != 0",
1153	    pmap->pm_stats.resident_count));
1154
1155	ptdva = (vm_offset_t)pmap->pm_segtab;
1156	ptdpg = PHYS_TO_VM_PAGE(vtophys(ptdva));
1157
1158	if (ptdva >= VM_MIN_KERNEL_ADDRESS) {
1159		pmap_kremove(ptdva);
1160		kmem_free(kernel_map, ptdva, PAGE_SIZE);
1161	} else {
1162		KASSERT(MIPS_IS_KSEG0_ADDR(ptdva),
1163		    ("pmap_release: 0x%0lx is not in kseg0", (long)ptdva));
1164	}
1165
1166	ptdpg->wire_count--;
1167	atomic_subtract_int(&cnt.v_wire_count, 1);
1168	vm_page_free_zero(ptdpg);
1169	PMAP_LOCK_DESTROY(pmap);
1170}
1171
1172/*
1173 * grow the number of kernel page table entries, if needed
1174 */
1175void
1176pmap_growkernel(vm_offset_t addr)
1177{
1178	vm_offset_t ptppaddr;
1179	vm_page_t nkpg;
1180	pt_entry_t *pte;
1181	int i, req;
1182
1183	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1184	if (kernel_vm_end == 0) {
1185		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1186		nkpt = 0;
1187		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1188			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1189			    ~(PAGE_SIZE * NPTEPG - 1);
1190			nkpt++;
1191			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1192				kernel_vm_end = kernel_map->max_offset;
1193				break;
1194			}
1195		}
1196	}
1197	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1198	if (addr - 1 >= kernel_map->max_offset)
1199		addr = kernel_map->max_offset;
1200	while (kernel_vm_end < addr) {
1201		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1202			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1203			    ~(PAGE_SIZE * NPTEPG - 1);
1204			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1205				kernel_vm_end = kernel_map->max_offset;
1206				break;
1207			}
1208			continue;
1209		}
1210		/*
1211		 * This index is bogus, but out of the way
1212		 */
1213		req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
1214		nkpg = vm_page_alloc(NULL, nkpt, req);
1215		if (!nkpg)
1216			panic("pmap_growkernel: no memory to grow kernel");
1217
1218		nkpt++;
1219
1220		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1221		if (ptppaddr >= MIPS_KSEG0_LARGEST_PHYS) {
1222			/*
1223			 * We need to do something here, but I am not sure
1224			 * what. We can access anything in the 0 - 512Meg
1225			 * region, but if we get a page to go in the kernel
1226			 * segmap that is outside of of that we really need
1227			 * to have another mapping beyond the temporary ones
1228			 * I have. Not sure how to do this yet. FIXME FIXME.
1229			 */
1230			panic("Gak, can't handle a k-page table outside of lower 512Meg");
1231		}
1232		pte = (pt_entry_t *)MIPS_PHYS_TO_KSEG0(ptppaddr);
1233		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1234
1235		/*
1236		 * The R[4-7]?00 stores only one copy of the Global bit in
1237		 * the translation lookaside buffer for each 2 page entry.
1238		 * Thus invalid entrys must have the Global bit set so when
1239		 * Entry LO and Entry HI G bits are anded together they will
1240		 * produce a global bit to store in the tlb.
1241		 */
1242		for (i = 0; i < NPTEPG; i++, pte++)
1243			*pte = PTE_G;
1244
1245		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1246		    ~(PAGE_SIZE * NPTEPG - 1);
1247		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1248			kernel_vm_end = kernel_map->max_offset;
1249			break;
1250		}
1251	}
1252}
1253
1254/***************************************************
1255* page management routines.
1256 ***************************************************/
1257
1258/*
1259 * free the pv_entry back to the free list
1260 */
1261static PMAP_INLINE void
1262free_pv_entry(pv_entry_t pv)
1263{
1264
1265	pv_entry_count--;
1266	uma_zfree(pvzone, pv);
1267}
1268
1269/*
1270 * get a new pv_entry, allocating a block from the system
1271 * when needed.
1272 * the memory allocation is performed bypassing the malloc code
1273 * because of the possibility of allocations at interrupt time.
1274 */
1275static pv_entry_t
1276get_pv_entry(pmap_t locked_pmap)
1277{
1278	static const struct timeval printinterval = { 60, 0 };
1279	static struct timeval lastprint;
1280	struct vpgqueues *vpq;
1281	pt_entry_t *pte, oldpte;
1282	pmap_t pmap;
1283	pv_entry_t allocated_pv, next_pv, pv;
1284	vm_offset_t va;
1285	vm_page_t m;
1286
1287	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1288	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1289	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1290	if (allocated_pv != NULL) {
1291		pv_entry_count++;
1292		if (pv_entry_count > pv_entry_high_water)
1293			pagedaemon_wakeup();
1294		else
1295			return (allocated_pv);
1296	}
1297	/*
1298	 * Reclaim pv entries: At first, destroy mappings to inactive
1299	 * pages.  After that, if a pv entry is still needed, destroy
1300	 * mappings to active pages.
1301	 */
1302	if (ratecheck(&lastprint, &printinterval))
1303		printf("Approaching the limit on PV entries, "
1304		    "increase the vm.pmap.shpgperproc tunable.\n");
1305	vpq = &vm_page_queues[PQ_INACTIVE];
1306retry:
1307	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1308		if (m->hold_count || m->busy)
1309			continue;
1310		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1311			va = pv->pv_va;
1312			pmap = pv->pv_pmap;
1313			/* Avoid deadlock and lock recursion. */
1314			if (pmap > locked_pmap)
1315				PMAP_LOCK(pmap);
1316			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1317				continue;
1318			pmap->pm_stats.resident_count--;
1319			pte = pmap_pte(pmap, va);
1320			KASSERT(pte != NULL, ("pte"));
1321			oldpte = loadandclear((u_int *)pte);
1322			if (is_kernel_pmap(pmap))
1323				*pte = PTE_G;
1324			KASSERT((oldpte & PTE_W) == 0,
1325			    ("wired pte for unwired page"));
1326			if (m->md.pv_flags & PV_TABLE_REF)
1327				vm_page_flag_set(m, PG_REFERENCED);
1328			if (oldpte & PTE_M)
1329				vm_page_dirty(m);
1330			pmap_invalidate_page(pmap, va);
1331			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1332			m->md.pv_list_count--;
1333			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1334			if (TAILQ_EMPTY(&m->md.pv_list)) {
1335				vm_page_flag_clear(m, PG_WRITEABLE);
1336				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1337			}
1338			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1339			if (pmap != locked_pmap)
1340				PMAP_UNLOCK(pmap);
1341			if (allocated_pv == NULL)
1342				allocated_pv = pv;
1343			else
1344				free_pv_entry(pv);
1345		}
1346	}
1347	if (allocated_pv == NULL) {
1348		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1349			vpq = &vm_page_queues[PQ_ACTIVE];
1350			goto retry;
1351		}
1352		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1353	}
1354	return (allocated_pv);
1355}
1356
1357/*
1358 *  Revision 1.370
1359 *
1360 *  Move pmap_collect() out of the machine-dependent code, rename it
1361 *  to reflect its new location, and add page queue and flag locking.
1362 *
1363 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1364 *  of pmap_collect() in terms of machine-independent interfaces;
1365 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1366 *
1367 *  MIPS implementation was identical to alpha [Junos 8.2]
1368 */
1369
1370/*
1371 * If it is the first entry on the list, it is actually
1372 * in the header and we must copy the following entry up
1373 * to the header.  Otherwise we must search the list for
1374 * the entry.  In either case we free the now unused entry.
