pmap.c revision 206717
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	In addition to hardware address maps, this
46 *	module is called upon to provide software-use-only
47 *	maps which may or may not be stored in the same
48 *	form as hardware maps.	These pseudo-maps are
49 *	used to store intermediate results from copy
50 *	operations to and from address spaces.
51 *
52 *	Since the information managed by this module is
53 *	also stored by the logical address mapping module,
54 *	this module may throw away valid virtual-to-physical
55 *	mappings at almost any time.  However, invalidations
56 *	of virtual-to-physical mappings must be done as
57 *	requested.
58 *
59 *	In order to cope with hardware architectures which
60 *	make virtual-to-physical map invalidates expensive,
61 *	this module may delay invalidate or reduced protection
62 *	operations until such time as they are actually
63 *	necessary.  This module is given full information as
64 *	to which processors are currently using which maps,
65 *	and to when physical maps must be made correct.
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/mips/mips/pmap.c 206717 2010-04-17 01:17:31Z jmallett $");
70
71#include "opt_ddb.h"
72#include "opt_msgbuf.h"
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/proc.h>
76#include <sys/msgbuf.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/smp.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <vm/vm_kern.h>
86#include <vm/vm_page.h>
87#include <vm/vm_map.h>
88#include <vm/vm_object.h>
89#include <vm/vm_extern.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_pager.h>
92#include <vm/uma.h>
93#include <sys/pcpu.h>
94#include <sys/sched.h>
95#ifdef SMP
96#include <sys/smp.h>
97#endif
98
99#include <machine/cache.h>
100#include <machine/md_var.h>
101
102#if defined(DIAGNOSTIC)
103#define	PMAP_DIAGNOSTIC
104#endif
105
106#undef PMAP_DEBUG
107
108#ifndef PMAP_SHPGPERPROC
109#define	PMAP_SHPGPERPROC 200
110#endif
111
112#if !defined(PMAP_DIAGNOSTIC)
113#define	PMAP_INLINE __inline
114#else
115#define	PMAP_INLINE
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_pde(m, v)	       (&((m)->pm_segtab[(vm_offset_t)(v) >> SEGSHIFT]))
122#define	segtab_pde(m, v)	(m[(vm_offset_t)(v) >> SEGSHIFT])
123
124#define	pmap_pte_w(pte)		((*(int *)pte & PTE_W) != 0)
125#define	pmap_pde_v(pte)		((*(int *)pte) != 0)
126#define	pmap_pte_m(pte)		((*(int *)pte & PTE_M) != 0)
127#define	pmap_pte_v(pte)		((*(int *)pte & PTE_V) != 0)
128
129#define	pmap_pte_set_w(pte, v)	((v)?(*(int *)pte |= PTE_W):(*(int *)pte &= ~PTE_W))
130#define	pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
131
132#define	MIPS_SEGSIZE		(1L << SEGSHIFT)
133#define	mips_segtrunc(va)	((va) & ~(MIPS_SEGSIZE-1))
134#define	pmap_TLB_invalidate_all() MIPS_TBIAP()
135#define	pmap_va_asid(pmap, va)	((va) | ((pmap)->pm_asid[PCPU_GET(cpuid)].asid << VMTLB_PID_SHIFT))
136#define	is_kernel_pmap(x)	((x) == kernel_pmap)
137
138struct pmap kernel_pmap_store;
139pd_entry_t *kernel_segmap;
140
141vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
142vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
143
144static int nkpt;
145unsigned pmap_max_asid;		/* max ASID supported by the system */
146
147
148#define	PMAP_ASID_RESERVED	0
149
150
151vm_offset_t kernel_vm_end;
152
153static struct tlb tlbstash[MAXCPU][MIPS_MAX_TLB_ENTRIES];
154
155static void pmap_asid_alloc(pmap_t pmap);
156
157/*
158 * Data for the pv entry allocation mechanism
159 */
160static uma_zone_t pvzone;
161static struct vm_object pvzone_obj;
162static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
163
164static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
165static pv_entry_t get_pv_entry(pmap_t locked_pmap);
166static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
167
168static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
169    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
170static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va);
171static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
172static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
173static boolean_t pmap_testbit(vm_page_t m, int bit);
174static void
175pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
176    vm_page_t m, boolean_t wired);
177static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
178    vm_offset_t va, vm_page_t m);
179
180static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
181
182static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
183static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
184static int init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot);
185static void pmap_TLB_invalidate_kernel(vm_offset_t);
186static void pmap_TLB_update_kernel(vm_offset_t, pt_entry_t);
187
188#ifdef SMP
189static void pmap_invalidate_page_action(void *arg);
190static void pmap_invalidate_all_action(void *arg);
191static void pmap_update_page_action(void *arg);
192
193#endif
194
195struct local_sysmaps {
196	struct mtx lock;
197	vm_offset_t base;
198	uint16_t valid1, valid2;
199};
200
201/* This structure is for large memory
202 * above 512Meg. We can't (in 32 bit mode)
203 * just use the direct mapped MIPS_KSEG0_TO_PHYS()
204 * macros since we can't see the memory and must
205 * map it in when we need to access it. In 64
206 * bit mode this goes away.
207 */
208static struct local_sysmaps sysmap_lmem[MAXCPU];
209caddr_t virtual_sys_start = (caddr_t)0;
210
211#define	PMAP_LMEM_MAP1(va, phys)					\
212	int cpu;							\
213	struct local_sysmaps *sysm;					\
214	pt_entry_t *pte, npte;						\
215									\
216	cpu = PCPU_GET(cpuid);						\
217	sysm = &sysmap_lmem[cpu];					\
218	PMAP_LGMEM_LOCK(sysm);						\
219	intr = intr_disable();						\
220	sched_pin();							\
221	va = sysm->base;						\
222	npte = mips_paddr_to_tlbpfn(phys) |				\
223	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
224	pte = pmap_pte(kernel_pmap, va);				\
225	*pte = npte;							\
226	sysm->valid1 = 1;
227
228#define	PMAP_LMEM_MAP2(va1, phys1, va2, phys2)				\
229	int cpu;							\
230	struct local_sysmaps *sysm;					\
231	pt_entry_t *pte, npte;						\
232									\
233	cpu = PCPU_GET(cpuid);						\
234	sysm = &sysmap_lmem[cpu];					\
235	PMAP_LGMEM_LOCK(sysm);						\
236	intr = intr_disable();						\
237	sched_pin();							\
238	va1 = sysm->base;						\
239	va2 = sysm->base + PAGE_SIZE;					\
240	npte = mips_paddr_to_tlbpfn(phys2) |				\
241	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
242	pte = pmap_pte(kernel_pmap, va1);				\
243	*pte = npte;							\
244	npte = mips_paddr_to_tlbpfn(phys2) |				\
245	    PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;			\
246	pte = pmap_pte(kernel_pmap, va2);				\
247	*pte = npte;							\
248	sysm->valid1 = 1;						\
249	sysm->valid2 = 1;
250
251#define	PMAP_LMEM_UNMAP()						\
252	pte = pmap_pte(kernel_pmap, sysm->base);			\
253	*pte = PTE_G;							\
254	pmap_invalidate_page(kernel_pmap, sysm->base);			\
255	sysm->valid1 = 0;						\
256	pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);		\
257	*pte = PTE_G;							\
258	pmap_invalidate_page(kernel_pmap, sysm->base + PAGE_SIZE);	\
259	sysm->valid2 = 0;						\
260	sched_unpin();							\
261	intr_restore(intr);						\
262	PMAP_LGMEM_UNLOCK(sysm);
263
264pd_entry_t
265pmap_segmap(pmap_t pmap, vm_offset_t va)
266{
267	if (pmap->pm_segtab)
268		return (pmap->pm_segtab[((vm_offset_t)(va) >> SEGSHIFT)]);
269	else
270		return ((pd_entry_t)0);
271}
272
273/*
274 *	Routine:	pmap_pte
275 *	Function:
276 *		Extract the page table entry associated
277 *		with the given map/virtual_address pair.
278 */
279pt_entry_t *
280pmap_pte(pmap_t pmap, vm_offset_t va)
281{
282	pt_entry_t *pdeaddr;
283
284	if (pmap) {
285		pdeaddr = (pt_entry_t *)pmap_segmap(pmap, va);
286		if (pdeaddr) {
287			return pdeaddr + vad_to_pte_offset(va);
288		}
289	}
290	return ((pt_entry_t *)0);
291}
292
293
294vm_offset_t
295pmap_steal_memory(vm_size_t size)
296{
297	vm_size_t bank_size;
298	vm_offset_t pa, va;
299
300	size = round_page(size);
301
302	bank_size = phys_avail[1] - phys_avail[0];
303	while (size > bank_size) {
304		int i;
305
306		for (i = 0; phys_avail[i + 2]; i += 2) {
307			phys_avail[i] = phys_avail[i + 2];
308			phys_avail[i + 1] = phys_avail[i + 3];
309		}
310		phys_avail[i] = 0;
311		phys_avail[i + 1] = 0;
312		if (!phys_avail[0])
313			panic("pmap_steal_memory: out of memory");
314		bank_size = phys_avail[1] - phys_avail[0];
315	}
316
317	pa = phys_avail[0];
318	phys_avail[0] += size;
319	if (pa >= MIPS_KSEG0_LARGEST_PHYS) {
320		panic("Out of memory below 512Meg?");
321	}
322	va = MIPS_PHYS_TO_KSEG0(pa);
323	bzero((caddr_t)va, size);
324	return va;
325}
326
327/*
328 *	Bootstrap the system enough to run with virtual memory.  This
329 * assumes that the phys_avail array has been initialized.
330 */
331void
332pmap_bootstrap(void)
333{
334	pt_entry_t *pgtab;
335	pt_entry_t *pte;
336	int i, j;
337	int memory_larger_than_512meg = 0;
338
339	/* Sort. */
340again:
341	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
342		/*
343		 * Keep the memory aligned on page boundary.
344		 */
345		phys_avail[i] = round_page(phys_avail[i]);
346		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
347
348		if (phys_avail[i + 1] >= MIPS_KSEG0_LARGEST_PHYS)
349			memory_larger_than_512meg++;
350		if (i < 2)
351			continue;
352		if (phys_avail[i - 2] > phys_avail[i]) {
353			vm_paddr_t ptemp[2];
354
355
356			ptemp[0] = phys_avail[i + 0];
357			ptemp[1] = phys_avail[i + 1];
358
359			phys_avail[i + 0] = phys_avail[i - 2];
360			phys_avail[i + 1] = phys_avail[i - 1];
361
362			phys_avail[i - 2] = ptemp[0];
363			phys_avail[i - 1] = ptemp[1];
364			goto again;
365		}
366	}
367
368	/*
369	 * Copy the phys_avail[] array before we start stealing memory from it.
370	 */
371	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
372		physmem_desc[i] = phys_avail[i];
373		physmem_desc[i + 1] = phys_avail[i + 1];
374	}
375
376	Maxmem = atop(phys_avail[i - 1]);
377
378	if (bootverbose) {
379		printf("Physical memory chunk(s):\n");
380		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
381			vm_paddr_t size;
382
383			size = phys_avail[i + 1] - phys_avail[i];
384			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
385			    (uintmax_t) phys_avail[i],
386			    (uintmax_t) phys_avail[i + 1] - 1,
387			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
388		}
389		printf("Maxmem is 0x%0lx\n", ptoa(Maxmem));
390	}
391	/*
392	 * Steal the message buffer from the beginning of memory.
393	 */
394	msgbufp = (struct msgbuf *)pmap_steal_memory(MSGBUF_SIZE);
395	msgbufinit(msgbufp, MSGBUF_SIZE);
396
397	/*
398	 * Steal thread0 kstack.
399	 */
400	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
401
402
403	virtual_avail = VM_MIN_KERNEL_ADDRESS;
404	virtual_end = VM_MAX_KERNEL_ADDRESS;
405
406#ifdef SMP
407	/*
408	 * Steal some virtual address space to map the pcpu area.