1375 */
1376
1377static void
1378pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1379{
1380	pv_entry_t pv;
1381
1382	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1383	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1384	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1385		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1386			if (pmap == pv->pv_pmap && va == pv->pv_va)
1387				break;
1388		}
1389	} else {
1390		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1391			if (va == pv->pv_va)
1392				break;
1393		}
1394	}
1395
1396	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1397	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1398	m->md.pv_list_count--;
1399	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1400		vm_page_flag_clear(m, PG_WRITEABLE);
1401
1402	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1403	free_pv_entry(pv);
1404}
1405
1406/*
1407 * Create a pv entry for page at pa for
1408 * (pmap, va).
1409 */
1410static void
1411pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1412    boolean_t wired)
1413{
1414	pv_entry_t pv;
1415
1416	pv = get_pv_entry(pmap);
1417	pv->pv_va = va;
1418	pv->pv_pmap = pmap;
1419	pv->pv_ptem = mpte;
1420	pv->pv_wired = wired;
1421
1422	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1423	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1424	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1425	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1426	m->md.pv_list_count++;
1427}
1428
1429/*
1430 * Conditionally create a pv entry.
1431 */
1432static boolean_t
1433pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1434    vm_page_t m)
1435{
1436	pv_entry_t pv;
1437
1438	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1439	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1440	if (pv_entry_count < pv_entry_high_water &&
1441	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1442		pv_entry_count++;
1443		pv->pv_va = va;
1444		pv->pv_pmap = pmap;
1445		pv->pv_ptem = mpte;
1446		pv->pv_wired = FALSE;
1447		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1448		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1449		m->md.pv_list_count++;
1450		return (TRUE);
1451	} else
1452		return (FALSE);
1453}
1454
1455/*
1456 * pmap_remove_pte: do the things to unmap a page in a process
1457 */
1458static int
1459pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1460{
1461	pt_entry_t oldpte;
1462	vm_page_t m;
1463	vm_offset_t pa;
1464
1465	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1466	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1467
1468	oldpte = loadandclear((u_int *)ptq);
1469	if (is_kernel_pmap(pmap))
1470		*ptq = PTE_G;
1471
1472	if (oldpte & PTE_W)
1473		pmap->pm_stats.wired_count -= 1;
1474
1475	pmap->pm_stats.resident_count -= 1;
1476	pa = mips_tlbpfn_to_paddr(oldpte);
1477
1478	if (page_is_managed(pa)) {
1479		m = PHYS_TO_VM_PAGE(pa);
1480		if (oldpte & PTE_M) {
1481#if defined(PMAP_DIAGNOSTIC)
1482			if (pmap_nw_modified(oldpte)) {
1483				printf(
1484				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1485				    va, oldpte);
1486			}
1487#endif
1488			vm_page_dirty(m);
1489		}
1490		if (m->md.pv_flags & PV_TABLE_REF)
1491			vm_page_flag_set(m, PG_REFERENCED);
1492		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1493
1494		pmap_remove_entry(pmap, m, va);
1495	}
1496	return pmap_unuse_pt(pmap, va, NULL);
1497}
1498
1499/*
1500 * Remove a single page from a process address space
1501 */
1502static void
1503pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1504{
1505	register pt_entry_t *ptq;
1506
1507	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1508	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1509	ptq = pmap_pte(pmap, va);
1510
1511	/*
1512	 * if there is no pte for this address, just skip it!!!
1513	 */
1514	if (!ptq || !pmap_pte_v(ptq)) {
1515		return;
1516	}
1517
1518	/*
1519	 * Write back all caches from the page being destroyed
1520	 */
1521	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1522
1523	/*
1524	 * get a local va for mappings for this pmap.
1525	 */
1526	(void)pmap_remove_pte(pmap, ptq, va);
1527	pmap_invalidate_page(pmap, va);
1528
1529	return;
1530}
1531
1532/*
1533 *	Remove the given range of addresses from the specified map.
1534 *
1535 *	It is assumed that the start and end are properly
1536 *	rounded to the page size.
1537 */
1538void
1539pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1540{
1541	vm_offset_t va, nva;
1542
1543	if (pmap == NULL)
1544		return;
1545
1546	if (pmap->pm_stats.resident_count == 0)
1547		return;
1548
1549	vm_page_lock_queues();
1550	PMAP_LOCK(pmap);
1551
1552	/*
1553	 * special handling of removing one page.  a very common operation
1554	 * and easy to short circuit some code.
1555	 */
1556	if ((sva + PAGE_SIZE) == eva) {
1557		pmap_remove_page(pmap, sva);
1558		goto out;
1559	}
1560	for (va = sva; va < eva; va = nva) {
1561		if (!*pmap_pde(pmap, va)) {
1562			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1563			continue;
1564		}
1565		pmap_remove_page(pmap, va);
1566		nva = va + PAGE_SIZE;
1567	}
1568
1569out:
1570	vm_page_unlock_queues();
1571	PMAP_UNLOCK(pmap);
1572}
1573
1574/*
1575 *	Routine:	pmap_remove_all
1576 *	Function:
1577 *		Removes this physical page from
1578 *		all physical maps in which it resides.
1579 *		Reflects back modify bits to the pager.
1580 *
1581 *	Notes:
1582 *		Original versions of this routine were very
1583 *		inefficient because they iteratively called
1584 *		pmap_remove (slow...)
1585 */
1586
1587void
1588pmap_remove_all(vm_page_t m)
1589{
1590	register pv_entry_t pv;
1591	register pt_entry_t *pte, tpte;
1592
1593	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1594	    ("pmap_remove_all: page %p is fictitious", m));
1595	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1596
1597	if (m->md.pv_flags & PV_TABLE_REF)
1598		vm_page_flag_set(m, PG_REFERENCED);
1599
1600	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1601		PMAP_LOCK(pv->pv_pmap);
1602
1603		/*
1604		 * If it's last mapping writeback all caches from
1605		 * the page being destroyed
1606	 	 */
1607		if (m->md.pv_list_count == 1)
1608			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1609
1610		pv->pv_pmap->pm_stats.resident_count--;
1611
1612		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1613
1614		tpte = loadandclear((u_int *)pte);
1615		if (is_kernel_pmap(pv->pv_pmap))
1616			*pte = PTE_G;
1617
1618		if (tpte & PTE_W)
1619			pv->pv_pmap->pm_stats.wired_count--;
1620
1621		/*
1622		 * Update the vm_page_t clean and reference bits.
1623		 */
1624		if (tpte & PTE_M) {
1625#if defined(PMAP_DIAGNOSTIC)
1626			if (pmap_nw_modified(tpte)) {
1627				printf(
1628				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1629				    pv->pv_va, tpte);
1630			}
1631#endif
1632			vm_page_dirty(m);
1633		}
1634		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1635
1636		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1637		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1638		m->md.pv_list_count--;
1639		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1640		PMAP_UNLOCK(pv->pv_pmap);
1641		free_pv_entry(pv);
1642	}
1643
1644	vm_page_flag_clear(m, PG_WRITEABLE);
1645	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1646}
1647
1648/*
1649 *	Set the physical protection on the
1650 *	specified range of this map as requested.
1651 */
1652void
1653pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1654{
1655	pt_entry_t *pte;
1656
1657	if (pmap == NULL)
1658		return;
1659
1660	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1661		pmap_remove(pmap, sva, eva);
1662		return;
1663	}
1664	if (prot & VM_PROT_WRITE)
1665		return;
1666
1667	vm_page_lock_queues();
1668	PMAP_LOCK(pmap);
1669	while (sva < eva) {
1670		pt_entry_t pbits, obits;
1671		vm_page_t m;
1672		vm_offset_t pa;
1673
1674		/*
1675		 * If segment table entry is empty, skip this segment.
1676		 */
1677		if (!*pmap_pde(pmap, sva)) {
1678			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1679			continue;
1680		}
1681		/*
1682		 * If pte is invalid, skip this page
1683		 */
1684		pte = pmap_pte(pmap, sva);
1685		if (!pmap_pte_v(pte)) {
1686			sva += PAGE_SIZE;
1687			continue;
1688		}
1689retry:
1690		obits = pbits = *pte;
1691		pa = mips_tlbpfn_to_paddr(pbits);
1692
1693		if (page_is_managed(pa)) {
1694			m = PHYS_TO_VM_PAGE(pa);
1695			if (m->md.pv_flags & PV_TABLE_REF) {
1696				vm_page_flag_set(m, PG_REFERENCED);
1697				m->md.pv_flags &= ~PV_TABLE_REF;
1698			}
1699			if (pbits & PTE_M) {
1700				vm_page_dirty(m);
1701				m->md.pv_flags &= ~PV_TABLE_MOD;
1702			}
1703		}
1704		pbits = (pbits & ~PTE_M) | PTE_RO;
1705
1706		if (pbits != *pte) {
1707			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1708				goto retry;
1709			pmap_update_page(pmap, sva, pbits);
1710		}
1711		sva += PAGE_SIZE;
1712	}
1713	vm_page_unlock_queues();
1714	PMAP_UNLOCK(pmap);
1715}
1716
1717/*
1718 *	Insert the given physical page (p) at
1719 *	the specified virtual address (v) in the
1720 *	target physical map with the protection requested.
1721 *
1722 *	If specified, the page will be wired down, meaning
1723 *	that the related pte can not be reclaimed.
1724 *
1725 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1726 *	or lose information.  That is, this routine must actually
1727 *	insert this page into the given map NOW.
1728 */
1729void
1730pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1731    vm_prot_t prot, boolean_t wired)
1732{
1733	vm_offset_t pa, opa;
1734	register pt_entry_t *pte;
1735	pt_entry_t origpte, newpte;
1736	vm_page_t mpte, om;
1737	int rw = 0;
1738
1739	if (pmap == NULL)
1740		return;
1741
1742	va &= ~PAGE_MASK;
1743#ifdef PMAP_DIAGNOSTIC
1744	if (va > VM_MAX_KERNEL_ADDRESS)
1745		panic("pmap_enter: toobig");
1746#endif
1747
1748	mpte = NULL;
1749
1750	vm_page_lock_queues();
1751	PMAP_LOCK(pmap);
1752
1753	/*
1754	 * In the case that a page table page is not resident, we are
1755	 * creating it here.
1756	 */
1757	if (va < VM_MAXUSER_ADDRESS) {
1758		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1759	}
1760	pte = pmap_pte(pmap, va);
1761
1762	/*
1763	 * Page Directory table entry not valid, we need a new PT page
1764	 */
1765	if (pte == NULL) {
1766		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1767		    (void *)pmap->pm_segtab, (void *)va);
1768	}
1769	pa = VM_PAGE_TO_PHYS(m);
1770	om = NULL;
1771	origpte = *pte;
1772	opa = mips_tlbpfn_to_paddr(origpte);
1773
1774	/*
1775	 * Mapping has not changed, must be protection or wiring change.
1776	 */
1777	if ((origpte & PTE_V) && (opa == pa)) {
1778		/*
1779		 * Wiring change, just update stats. We don't worry about
1780		 * wiring PT pages as they remain resident as long as there
1781		 * are valid mappings in them. Hence, if a user page is
1782		 * wired, the PT page will be also.
1783		 */
1784		if (wired && ((origpte & PTE_W) == 0))
1785			pmap->pm_stats.wired_count++;
1786		else if (!wired && (origpte & PTE_W))
1787			pmap->pm_stats.wired_count--;
1788
1789#if defined(PMAP_DIAGNOSTIC)
1790		if (pmap_nw_modified(origpte)) {
1791			printf(
1792			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1793			    va, origpte);
1794		}
1795#endif
1796
1797		/*
1798		 * Remove extra pte reference
1799		 */
1800		if (mpte)
1801			mpte->wire_count--;
1802
1803		/*
1804		 * We might be turning off write access to the page, so we
1805		 * go ahead and sense modify status.
1806		 */
1807		if (page_is_managed(opa)) {
1808			om = m;
1809		}
1810		goto validate;
1811	}
1812	/*
1813	 * Mapping has changed, invalidate old range and fall through to
1814	 * handle validating new mapping.
1815	 */
1816	if (opa) {
1817		if (origpte & PTE_W)
1818			pmap->pm_stats.wired_count--;
1819
1820		if (page_is_managed(opa)) {
1821			om = PHYS_TO_VM_PAGE(opa);
1822			pmap_remove_entry(pmap, om, va);
1823		}
1824		if (mpte != NULL) {
1825			mpte->wire_count--;
1826			KASSERT(mpte->wire_count > 0,
1827			    ("pmap_enter: missing reference to page table page,"
1828			    " va: %p", (void *)va));
1829		}
1830	} else
1831		pmap->pm_stats.resident_count++;
1832
1833	/*
1834	 * Enter on the PV list if part of our managed memory. Note that we
1835	 * raise IPL while manipulating pv_table since pmap_enter can be
1836	 * called at interrupt time.
1837	 */
1838	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1839		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1840		    ("pmap_enter: managed mapping within the clean submap"));
1841		pmap_insert_entry(pmap, va, mpte, m, wired);
1842	}
1843	/*
1844	 * Increment counters
1845	 */
1846	if (wired)
1847		pmap->pm_stats.wired_count++;
1848
1849validate:
1850	if ((access & VM_PROT_WRITE) != 0)
1851		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1852	rw = init_pte_prot(va, m, prot);
1853
1854#ifdef PMAP_DEBUG
1855	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1856#endif
1857	/*
1858	 * Now validate mapping with desired protection/wiring.
1859	 */
1860	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1861
1862	if (is_cacheable_mem(pa))
1863		newpte |= PTE_CACHE;
1864	else
1865		newpte |= PTE_UNCACHED;
1866
1867	if (wired)
1868		newpte |= PTE_W;
1869
1870	if (is_kernel_pmap(pmap)) {
1871	         newpte |= PTE_G;
1872	}
1873
1874	/*
1875	 * if the mapping or permission bits are different, we need to
1876	 * update the pte.
1877	 */
1878	if (origpte != newpte) {
1879		if (origpte & PTE_V) {
1880			*pte = newpte;
1881			if (page_is_managed(opa) && (opa != pa)) {
1882				if (om->md.pv_flags & PV_TABLE_REF)
1883					vm_page_flag_set(om, PG_REFERENCED);
1884				om->md.pv_flags &=
1885				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1886			}
1887			if (origpte & PTE_M) {
1888				KASSERT((origpte & PTE_RW),
1889				    ("pmap_enter: modified page not writable:"
1890				    " va: %p, pte: 0x%x", (void *)va, origpte));
1891				if (page_is_managed(opa))
1892					vm_page_dirty(om);
1893			}
1894		} else {
1895			*pte = newpte;
1896		}
1897	}
1898	pmap_update_page(pmap, va, newpte);
1899
1900	/*
1901	 * Sync I & D caches for executable pages.  Do this only if the the
1902	 * target pmap belongs to the current process.  Otherwise, an
1903	 * unresolvable TLB miss may occur.