409	 */
410	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
411	pcpup = (struct pcpu *)virtual_avail;
412	virtual_avail += PAGE_SIZE * 2;
413
414	/*
415	 * Initialize the wired TLB entry mapping the pcpu region for
416	 * the BSP at 'pcpup'. Up until this point we were operating
417	 * with the 'pcpup' for the BSP pointing to a virtual address
418	 * in KSEG0 so there was no need for a TLB mapping.
419	 */
420	mips_pcpu_tlb_init(PCPU_ADDR(0));
421
422	if (bootverbose)
423		printf("pcpu is available at virtual address %p.\n", pcpup);
424#endif
425
426	/*
427	 * Steal some virtual space that will not be in kernel_segmap. This
428	 * va memory space will be used to map in kernel pages that are
429	 * outside the 512Meg region. Note that we only do this steal when
430	 * we do have memory in this region, that way for systems with
431	 * smaller memory we don't "steal" any va ranges :-)
432	 */
433	if (memory_larger_than_512meg) {
434		for (i = 0; i < MAXCPU; i++) {
435			sysmap_lmem[i].base = virtual_avail;
436			virtual_avail += PAGE_SIZE * 2;
437			sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
438			PMAP_LGMEM_LOCK_INIT(&sysmap_lmem[i]);
439		}
440	}
441	virtual_sys_start = (caddr_t)virtual_avail;
442	/*
443	 * Allocate segment table for the kernel
444	 */
445	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
446
447	/*
448	 * Allocate second level page tables for the kernel
449	 */
450	nkpt = NKPT;
451	if (memory_larger_than_512meg) {
452		/*
453		 * If we have a large memory system we CANNOT afford to hit
454		 * pmap_growkernel() and allocate memory. Since we MAY end
455		 * up with a page that is NOT mappable. For that reason we
456		 * up front grab more. Normall NKPT is 120 (YMMV see pmap.h)
457		 * this gives us 480meg of kernel virtual addresses at the
458		 * cost of 120 pages (each page gets us 4 Meg). Since the
459		 * kernel starts at virtual_avail, we can use this to
460		 * calculate how many entris are left from there to the end
461		 * of the segmap, we want to allocate all of it, which would
462		 * be somewhere above 0xC0000000 - 0xFFFFFFFF which results
463		 * in about 256 entries or so instead of the 120.
464		 */
465		nkpt = (PAGE_SIZE / sizeof(pd_entry_t)) - (virtual_avail >> SEGSHIFT);
466	}
467	pgtab = (pt_entry_t *)pmap_steal_memory(PAGE_SIZE * nkpt);
468
469	/*
470	 * The R[4-7]?00 stores only one copy of the Global bit in the
471	 * translation lookaside buffer for each 2 page entry. Thus invalid
472	 * entrys must have the Global bit set so when Entry LO and Entry HI
473	 * G bits are anded together they will produce a global bit to store
474	 * in the tlb.
475	 */
476	for (i = 0, pte = pgtab; i < (nkpt * NPTEPG); i++, pte++)
477		*pte = PTE_G;
478
479	/*
480	 * The segment table contains the KVA of the pages in the second
481	 * level page table.
482	 */
483	for (i = 0, j = (virtual_avail >> SEGSHIFT); i < nkpt; i++, j++)
484		kernel_segmap[j] = (pd_entry_t)(pgtab + (i * NPTEPG));
485
486	/*
487	 * The kernel's pmap is statically allocated so we don't have to use
488	 * pmap_create, which is unlikely to work correctly at this part of
489	 * the boot sequence (XXX and which no longer exists).
490	 */
491	PMAP_LOCK_INIT(kernel_pmap);
492	kernel_pmap->pm_segtab = kernel_segmap;
493	kernel_pmap->pm_active = ~0;
494	TAILQ_INIT(&kernel_pmap->pm_pvlist);
495	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
496	kernel_pmap->pm_asid[0].gen = 0;
497	pmap_max_asid = VMNUM_PIDS;
498	MachSetPID(0);
499}
500
501/*
502 * Initialize a vm_page's machine-dependent fields.
503 */
504void
505pmap_page_init(vm_page_t m)
506{
507
508	TAILQ_INIT(&m->md.pv_list);
509	m->md.pv_list_count = 0;
510	m->md.pv_flags = 0;
511}
512
513/*
514 *	Initialize the pmap module.
515 *	Called by vm_init, to initialize any structures that the pmap
516 *	system needs to map virtual memory.
517 *	pmap_init has been enhanced to support in a fairly consistant
518 *	way, discontiguous physical memory.
519 */
520void
521pmap_init(void)
522{
523
524	/*
525	 * Initialize the address space (zone) for the pv entries.  Set a
526	 * high water mark so that the system can recover from excessive
527	 * numbers of pv entries.
528	 */
529	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
530	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
531	pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count;
532	pv_entry_high_water = 9 * (pv_entry_max / 10);
533	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
534}
535
536/***************************************************
537 * Low level helper routines.....
538 ***************************************************/
539
540#if defined(PMAP_DIAGNOSTIC)
541
542/*
543 * This code checks for non-writeable/modified pages.
544 * This should be an invalid condition.
545 */
546static int
547pmap_nw_modified(pt_entry_t pte)
548{
549	if ((pte & (PTE_M | PTE_RO)) == (PTE_M | PTE_RO))
550		return (1);
551	else
552		return (0);
553}
554
555#endif
556
557static void
558pmap_invalidate_all(pmap_t pmap)
559{
560#ifdef SMP
561	smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *)pmap);
562}
563
564static void
565pmap_invalidate_all_action(void *arg)
566{
567	pmap_t pmap = (pmap_t)arg;
568
569#endif
570
571	if (pmap->pm_active & PCPU_GET(cpumask)) {
572		pmap_TLB_invalidate_all();
573	} else
574		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
575}
576
577struct pmap_invalidate_page_arg {
578	pmap_t pmap;
579	vm_offset_t va;
580};
581
582static __inline void
583pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
584{
585#ifdef SMP
586	struct pmap_invalidate_page_arg arg;
587
588	arg.pmap = pmap;
589	arg.va = va;
590
591	smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *)&arg);
592}
593
594static void
595pmap_invalidate_page_action(void *arg)
596{
597	pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
598	vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
599
600#endif
601
602	if (is_kernel_pmap(pmap)) {
603		pmap_TLB_invalidate_kernel(va);
604		return;
605	}
606	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
607		return;
608	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
609		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
610		return;
611	}
612	va = pmap_va_asid(pmap, (va & ~PGOFSET));
613	mips_TBIS(va);
614}
615
616static void
617pmap_TLB_invalidate_kernel(vm_offset_t va)
618{
619	u_int32_t pid;
620
621	MachTLBGetPID(pid);
622	va = va | (pid << VMTLB_PID_SHIFT);
623	mips_TBIS(va);
624}
625
626struct pmap_update_page_arg {
627	pmap_t pmap;
628	vm_offset_t va;
629	pt_entry_t pte;
630};
631
632void
633pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
634{
635#ifdef SMP
636	struct pmap_update_page_arg arg;
637
638	arg.pmap = pmap;
639	arg.va = va;
640	arg.pte = pte;
641
642	smp_rendezvous(0, pmap_update_page_action, 0, (void *)&arg);
643}
644
645static void
646pmap_update_page_action(void *arg)
647{
648	pmap_t pmap = ((struct pmap_update_page_arg *)arg)->pmap;
649	vm_offset_t va = ((struct pmap_update_page_arg *)arg)->va;
650	pt_entry_t pte = ((struct pmap_update_page_arg *)arg)->pte;
651
652#endif
653	if (is_kernel_pmap(pmap)) {
654		pmap_TLB_update_kernel(va, pte);
655		return;
656	}
657	if (pmap->pm_asid[PCPU_GET(cpuid)].gen != PCPU_GET(asid_generation))
658		return;
659	else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
660		pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
661		return;
662	}
663	va = pmap_va_asid(pmap, va);
664	MachTLBUpdate(va, pte);
665}
666
667static void
668pmap_TLB_update_kernel(vm_offset_t va, pt_entry_t pte)
669{
670	u_int32_t pid;
671
672	MachTLBGetPID(pid);
673	va = va | (pid << VMTLB_PID_SHIFT);
674
675	MachTLBUpdate(va, pte);
676}
677
678/*
679 *	Routine:	pmap_extract
680 *	Function:
681 *		Extract the physical page address associated
682 *		with the given map/virtual_address pair.
683 */
684vm_paddr_t
685pmap_extract(pmap_t pmap, vm_offset_t va)
686{
687	pt_entry_t *pte;
688	vm_offset_t retval = 0;
689
690	PMAP_LOCK(pmap);
691	pte = pmap_pte(pmap, va);
692	if (pte) {
693		retval = mips_tlbpfn_to_paddr(*pte) | (va & PAGE_MASK);
694	}
695	PMAP_UNLOCK(pmap);
696	return retval;
697}
698
699/*
700 *	Routine:	pmap_extract_and_hold
701 *	Function:
702 *		Atomically extract and hold the physical page
703 *		with the given pmap and virtual address pair
704 *		if that mapping permits the given protection.
705 */
706vm_page_t
707pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
708{
709	pt_entry_t pte;
710	vm_page_t m;
711
712	m = NULL;
713	vm_page_lock_queues();
714	PMAP_LOCK(pmap);
715
716	pte = *pmap_pte(pmap, va);
717	if (pte != 0 && pmap_pte_v(&pte) &&
718	    ((pte & PTE_RW) || (prot & VM_PROT_WRITE) == 0)) {
719		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(pte));
720		vm_page_hold(m);
721	}
722	vm_page_unlock_queues();
723	PMAP_UNLOCK(pmap);
724	return (m);
725}
726
727/***************************************************
728 * Low level mapping routines.....
729 ***************************************************/
730
731/*
732 * add a wired page to the kva
733 */
734 /* PMAP_INLINE */ void
735pmap_kenter(vm_offset_t va, vm_paddr_t pa)
736{
737	register pt_entry_t *pte;
738	pt_entry_t npte, opte;
739
740#ifdef PMAP_DEBUG
741	printf("pmap_kenter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
742#endif
743	npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W;
744
745	if (is_cacheable_mem(pa))
746		npte |= PTE_CACHE;
747	else
748		npte |= PTE_UNCACHED;
749
750	pte = pmap_pte(kernel_pmap, va);
751	opte = *pte;
752	*pte = npte;
753
754	pmap_update_page(kernel_pmap, va, npte);
755}
756
757/*
758 * remove a page from the kernel pagetables
759 */
760 /* PMAP_INLINE */ void
761pmap_kremove(vm_offset_t va)
762{
763	register pt_entry_t *pte;
764
765	/*
766	 * Write back all caches from the page being destroyed
767	 */
768	mips_dcache_wbinv_range_index(va, NBPG);
769
770	pte = pmap_pte(kernel_pmap, va);
771	*pte = PTE_G;
772	pmap_invalidate_page(kernel_pmap, va);
773}
774
775/*
776 *	Used to map a range of physical addresses into kernel
777 *	virtual address space.
778 *
779 *	The value passed in '*virt' is a suggested virtual address for
780 *	the mapping. Architectures which can support a direct-mapped
781 *	physical to virtual region can return the appropriate address
782 *	within that region, leaving '*virt' unchanged. Other
783 *	architectures should map the pages starting at '*virt' and
784 *	update '*virt' with the first usable address after the mapped
785 *	region.
786 */
787vm_offset_t
788pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
789{
790	vm_offset_t va, sva;
791
792	va = sva = *virt;
793	while (start < end) {
794		pmap_kenter(va, start);
795		va += PAGE_SIZE;
796		start += PAGE_SIZE;
797	}
798	*virt = va;
799	return (sva);
800}
801
802/*
803 * Add a list of wired pages to the kva
804 * this routine is only used for temporary
805 * kernel mappings that do not need to have
806 * page modification or references recorded.
807 * Note that old mappings are simply written
808 * over.  The page *must* be wired.
809 */
810void
811pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
812{
813	int i;
814	vm_offset_t origva = va;
815
816	for (i = 0; i < count; i++) {
817		pmap_flush_pvcache(m[i]);
818		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
819		va += PAGE_SIZE;
820	}
821
822	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
823}
824
825/*
826 * this routine jerks page mappings from the
827 * kernel -- it is meant only for temporary mappings.