1904	 */
1905	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1906	    (prot & VM_PROT_EXECUTE)) {
1907		mips_icache_sync_range(va, PAGE_SIZE);
1908		mips_dcache_wbinv_range(va, PAGE_SIZE);
1909	}
1910	vm_page_unlock_queues();
1911	PMAP_UNLOCK(pmap);
1912}
1913
1914/*
1915 * this code makes some *MAJOR* assumptions:
1916 * 1. Current pmap & pmap exists.
1917 * 2. Not wired.
1918 * 3. Read access.
1919 * 4. No page table pages.
1920 * but is *MUCH* faster than pmap_enter...
1921 */
1922
1923void
1924pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1925{
1926
1927	PMAP_LOCK(pmap);
1928	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1929	PMAP_UNLOCK(pmap);
1930}
1931
1932static vm_page_t
1933pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1934    vm_prot_t prot, vm_page_t mpte)
1935{
1936	pt_entry_t *pte;
1937	vm_offset_t pa;
1938
1939	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1940	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1941	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1942	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1943	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1944
1945	/*
1946	 * In the case that a page table page is not resident, we are
1947	 * creating it here.
1948	 */
1949	if (va < VM_MAXUSER_ADDRESS) {
1950		unsigned ptepindex;
1951		vm_offset_t pteva;
1952
1953		/*
1954		 * Calculate pagetable page index
1955		 */
1956		ptepindex = va >> SEGSHIFT;
1957		if (mpte && (mpte->pindex == ptepindex)) {
1958			mpte->wire_count++;
1959		} else {
1960			/*
1961			 * Get the page directory entry
1962			 */
1963			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1964
1965			/*
1966			 * If the page table page is mapped, we just
1967			 * increment the hold count, and activate it.
1968			 */
1969			if (pteva) {
1970				if (pmap->pm_ptphint &&
1971				    (pmap->pm_ptphint->pindex == ptepindex)) {
1972					mpte = pmap->pm_ptphint;
1973				} else {
1974					mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
1975					pmap->pm_ptphint = mpte;
1976				}
1977				mpte->wire_count++;
1978			} else {
1979				mpte = _pmap_allocpte(pmap, ptepindex,
1980				    M_NOWAIT);
1981				if (mpte == NULL)
1982					return (mpte);
1983			}
1984		}
1985	} else {
1986		mpte = NULL;
1987	}
1988
1989	pte = pmap_pte(pmap, va);
1990	if (pmap_pte_v(pte)) {
1991		if (mpte != NULL) {
1992			mpte->wire_count--;
1993			mpte = NULL;
1994		}
1995		return (mpte);
1996	}
1997
1998	/*
1999	 * Enter on the PV list if part of our managed memory.
2000	 */
2001	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2002	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2003		if (mpte != NULL) {
2004			pmap_unwire_pte_hold(pmap, mpte);
2005			mpte = NULL;
2006		}
2007		return (mpte);
2008	}
2009
2010	/*
2011	 * Increment counters
2012	 */
2013	pmap->pm_stats.resident_count++;
2014
2015	pa = VM_PAGE_TO_PHYS(m);
2016
2017	/*
2018	 * Now validate mapping with RO protection
2019	 */
2020	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2021
2022	if (is_cacheable_mem(pa))
2023		*pte |= PTE_CACHE;
2024	else
2025		*pte |= PTE_UNCACHED;
2026
2027	if (is_kernel_pmap(pmap))
2028		*pte |= PTE_G;
2029	else {
2030		*pte |= PTE_RO;
2031		/*
2032		 * Sync I & D caches.  Do this only if the the target pmap
2033		 * belongs to the current process.  Otherwise, an
2034		 * unresolvable TLB miss may occur. */
2035		if (pmap == &curproc->p_vmspace->vm_pmap) {
2036			va &= ~PAGE_MASK;
2037			mips_icache_sync_range(va, PAGE_SIZE);
2038			mips_dcache_wbinv_range(va, PAGE_SIZE);
2039		}
2040	}
2041	return (mpte);
2042}
2043
2044/*
2045 * Make a temporary mapping for a physical address.  This is only intended
2046 * to be used for panic dumps.
2047 */
2048void *
2049pmap_kenter_temporary(vm_paddr_t pa, int i)
2050{
2051	vm_offset_t va;
2052	register_t intr;
2053	if (i != 0)
2054		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2055		    __func__);
2056
2057	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2058		va = MIPS_PHYS_TO_KSEG0(pa);
2059	} else {
2060		int cpu;
2061		struct local_sysmaps *sysm;
2062		pt_entry_t *pte, npte;
2063
2064		/* If this is used other than for dumps, we may need to leave
2065		 * interrupts disasbled on return. If crash dumps don't work when
2066		 * we get to this point, we might want to consider this (leaving things
2067		 * disabled as a starting point ;-)
2068	 	 */
2069		intr = intr_disable();
2070		cpu = PCPU_GET(cpuid);
2071		sysm = &sysmap_lmem[cpu];
2072		/* Since this is for the debugger, no locks or any other fun */
2073		npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2074		pte = pmap_pte(kernel_pmap, sysm->base);
2075		*pte = npte;
2076		sysm->valid1 = 1;
2077		pmap_update_page(kernel_pmap, sysm->base, npte);
2078		va = sysm->base;
2079		intr_restore(intr);
2080	}
2081	return ((void *)va);
2082}
2083
2084void
2085pmap_kenter_temporary_free(vm_paddr_t pa)
2086{
2087	int cpu;
2088	register_t intr;
2089	struct local_sysmaps *sysm;
2090
2091	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2092		/* nothing to do for this case */
2093		return;
2094	}
2095	cpu = PCPU_GET(cpuid);
2096	sysm = &sysmap_lmem[cpu];
2097	if (sysm->valid1) {
2098		pt_entry_t *pte;
2099
2100		intr = intr_disable();
2101		pte = pmap_pte(kernel_pmap, sysm->base);
2102		*pte = PTE_G;
2103		pmap_invalidate_page(kernel_pmap, sysm->base);
2104		intr_restore(intr);
2105		sysm->valid1 = 0;
2106	}
2107}
2108
2109/*
2110 * Moved the code to Machine Independent
2111 *	 vm_map_pmap_enter()
2112 */
2113
2114/*
2115 * Maps a sequence of resident pages belonging to the same object.
2116 * The sequence begins with the given page m_start.  This page is
2117 * mapped at the given virtual address start.  Each subsequent page is
2118 * mapped at a virtual address that is offset from start by the same
2119 * amount as the page is offset from m_start within the object.  The
2120 * last page in the sequence is the page with the largest offset from
2121 * m_start that can be mapped at a virtual address less than the given
2122 * virtual address end.  Not every virtual page between start and end
2123 * is mapped; only those for which a resident page exists with the
2124 * corresponding offset from m_start are mapped.
2125 */
2126void
2127pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2128    vm_page_t m_start, vm_prot_t prot)
2129{
2130	vm_page_t m, mpte;
2131	vm_pindex_t diff, psize;
2132
2133	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2134	psize = atop(end - start);
2135	mpte = NULL;
2136	m = m_start;
2137	PMAP_LOCK(pmap);
2138	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2139		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2140		    prot, mpte);
2141		m = TAILQ_NEXT(m, listq);
2142	}
2143 	PMAP_UNLOCK(pmap);
2144}
2145
2146/*
2147 * pmap_object_init_pt preloads the ptes for a given object
2148 * into the specified pmap.  This eliminates the blast of soft
2149 * faults on process startup and immediately after an mmap.
2150 */
2151void
2152pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2153    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2154{
2155	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2156	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2157	    ("pmap_object_init_pt: non-device object"));
2158}
2159
2160/*
2161 *	Routine:	pmap_change_wiring
2162 *	Function:	Change the wiring attribute for a map/virtual-address
2163 *			pair.
2164 *	In/out conditions:
2165 *			The mapping must already exist in the pmap.
2166 */
2167void
2168pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2169{
2170	register pt_entry_t *pte;
2171
2172	if (pmap == NULL)
2173		return;
2174
2175	PMAP_LOCK(pmap);
2176	pte = pmap_pte(pmap, va);
2177
2178	if (wired && !pmap_pte_w(pte))
2179		pmap->pm_stats.wired_count++;
2180	else if (!wired && pmap_pte_w(pte))
2181		pmap->pm_stats.wired_count--;
2182
2183	/*
2184	 * Wiring is not a hardware characteristic so there is no need to
2185	 * invalidate TLB.
2186	 */
2187	pmap_pte_set_w(pte, wired);
2188	PMAP_UNLOCK(pmap);
2189}
2190
2191/*
2192 *	Copy the range specified by src_addr/len
2193 *	from the source map to the range dst_addr/len
2194 *	in the destination map.
2195 *
2196 *	This routine is only advisory and need not do anything.
2197 */
2198
2199void
2200pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2201    vm_size_t len, vm_offset_t src_addr)
2202{
2203}
2204
2205/*
2206 *	pmap_zero_page zeros the specified hardware page by mapping
2207 *	the page into KVM and using bzero to clear its contents.
2208 */
2209void
2210pmap_zero_page(vm_page_t m)
2211{
2212	vm_offset_t va;
2213	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2214	register_t intr;
2215
2216	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2217		va = MIPS_PHYS_TO_KSEG0(phys);
2218
2219		bzero((caddr_t)va, PAGE_SIZE);
2220		mips_dcache_wbinv_range(va, PAGE_SIZE);
2221	} else {
2222		PMAP_LMEM_MAP1(va, phys);
2223
2224		bzero((caddr_t)va, PAGE_SIZE);
2225		mips_dcache_wbinv_range(va, PAGE_SIZE);
2226
2227		PMAP_LMEM_UNMAP();
2228	}
2229}
2230
2231/*
2232 *	pmap_zero_page_area zeros the specified hardware page by mapping
2233 *	the page into KVM and using bzero to clear its contents.
2234 *
2235 *	off and size may not cover an area beyond a single hardware page.
2236 */
2237void
2238pmap_zero_page_area(vm_page_t m, int off, int size)
2239{
2240	vm_offset_t va;
2241	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2242	register_t intr;
2243
2244	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2245		va = MIPS_PHYS_TO_KSEG0(phys);
2246		bzero((char *)(caddr_t)va + off, size);
2247		mips_dcache_wbinv_range(va + off, size);
2248	} else {
2249		PMAP_LMEM_MAP1(va, phys);
2250
2251		bzero((char *)va + off, size);
2252		mips_dcache_wbinv_range(va + off, size);
2253
2254		PMAP_LMEM_UNMAP();
2255	}
2256}
2257
2258void
2259pmap_zero_page_idle(vm_page_t m)
2260{
2261	vm_offset_t va;
2262	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2263	register_t intr;
2264
2265	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2266		va = MIPS_PHYS_TO_KSEG0(phys);
2267		bzero((caddr_t)va, PAGE_SIZE);
2268		mips_dcache_wbinv_range(va, PAGE_SIZE);
2269	} else {
2270		PMAP_LMEM_MAP1(va, phys);
2271
2272		bzero((caddr_t)va, PAGE_SIZE);
2273		mips_dcache_wbinv_range(va, PAGE_SIZE);
2274
2275		PMAP_LMEM_UNMAP();
2276	}
2277}
2278
2279/*
2280 *	pmap_copy_page copies the specified (machine independent)
2281 *	page by mapping the page into virtual memory and using
2282 *	bcopy to copy the page, one machine dependent page at a
2283 *	time.
2284 */
2285void
2286pmap_copy_page(vm_page_t src, vm_page_t dst)
2287{
2288	vm_offset_t va_src, va_dst;
2289	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2290	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2291	register_t intr;
2292
2293	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2294		/* easy case, all can be accessed via KSEG0 */
2295		/*
2296		 * Flush all caches for VA that are mapped to this page
2297		 * to make sure that data in SDRAM is up to date
2298		 */
2299		pmap_flush_pvcache(src);
2300		mips_dcache_wbinv_range_index(
2301		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2302		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2303		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2304		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2305		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2306	} else {
2307		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2308
2309		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2310		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2311
2312		PMAP_LMEM_UNMAP();
2313	}
2314}
2315
2316/*
2317 * Returns true if the pmap's pv is one of the first
2318 * 16 pvs linked to from this page.  This count may
2319 * be changed upwards or downwards in the future; it
2320 * is only necessary that true be returned for a small
2321 * subset of pmaps for proper page aging.
2322 */
2323boolean_t
2324pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2325{
2326	pv_entry_t pv;
2327	int loops = 0;
2328
2329	if (m->flags & PG_FICTITIOUS)
2330		return FALSE;
2331
2332	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2333	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2334		if (pv->pv_pmap == pmap) {
2335			return TRUE;
2336		}
2337		loops++;
2338		if (loops >= 16)
2339			break;
2340	}
2341	return (FALSE);
2342}
2343
2344/*
2345 * Remove all pages from specified address space
2346 * this aids process exit speeds.  Also, this code
2347 * is special cased for current process only, but
2348 * can have the more generic (and slightly slower)
2349 * mode enabled.  This is much faster than pmap_remove
2350 * in the case of running down an entire address space.
2351 */
2352void
2353pmap_remove_pages(pmap_t pmap)
2354{
2355	pt_entry_t *pte, tpte;
2356	pv_entry_t pv, npv;
2357	vm_page_t m;
2358
2359	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2360		printf("warning: pmap_remove_pages called with non-current pmap\n");
2361		return;
2362	}
2363	vm_page_lock_queues();
2364	PMAP_LOCK(pmap);
2365	sched_pin();
2366	//XXX need to be TAILQ_FOREACH_SAFE ?
2367	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2368
2369		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2370		if (!pmap_pte_v(pte))
2371			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2372		tpte = *pte;
2373
2374/*
2375 * We cannot remove wired pages from a process' mapping at this time
2376 */
2377		if (tpte & PTE_W) {
2378			npv = TAILQ_NEXT(pv, pv_plist);
2379			continue;
2380		}
2381		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2382
2383		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2384		KASSERT(m != NULL,
2385		    ("pmap_remove_pages: bad tpte %x", tpte));
2386
2387		pv->pv_pmap->pm_stats.resident_count--;
2388
2389		/*
2390		 * Update the vm_page_t clean and reference bits.
2391		 */
2392		if (tpte & PTE_M) {
2393			vm_page_dirty(m);
2394		}
2395		npv = TAILQ_NEXT(pv, pv_plist);
2396		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2397
2398		m->md.pv_list_count--;
2399		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2400		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2401			vm_page_flag_clear(m, PG_WRITEABLE);
2402		}
2403		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2404		free_pv_entry(pv);
2405	}
2406	sched_unpin();
2407	pmap_invalidate_all(pmap);
2408	PMAP_UNLOCK(pmap);
2409	vm_page_unlock_queues();
2410}
2411
2412/*
2413 * pmap_testbit tests bits in pte's
2414 * note that the testbit/changebit routines are inline,
2415 * and a lot of things compile-time evaluate.