828 */
829void
830pmap_qremove(vm_offset_t va, int count)
831{
832	/*
833	 * No need to wb/inv caches here,
834	 *   pmap_kremove will do it for us
835	 */
836
837	while (count-- > 0) {
838		pmap_kremove(va);
839		va += PAGE_SIZE;
840	}
841}
842
843/***************************************************
844 * Page table page management routines.....
845 ***************************************************/
846
847/*  Revision 1.507
848 *
849 * Simplify the reference counting of page table pages.	 Specifically, use
850 * the page table page's wired count rather than its hold count to contain
851 * the reference count.
852 */
853
854/*
855 * This routine unholds page table pages, and if the hold count
856 * drops to zero, then it decrements the wire count.
857 */
858static int
859_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
860{
861	vm_offset_t pteva;
862
863	/*
864	 * unmap the page table page
865	 */
866	pteva = (vm_offset_t)pmap->pm_segtab[m->pindex];
867	if (pteva >= VM_MIN_KERNEL_ADDRESS) {
868		pmap_kremove(pteva);
869		kmem_free(kernel_map, pteva, PAGE_SIZE);
870	} else {
871		KASSERT(MIPS_IS_KSEG0_ADDR(pteva),
872		    ("_pmap_unwire_pte_hold: 0x%0lx is not in kseg0",
873		    (long)pteva));
874	}
875
876	pmap->pm_segtab[m->pindex] = 0;
877	--pmap->pm_stats.resident_count;
878
879	if (pmap->pm_ptphint == m)
880		pmap->pm_ptphint = NULL;
881
882	/*
883	 * If the page is finally unwired, simply free it.
884	 */
885	vm_page_free_zero(m);
886	atomic_subtract_int(&cnt.v_wire_count, 1);
887	return (1);
888}
889
890static PMAP_INLINE int
891pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
892{
893	--m->wire_count;
894	if (m->wire_count == 0)
895		return (_pmap_unwire_pte_hold(pmap, m));
896	else
897		return (0);
898}
899
900/*
901 * After removing a page table entry, this routine is used to
902 * conditionally free the page, and manage the hold/wire counts.
903 */
904static int
905pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
906{
907	unsigned ptepindex;
908	pd_entry_t pteva;
909
910	if (va >= VM_MAXUSER_ADDRESS)
911		return (0);
912
913	if (mpte == NULL) {
914		ptepindex = (va >> SEGSHIFT);
915		if (pmap->pm_ptphint &&
916		    (pmap->pm_ptphint->pindex == ptepindex)) {
917			mpte = pmap->pm_ptphint;
918		} else {
919			pteva = *pmap_pde(pmap, va);
920			mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
921			pmap->pm_ptphint = mpte;
922		}
923	}
924	return pmap_unwire_pte_hold(pmap, mpte);
925}
926
927void
928pmap_pinit0(pmap_t pmap)
929{
930	int i;
931
932	PMAP_LOCK_INIT(pmap);
933	pmap->pm_segtab = kernel_segmap;
934	pmap->pm_active = 0;
935	pmap->pm_ptphint = NULL;
936	for (i = 0; i < MAXCPU; i++) {
937		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
938		pmap->pm_asid[i].gen = 0;
939	}
940	PCPU_SET(curpmap, pmap);
941	TAILQ_INIT(&pmap->pm_pvlist);
942	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
943}
944
945/*
946 * Initialize a preallocated and zeroed pmap structure,
947 * such as one in a vmspace structure.
948 */
949int
950pmap_pinit(pmap_t pmap)
951{
952	vm_offset_t ptdva;
953	vm_paddr_t ptdpa;
954	vm_page_t ptdpg;
955	int i;
956	int req;
957
958	PMAP_LOCK_INIT(pmap);
959
960	req = VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED |
961	    VM_ALLOC_ZERO;
962
963	/*
964	 * allocate the page directory page
965	 */
966	while ((ptdpg = vm_page_alloc(NULL, NUSERPGTBLS, req)) == NULL)
967		VM_WAIT;
968
969	ptdpg->valid = VM_PAGE_BITS_ALL;
970
971	ptdpa = VM_PAGE_TO_PHYS(ptdpg);
972	if (ptdpa < MIPS_KSEG0_LARGEST_PHYS) {
973		ptdva = MIPS_PHYS_TO_KSEG0(ptdpa);
974	} else {
975		ptdva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
976		if (ptdva == 0)
977			panic("pmap_pinit: unable to allocate kva");
978		pmap_kenter(ptdva, ptdpa);
979	}
980
981	pmap->pm_segtab = (pd_entry_t *)ptdva;
982	if ((ptdpg->flags & PG_ZERO) == 0)
983		bzero(pmap->pm_segtab, PAGE_SIZE);
984
985	pmap->pm_active = 0;
986	pmap->pm_ptphint = NULL;
987	for (i = 0; i < MAXCPU; i++) {
988		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
989		pmap->pm_asid[i].gen = 0;
990	}
991	TAILQ_INIT(&pmap->pm_pvlist);
992	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
993
994	return (1);
995}
996
997/*
998 * this routine is called if the page table page is not
999 * mapped correctly.
1000 */
1001static vm_page_t
1002_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1003{
1004	vm_offset_t pteva, ptepa;
1005	vm_page_t m;
1006	int req;
1007
1008	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1009	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1010	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1011
1012	req = VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ;
1013	/*
1014	 * Find or fabricate a new pagetable page
1015	 */
1016	if ((m = vm_page_alloc(NULL, ptepindex, req)) == NULL) {
1017		if (flags & M_WAITOK) {
1018			PMAP_UNLOCK(pmap);
1019			vm_page_unlock_queues();
1020			VM_WAIT;
1021			vm_page_lock_queues();
1022			PMAP_LOCK(pmap);
1023		}
1024		/*
1025		 * Indicate the need to retry.	While waiting, the page
1026		 * table page may have been allocated.
1027		 */
1028		return (NULL);
1029	}
1030	if ((m->flags & PG_ZERO) == 0)
1031		pmap_zero_page(m);
1032
1033	KASSERT(m->queue == PQ_NONE,
1034	    ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1035
1036	/*
1037	 * Map the pagetable page into the process address space, if it
1038	 * isn't already there.
1039	 */
1040
1041	pmap->pm_stats.resident_count++;
1042
1043	ptepa = VM_PAGE_TO_PHYS(m);
1044	if (ptepa < MIPS_KSEG0_LARGEST_PHYS) {
1045		pteva = MIPS_PHYS_TO_KSEG0(ptepa);
1046	} else {
1047		pteva = kmem_alloc_nofault(kernel_map, PAGE_SIZE);
1048		if (pteva == 0)
1049			panic("_pmap_allocpte: unable to allocate kva");
1050		pmap_kenter(pteva, ptepa);
1051	}
1052
1053	pmap->pm_segtab[ptepindex] = (pd_entry_t)pteva;
1054
1055	/*
1056	 * Set the page table hint
1057	 */
1058	pmap->pm_ptphint = m;
1059
1060	/*
1061	 * Kernel page tables are allocated in pmap_bootstrap() or
1062	 * pmap_growkernel().
1063	 */
1064	if (is_kernel_pmap(pmap))
1065		panic("_pmap_allocpte() called for kernel pmap\n");
1066
1067	m->valid = VM_PAGE_BITS_ALL;
1068	vm_page_flag_clear(m, PG_ZERO);
1069
1070	return (m);
1071}
1072
1073static vm_page_t
1074pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1075{
1076	unsigned ptepindex;
1077	vm_offset_t pteva;
1078	vm_page_t m;
1079
1080	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1081	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1082	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1083
1084	/*
1085	 * Calculate pagetable page index
1086	 */
1087	ptepindex = va >> SEGSHIFT;
1088retry:
1089	/*
1090	 * Get the page directory entry
1091	 */
1092	pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1093
1094	/*
1095	 * If the page table page is mapped, we just increment the hold
1096	 * count, and activate it.
1097	 */
1098	if (pteva) {
1099		/*
1100		 * In order to get the page table page, try the hint first.
1101		 */
1102		if (pmap->pm_ptphint &&
1103		    (pmap->pm_ptphint->pindex == ptepindex)) {
1104			m = pmap->pm_ptphint;
1105		} else {
1106			m = PHYS_TO_VM_PAGE(vtophys(pteva));
1107			pmap->pm_ptphint = m;
1108		}
1109		m->wire_count++;
1110	} else {
1111		/*
1112		 * Here if the pte page isn't mapped, or if it has been
1113		 * deallocated.
1114		 */
1115		m = _pmap_allocpte(pmap, ptepindex, flags);
1116		if (m == NULL && (flags & M_WAITOK))
1117			goto retry;
1118	}
1119	return m;
1120}
1121
1122
1123/***************************************************
1124* Pmap allocation/deallocation routines.
1125 ***************************************************/
1126/*
1127 *  Revision 1.397
1128 *  - Merged pmap_release and pmap_release_free_page.  When pmap_release is
1129 *    called only the page directory page(s) can be left in the pmap pte
1130 *    object, since all page table pages will have been freed by
1131 *    pmap_remove_pages and pmap_remove.  In addition, there can only be one
1132 *    reference to the pmap and the page directory is wired, so the page(s)
1133 *    can never be busy.  So all there is to do is clear the magic mappings
1134 *    from the page directory and free the page(s).
1135 */
1136
1137
1138/*
1139 * Release any resources held by the given physical map.
1140 * Called when a pmap initialized by pmap_pinit is being released.
1141 * Should only be called if the map contains no valid mappings.
1142 */
1143void
1144pmap_release(pmap_t pmap)
1145{
1146	vm_offset_t ptdva;
1147	vm_page_t ptdpg;
1148
1149	KASSERT(pmap->pm_stats.resident_count == 0,
1150	    ("pmap_release: pmap resident count %ld != 0",
1151	    pmap->pm_stats.resident_count));
1152
1153	ptdva = (vm_offset_t)pmap->pm_segtab;
1154	ptdpg = PHYS_TO_VM_PAGE(vtophys(ptdva));
1155
1156	if (ptdva >= VM_MIN_KERNEL_ADDRESS) {
1157		pmap_kremove(ptdva);
1158		kmem_free(kernel_map, ptdva, PAGE_SIZE);
1159	} else {
1160		KASSERT(MIPS_IS_KSEG0_ADDR(ptdva),
1161		    ("pmap_release: 0x%0lx is not in kseg0", (long)ptdva));
1162	}
1163
1164	ptdpg->wire_count--;
1165	atomic_subtract_int(&cnt.v_wire_count, 1);
1166	vm_page_free_zero(ptdpg);
1167	PMAP_LOCK_DESTROY(pmap);
1168}
1169
1170/*
1171 * grow the number of kernel page table entries, if needed
1172 */
1173void
1174pmap_growkernel(vm_offset_t addr)
1175{
1176	vm_offset_t ptppaddr;
1177	vm_page_t nkpg;
1178	pt_entry_t *pte;
1179	int i, req;
1180
1181	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1182	if (kernel_vm_end == 0) {
1183		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1184		nkpt = 0;
1185		while (segtab_pde(kernel_segmap, kernel_vm_end)) {
1186			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1187			    ~(PAGE_SIZE * NPTEPG - 1);
1188			nkpt++;
1189			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1190				kernel_vm_end = kernel_map->max_offset;
1191				break;
1192			}
1193		}
1194	}
1195	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1196	if (addr - 1 >= kernel_map->max_offset)
1197		addr = kernel_map->max_offset;
1198	while (kernel_vm_end < addr) {
1199		if (segtab_pde(kernel_segmap, kernel_vm_end)) {
1200			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1201			    ~(PAGE_SIZE * NPTEPG - 1);
1202			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1203				kernel_vm_end = kernel_map->max_offset;
1204				break;
1205			}
1206			continue;
1207		}
1208		/*
1209		 * This index is bogus, but out of the way
1210		 */
1211		req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
1212		nkpg = vm_page_alloc(NULL, nkpt, req);
1213		if (!nkpg)
1214			panic("pmap_growkernel: no memory to grow kernel");
1215
1216		nkpt++;
1217
1218		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1219		if (ptppaddr >= MIPS_KSEG0_LARGEST_PHYS) {
1220			/*
1221			 * We need to do something here, but I am not sure
1222			 * what. We can access anything in the 0 - 512Meg
1223			 * region, but if we get a page to go in the kernel
1224			 * segmap that is outside of of that we really need
1225			 * to have another mapping beyond the temporary ones
1226			 * I have. Not sure how to do this yet. FIXME FIXME.