2416 */
2417static boolean_t
2418pmap_testbit(vm_page_t m, int bit)
2419{
2420	pv_entry_t pv;
2421	pt_entry_t *pte;
2422	boolean_t rv = FALSE;
2423
2424	if (m->flags & PG_FICTITIOUS)
2425		return rv;
2426
2427	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2428		return rv;
2429
2430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2431	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2432#if defined(PMAP_DIAGNOSTIC)
2433		if (!pv->pv_pmap) {
2434			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2435			continue;
2436		}
2437#endif
2438		PMAP_LOCK(pv->pv_pmap);
2439		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2440		rv = (*pte & bit) != 0;
2441		PMAP_UNLOCK(pv->pv_pmap);
2442		if (rv)
2443			break;
2444	}
2445	return (rv);
2446}
2447
2448/*
2449 * this routine is used to modify bits in ptes
2450 */
2451static __inline void
2452pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2453{
2454	register pv_entry_t pv;
2455	register pt_entry_t *pte;
2456
2457	if (m->flags & PG_FICTITIOUS)
2458		return;
2459
2460	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2461	/*
2462	 * Loop over all current mappings setting/clearing as appropos If
2463	 * setting RO do we need to clear the VAC?
2464	 */
2465	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2466#if defined(PMAP_DIAGNOSTIC)
2467		if (!pv->pv_pmap) {
2468			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2469			continue;
2470		}
2471#endif
2472
2473		PMAP_LOCK(pv->pv_pmap);
2474		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2475
2476		if (setem) {
2477			*(int *)pte |= bit;
2478			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2479		} else {
2480			vm_offset_t pbits = *(vm_offset_t *)pte;
2481
2482			if (pbits & bit) {
2483				if (bit == PTE_RW) {
2484					if (pbits & PTE_M) {
2485						vm_page_dirty(m);
2486					}
2487					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2488					    PTE_RO;
2489				} else {
2490					*(int *)pte = pbits & ~bit;
2491				}
2492				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2493			}
2494		}
2495		PMAP_UNLOCK(pv->pv_pmap);
2496	}
2497	if (!setem && bit == PTE_RW)
2498		vm_page_flag_clear(m, PG_WRITEABLE);
2499}
2500
2501/*
2502 *	pmap_page_wired_mappings:
2503 *
2504 *	Return the number of managed mappings to the given physical page
2505 *	that are wired.
2506 */
2507int
2508pmap_page_wired_mappings(vm_page_t m)
2509{
2510	pv_entry_t pv;
2511	int count;
2512
2513	count = 0;
2514	if ((m->flags & PG_FICTITIOUS) != 0)
2515		return (count);
2516	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2517	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2518	    if (pv->pv_wired)
2519		count++;
2520	return (count);
2521}
2522
2523/*
2524 * Clear the write and modified bits in each of the given page's mappings.
2525 */
2526void
2527pmap_remove_write(vm_page_t m)
2528{
2529	pv_entry_t pv, npv;
2530	vm_offset_t va;
2531	pt_entry_t *pte;
2532
2533	if ((m->flags & PG_WRITEABLE) == 0)
2534		return;
2535
2536	/*
2537	 * Loop over all current mappings setting/clearing as appropos.
2538	 */
2539	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2540		npv = TAILQ_NEXT(pv, pv_plist);
2541		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2542
2543		if ((pte == NULL) || !mips_pg_v(*pte))
2544			panic("page on pm_pvlist has no pte\n");
2545
2546		va = pv->pv_va;
2547		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2548		    VM_PROT_READ | VM_PROT_EXECUTE);
2549	}
2550	vm_page_flag_clear(m, PG_WRITEABLE);
2551}
2552
2553/*
2554 *	pmap_ts_referenced:
2555 *
2556 *	Return the count of reference bits for a page, clearing all of them.
2557 */
2558int
2559pmap_ts_referenced(vm_page_t m)
2560{
2561	if (m->flags & PG_FICTITIOUS)
2562		return (0);
2563
2564	if (m->md.pv_flags & PV_TABLE_REF) {
2565		m->md.pv_flags &= ~PV_TABLE_REF;
2566		return 1;
2567	}
2568	return 0;
2569}
2570
2571/*
2572 *	pmap_is_modified:
2573 *
2574 *	Return whether or not the specified physical page was modified
2575 *	in any physical maps.
2576 */
2577boolean_t
2578pmap_is_modified(vm_page_t m)
2579{
2580	if (m->flags & PG_FICTITIOUS)
2581		return FALSE;
2582
2583	if (m->md.pv_flags & PV_TABLE_MOD)
2584		return TRUE;
2585	else
2586		return pmap_testbit(m, PTE_M);
2587}
2588
2589/* N/C */
2590
2591/*
2592 *	pmap_is_prefaultable:
2593 *
2594 *	Return whether or not the specified virtual address is elgible
2595 *	for prefault.
2596 */
2597boolean_t
2598pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2599{
2600	pt_entry_t *pte;
2601	boolean_t rv;
2602
2603	rv = FALSE;
2604	PMAP_LOCK(pmap);
2605	if (*pmap_pde(pmap, addr)) {
2606		pte = pmap_pte(pmap, addr);
2607		rv = (*pte == 0);
2608	}
2609	PMAP_UNLOCK(pmap);
2610	return (rv);
2611}
2612
2613/*
2614 *	Clear the modify bits on the specified physical page.
2615 */
2616void
2617pmap_clear_modify(vm_page_t m)
2618{
2619	if (m->flags & PG_FICTITIOUS)
2620		return;
2621	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2622	if (m->md.pv_flags & PV_TABLE_MOD) {
2623		pmap_changebit(m, PTE_M, FALSE);
2624		m->md.pv_flags &= ~PV_TABLE_MOD;
2625	}
2626}
2627
2628/*
2629 *	pmap_is_referenced:
2630 *
2631 *	Return whether or not the specified physical page was referenced
2632 *	in any physical maps.
2633 */
2634boolean_t
2635pmap_is_referenced(vm_page_t m)
2636{
2637
2638	return ((m->flags & PG_FICTITIOUS) == 0 &&
2639	    (m->md.pv_flags & PV_TABLE_REF) != 0);
2640}
2641
2642/*
2643 *	pmap_clear_reference:
2644 *
2645 *	Clear the reference bit on the specified physical page.
2646 */
2647void
2648pmap_clear_reference(vm_page_t m)
2649{
2650	if (m->flags & PG_FICTITIOUS)
2651		return;
2652
2653	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2654	if (m->md.pv_flags & PV_TABLE_REF) {
2655		m->md.pv_flags &= ~PV_TABLE_REF;
2656	}
2657}
2658
2659/*
2660 * Miscellaneous support routines follow
2661 */
2662
2663/*
2664 * Map a set of physical memory pages into the kernel virtual
2665 * address space. Return a pointer to where it is mapped. This
2666 * routine is intended to be used for mapping device memory,
2667 * NOT real memory.
2668 */
2669
2670/*
2671 * Map a set of physical memory pages into the kernel virtual
2672 * address space. Return a pointer to where it is mapped. This
2673 * routine is intended to be used for mapping device memory,
2674 * NOT real memory.