1227			 */
1228			panic("Gak, can't handle a k-page table outside of lower 512Meg");
1229		}
1230		pte = (pt_entry_t *)MIPS_PHYS_TO_KSEG0(ptppaddr);
1231		segtab_pde(kernel_segmap, kernel_vm_end) = (pd_entry_t)pte;
1232
1233		/*
1234		 * The R[4-7]?00 stores only one copy of the Global bit in
1235		 * the translation lookaside buffer for each 2 page entry.
1236		 * Thus invalid entrys must have the Global bit set so when
1237		 * Entry LO and Entry HI G bits are anded together they will
1238		 * produce a global bit to store in the tlb.
1239		 */
1240		for (i = 0; i < NPTEPG; i++, pte++)
1241			*pte = PTE_G;
1242
1243		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1244		    ~(PAGE_SIZE * NPTEPG - 1);
1245		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1246			kernel_vm_end = kernel_map->max_offset;
1247			break;
1248		}
1249	}
1250}
1251
1252/***************************************************
1253* page management routines.
1254 ***************************************************/
1255
1256/*
1257 * free the pv_entry back to the free list
1258 */
1259static PMAP_INLINE void
1260free_pv_entry(pv_entry_t pv)
1261{
1262
1263	pv_entry_count--;
1264	uma_zfree(pvzone, pv);
1265}
1266
1267/*
1268 * get a new pv_entry, allocating a block from the system
1269 * when needed.
1270 * the memory allocation is performed bypassing the malloc code
1271 * because of the possibility of allocations at interrupt time.
1272 */
1273static pv_entry_t
1274get_pv_entry(pmap_t locked_pmap)
1275{
1276	static const struct timeval printinterval = { 60, 0 };
1277	static struct timeval lastprint;
1278	struct vpgqueues *vpq;
1279	pt_entry_t *pte, oldpte;
1280	pmap_t pmap;
1281	pv_entry_t allocated_pv, next_pv, pv;
1282	vm_offset_t va;
1283	vm_page_t m;
1284
1285	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1286	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1287	allocated_pv = uma_zalloc(pvzone, M_NOWAIT);
1288	if (allocated_pv != NULL) {
1289		pv_entry_count++;
1290		if (pv_entry_count > pv_entry_high_water)
1291			pagedaemon_wakeup();
1292		else
1293			return (allocated_pv);
1294	}
1295	/*
1296	 * Reclaim pv entries: At first, destroy mappings to inactive
1297	 * pages.  After that, if a pv entry is still needed, destroy
1298	 * mappings to active pages.
1299	 */
1300	if (ratecheck(&lastprint, &printinterval))
1301		printf("Approaching the limit on PV entries, "
1302		    "increase the vm.pmap.shpgperproc tunable.\n");
1303	vpq = &vm_page_queues[PQ_INACTIVE];
1304retry:
1305	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1306		if (m->hold_count || m->busy)
1307			continue;
1308		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1309			va = pv->pv_va;
1310			pmap = pv->pv_pmap;
1311			/* Avoid deadlock and lock recursion. */
1312			if (pmap > locked_pmap)
1313				PMAP_LOCK(pmap);
1314			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1315				continue;
1316			pmap->pm_stats.resident_count--;
1317			pte = pmap_pte(pmap, va);
1318			KASSERT(pte != NULL, ("pte"));
1319			oldpte = loadandclear((u_int *)pte);
1320			if (is_kernel_pmap(pmap))
1321				*pte = PTE_G;
1322			KASSERT((oldpte & PTE_W) == 0,
1323			    ("wired pte for unwired page"));
1324			if (m->md.pv_flags & PV_TABLE_REF)
1325				vm_page_flag_set(m, PG_REFERENCED);
1326			if (oldpte & PTE_M)
1327				vm_page_dirty(m);
1328			pmap_invalidate_page(pmap, va);
1329			TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1330			m->md.pv_list_count--;
1331			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1332			if (TAILQ_EMPTY(&m->md.pv_list)) {
1333				vm_page_flag_clear(m, PG_WRITEABLE);
1334				m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1335			}
1336			pmap_unuse_pt(pmap, va, pv->pv_ptem);
1337			if (pmap != locked_pmap)
1338				PMAP_UNLOCK(pmap);
1339			if (allocated_pv == NULL)
1340				allocated_pv = pv;
1341			else
1342				free_pv_entry(pv);
1343		}
1344	}
1345	if (allocated_pv == NULL) {
1346		if (vpq == &vm_page_queues[PQ_INACTIVE]) {
1347			vpq = &vm_page_queues[PQ_ACTIVE];
1348			goto retry;
1349		}
1350		panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable");
1351	}
1352	return (allocated_pv);
1353}
1354
1355/*
1356 *  Revision 1.370
1357 *
1358 *  Move pmap_collect() out of the machine-dependent code, rename it
1359 *  to reflect its new location, and add page queue and flag locking.
1360 *
1361 *  Notes: (1) alpha, i386, and ia64 had identical implementations
1362 *  of pmap_collect() in terms of machine-independent interfaces;
1363 *  (2) sparc64 doesn't require it; (3) powerpc had it as a TODO.
1364 *
1365 *  MIPS implementation was identical to alpha [Junos 8.2]
1366 */
1367
1368/*
1369 * If it is the first entry on the list, it is actually
1370 * in the header and we must copy the following entry up
1371 * to the header.  Otherwise we must search the list for
1372 * the entry.  In either case we free the now unused entry.
1373 */
1374
1375static void
1376pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1377{
1378	pv_entry_t pv;
1379
1380	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1381	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1382	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1383		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1384			if (pmap == pv->pv_pmap && va == pv->pv_va)
1385				break;
1386		}
1387	} else {
1388		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1389			if (va == pv->pv_va)
1390				break;
1391		}
1392	}
1393
1394	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1395	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1396	m->md.pv_list_count--;
1397	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1398		vm_page_flag_clear(m, PG_WRITEABLE);
1399
1400	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1401	free_pv_entry(pv);
1402}
1403
1404/*
1405 * Create a pv entry for page at pa for
1406 * (pmap, va).
1407 */
1408static void
1409pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1410    boolean_t wired)
1411{
1412	pv_entry_t pv;
1413
1414	pv = get_pv_entry(pmap);
1415	pv->pv_va = va;
1416	pv->pv_pmap = pmap;
1417	pv->pv_ptem = mpte;
1418	pv->pv_wired = wired;
1419
1420	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1421	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1422	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1423	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1424	m->md.pv_list_count++;
1425}
1426
1427/*
1428 * Conditionally create a pv entry.
1429 */
1430static boolean_t
1431pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1432    vm_page_t m)
1433{
1434	pv_entry_t pv;
1435
1436	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1437	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1438	if (pv_entry_count < pv_entry_high_water &&
1439	    (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) {
1440		pv_entry_count++;
1441		pv->pv_va = va;
1442		pv->pv_pmap = pmap;
1443		pv->pv_ptem = mpte;
1444		pv->pv_wired = FALSE;
1445		TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1446		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1447		m->md.pv_list_count++;
1448		return (TRUE);
1449	} else
1450		return (FALSE);
1451}
1452
1453/*
1454 * pmap_remove_pte: do the things to unmap a page in a process
1455 */
1456static int
1457pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1458{
1459	pt_entry_t oldpte;
1460	vm_page_t m;
1461	vm_offset_t pa;
1462
1463	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1464	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1465
1466	oldpte = loadandclear((u_int *)ptq);
1467	if (is_kernel_pmap(pmap))
1468		*ptq = PTE_G;
1469
1470	if (oldpte & PTE_W)
1471		pmap->pm_stats.wired_count -= 1;
1472
1473	pmap->pm_stats.resident_count -= 1;
1474	pa = mips_tlbpfn_to_paddr(oldpte);
1475
1476	if (page_is_managed(pa)) {
1477		m = PHYS_TO_VM_PAGE(pa);
1478		if (oldpte & PTE_M) {
1479#if defined(PMAP_DIAGNOSTIC)
1480			if (pmap_nw_modified(oldpte)) {
1481				printf(
1482				    "pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1483				    va, oldpte);
1484			}
1485#endif
1486			vm_page_dirty(m);
1487		}
1488		if (m->md.pv_flags & PV_TABLE_REF)
1489			vm_page_flag_set(m, PG_REFERENCED);
1490		m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1491
1492		pmap_remove_entry(pmap, m, va);
1493	}
1494	return pmap_unuse_pt(pmap, va, NULL);
1495}
1496
1497/*
1498 * Remove a single page from a process address space
1499 */
1500static void
1501pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1502{
1503	register pt_entry_t *ptq;
1504
1505	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1506	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1507	ptq = pmap_pte(pmap, va);
1508
1509	/*
1510	 * if there is no pte for this address, just skip it!!!
1511	 */
1512	if (!ptq || !pmap_pte_v(ptq)) {
1513		return;
1514	}
1515
1516	/*
1517	 * Write back all caches from the page being destroyed
1518	 */
1519	mips_dcache_wbinv_range_index(va, NBPG);
1520
1521	/*
1522	 * get a local va for mappings for this pmap.
1523	 */
1524	(void)pmap_remove_pte(pmap, ptq, va);
1525	pmap_invalidate_page(pmap, va);
1526
1527	return;
1528}
1529
1530/*
1531 *	Remove the given range of addresses from the specified map.
1532 *
1533 *	It is assumed that the start and end are properly
1534 *	rounded to the page size.
1535 */
1536void
1537pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1538{
1539	vm_offset_t va, nva;
1540
1541	if (pmap == NULL)
1542		return;
1543
1544	if (pmap->pm_stats.resident_count == 0)
1545		return;
1546
1547	vm_page_lock_queues();
1548	PMAP_LOCK(pmap);
1549
1550	/*
1551	 * special handling of removing one page.  a very common operation
1552	 * and easy to short circuit some code.
1553	 */
1554	if ((sva + PAGE_SIZE) == eva) {
1555		pmap_remove_page(pmap, sva);
1556		goto out;
1557	}
1558	for (va = sva; va < eva; va = nva) {
1559		if (!*pmap_pde(pmap, va)) {
1560			nva = mips_segtrunc(va + MIPS_SEGSIZE);
1561			continue;
1562		}
1563		pmap_remove_page(pmap, va);
1564		nva = va + PAGE_SIZE;
1565	}
1566
1567out:
1568	vm_page_unlock_queues();
1569	PMAP_UNLOCK(pmap);
1570}
1571
1572/*
1573 *	Routine:	pmap_remove_all
1574 *	Function:
1575 *		Removes this physical page from
1576 *		all physical maps in which it resides.
1577 *		Reflects back modify bits to the pager.
1578 *
1579 *	Notes:
1580 *		Original versions of this routine were very
1581 *		inefficient because they iteratively called
1582 *		pmap_remove (slow...)
1583 */
1584
1585void
1586pmap_remove_all(vm_page_t m)
1587{
1588	register pv_entry_t pv;
1589	register pt_entry_t *pte, tpte;
1590
1591	KASSERT((m->flags & PG_FICTITIOUS) == 0,
1592	    ("pmap_remove_all: page %p is fictitious", m));
1593	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1594
1595	if (m->md.pv_flags & PV_TABLE_REF)
1596		vm_page_flag_set(m, PG_REFERENCED);
1597
1598	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1599		PMAP_LOCK(pv->pv_pmap);
1600
1601		/*
1602		 * If it's last mapping writeback all caches from
1603		 * the page being destroyed
1604	 	 */
1605		if (m->md.pv_list_count == 1)
1606			mips_dcache_wbinv_range_index(pv->pv_va, NBPG);
1607
1608		pv->pv_pmap->pm_stats.resident_count--;
1609
1610		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1611
1612		tpte = loadandclear((u_int *)pte);
1613		if (is_kernel_pmap(pv->pv_pmap))
1614			*pte = PTE_G;
1615
1616		if (tpte & PTE_W)
1617			pv->pv_pmap->pm_stats.wired_count--;
1618
1619		/*
1620		 * Update the vm_page_t clean and reference bits.