2675 */
2676void *
2677pmap_mapdev(vm_offset_t pa, vm_size_t size)
2678{
2679        vm_offset_t va, tmpva, offset;
2680
2681	/*
2682	 * KSEG1 maps only first 512M of phys address space. For
2683	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2684	 */
2685	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2686		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2687	else {
2688		offset = pa & PAGE_MASK;
2689		size = roundup(size + offset, PAGE_SIZE);
2690
2691		va = kmem_alloc_nofault(kernel_map, size);
2692		if (!va)
2693			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2694		pa = trunc_page(pa);
2695		for (tmpva = va; size > 0;) {
2696			pmap_kenter(tmpva, pa);
2697			size -= PAGE_SIZE;
2698			tmpva += PAGE_SIZE;
2699			pa += PAGE_SIZE;
2700		}
2701	}
2702
2703	return ((void *)(va + offset));
2704}
2705
2706void
2707pmap_unmapdev(vm_offset_t va, vm_size_t size)
2708{
2709	vm_offset_t base, offset, tmpva;
2710
2711	/* If the address is within KSEG1 then there is nothing to do */
2712	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2713		return;
2714
2715	base = trunc_page(va);
2716	offset = va & PAGE_MASK;
2717	size = roundup(size + offset, PAGE_SIZE);
2718	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2719		pmap_kremove(tmpva);
2720	kmem_free(kernel_map, base, size);
2721}
2722
2723/*
2724 * perform the pmap work for mincore
2725 */
2726int
2727pmap_mincore(pmap_t pmap, vm_offset_t addr)
2728{
2729
2730	pt_entry_t *ptep, pte;
2731	vm_page_t m;
2732	int val = 0;
2733
2734	PMAP_LOCK(pmap);
2735	ptep = pmap_pte(pmap, addr);
2736	pte = (ptep != NULL) ? *ptep : 0;
2737	PMAP_UNLOCK(pmap);
2738
2739	if (mips_pg_v(pte)) {
2740		vm_offset_t pa;
2741
2742		val = MINCORE_INCORE;
2743		pa = mips_tlbpfn_to_paddr(pte);
2744		if (!page_is_managed(pa))
2745			return val;
2746
2747		m = PHYS_TO_VM_PAGE(pa);
2748
2749		/*
2750		 * Modified by us
2751		 */
2752		if (pte & PTE_M)
2753			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2754		/*
2755		 * Modified by someone
2756		 */
2757		else {
2758			vm_page_lock_queues();
2759			if (m->dirty || pmap_is_modified(m))
2760				val |= MINCORE_MODIFIED_OTHER;
2761			vm_page_unlock_queues();
2762		}
2763		/*
2764		 * Referenced by us or someone
2765		 */
2766		vm_page_lock_queues();
2767		if ((m->flags & PG_REFERENCED) || pmap_is_referenced(m))
2768			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2769		vm_page_unlock_queues();
2770	}
2771	return val;
2772}
2773
2774void
2775pmap_activate(struct thread *td)
2776{
2777	pmap_t pmap, oldpmap;
2778	struct proc *p = td->td_proc;
2779
2780	critical_enter();
2781
2782	pmap = vmspace_pmap(p->p_vmspace);
2783	oldpmap = PCPU_GET(curpmap);
2784
2785	if (oldpmap)
2786		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2787	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2788	pmap_asid_alloc(pmap);
2789	if (td == curthread) {
2790		PCPU_SET(segbase, pmap->pm_segtab);
2791		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2792	}
2793
2794	PCPU_SET(curpmap, pmap);
2795	critical_exit();
2796}
2797
2798void
2799pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2800{
2801}
2802
2803/*
2804 *	Increase the starting virtual address of the given mapping if a
2805 *	different alignment might result in more superpage mappings.
2806 */
2807void
2808pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2809    vm_offset_t *addr, vm_size_t size)
2810{
2811	vm_offset_t superpage_offset;
2812
2813	if (size < NBSEG)
2814		return;
2815	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2816		offset += ptoa(object->pg_color);
2817	superpage_offset = offset & SEGOFSET;
2818	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2819	    (*addr & SEGOFSET) == superpage_offset)
2820		return;
2821	if ((*addr & SEGOFSET) < superpage_offset)
2822		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2823	else
2824		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2825}
2826
2827/*
2828 * 	Increase the starting virtual address of the given mapping so
2829 * 	that it is aligned to not be the second page in a TLB entry.
2830 * 	This routine assumes that the length is appropriately-sized so
2831 * 	that the allocation does not share a TLB entry at all if required.
2832 */
2833void
2834pmap_align_tlb(vm_offset_t *addr)
2835{
2836	if ((*addr & PAGE_SIZE) == 0)
2837		return;
2838	*addr += PAGE_SIZE;
2839	return;
2840}
2841
2842int pmap_pid_dump(int pid);
2843
2844int
2845pmap_pid_dump(int pid)
2846{
2847	pmap_t pmap;
2848	struct proc *p;
2849	int npte = 0;
2850	int index;
2851
2852	sx_slock(&allproc_lock);
2853	LIST_FOREACH(p, &allproc, p_list) {
2854		if (p->p_pid != pid)
2855			continue;
2856
2857		if (p->p_vmspace) {
2858			int i, j;
2859
2860			printf("vmspace is %p\n",
2861			       p->p_vmspace);
2862			index = 0;
2863			pmap = vmspace_pmap(p->p_vmspace);
2864			printf("pmap asid:%x generation:%x\n",
2865			       pmap->pm_asid[0].asid,
2866			       pmap->pm_asid[0].gen);
2867			for (i = 0; i < NUSERPGTBLS; i++) {
2868				pd_entry_t *pde;
2869				pt_entry_t *pte;
2870				unsigned base = i << SEGSHIFT;
2871
2872				pde = &pmap->pm_segtab[i];
2873				if (pde && pmap_pde_v(pde)) {
2874					for (j = 0; j < 1024; j++) {
2875						vm_offset_t va = base +
2876						(j << PAGE_SHIFT);
2877
2878						pte = pmap_pte(pmap, va);
2879						if (pte && pmap_pte_v(pte)) {
2880							vm_offset_t pa;
2881							vm_page_t m;
2882
2883							pa = mips_tlbpfn_to_paddr(*pte);
2884							m = PHYS_TO_VM_PAGE(pa);
2885							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2886							    (void *)va,
2887							    (void *)pa,
2888							    m->hold_count,
2889							    m->wire_count,
2890							    m->flags);
2891							npte++;
2892							index++;
2893							if (index >= 2) {
2894								index = 0;
2895								printf("\n");
2896							} else {
2897								printf(" ");
2898							}
2899						}
2900					}
2901				}
2902			}
2903		} else {
2904		  printf("Process pid:%d has no vm_space\n", pid);
2905		}
2906		break;
2907	}
2908	sx_sunlock(&allproc_lock);
2909	return npte;
2910}
2911
2912
2913#if defined(DEBUG)
2914
2915static void pads(pmap_t pm);
2916void pmap_pvdump(vm_offset_t pa);
2917
2918/* print address space of pmap*/
2919static void
2920pads(pmap_t pm)
2921{
2922	unsigned va, i, j;
2923	pt_entry_t *ptep;
2924
2925	if (pm == kernel_pmap)
2926		return;
2927	for (i = 0; i < NPTEPG; i++)
2928		if (pm->pm_segtab[i])
2929			for (j = 0; j < NPTEPG; j++) {
2930				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
2931				if (pm == kernel_pmap && va < KERNBASE)
2932					continue;
2933				if (pm != kernel_pmap &&
2934				    va >= VM_MAXUSER_ADDRESS)
2935					continue;
2936				ptep = pmap_pte(pm, va);
2937				if (pmap_pte_v(ptep))
2938					printf("%x:%x ", va, *(int *)ptep);
2939			}
2940
2941}
2942
2943void
2944pmap_pvdump(vm_offset_t pa)
2945{
2946	register pv_entry_t pv;
2947	vm_page_t m;
2948
2949	printf("pa %x", pa);
2950	m = PHYS_TO_VM_PAGE(pa);
2951	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
2952	    pv = TAILQ_NEXT(pv, pv_list)) {
2953		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
2954		pads(pv->pv_pmap);
2955	}
2956	printf(" ");
2957}
2958
2959/* N/C */
2960#endif
2961
2962
2963/*
2964 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
2965 * It takes almost as much or more time to search the TLB for a
2966 * specific ASID and flush those entries as it does to flush the entire TLB.