1621		 */
1622		if (tpte & PTE_M) {
1623#if defined(PMAP_DIAGNOSTIC)
1624			if (pmap_nw_modified(tpte)) {
1625				printf(
1626				    "pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1627				    pv->pv_va, tpte);
1628			}
1629#endif
1630			vm_page_dirty(m);
1631		}
1632		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1633
1634		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1635		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1636		m->md.pv_list_count--;
1637		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1638		PMAP_UNLOCK(pv->pv_pmap);
1639		free_pv_entry(pv);
1640	}
1641
1642	vm_page_flag_clear(m, PG_WRITEABLE);
1643	m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD);
1644}
1645
1646/*
1647 *	Set the physical protection on the
1648 *	specified range of this map as requested.
1649 */
1650void
1651pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1652{
1653	pt_entry_t *pte;
1654
1655	if (pmap == NULL)
1656		return;
1657
1658	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1659		pmap_remove(pmap, sva, eva);
1660		return;
1661	}
1662	if (prot & VM_PROT_WRITE)
1663		return;
1664
1665	vm_page_lock_queues();
1666	PMAP_LOCK(pmap);
1667	while (sva < eva) {
1668		pt_entry_t pbits, obits;
1669		vm_page_t m;
1670		vm_offset_t pa;
1671
1672		/*
1673		 * If segment table entry is empty, skip this segment.
1674		 */
1675		if (!*pmap_pde(pmap, sva)) {
1676			sva = mips_segtrunc(sva + MIPS_SEGSIZE);
1677			continue;
1678		}
1679		/*
1680		 * If pte is invalid, skip this page
1681		 */
1682		pte = pmap_pte(pmap, sva);
1683		if (!pmap_pte_v(pte)) {
1684			sva += PAGE_SIZE;
1685			continue;
1686		}
1687retry:
1688		obits = pbits = *pte;
1689		pa = mips_tlbpfn_to_paddr(pbits);
1690
1691		if (page_is_managed(pa)) {
1692			m = PHYS_TO_VM_PAGE(pa);
1693			if (m->md.pv_flags & PV_TABLE_REF) {
1694				vm_page_flag_set(m, PG_REFERENCED);
1695				m->md.pv_flags &= ~PV_TABLE_REF;
1696			}
1697			if (pbits & PTE_M) {
1698				vm_page_dirty(m);
1699				m->md.pv_flags &= ~PV_TABLE_MOD;
1700			}
1701		}
1702		pbits = (pbits & ~PTE_M) | PTE_RO;
1703
1704		if (pbits != *pte) {
1705			if (!atomic_cmpset_int((u_int *)pte, obits, pbits))
1706				goto retry;
1707			pmap_update_page(pmap, sva, pbits);
1708		}
1709		sva += PAGE_SIZE;
1710	}
1711	vm_page_unlock_queues();
1712	PMAP_UNLOCK(pmap);
1713}
1714
1715/*
1716 *	Insert the given physical page (p) at
1717 *	the specified virtual address (v) in the
1718 *	target physical map with the protection requested.
1719 *
1720 *	If specified, the page will be wired down, meaning
1721 *	that the related pte can not be reclaimed.
1722 *
1723 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1724 *	or lose information.  That is, this routine must actually
1725 *	insert this page into the given map NOW.
1726 */
1727void
1728pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
1729    vm_prot_t prot, boolean_t wired)
1730{
1731	vm_offset_t pa, opa;
1732	register pt_entry_t *pte;
1733	pt_entry_t origpte, newpte;
1734	vm_page_t mpte, om;
1735	int rw = 0;
1736
1737	if (pmap == NULL)
1738		return;
1739
1740	va &= ~PAGE_MASK;
1741#ifdef PMAP_DIAGNOSTIC
1742	if (va > VM_MAX_KERNEL_ADDRESS)
1743		panic("pmap_enter: toobig");
1744#endif
1745
1746	mpte = NULL;
1747
1748	vm_page_lock_queues();
1749	PMAP_LOCK(pmap);
1750
1751	/*
1752	 * In the case that a page table page is not resident, we are
1753	 * creating it here.
1754	 */
1755	if (va < VM_MAXUSER_ADDRESS) {
1756		mpte = pmap_allocpte(pmap, va, M_WAITOK);
1757	}
1758	pte = pmap_pte(pmap, va);
1759
1760	/*
1761	 * Page Directory table entry not valid, we need a new PT page
1762	 */
1763	if (pte == NULL) {
1764		panic("pmap_enter: invalid page directory, pdir=%p, va=%p\n",
1765		    (void *)pmap->pm_segtab, (void *)va);
1766	}
1767	pa = VM_PAGE_TO_PHYS(m);
1768	om = NULL;
1769	origpte = *pte;
1770	opa = mips_tlbpfn_to_paddr(origpte);
1771
1772	/*
1773	 * Mapping has not changed, must be protection or wiring change.
1774	 */
1775	if ((origpte & PTE_V) && (opa == pa)) {
1776		/*
1777		 * Wiring change, just update stats. We don't worry about
1778		 * wiring PT pages as they remain resident as long as there
1779		 * are valid mappings in them. Hence, if a user page is
1780		 * wired, the PT page will be also.
1781		 */
1782		if (wired && ((origpte & PTE_W) == 0))
1783			pmap->pm_stats.wired_count++;
1784		else if (!wired && (origpte & PTE_W))
1785			pmap->pm_stats.wired_count--;
1786
1787#if defined(PMAP_DIAGNOSTIC)
1788		if (pmap_nw_modified(origpte)) {
1789			printf(
1790			    "pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1791			    va, origpte);
1792		}
1793#endif
1794
1795		/*
1796		 * Remove extra pte reference
1797		 */
1798		if (mpte)
1799			mpte->wire_count--;
1800
1801		/*
1802		 * We might be turning off write access to the page, so we
1803		 * go ahead and sense modify status.
1804		 */
1805		if (page_is_managed(opa)) {
1806			om = m;
1807		}
1808		goto validate;
1809	}
1810	/*
1811	 * Mapping has changed, invalidate old range and fall through to
1812	 * handle validating new mapping.
1813	 */
1814	if (opa) {
1815		if (origpte & PTE_W)
1816			pmap->pm_stats.wired_count--;
1817
1818		if (page_is_managed(opa)) {
1819			om = PHYS_TO_VM_PAGE(opa);
1820			pmap_remove_entry(pmap, om, va);
1821		}
1822		if (mpte != NULL) {
1823			mpte->wire_count--;
1824			KASSERT(mpte->wire_count > 0,
1825			    ("pmap_enter: missing reference to page table page,"
1826			    " va: %p", (void *)va));
1827		}
1828	} else
1829		pmap->pm_stats.resident_count++;
1830
1831	/*
1832	 * Enter on the PV list if part of our managed memory. Note that we
1833	 * raise IPL while manipulating pv_table since pmap_enter can be
1834	 * called at interrupt time.
1835	 */
1836	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
1837		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
1838		    ("pmap_enter: managed mapping within the clean submap"));
1839		pmap_insert_entry(pmap, va, mpte, m, wired);
1840	}
1841	/*
1842	 * Increment counters
1843	 */
1844	if (wired)
1845		pmap->pm_stats.wired_count++;
1846
1847validate:
1848	if ((access & VM_PROT_WRITE) != 0)
1849		m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF;
1850	rw = init_pte_prot(va, m, prot);
1851
1852#ifdef PMAP_DEBUG
1853	printf("pmap_enter:  va: 0x%08x -> pa: 0x%08x\n", va, pa);
1854#endif
1855	/*
1856	 * Now validate mapping with desired protection/wiring.
1857	 */
1858	newpte = mips_paddr_to_tlbpfn(pa) | rw | PTE_V;
1859
1860	if (is_cacheable_mem(pa))
1861		newpte |= PTE_CACHE;
1862	else
1863		newpte |= PTE_UNCACHED;
1864
1865	if (wired)
1866		newpte |= PTE_W;
1867
1868	if (is_kernel_pmap(pmap)) {
1869	         newpte |= PTE_G;
1870	}
1871
1872	/*
1873	 * if the mapping or permission bits are different, we need to
1874	 * update the pte.
1875	 */
1876	if (origpte != newpte) {
1877		if (origpte & PTE_V) {
1878			*pte = newpte;
1879			if (page_is_managed(opa) && (opa != pa)) {
1880				if (om->md.pv_flags & PV_TABLE_REF)
1881					vm_page_flag_set(om, PG_REFERENCED);
1882				om->md.pv_flags &=
1883				    ~(PV_TABLE_REF | PV_TABLE_MOD);
1884			}
1885			if (origpte & PTE_M) {
1886				KASSERT((origpte & PTE_RW),
1887				    ("pmap_enter: modified page not writable:"
1888				    " va: %p, pte: 0x%lx", (void *)va, origpte));
1889				if (page_is_managed(opa))
1890					vm_page_dirty(om);
1891			}
1892		} else {
1893			*pte = newpte;
1894		}
1895	}
1896	pmap_update_page(pmap, va, newpte);
1897
1898	/*
1899	 * Sync I & D caches for executable pages.  Do this only if the the
1900	 * target pmap belongs to the current process.  Otherwise, an
1901	 * unresolvable TLB miss may occur.
1902	 */
1903	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
1904	    (prot & VM_PROT_EXECUTE)) {
1905		mips_icache_sync_range(va, NBPG);
1906		mips_dcache_wbinv_range(va, NBPG);
1907	}
1908	vm_page_unlock_queues();
1909	PMAP_UNLOCK(pmap);
1910}
1911
1912/*
1913 * this code makes some *MAJOR* assumptions:
1914 * 1. Current pmap & pmap exists.
1915 * 2. Not wired.
1916 * 3. Read access.
1917 * 4. No page table pages.
1918 * but is *MUCH* faster than pmap_enter...
1919 */
1920
1921void
1922pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
1923{
1924
1925	PMAP_LOCK(pmap);
1926	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
1927	PMAP_UNLOCK(pmap);
1928}
1929
1930static vm_page_t
1931pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1932    vm_prot_t prot, vm_page_t mpte)
1933{
1934	pt_entry_t *pte;
1935	vm_offset_t pa;
1936
1937	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
1938	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
1939	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
1940	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1941	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1942
1943	/*
1944	 * In the case that a page table page is not resident, we are
1945	 * creating it here.
1946	 */
1947	if (va < VM_MAXUSER_ADDRESS) {
1948		unsigned ptepindex;
1949		vm_offset_t pteva;
1950
1951		/*
1952		 * Calculate pagetable page index
1953		 */
1954		ptepindex = va >> SEGSHIFT;
1955		if (mpte && (mpte->pindex == ptepindex)) {
1956			mpte->wire_count++;
1957		} else {
1958			/*
1959			 * Get the page directory entry
1960			 */
1961			pteva = (vm_offset_t)pmap->pm_segtab[ptepindex];
1962
1963			/*
1964			 * If the page table page is mapped, we just
1965			 * increment the hold count, and activate it.
1966			 */
1967			if (pteva) {
1968				if (pmap->pm_ptphint &&
1969				    (pmap->pm_ptphint->pindex == ptepindex)) {
1970					mpte = pmap->pm_ptphint;
1971				} else {
1972					mpte = PHYS_TO_VM_PAGE(vtophys(pteva));
1973					pmap->pm_ptphint = mpte;
1974				}
1975				mpte->wire_count++;
1976			} else {
1977				mpte = _pmap_allocpte(pmap, ptepindex,
1978				    M_NOWAIT);
1979				if (mpte == NULL)
1980					return (mpte);
1981			}
1982		}
1983	} else {
1984		mpte = NULL;
1985	}
1986
1987	pte = pmap_pte(pmap, va);
1988	if (pmap_pte_v(pte)) {
1989		if (mpte != NULL) {
1990			mpte->wire_count--;
1991			mpte = NULL;
1992		}
1993		return (mpte);
1994	}
1995
1996	/*
1997	 * Enter on the PV list if part of our managed memory.
1998	 */
1999	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2000	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2001		if (mpte != NULL) {
2002			pmap_unwire_pte_hold(pmap, mpte);
2003			mpte = NULL;
2004		}
2005		return (mpte);
2006	}
2007
2008	/*
2009	 * Increment counters
2010	 */
2011	pmap->pm_stats.resident_count++;
2012
2013	pa = VM_PAGE_TO_PHYS(m);
2014
2015	/*
2016	 * Now validate mapping with RO protection
2017	 */
2018	*pte = mips_paddr_to_tlbpfn(pa) | PTE_V;
2019
2020	if (is_cacheable_mem(pa))
2021		*pte |= PTE_CACHE;
2022	else
2023		*pte |= PTE_UNCACHED;
2024
2025	if (is_kernel_pmap(pmap))
2026		*pte |= PTE_G;
2027	else {
2028		*pte |= PTE_RO;
2029		/*
2030		 * Sync I & D caches.  Do this only if the the target pmap
2031		 * belongs to the current process.  Otherwise, an
2032		 * unresolvable TLB miss may occur. */
2033		if (pmap == &curproc->p_vmspace->vm_pmap) {
2034			va &= ~PAGE_MASK;
2035			mips_icache_sync_range(va, NBPG);
2036			mips_dcache_wbinv_range(va, NBPG);
2037		}
2038	}
2039	return (mpte);
2040}
2041
2042/*
2043 * Make a temporary mapping for a physical address.  This is only intended
2044 * to be used for panic dumps.
2045 */
2046void *
2047pmap_kenter_temporary(vm_paddr_t pa, int i)
2048{
2049	vm_offset_t va;
2050	register_t intr;
2051	if (i != 0)
2052		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2053		    __func__);
2054
2055	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2056		va = MIPS_PHYS_TO_KSEG0(pa);
2057	} else {
2058		int cpu;
2059		struct local_sysmaps *sysm;
2060		pt_entry_t *pte, npte;
2061
2062		/* If this is used other than for dumps, we may need to leave
2063		 * interrupts disasbled on return. If crash dumps don't work when
2064		 * we get to this point, we might want to consider this (leaving things
2065		 * disabled as a starting point ;-)
2066	 	 */
2067		intr = intr_disable();
2068		cpu = PCPU_GET(cpuid);
2069		sysm = &sysmap_lmem[cpu];
2070		/* Since this is for the debugger, no locks or any other fun */
2071		npte = mips_paddr_to_tlbpfn(pa) | PTE_RW | PTE_V | PTE_G | PTE_W | PTE_CACHE;
2072		pte = pmap_pte(kernel_pmap, sysm->base);
2073		*pte = npte;
2074		sysm->valid1 = 1;
2075		pmap_update_page(kernel_pmap, sysm->base, npte);
2076		va = sysm->base;
2077		intr_restore(intr);
2078	}
2079	return ((void *)va);
2080}
2081
2082void
2083pmap_kenter_temporary_free(vm_paddr_t pa)
2084{
2085	int cpu;
2086	register_t intr;
2087	struct local_sysmaps *sysm;
2088
2089	if (pa < MIPS_KSEG0_LARGEST_PHYS) {
2090		/* nothing to do for this case */
2091		return;
2092	}
2093	cpu = PCPU_GET(cpuid);
2094	sysm = &sysmap_lmem[cpu];
2095	if (sysm->valid1) {
2096		pt_entry_t *pte;
2097
2098		intr = intr_disable();
2099		pte = pmap_pte(kernel_pmap, sysm->base);
2100		*pte = PTE_G;
2101		pmap_invalidate_page(kernel_pmap, sysm->base);
2102		intr_restore(intr);
2103		sysm->valid1 = 0;
2104	}
2105}
2106
2107/*
2108 * Moved the code to Machine Independent
2109 *	 vm_map_pmap_enter()
2110 */
2111
2112/*
2113 * Maps a sequence of resident pages belonging to the same object.
2114 * The sequence begins with the given page m_start.  This page is
2115 * mapped at the given virtual address start.  Each subsequent page is
2116 * mapped at a virtual address that is offset from start by the same
2117 * amount as the page is offset from m_start within the object.  The
2118 * last page in the sequence is the page with the largest offset from
2119 * m_start that can be mapped at a virtual address less than the given
2120 * virtual address end.  Not every virtual page between start and end
2121 * is mapped; only those for which a resident page exists with the
2122 * corresponding offset from m_start are mapped.
2123 */
2124void
2125pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2126    vm_page_t m_start, vm_prot_t prot)
2127{
2128	vm_page_t m, mpte;
2129	vm_pindex_t diff, psize;
2130
2131	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2132	psize = atop(end - start);
2133	mpte = NULL;
2134	m = m_start;
2135	PMAP_LOCK(pmap);
2136	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2137		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2138		    prot, mpte);
2139		m = TAILQ_NEXT(m, listq);
2140	}
2141 	PMAP_UNLOCK(pmap);
2142}
2143
2144/*
2145 * pmap_object_init_pt preloads the ptes for a given object
2146 * into the specified pmap.  This eliminates the blast of soft
2147 * faults on process startup and immediately after an mmap.
2148 */
2149void
2150pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2151    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2152{
2153	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2154	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2155	    ("pmap_object_init_pt: non-device object"));
2156}
2157
2158/*
2159 *	Routine:	pmap_change_wiring
2160 *	Function:	Change the wiring attribute for a map/virtual-address
2161 *			pair.
2162 *	In/out conditions:
2163 *			The mapping must already exist in the pmap.
2164 */
2165void
2166pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2167{
2168	register pt_entry_t *pte;
2169
2170	if (pmap == NULL)
2171		return;
2172
2173	PMAP_LOCK(pmap);
2174	pte = pmap_pte(pmap, va);
2175
2176	if (wired && !pmap_pte_w(pte))
2177		pmap->pm_stats.wired_count++;
2178	else if (!wired && pmap_pte_w(pte))
2179		pmap->pm_stats.wired_count--;
2180
2181	/*
2182	 * Wiring is not a hardware characteristic so there is no need to
2183	 * invalidate TLB.
2184	 */
2185	pmap_pte_set_w(pte, wired);
2186	PMAP_UNLOCK(pmap);
2187}
2188
2189/*
2190 *	Copy the range specified by src_addr/len
2191 *	from the source map to the range dst_addr/len
2192 *	in the destination map.
2193 *
2194 *	This routine is only advisory and need not do anything.
2195 */
2196
2197void
2198pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2199    vm_size_t len, vm_offset_t src_addr)
2200{
2201}
2202
2203/*
2204 *	pmap_zero_page zeros the specified hardware page by mapping
2205 *	the page into KVM and using bzero to clear its contents.
2206 */
2207void
2208pmap_zero_page(vm_page_t m)
2209{
2210	vm_offset_t va;
2211	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2212	register_t intr;
2213
2214	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2215		va = MIPS_PHYS_TO_KSEG0(phys);
2216
2217		bzero((caddr_t)va, PAGE_SIZE);
2218		mips_dcache_wbinv_range(va, PAGE_SIZE);
2219	} else {
2220		PMAP_LMEM_MAP1(va, phys);
2221
2222		bzero((caddr_t)va, PAGE_SIZE);
2223		mips_dcache_wbinv_range(va, PAGE_SIZE);
2224
2225		PMAP_LMEM_UNMAP();
2226	}
2227}
2228
2229/*
2230 *	pmap_zero_page_area zeros the specified hardware page by mapping
2231 *	the page into KVM and using bzero to clear its contents.
2232 *
2233 *	off and size may not cover an area beyond a single hardware page.
2234 */
2235void
2236pmap_zero_page_area(vm_page_t m, int off, int size)
2237{
2238	vm_offset_t va;
2239	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2240	register_t intr;
2241
2242	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2243		va = MIPS_PHYS_TO_KSEG0(phys);
2244		bzero((char *)(caddr_t)va + off, size);
2245		mips_dcache_wbinv_range(va + off, size);
2246	} else {
2247		PMAP_LMEM_MAP1(va, phys);
2248
2249		bzero((char *)va + off, size);
2250		mips_dcache_wbinv_range(va + off, size);
2251
2252		PMAP_LMEM_UNMAP();
2253	}
2254}
2255
2256void
2257pmap_zero_page_idle(vm_page_t m)
2258{
2259	vm_offset_t va;
2260	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2261	register_t intr;
2262
2263	if (phys < MIPS_KSEG0_LARGEST_PHYS) {
2264		va = MIPS_PHYS_TO_KSEG0(phys);
2265		bzero((caddr_t)va, PAGE_SIZE);
2266		mips_dcache_wbinv_range(va, PAGE_SIZE);
2267	} else {
2268		PMAP_LMEM_MAP1(va, phys);
2269
2270		bzero((caddr_t)va, PAGE_SIZE);
2271		mips_dcache_wbinv_range(va, PAGE_SIZE);
2272
2273		PMAP_LMEM_UNMAP();
2274	}
2275}
2276
2277/*
2278 *	pmap_copy_page copies the specified (machine independent)
2279 *	page by mapping the page into virtual memory and using
2280 *	bcopy to copy the page, one machine dependent page at a
2281 *	time.
2282 */
2283void
2284pmap_copy_page(vm_page_t src, vm_page_t dst)
2285{
2286	vm_offset_t va_src, va_dst;
2287	vm_paddr_t phy_src = VM_PAGE_TO_PHYS(src);
2288	vm_paddr_t phy_dst = VM_PAGE_TO_PHYS(dst);
2289	register_t intr;
2290
2291	if ((phy_src < MIPS_KSEG0_LARGEST_PHYS) && (phy_dst < MIPS_KSEG0_LARGEST_PHYS)) {
2292		/* easy case, all can be accessed via KSEG0 */
2293		/*
2294		 * Flush all caches for VA that are mapped to this page
2295		 * to make sure that data in SDRAM is up to date
2296		 */
2297		pmap_flush_pvcache(src);
2298		mips_dcache_wbinv_range_index(
2299		    MIPS_PHYS_TO_KSEG0(phy_dst), PAGE_SIZE);
2300		va_src = MIPS_PHYS_TO_KSEG0(phy_src);
2301		va_dst = MIPS_PHYS_TO_KSEG0(phy_dst);
2302		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2303		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2304	} else {
2305		PMAP_LMEM_MAP2(va_src, phy_src, va_dst, phy_dst);
2306
2307		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2308		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2309
2310		PMAP_LMEM_UNMAP();
2311	}
2312}
2313
2314/*
2315 * Returns true if the pmap's pv is one of the first
2316 * 16 pvs linked to from this page.  This count may
2317 * be changed upwards or downwards in the future; it
2318 * is only necessary that true be returned for a small
2319 * subset of pmaps for proper page aging.
2320 */
2321boolean_t
2322pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2323{
2324	pv_entry_t pv;
2325	int loops = 0;
2326
2327	if (m->flags & PG_FICTITIOUS)
2328		return FALSE;
2329
2330	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2331	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2332		if (pv->pv_pmap == pmap) {
2333			return TRUE;
2334		}
2335		loops++;
2336		if (loops >= 16)
2337			break;
2338	}
2339	return (FALSE);
2340}
2341
2342/*
2343 * Remove all pages from specified address space
2344 * this aids process exit speeds.  Also, this code
2345 * is special cased for current process only, but
2346 * can have the more generic (and slightly slower)
2347 * mode enabled.  This is much faster than pmap_remove
2348 * in the case of running down an entire address space.
2349 */
2350void
2351pmap_remove_pages(pmap_t pmap)
2352{
2353	pt_entry_t *pte, tpte;
2354	pv_entry_t pv, npv;
2355	vm_page_t m;
2356
2357	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2358		printf("warning: pmap_remove_pages called with non-current pmap\n");
2359		return;
2360	}
2361	vm_page_lock_queues();
2362	PMAP_LOCK(pmap);
2363	sched_pin();
2364	//XXX need to be TAILQ_FOREACH_SAFE ?