2967 * Therefore, when we allocate a new ASID, we just take the next number. When
2968 * we run out of numbers, we flush the TLB, increment the generation count
2969 * and start over. ASID zero is reserved for kernel use.
2970 */
2971static void
2972pmap_asid_alloc(pmap)
2973	pmap_t pmap;
2974{
2975	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
2976	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
2977	else {
2978		if (PCPU_GET(next_asid) == pmap_max_asid) {
2979			MIPS_TBIAP();
2980			PCPU_SET(asid_generation,
2981			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
2982			if (PCPU_GET(asid_generation) == 0) {
2983				PCPU_SET(asid_generation, 1);
2984			}
2985			PCPU_SET(next_asid, 1);	/* 0 means invalid */
2986		}
2987		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
2988		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
2989		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
2990	}
2991}
2992
2993int
2994page_is_managed(vm_offset_t pa)
2995{
2996	vm_offset_t pgnum = mips_btop(pa);
2997
2998	if (pgnum >= first_page) {
2999		vm_page_t m;
3000
3001		m = PHYS_TO_VM_PAGE(pa);
3002		if (m == NULL)
3003			return 0;
3004		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
3005			return 1;
3006	}
3007	return 0;
3008}
3009
3010static int
3011init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
3012{
3013	int rw = 0;
3014
3015	if (!(prot & VM_PROT_WRITE))
3016		rw = PTE_ROPAGE;
3017	else {
3018		if (va >= VM_MIN_KERNEL_ADDRESS) {
3019			/*
3020			 * Don't bother to trap on kernel writes, just
3021			 * record page as dirty.
3022			 */
3023			rw = PTE_RWPAGE;
3024			vm_page_dirty(m);
3025		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
3026		    m->dirty == VM_PAGE_BITS_ALL)
3027			rw = PTE_RWPAGE;
3028		else
3029			rw = PTE_CWPAGE;
3030		vm_page_flag_set(m, PG_WRITEABLE);
3031	}
3032	return rw;
3033}
3034
3035/*
3036 *	pmap_page_is_free:
3037 *
3038 *	Called when a page is freed to allow pmap to clean up
3039 *	any extra state associated with the page.  In this case
3040 *	clear modified/referenced bits.
3041 */
3042void
3043pmap_page_is_free(vm_page_t m)
3044{
3045
3046	m->md.pv_flags = 0;
3047}
3048
3049/*
3050 *	pmap_set_modified:
3051 *
3052 *	Sets the page modified and reference bits for the specified page.
3053 */
3054void
3055pmap_set_modified(vm_offset_t pa)
3056{
3057
3058	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3059}
3060
3061/*
3062 *	Routine:	pmap_kextract
3063 *	Function:
3064 *		Extract the physical page address associated
3065 *		virtual address.
3066 */
3067 /* PMAP_INLINE */ vm_offset_t
3068pmap_kextract(vm_offset_t va)
3069{
3070	vm_offset_t pa = 0;
3071
3072	if (va < MIPS_KSEG0_START) {
3073		/* user virtual address */
3074		pt_entry_t *ptep;
3075
3076		if (curproc && curproc->p_vmspace) {
3077			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3078			if (ptep)
3079				pa = mips_tlbpfn_to_paddr(*ptep) |
3080				    (va & PAGE_MASK);
3081		}
3082	} else if (va >= MIPS_KSEG0_START &&
3083	    va < MIPS_KSEG1_START)
3084		pa = MIPS_KSEG0_TO_PHYS(va);
3085	else if (va >= MIPS_KSEG1_START &&
3086	    va < MIPS_KSEG2_START)
3087		pa = MIPS_KSEG1_TO_PHYS(va);
3088	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3089		pt_entry_t *ptep;
3090
3091		/* Is the kernel pmap initialized? */
3092		if (kernel_pmap->pm_active) {
3093			/* Its inside the virtual address range */
3094			ptep = pmap_pte(kernel_pmap, va);
3095			if (ptep)
3096				pa = mips_tlbpfn_to_paddr(*ptep) |
3097				    (va & PAGE_MASK);
3098		}
3099	}
3100	return pa;
3101}
3102
3103void
3104pmap_flush_pvcache(vm_page_t m)
3105{
3106	pv_entry_t pv;
3107
3108	if (m != NULL) {
3109		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3110	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3111			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3112		}
3113	}
3114}
3115
3116void
3117pmap_save_tlb(void)
3118{
3119	int tlbno, cpu;
3120
3121	cpu = PCPU_GET(cpuid);
3122
3123	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno)
3124		MachTLBRead(tlbno, &tlbstash[cpu][tlbno]);
3125}
3126
3127#ifdef DDB
3128#include <ddb/ddb.h>
3129
3130DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3131{
3132	int cpu, tlbno;
3133	struct tlb *tlb;
3134
3135	if (have_addr)
3136		cpu = ((addr >> 4) % 16) * 10 + (addr % 16);
3137	else
3138		cpu = PCPU_GET(cpuid);
3139
3140	if (cpu < 0 || cpu >= mp_ncpus) {
3141		db_printf("Invalid CPU %d\n", cpu);
3142		return;
3143	} else
3144		db_printf("CPU %d:\n", cpu);
3145
3146	if (cpu == PCPU_GET(cpuid))
3147		pmap_save_tlb();
3148
3149	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno) {
3150		tlb = &tlbstash[cpu][tlbno];
3151		if (tlb->tlb_lo0 & PTE_V || tlb->tlb_lo1 & PTE_V) {
3152			printf("TLB %2d vad 0x%0lx ",
3153				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3154		} else {
3155			printf("TLB*%2d vad 0x%0lx ",
3156				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3157		}
3158		printf("0=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo0));
3159		printf("%c", tlb->tlb_lo0 & PTE_V ? 'V' : '-');
3160		printf("%c", tlb->tlb_lo0 & PTE_M ? 'M' : '-');
3161		printf("%c", tlb->tlb_lo0 & PTE_G ? 'G' : '-');
3162		printf(" atr %x ", (tlb->tlb_lo0 >> 3) & 7);
3163		printf("1=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo1));
3164		printf("%c", tlb->tlb_lo1 & PTE_V ? 'V' : '-');
3165		printf("%c", tlb->tlb_lo1 & PTE_M ? 'M' : '-');
3166		printf("%c", tlb->tlb_lo1 & PTE_G ? 'G' : '-');
3167		printf(" atr %x ", (tlb->tlb_lo1 >> 3) & 7);
3168		printf(" sz=%x pid=%x\n", tlb->tlb_mask,
3169		       (tlb->tlb_hi & 0x000000ff));
3170	}
3171}
3172#endif	/* DDB */
3173