2365	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2366
2367		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2368		if (!pmap_pte_v(pte))
2369			panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
2370		tpte = *pte;
2371
2372/*
2373 * We cannot remove wired pages from a process' mapping at this time
2374 */
2375		if (tpte & PTE_W) {
2376			npv = TAILQ_NEXT(pv, pv_plist);
2377			continue;
2378		}
2379		*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2380
2381		m = PHYS_TO_VM_PAGE(mips_tlbpfn_to_paddr(tpte));
2382
2383		KASSERT(m < &vm_page_array[vm_page_array_size],
2384		    ("pmap_remove_pages: bad tpte %lx", tpte));
2385
2386		pv->pv_pmap->pm_stats.resident_count--;
2387
2388		/*
2389		 * Update the vm_page_t clean and reference bits.
2390		 */
2391		if (tpte & PTE_M) {
2392			vm_page_dirty(m);
2393		}
2394		npv = TAILQ_NEXT(pv, pv_plist);
2395		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2396
2397		m->md.pv_list_count--;
2398		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2399		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2400			vm_page_flag_clear(m, PG_WRITEABLE);
2401		}
2402		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2403		free_pv_entry(pv);
2404	}
2405	sched_unpin();
2406	pmap_invalidate_all(pmap);
2407	PMAP_UNLOCK(pmap);
2408	vm_page_unlock_queues();
2409}
2410
2411/*
2412 * pmap_testbit tests bits in pte's
2413 * note that the testbit/changebit routines are inline,
2414 * and a lot of things compile-time evaluate.
2415 */
2416static boolean_t
2417pmap_testbit(vm_page_t m, int bit)
2418{
2419	pv_entry_t pv;
2420	pt_entry_t *pte;
2421	boolean_t rv = FALSE;
2422
2423	if (m->flags & PG_FICTITIOUS)
2424		return rv;
2425
2426	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2427		return rv;
2428
2429	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2430	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2431#if defined(PMAP_DIAGNOSTIC)
2432		if (!pv->pv_pmap) {
2433			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2434			continue;
2435		}
2436#endif
2437		PMAP_LOCK(pv->pv_pmap);
2438		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2439		rv = (*pte & bit) != 0;
2440		PMAP_UNLOCK(pv->pv_pmap);
2441		if (rv)
2442			break;
2443	}
2444	return (rv);
2445}
2446
2447/*
2448 * this routine is used to modify bits in ptes
2449 */
2450static __inline void
2451pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2452{
2453	register pv_entry_t pv;
2454	register pt_entry_t *pte;
2455
2456	if (m->flags & PG_FICTITIOUS)
2457		return;
2458
2459	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2460	/*
2461	 * Loop over all current mappings setting/clearing as appropos If
2462	 * setting RO do we need to clear the VAC?
2463	 */
2464	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2465#if defined(PMAP_DIAGNOSTIC)
2466		if (!pv->pv_pmap) {
2467			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2468			continue;
2469		}
2470#endif
2471
2472		PMAP_LOCK(pv->pv_pmap);
2473		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2474
2475		if (setem) {
2476			*(int *)pte |= bit;
2477			pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2478		} else {
2479			vm_offset_t pbits = *(vm_offset_t *)pte;
2480
2481			if (pbits & bit) {
2482				if (bit == PTE_RW) {
2483					if (pbits & PTE_M) {
2484						vm_page_dirty(m);
2485					}
2486					*(int *)pte = (pbits & ~(PTE_M | PTE_RW)) |
2487					    PTE_RO;
2488				} else {
2489					*(int *)pte = pbits & ~bit;
2490				}
2491				pmap_update_page(pv->pv_pmap, pv->pv_va, *pte);
2492			}
2493		}
2494		PMAP_UNLOCK(pv->pv_pmap);
2495	}
2496	if (!setem && bit == PTE_RW)
2497		vm_page_flag_clear(m, PG_WRITEABLE);
2498}
2499
2500/*
2501 *	pmap_page_wired_mappings:
2502 *
2503 *	Return the number of managed mappings to the given physical page
2504 *	that are wired.
2505 */
2506int
2507pmap_page_wired_mappings(vm_page_t m)
2508{
2509	pv_entry_t pv;
2510	int count;
2511
2512	count = 0;
2513	if ((m->flags & PG_FICTITIOUS) != 0)
2514		return (count);
2515	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2516	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
2517	    if (pv->pv_wired)
2518		count++;
2519	return (count);
2520}
2521
2522/*
2523 * Clear the write and modified bits in each of the given page's mappings.
2524 */
2525void
2526pmap_remove_write(vm_page_t m)
2527{
2528	pv_entry_t pv, npv;
2529	vm_offset_t va;
2530	pt_entry_t *pte;
2531
2532	if ((m->flags & PG_WRITEABLE) == 0)
2533		return;
2534
2535	/*
2536	 * Loop over all current mappings setting/clearing as appropos.
2537	 */
2538	for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) {
2539		npv = TAILQ_NEXT(pv, pv_plist);
2540		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2541
2542		if ((pte == NULL) || !mips_pg_v(*pte))
2543			panic("page on pm_pvlist has no pte\n");
2544
2545		va = pv->pv_va;
2546		pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE,
2547		    VM_PROT_READ | VM_PROT_EXECUTE);
2548	}
2549	vm_page_flag_clear(m, PG_WRITEABLE);
2550}
2551
2552/*
2553 *	pmap_ts_referenced:
2554 *
2555 *	Return the count of reference bits for a page, clearing all of them.
2556 */
2557int
2558pmap_ts_referenced(vm_page_t m)
2559{
2560	if (m->flags & PG_FICTITIOUS)
2561		return (0);
2562
2563	if (m->md.pv_flags & PV_TABLE_REF) {
2564		m->md.pv_flags &= ~PV_TABLE_REF;
2565		return 1;
2566	}
2567	return 0;
2568}
2569
2570/*
2571 *	pmap_is_modified:
2572 *
2573 *	Return whether or not the specified physical page was modified
2574 *	in any physical maps.
2575 */
2576boolean_t
2577pmap_is_modified(vm_page_t m)
2578{
2579	if (m->flags & PG_FICTITIOUS)
2580		return FALSE;
2581
2582	if (m->md.pv_flags & PV_TABLE_MOD)
2583		return TRUE;
2584	else
2585		return pmap_testbit(m, PTE_M);
2586}
2587
2588/* N/C */
2589
2590/*
2591 *	pmap_is_prefaultable:
2592 *
2593 *	Return whether or not the specified virtual address is elgible
2594 *	for prefault.
2595 */
2596boolean_t
2597pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2598{
2599	pt_entry_t *pte;
2600	boolean_t rv;
2601
2602	rv = FALSE;
2603	PMAP_LOCK(pmap);
2604	if (*pmap_pde(pmap, addr)) {
2605		pte = pmap_pte(pmap, addr);
2606		rv = (*pte == 0);
2607	}
2608	PMAP_UNLOCK(pmap);
2609	return (rv);
2610}
2611
2612/*
2613 *	Clear the modify bits on the specified physical page.
2614 */
2615void
2616pmap_clear_modify(vm_page_t m)
2617{
2618	if (m->flags & PG_FICTITIOUS)
2619		return;
2620	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2621	if (m->md.pv_flags & PV_TABLE_MOD) {
2622		pmap_changebit(m, PTE_M, FALSE);
2623		m->md.pv_flags &= ~PV_TABLE_MOD;
2624	}
2625}
2626
2627/*
2628 *	pmap_clear_reference:
2629 *
2630 *	Clear the reference bit on the specified physical page.
2631 */
2632void
2633pmap_clear_reference(vm_page_t m)
2634{
2635	if (m->flags & PG_FICTITIOUS)
2636		return;
2637
2638	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2639	if (m->md.pv_flags & PV_TABLE_REF) {
2640		m->md.pv_flags &= ~PV_TABLE_REF;
2641	}
2642}
2643
2644/*
2645 * Miscellaneous support routines follow
2646 */
2647
2648/*
2649 * Map a set of physical memory pages into the kernel virtual
2650 * address space. Return a pointer to where it is mapped. This
2651 * routine is intended to be used for mapping device memory,
2652 * NOT real memory.
2653 */
2654
2655/*
2656 * Map a set of physical memory pages into the kernel virtual
2657 * address space. Return a pointer to where it is mapped. This
2658 * routine is intended to be used for mapping device memory,
2659 * NOT real memory.
2660 */
2661void *
2662pmap_mapdev(vm_offset_t pa, vm_size_t size)
2663{
2664        vm_offset_t va, tmpva, offset;
2665
2666	/*
2667	 * KSEG1 maps only first 512M of phys address space. For
2668	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
2669	 */
2670	if ((pa + size - 1) < MIPS_KSEG0_LARGEST_PHYS)
2671		return (void *)MIPS_PHYS_TO_KSEG1(pa);
2672	else {
2673		offset = pa & PAGE_MASK;
2674		size = roundup(size + offset, PAGE_SIZE);
2675
2676		va = kmem_alloc_nofault(kernel_map, size);
2677		if (!va)
2678			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2679		pa = trunc_page(pa);
2680		for (tmpva = va; size > 0;) {
2681			pmap_kenter(tmpva, pa);
2682			size -= PAGE_SIZE;
2683			tmpva += PAGE_SIZE;
2684			pa += PAGE_SIZE;
2685		}
2686	}
2687
2688	return ((void *)(va + offset));
2689}
2690
2691void
2692pmap_unmapdev(vm_offset_t va, vm_size_t size)
2693{
2694	vm_offset_t base, offset, tmpva;
2695
2696	/* If the address is within KSEG1 then there is nothing to do */
2697	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
2698		return;
2699
2700	base = trunc_page(va);
2701	offset = va & PAGE_MASK;
2702	size = roundup(size + offset, PAGE_SIZE);
2703	for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE)
2704		pmap_kremove(tmpva);
2705	kmem_free(kernel_map, base, size);
2706}
2707
2708/*
2709 * perform the pmap work for mincore
2710 */
2711int
2712pmap_mincore(pmap_t pmap, vm_offset_t addr)
2713{
2714
2715	pt_entry_t *ptep, pte;
2716	vm_page_t m;
2717	int val = 0;
2718
2719	PMAP_LOCK(pmap);
2720	ptep = pmap_pte(pmap, addr);
2721	pte = (ptep != NULL) ? *ptep : 0;
2722	PMAP_UNLOCK(pmap);
2723
2724	if (mips_pg_v(pte)) {
2725		vm_offset_t pa;
2726
2727		val = MINCORE_INCORE;
2728		pa = mips_tlbpfn_to_paddr(pte);
2729		if (!page_is_managed(pa))
2730			return val;
2731
2732		m = PHYS_TO_VM_PAGE(pa);
2733
2734		/*
2735		 * Modified by us
2736		 */
2737		if (pte & PTE_M)
2738			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
2739		/*
2740		 * Modified by someone
2741		 */
2742		else {
2743			vm_page_lock_queues();
2744			if (m->dirty || pmap_is_modified(m))
2745				val |= MINCORE_MODIFIED_OTHER;
2746			vm_page_unlock_queues();
2747		}
2748		/*
2749		 * Referenced by us or someone
2750		 */
2751		vm_page_lock_queues();
2752		if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
2753			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
2754			vm_page_flag_set(m, PG_REFERENCED);
2755		}
2756		vm_page_unlock_queues();
2757	}
2758	return val;
2759}
2760
2761void
2762pmap_activate(struct thread *td)
2763{
2764	pmap_t pmap, oldpmap;
2765	struct proc *p = td->td_proc;
2766
2767	critical_enter();
2768
2769	pmap = vmspace_pmap(p->p_vmspace);
2770	oldpmap = PCPU_GET(curpmap);
2771
2772	if (oldpmap)
2773		atomic_clear_32(&oldpmap->pm_active, PCPU_GET(cpumask));
2774	atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
2775	pmap_asid_alloc(pmap);
2776	if (td == curthread) {
2777		PCPU_SET(segbase, pmap->pm_segtab);
2778		MachSetPID(pmap->pm_asid[PCPU_GET(cpuid)].asid);
2779	}
2780
2781	PCPU_SET(curpmap, pmap);
2782	critical_exit();
2783}
2784
2785void
2786pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2787{
2788}
2789
2790/*
2791 *	Increase the starting virtual address of the given mapping if a
2792 *	different alignment might result in more superpage mappings.
2793 */
2794void
2795pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
2796    vm_offset_t *addr, vm_size_t size)
2797{
2798	vm_offset_t superpage_offset;
2799
2800	if (size < NBSEG)
2801		return;
2802	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
2803		offset += ptoa(object->pg_color);
2804	superpage_offset = offset & SEGOFSET;
2805	if (size - ((NBSEG - superpage_offset) & SEGOFSET) < NBSEG ||
2806	    (*addr & SEGOFSET) == superpage_offset)
2807		return;
2808	if ((*addr & SEGOFSET) < superpage_offset)
2809		*addr = (*addr & ~SEGOFSET) + superpage_offset;
2810	else
2811		*addr = ((*addr + SEGOFSET) & ~SEGOFSET) + superpage_offset;
2812}
2813
2814int pmap_pid_dump(int pid);
2815
2816int
2817pmap_pid_dump(int pid)
2818{
2819	pmap_t pmap;
2820	struct proc *p;
2821	int npte = 0;
2822	int index;
2823
2824	sx_slock(&allproc_lock);
2825	LIST_FOREACH(p, &allproc, p_list) {
2826		if (p->p_pid != pid)
2827			continue;
2828
2829		if (p->p_vmspace) {
2830			int i, j;
2831
2832			printf("vmspace is %p\n",
2833			       p->p_vmspace);
2834			index = 0;
2835			pmap = vmspace_pmap(p->p_vmspace);
2836			printf("pmap asid:%x generation:%x\n",
2837			       pmap->pm_asid[0].asid,
2838			       pmap->pm_asid[0].gen);
2839			for (i = 0; i < NUSERPGTBLS; i++) {
2840				pd_entry_t *pde;
2841				pt_entry_t *pte;
2842				unsigned base = i << SEGSHIFT;
2843
2844				pde = &pmap->pm_segtab[i];
2845				if (pde && pmap_pde_v(pde)) {
2846					for (j = 0; j < 1024; j++) {
2847						vm_offset_t va = base +
2848						(j << PAGE_SHIFT);
2849
2850						pte = pmap_pte(pmap, va);
2851						if (pte && pmap_pte_v(pte)) {
2852							vm_offset_t pa;
2853							vm_page_t m;
2854
2855							pa = mips_tlbpfn_to_paddr(*pte);
2856							m = PHYS_TO_VM_PAGE(pa);
2857							printf("va: %p, pt: %p, h: %d, w: %d, f: 0x%x",
2858							    (void *)va,
2859							    (void *)pa,
2860							    m->hold_count,
2861							    m->wire_count,
2862							    m->flags);
2863							npte++;
2864							index++;
2865							if (index >= 2) {
2866								index = 0;
2867								printf("\n");
2868							} else {
2869								printf(" ");
2870							}
2871						}
2872					}
2873				}
2874			}
2875		} else {
2876		  printf("Process pid:%d has no vm_space\n", pid);
2877		}
2878		break;
2879	}
2880	sx_sunlock(&allproc_lock);
2881	return npte;
2882}
2883
2884
2885#if defined(DEBUG)
2886
2887static void pads(pmap_t pm);
2888void pmap_pvdump(vm_offset_t pa);
2889
2890/* print address space of pmap*/
2891static void
2892pads(pmap_t pm)
2893{
2894	unsigned va, i, j;
2895	pt_entry_t *ptep;
2896
2897	if (pm == kernel_pmap)
2898		return;
2899	for (i = 0; i < NPTEPG; i++)
2900		if (pm->pm_segtab[i])
2901			for (j = 0; j < NPTEPG; j++) {
2902				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
2903				if (pm == kernel_pmap && va < KERNBASE)
2904					continue;
2905				if (pm != kernel_pmap &&
2906				    va >= VM_MAXUSER_ADDRESS)
2907					continue;
2908				ptep = pmap_pte(pm, va);
2909				if (pmap_pte_v(ptep))
2910					printf("%x:%x ", va, *(int *)ptep);
2911			}
2912
2913}
2914
2915void
2916pmap_pvdump(vm_offset_t pa)
2917{
2918	register pv_entry_t pv;
2919	vm_page_t m;
2920
2921	printf("pa %x", pa);
2922	m = PHYS_TO_VM_PAGE(pa);
2923	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
2924	    pv = TAILQ_NEXT(pv, pv_list)) {
2925		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
2926		pads(pv->pv_pmap);
2927	}
2928	printf(" ");
2929}
2930
2931/* N/C */
2932#endif
2933
2934
2935/*
2936 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
2937 * It takes almost as much or more time to search the TLB for a
2938 * specific ASID and flush those entries as it does to flush the entire TLB.
2939 * Therefore, when we allocate a new ASID, we just take the next number. When
2940 * we run out of numbers, we flush the TLB, increment the generation count
2941 * and start over. ASID zero is reserved for kernel use.
2942 */
2943static void
2944pmap_asid_alloc(pmap)
2945	pmap_t pmap;
2946{
2947	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
2948	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
2949	else {
2950		if (PCPU_GET(next_asid) == pmap_max_asid) {
2951			MIPS_TBIAP();
2952			PCPU_SET(asid_generation,
2953			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
2954			if (PCPU_GET(asid_generation) == 0) {
2955				PCPU_SET(asid_generation, 1);
2956			}
2957			PCPU_SET(next_asid, 1);	/* 0 means invalid */
2958		}
2959		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
2960		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
2961		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
2962	}
2963}
2964
2965int
2966page_is_managed(vm_offset_t pa)
2967{
2968	vm_offset_t pgnum = mips_btop(pa);
2969
2970	if (pgnum >= first_page && (pgnum < (first_page + vm_page_array_size))) {
2971		vm_page_t m;
2972
2973		m = PHYS_TO_VM_PAGE(pa);
2974		if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
2975			return 1;
2976	}
2977	return 0;
2978}
2979
2980static int
2981init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot)
2982{
2983	int rw = 0;
2984
2985	if (!(prot & VM_PROT_WRITE))
2986		rw = PTE_ROPAGE;
2987	else {
2988		if (va >= VM_MIN_KERNEL_ADDRESS) {
2989			/*
2990			 * Don't bother to trap on kernel writes, just
2991			 * record page as dirty.
2992			 */
2993			rw = PTE_RWPAGE;
2994			vm_page_dirty(m);
2995		} else if ((m->md.pv_flags & PV_TABLE_MOD) ||
2996		    m->dirty == VM_PAGE_BITS_ALL)
2997			rw = PTE_RWPAGE;
2998		else
2999			rw = PTE_CWPAGE;
3000		vm_page_flag_set(m, PG_WRITEABLE);
3001	}
3002	return rw;
3003}
3004
3005/*
3006 *	pmap_page_is_free:
3007 *
3008 *	Called when a page is freed to allow pmap to clean up
3009 *	any extra state associated with the page.  In this case
3010 *	clear modified/referenced bits.
3011 */
3012void
3013pmap_page_is_free(vm_page_t m)
3014{
3015
3016	m->md.pv_flags = 0;
3017}
3018
3019/*
3020 *	pmap_set_modified:
3021 *
3022 *	Sets the page modified and reference bits for the specified page.
3023 */
3024void
3025pmap_set_modified(vm_offset_t pa)
3026{
3027
3028	PHYS_TO_VM_PAGE(pa)->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD);
3029}
3030
3031/*
3032 *	Routine:	pmap_kextract
3033 *	Function:
3034 *		Extract the physical page address associated
3035 *		virtual address.
3036 */
3037 /* PMAP_INLINE */ vm_offset_t
3038pmap_kextract(vm_offset_t va)
3039{
3040	vm_offset_t pa = 0;
3041
3042	if (va < MIPS_KSEG0_START) {
3043		/* user virtual address */
3044		pt_entry_t *ptep;
3045
3046		if (curproc && curproc->p_vmspace) {
3047			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3048			if (ptep)
3049				pa = mips_tlbpfn_to_paddr(*ptep) |
3050				    (va & PAGE_MASK);
3051		}
3052	} else if (va >= MIPS_KSEG0_START &&
3053	    va < MIPS_KSEG1_START)
3054		pa = MIPS_KSEG0_TO_PHYS(va);
3055	else if (va >= MIPS_KSEG1_START &&
3056	    va < MIPS_KSEG2_START)
3057		pa = MIPS_KSEG1_TO_PHYS(va);
3058	else if (va >= MIPS_KSEG2_START && va < VM_MAX_KERNEL_ADDRESS) {
3059		pt_entry_t *ptep;
3060
3061		/* Is the kernel pmap initialized? */
3062		if (kernel_pmap->pm_active) {
3063			/* Its inside the virtual address range */
3064			ptep = pmap_pte(kernel_pmap, va);
3065			if (ptep)
3066				pa = mips_tlbpfn_to_paddr(*ptep) |
3067				    (va & PAGE_MASK);
3068		}
3069	}
3070	return pa;
3071}
3072
3073void
3074pmap_flush_pvcache(vm_page_t m)
3075{
3076	pv_entry_t pv;
3077
3078	if (m != NULL) {
3079		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3080	    	    pv = TAILQ_NEXT(pv, pv_list)) {
3081			mips_dcache_wbinv_range_index(pv->pv_va, NBPG);
3082		}
3083	}
3084}
3085
3086void
3087pmap_save_tlb(void)
3088{
3089	int tlbno, cpu;
3090
3091	cpu = PCPU_GET(cpuid);
3092
3093	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno)
3094		MachTLBRead(tlbno, &tlbstash[cpu][tlbno]);
3095}
3096
3097#ifdef DDB
3098#include <ddb/ddb.h>
3099
3100DB_SHOW_COMMAND(tlb, ddb_dump_tlb)
3101{
3102	int cpu, tlbno;
3103	struct tlb *tlb;
3104
3105	if (have_addr)
3106		cpu = ((addr >> 4) % 16) * 10 + (addr % 16);
3107	else
3108		cpu = PCPU_GET(cpuid);
3109
3110	if (cpu < 0 || cpu >= mp_ncpus) {
3111		db_printf("Invalid CPU %d\n", cpu);
3112		return;
3113	} else
3114		db_printf("CPU %d:\n", cpu);
3115
3116	if (cpu == PCPU_GET(cpuid))
3117		pmap_save_tlb();
3118
3119	for (tlbno = 0; tlbno < num_tlbentries; ++tlbno) {
3120		tlb = &tlbstash[cpu][tlbno];
3121		if (tlb->tlb_lo0 & PTE_V || tlb->tlb_lo1 & PTE_V) {
3122			printf("TLB %2d vad 0x%0lx ",
3123				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3124		} else {
3125			printf("TLB*%2d vad 0x%0lx ",
3126				tlbno, (long)(tlb->tlb_hi & 0xffffff00));
3127		}
3128		printf("0=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo0));
3129		printf("%c", tlb->tlb_lo0 & PTE_V ? 'V' : '-');
3130		printf("%c", tlb->tlb_lo0 & PTE_M ? 'M' : '-');
3131		printf("%c", tlb->tlb_lo0 & PTE_G ? 'G' : '-');
3132		printf(" atr %x ", (tlb->tlb_lo0 >> 3) & 7);
3133		printf("1=0x%0lx ", pfn_to_vad((long)tlb->tlb_lo1));
3134		printf("%c", tlb->tlb_lo1 & PTE_V ? 'V' : '-');
3135		printf("%c", tlb->tlb_lo1 & PTE_M ? 'M' : '-');
3136		printf("%c", tlb->tlb_lo1 & PTE_G ? 'G' : '-');
3137		printf(" atr %x ", (tlb->tlb_lo1 >> 3) & 7);
3138		printf(" sz=%x pid=%x\n", tlb->tlb_mask,
3139		       (tlb->tlb_hi & 0x000000ff));
3140	}
3141}
3142#endif	/* DDB */
3143